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Abstract: Target threat assessment provides support for combat decision making. The multi-target
threat assessment method based on a three-way decision can obtain threat classification while
receiving threat ranking, thus avoiding the limitation of traditional two-way decisions. However,
the heterogeneous situation information, attribute relevance, and adaptive information processing
needs in complex battlefield environment bring challenges to existing methods. Therefore, this paper
proposes a new multi-target three-way threat assessment method with heterogeneous information
and attribute relevance. Firstly, dynamic assessment information is represented by heterogeneous
information, and attribute weights are calculated by heterogeneous Criteria Importance Through
Intercriteria Correlation (CRITIC). Then, the conditional probability is calculated by the heterogeneous
weighted Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and the adaptive
risk avoidance coefficients are constructed by calculating the uncertainty of the assessment value,
and then the relative loss function matrices are constructed. Finally, the comprehensive loss function
matrices are obtained by the weighted Heronian mean (HM) operator, and the comprehensive
thresholds are calculated to obtain the three-way rules. The case study shows that compared with the
existing methods, the proposed method can effectively handle the heterogeneous information and
attribute relevance, and obtain the risk avoidance coefficients without presetting or field subjective
settings, which is more suitable for the complex mission environment.

Keywords: heterogeneous information; three-way decision; threat assessment; attribute relevance;
risk avoidance coefficient

MSC: 90B50; 90C70

1. Introduction

The research and application of military technology is an important part of the de-
velopment of science and technology. Modern war is a highly informationised and even
intelligent systems’ confrontation [1,2]. It involves many operational elements. Typically, to
gain an operational advantage, both sides need to focus their superior forces on the other
side’s high-value targets in combat decision making [3]. In the course of combat, targets
with a higher threat degree are usually considered to be high-value targets, which need to
allocate more resources to attack or interfere first [4,5]. Therefore, target threat assessment
is an important issue in modern military combat decision making [6,7].

A typical implementation process of target threat assessment is shown in Figure 1.
Briefly, in complex mission scenarios, first determine the threat assessment attributes,
then normalize the assessment data, select appropriate threat assessment methods, and
finally obtain the threat ranking of the targets. Often, it is desirable to minimize human
involvement in the above processes in order to improve timeliness.

With the increasing complexity of the combat environment and the increasing variety
of combat forms, the study object of target threat assessment gradually includes air targets,
ground targets, radiation source targets, group targets, and so on. The selection of target
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threat assessment attributes needs to consider the scenarios, and usually there are discrete
attributes, such as the target type; continuous attributes, such as the target location; etc., and
the target information comes from the situation information base (historical data), various
types of sensors, and so on. Due to the different sources and accuracy of target situation
information, different forms of information representation are justified, i.e., the assessment
information is heterogeneous. The choice of evaluation methods is crucial. Target threat
assessment methods include methods based on multi-attribute decision making (MADM),
neural-network-based assessment, Bayesian-network-based estimation, and methods based
on fuzzy set theory [8–12]. The characteristics and deficiencies of these methods are listed
in Table 1.

Figure 1. The implemented process of target threat assessment.

Table 1. The comparison among target threat assessment methods.

Method Theoretical Basis Characteristics Deficiencies

Zhang et al. [8] Bayesian inference and
evidence theory

The method is based on Bayesian
network, which has good
interpretability.

Bayesian network structure and
conditional probability are
difficult to effectively determine.

Luo et al. [9] MADM, information entropy,
and AHP

The method can explicitly
represent assessment indicators
and their importance, and can
calculate the threat degree.

The method is static and
subjective parameters are difficult
to determine.

Ma et al. [10] Cloud model
The method can effectively handle
ambiguity and randomness of
situation information.

The membership function is hard
to determine.

Wang et al. [11] Intuitionistic fuzzy set and fuzzy
reasoning

The method can handle the
uncertainty of target situation
information.

The reasoning rules grow rapidly
with the increase in evaluation
indicators, leading to
decision-making difficulties.

Yu et al. [12] Long short-term memory network The method has learning capacities
and generalization ability.

The network needs dataset to
train and computations are
relatively complex.

Although the research objects of each method in Table 1 are not the same, the methods
are universal. The advantages and disadvantages of each method are caused by its theo-
retical basis, which is detailed in Table 1. Among them, dynamic target threat assessment
methods based on fuzzy MADM, which have a good ability to represent uncertainty and to
directly calculate the threat degree, have received extensive attention [13–17]. Follow-up
studies are also based on this model. However, there are common problems with these
methods or models:
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(1) Ranking results vary between different assessment methods. Different methods
have different focuses and often give different results in threat ranking. This increases the
difficulty of selecting high-threat targets reasonably.

(2) These methods usually are two-way decisions and can cause misjudgment. For the
threat value that is higher than a certain threshold value, take the priority of the combat
strategy, and for the lower value than the threshold value, take the strategy of abandoning
the combat. The result of such a decision is an either/or, and if the information is insufficient
to support the decision, false judgements are often made, leading to an irrational allocation
of combat resources.

To address the above problems, a target threat assessment method that objectively
realizes multi-target threat classification is needed. Three-way decision, based on the
decision–theoretic rough sets model, was proposed by Yao et al. [18]. It succeeds in ratio-
nally assigning semantic interpretations to the positive, negative, and boundary domains
of rough sets, which correspond to acceptance, rejection, and delay decisions, respectively,
in practical decision making. Since the proposal of the three-way decisions, many scholars
have refined and extended it, and it has been widely used in many fields [19–25].

We first introduced three-way decision into multi-target dynamic threat assessment
under an intuitionistic fuzzy MADM environment [26,27], which can obtain threat classifi-
cation while receiving threat ranking. The application of three-way decision in the field of
target threat assessment can be notated as multi-target three-way threat assessment. Subse-
quently, the literature [28–32] conducted improvement studies, whose main concerns are
the optimization calculation of conditional probability and decision thresholds. However,
the above methods still cannot meet the practical needs in complex combat scenarios well,
which are manifested in the following aspects:

(1) The evaluation information coming from different sources is usually heterogeneous
and uncertain. For example, different sensors provide information with different accuracies
and it is not reasonable to use the same representation. Discrete and continuous attributes
should be represented differently. The representation and processing of assessment informa-
tion are relatively simple in [26–29]. A single form of fuzzy numbers, such as intuitionistic
fuzzy set, is usually used, which ignores the differences of assessment attributes and is
inconsistent with the actual situation.

(2) The attribute relevance is often ignored in existing methods of multi-target three-
way threat assessment. Among the existing methods, many weight calculation methods are
used, including subjective, objective, and comprehensive weight methods, but the influence
of attribute relevance on weight calculation is rarely considered. At the same time, when
aggregating information, its influence is usually also ignored.

(3) In combat, it is usually necessary to minimize the influence of humans in the deci-
sion process to improve timeliness. Therefore, it is desirable to reduce or avoid subjective
settings of parameters in the evaluation process. In existing methods, the risk avoidance
coefficients are usually presetting or field subjective settings. On the one hand, the reason-
ableness depends on the subjective experience, and how to select causing problems, and on
the other hand, it may affect the timeliness of combat decision making.

To address the above problems, this paper proposes a new multi-target three-way
threat assessment method with heterogeneous information and attribute relevance. In the
study of the application of three-way decision, other scholars have considered heteroge-
neous information processing [33–36] and the attribute relevance [37,38] separately. Good
attempts were indeed made, despite problems such as the potential loss of information
during the conversion of heterogeneous information to a single format in some studies.
However, in target threat assessment, there has not been a systematic study.

The main contributions are as follows:
(1) The dynamic threat assessment information is represented by heterogeneous forms,

such as real numbers, interval numbers, three-parameter intervals, and four-parameter in-
tervals. Which form to use is determined by the source and type of assessment information
in a specific mission scenario.
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(2) The conditional probabilities are estimated based on heterogeneous weighted
TOPSIS, where the attribute weights are calculated by the heterogeneous CRITIC. Obviously,
the CRITIC considers both the variability and relevance of attributes [39]. At the same time,
the above calculations are performed directly on the heterogeneous assessment information
without the need for information conversion.

(3) The adaptive risk avoidance coefficients are calculated by the uncertainty of the
assessment value. Then, the relative loss function matrices can be obtained quickly. There
is no need to set them subjectively or in advance, and they can objectively reflect the
acquisition of situation information.

(4) The comprehensive loss function matrix is constructed by aggregating the rela-
tive loss function matrix under each attribute via the weighted HM operator, which can
effectively reflect the correlation between the aggregated data.

(5) The proposed method can directly obtain threat ranking and threat classification
based on the assessment information without additional parameter settings. It can meet the
timeliness need for combat and can even be used directly in autonomous intelligent systems.

Through the heterogeneous representation and correlation processing of evaluation
information, as well as the design of adaptive risk avoidance coefficients, the three-way
threat assessment method proposed in this paper is more suitable for complex combat
environment. The specific structure of this paper is as follows: Section 2 introduces the
analytical ground. Section 3 introduces the proposed method. In Section 4, the case study
and comparison analysis show that the proposed method is effective. Section 5 concludes
this paper.

2. Analytical Ground
2.1. Fuzzy MADM

We first introduce the fuzzy MADM and its application to target threat assessment. In
the implementation process, the assessment attributes are used as decision attributes and
the targets are used as alternatives. The specific process is expressed as follows:

Assume that alternatives (targets) set T = {T1, T2, · · · , Tm} consists of m elements,
A = {A1, A2, · · · , An} consists of n assessment attributes, t = {t1, t2, · · · , tK} is a set of
assessment moments, and W = (w1, w2, · · · , wn) is the attribute weight vector, where

n
∑

j=1
wj = 1. The assessment matrix can be denoted as Z(tk) =

(
zij(tk)

)
m×n, where zij(tk) is

the assessed value for the attribute Aj, j ∈ {1, 2, · · · , n} of the target Ti i ∈ {1, 2, · · · , m} at
moment tk k ∈ {1, 2, · · · , K}. The value can be expressed in the form of fuzzy numbers, etc.

Remark 1. As mentioned in the Introduction, what the symbols represent is determined by the
specific mission scenario. More specifically, the targets can be air targets, ground targets, radiation
source targets, group targets, and so on. The assessment attributes could be the type, distance,
course angle, speed, height, interface ability, etc. As for the form of the assessed value, it depends on
the source and type. In this paper, multi-parameter intervals are used to represent heterogeneous
information, which does not mean that other forms, such as linguistic variables, are not allowed. If
other types of data are used, a modification of the proposed method is sufficient.

Then, there are usually the following methods to receive ranking results:
(1) Arithmetic weighting method. The weight of each decision attribute is obtained

through subjective expert experience or objective data methods. Using operators such
as the arithmetic mean, the multi-attribute information is aggregated, and the multiple
alternatives are ranked [40].

(2) Method based on ideal solutions. By calculating the distance of each option to
the positive and negative ideal solutions, the closeness and other related indexes can be
calculated, and the multiple alternatives are ranked by the closeness, such as the TOPSIS
method and its improvement methods, the VIKOR method, and so on [41,42].
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(3) Dominance decision method. Using decision attributes, a series of dominance
relations are constructed, and the set of alternatives is narrowed down by the dominance
relations to make the judgement of the superiority or inferiority of the alternatives [43].

As for heterogeneous fuzzy MADM, it usually means that the assessment attributes are
not represented in the same form, i.e., some attributes are real numbers, some are interval
numbers, and so on. Accordingly, there are two types of processing methods; one is to
transform heterogeneous information into the same form, and the other is to extend the last
two methods to heterogeneous information environments. The first type of transformation
process involves information loss [33]. Therefore, in this paper, we use the second type of
method, constructing heterogeneous weighted TOPSIS to estimate conditional probability.

2.2. Three-Way Decision

The study of three-way decision can be divided into three main categories: conno-
tation, extension, and application. The connotation study focuses on the computation of
conditional probability, loss function, and decision thresholds; the extension study focuses
on the combination of three-way decision with other uncertainty theories, decision methods,
etc.; and the application study focuses on the application to specific problems [44–47].

The three-way decision based on decision–theoretic rough sets is as follows:

Definition 1 ([48]). Let U be a finite and non-empty set, R ⊆ U × U be an equivalence
relation, apr = (U, R) be a rough approximation space. U can be parted by R , expressed as
U/R = {[x]| x ∈ U} , and thresholds are set as 0 ≤ β < α ≤ 1 . For ∀A ⊆ U , the lower and
upper approximation sets of the probabilistic rough set can be defined:

apr
(α,β)

(A) = {x ∈ U| Pr(A| [x]) ≥ α}, (1)

apr(α,β)(A) = {x ∈ U| Pr(A| [x]) > β}, (2)

where Pr(A| [x]) is the conditional probability, expressed as Pr(A| [x]) = |[x] ∩ A|/|[x]|.

The universe U can be parted into three regions by thresholds, expressed as

POS(A) = {x ∈ U | Pr(A|[x]) ≥ α}, (3)

BND(A) = {x ∈ U | β < Pr(A|[x]) < α}, (4)

NEG(A) = {x ∈ U | Pr(A|[x]) < β}. (5)

Let Ω = {A,¬A} be the state sets of targets, which means a target belongs to A or
not; actions are set as AC = {aP, aB, aN}, where aP, aB, and aN denote x ∈ POS(A), x ∈
BND(A), and x ∈ NEG(A), respectively. The loss function regarding the risk of different
actions is exhibited in Table 2. Usually, the loss functions satisfy 0 ≤ λPP ≤ λBP < λNP
and 0 ≤ λNN ≤ λBN < λPN .

Table 2. Loss function matrix.

A(P) ¬A(N)

aP λPP λPN
aB λBP λBN
aN λNP λNN

Then, the three-way decision rules can be expressed as

(P) If Pr(A|[x]) ≥ α and Pr(A|[x]) ≥ γ, decide x ∈ POS(A);

(B) If Pr(A|[x]) ≤ α and Pr(A|[x]) ≥ β, decide x ∈ BND(A);

(N) If Pr(A|[x]) ≤ β andPr(A|[x]) ≤ γ, decidex ∈ NEG(A);
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where the thresholds are defined as

α =
(λPN − λBN)

(λPN − λBN) + (λBP − λPP)
(6)

β =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP)
(7)

γ =
(λPN − λNN)

(λPN − λNN) + (λNP − λPP)
(8)

Further assuming that β < α, we can obtain the following:
(P) If Pr(A|[x]) ≥ α, decide x ∈ POS(A);
(B) If β < Pr(A|[x]) < α, decide x ∈ BND(A);
(N) If Pr(A|[x]) ≤ β, decide x ∈ NEG(A).
For this study, its goal was to construct a three-way decision about whether the target

should be attacked first or not. If the target is classified into the positive domain, it means
that the threat level is high and the attack or interference needs to be given priority. If it
is divided into negative areas, it means that the threat level is low and there is no need to
attack or interfere first. Otherwise, more information is needed to make a judgement.

2.3. Multi-Target Three-Way Threat Assessment Method

Multi-target three-way threat assessment is an application of three-way decision to
the area of multi-target threat assessment. The key problems are how to obtain conditional
probability and comprehensive decision thresholds via assessment information.

First, the conditional probability usually can be calculated by ideal solutions, being
inspired by the literature [49]. More specifically, decision methods based on ideal solutions,
such as TOPSIS and VIKOR, can be used to compute conditional probability. Relative
closeness and compromise ranking values are used to represent the conditional probability
of a target being prioritized for attack, respectively.

Then, the relative loss function matrix of each target under each attribute is constructed
by the fuzzy evaluation information [50,51] and risk avoidance coefficient. The comprehen-
sive loss function matrix of the target under the attribute set is aggregated based on the
attribute weight and arithmetic mean operator.

Finally, the thresholds are calculated by the comprehensive loss function matrix. The three-
way decision rules can also be obtained by conditional probability and decision thresholds.

The above process is analyzed and improved as follows:

(1) In the above process, assessment information is usually represented by a class of
fuzzy numbers, such as intuitionistic fuzzy numbers, and conditional probabilities
are obtained through intuitionistic fuzzy TOPSIS. In this paper, we consider the
heterogeneous representation of situation information and extend the calculation of
conditional probability to heterogeneous weighted TOPSIS, whose attribute weights
are calculated by the CRITIC method.

(2) In the construction of the relative loss function matrix, the risk avoidance coefficients
usually need to be set subjectively and set to the same value, which is not only difficult
to determine, but also inconsistent with the actual situation. In this paper, adaptive risk
avoidance coefficients are designed based on the uncertainty of the evaluation values.

(3) In the aggregation of relative loss function matrices, the correlation among the assess-
ment attributes is ignored. In this paper, the HM operator is used to aggregate the
relative loss function matrices.

Remark 2. Although there can be many ways to calculate conditional probability and decision
thresholds, such as the dominance relation in study [52], the method based on an ideal solution is
widely used due to its simplicity and ease of implementation in the existing target threat assessment
based on three-way decision.
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3. The Proposed Multi-Target Three-Way Threat Assessment Method

In this section, we will describe how the proposed method is realized. The evaluation
process is shown in Figure 2. It should be noted that the representation of targets, assess-
ment attributes, etc., is the same as above. Table 3 gives a quick reference to the symbols
and acronyms.

Figure 2. The evaluation process of proposed method.

Table 3. Main nomenclature.

Symbol/Acronym Description

CRITIC Criteria Importance Through Intercriteria Correlation
TOPSIS Technique for Order Preference by Similarity to an Ideal Solution

HM Heronian mean
WHMp,q Weighted HM operator with parameter
VIKOR VIšekriterijumsko KOmpromisno Rangiranje
MADM Multi-attribute decision making

T Target set
Ti The i-th target
m Total number of targets
A Evaluation attributes set
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Table 3. Cont.

Symbol/Acronym Description

Aj The j-th evaluation attribute
n Total number of attributes
t Evaluation moments set
tk The k-th moment

Z(tk) Evaluation matrix of targets at moment tk
zij(tk) The element of Z(tk), j-th evaluation attribute value of i-th target

W = (w1, w2, · · · , wn) Attribute weight vector
Fi, i = {1, 2, 3, 4} Different forms set of assessment values

Z̃(tk) Normalized evaluation matrix of targets at moment tk
z̃ij(tk) Normalized form of zij(tk)

η = (η1, η2, · · · , ηK) Weights of multi-time
Z̃ Multi-time integration matrix of Z̃(tk)

3.1. Multi-Time Multi-Attribute Evaluation Information Matrix via Heterogeneous Information

Due to the complexity of the combat environment, it is difficult to effectively interpret
the uncertainty using a single fuzzy number form. Therefore, the value of the assessment
attribute is expressed by heterogeneous fuzzy information. More specifically, zij(tk) is
mainly based on four different forms of information: (1) real numbers (F1); (2) interval
numbers (F2); (3) three-parameter interval numbers (F3); and (4) four-parameter interval
numbers (F4). Fi denotes the set of the assessment values, and Fi ∩ Fj = ∅ (i ̸= j), where ∅
is an empty set.

Remark 3 ([53]). A non-negative three-parameter interval number α is expressed by α =[
αL, αM, αU] , where 0 ≤ αL ≤ αM ≤ αU. And a non-negative four-parameter interval num-

ber α is expressed by α =
[
αL, αM1 , αM2 , αU] , where 0 ≤ αL ≤ αM1 ≤ αM2 ≤ αU.

The basic operations on multi-parameter interval numbers are added here. Given two
non-negative multi-parameter interval numbers α = [α1, α2, · · · , αn] and β = [β1, β2, · · · , βn]
and a positive real number θ, some operations are as follows:

(1) α + β = [α1 + β1, α2 + β2, · · · , αn + βn];
(2) α × β = [α1β1, α2β2, · · · , αnβn];
(3) θα = [θα1, θα2, · · · , θαn];

(4) d(α, β) =
n
∑

i=1
|αi − βi|.

3.2. Constructing Comprehensive Evaluation Information Matrix
3.2.1. Normalize the Evaluation Information Matrix

In the target threat assessment, the attributes may be usually given by benefit or cost
criteria. The magnitude and type of evaluation attributes affect subsequent calculations.
Usually, this impact is eliminated by standardizing the evaluation information matrix.
There are a number of standardized and normalized calculation methods that will not be
repeated here; please refer to [6,36]. Through the normalized process of [6,36], we can
obtain a normalized evaluation information matrix, denoted as z̃ij(tk).

3.2.2. Dynamic Information Aggregation

The target threat assessment should combine the multi-time heterogeneous fuzzy
evaluation information. We can obtain the time series weight based on the Poisson distri-
bution method with an inverse form. The closer to the current time, the more important
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the situation information is. Thus, the series weight vector η = (η1, η2, · · · , ηK) of K times
can be calculated by 

ηk =
k!
ϕk

/
K
∑

j=1

j!
ϕj

K
∑

k=1
ηk = 1

, (9)

where ηk ≥ 0 and 0 < ϕ < 2. Usually, the setting of ϕ is 1.5.
Then, combined with time series weights, we can obtain a comprehensive evaluation

information matrix, denoted as Z̃ =
(
z̃ij
)

m×n, where Z̃ =
K
∑

k=1
ηkZ̃(tk) and z̃ij =

K
∑

k=1
ηk z̃ij(tk).

3.3. Calculating Assessment Attribute Weights

In order to take into account the variability and relevance of the attributes, the CRITIC
model is applied to calculate the attribute weights of a heterogeneous comprehensive
evaluation information matrix, which can be called heterogeneous CRITIC. The main
difference with other CRITIC methods [38] is that, through the definition of the distance
function, it is suitable for heterogeneous information environments with multi-parameter
interval numbers. The main steps are as follows:

(1) Calculate the standard deviation of Aj, where
zj =

1
m

m
∑

i=1
z̃ij

Sj =

√
m
∑

i=1
[d(z̃ij−zj)]

m−1

2 . (10)

(2) Calculate the correlation coefficient rij between Ai and Aj, where

rij =

m
∑

k=1
d(z̃ki − zi)·d

(
z̃kj − zj

)
√

m
∑

k=1
[d(z̃ki − zi)]

2·
√

m
∑

k=1

[
d
(

z̃kj − zj

)]2
. (11)

(3) Further, the conflictual relationship Rj of Aj can be expressed by

Rj =
m

∑
i=1

(
1 − rij

)
(12)

(4) Calculate the information load Cj of Aj, where

Cj = Sj

m

∑
i=1

(
1 − rij

)
= Sj × Rj (13)

(5) Finally, the weight wj of Aj can be expressed by

wj =
Cj

n
∑

j=1
Cj

(14)

3.4. Estimating Conditional Probability by Heterogeneous Weighted TOPSIS

The conditional probability of each target can be estimated by heterogeneous weighted
TOPSIS.
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(1) For the comprehensive information matrix, define the heterogeneous positive ideal
solution (HPIS) z+ and heterogeneous negative ideal solution (HNIS) z− as follows:

z+j = max
i

z̃ij, z−j = min
i

z̃ij, where zij ∈ F1 (15)

z+j =

[
max

i
z̃L

ij, max
i

z̃R
ij

]
, z−j =

[
min

i
z̃L

ij, min
i

z̃R
ij

]
, where, zij ∈ F2 (16)

z+j =

[
max

i
z̃L

ij, max
i

z̃M
ij , max

i
z̃R

ij

]
, z−j =

[
min

i
z̃L

ij, min
i

z̃M
ij , min

i
z̃R

ij

]
, where, zij ∈ F3 (17)

z+j =

[
max

i
z̃L

ij, max
i

z̃M1
ij , max

i
z̃M2

ij , max
i

z̃R
ij

]
, z−j =

[
min

i
z̃L

ij, min
i

z̃M1
ij , min

i
z̃M2

ij , min
i

z̃R
ij

]
,

where zij ∈ F4.
(18)

z+ implies the evaluation of the state A, and z− implies the evaluation of the state ¬A.
(2) Calculate relative closeness of each target.
The distance between the target Ti and HPIS is calculated by

D
(
Ti, z+

)
=

n

∑
j=1

wjd
(

z̃ij, z+j
)

, (19)

The distance between the target Ti and HNIS is calculated by

D
(
Ti, z−

)
=

n

∑
j=1

wjd
(

z̃ij, z−j
)

, (20)

The relative closeness of each target is expressed as

RC(Ti) =
D(Ti, z−)

D(Ti, z−) + D(Ti, z+)
=

n
∑

j=1
wjd
(

z̃ij, z−j
)

n
∑

j=1
wjd
(

z̃ij, z−j
)
+

n
∑

j=1
wjd
(

z̃ij, z+j
) . (21)

(3) Estimate conditional probabilities of targets.
Obviously, RC(Ti) represents the probability of the target Ti being in the state A [26,49]. Thus,

Pr(A|Ti) = RC(Ti). (22)

3.5. Calculating Decision Thresholds by Evaluation Values

Firstly, define the absolutely maximum value zj
max and minimum value zj

min for the
attribute, where

zj
max =


1 , zij ∈ F1
[1, 1] , zij ∈ F2
[1, 1, 1] , zij ∈ F3
[1, 1, 1, 1] , zij ∈ F4

or zj
max = z+j , zj

min =


0 , zij ∈ F1
[0, 0] , zij ∈ F2
[0, 0, 0] , zij ∈ F3
[0, 0, 0, 0] , zij ∈ F4

orzj
min = z−j .

(1) Calculate the uncertainty of multi-parameter interval numbers, expressed as

δ
(
z̃ij
)
=

{
0 , zij ∈ F1(

z̃R
ij − z̃L

ij

)
, zij /∈ F1

(23)

(2) Calculate the adaptive risk avoidance coefficient σ
(
z̃ij
)

of z̃ij, expressed as

σ
(
z̃ij
)
=

 −0.5
max

i
δ(z̃ij)−min

i
δ(z̃ij)

[
δ
(
z̃ij
)
− max

i
δ
(
z̃ij
)]

, zij /∈ F1

0.5 , zij ∈ F1

(24)
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where 0 ≤ σ
(
z̃ij
)
≤ 0.5.

Remark 4. The risk avoidance coefficients reflect the acquisition of situation information. The more
sufficient the situation information that can be obtained, the bigger the value of the risk avoidance
coefficient [26,50]. We use the uncertainty of the assessed value to indicate the extent of acquisition.
The greater the uncertainty, the less adequate the access. The relative magnitude of uncertainty in
the assessed value is measured by the range of the upper and lower limits of the interval.

(3) Construct relative loss function matrices via the adaptive risk avoidance coefficient.
The relative loss function matrix of each target under each attribute is expressed as

λ
(
z̃ij
)
=

λ
ij
PP λ

ij
PN

λ
ij
BP λ

ij
BN

λ
ij
NP λ

ij
NN

 =


0 d

(
z̃ij, zj

max

)
σ(z̃ij)d

(
z̃ij, zj

min

)
σ(z̃ij)d

(
z̃ij, zj

max

)
d
(

z̃ij, zj
min

)
0

 (25)

(4) Aggregate loss function based on multi-attribute information by weighted HM operator.
Since there is correlation in the assessment attributes, there is also correlation in

the relative loss function constructed from the attribute values. Therefore, the relative
loss function matrices of the target across attributes are aggregated using the weighted
HM operator.

Definition 2 ([54]). Let zi(i = 1, 2, · · · , n) be a collection of non-negative numbers, W =
(w1, w2, · · · , wn) is the weight vector of zi(i = 1, 2, · · · , n), p ≥ 0, q ≥ 0, and p, q do not take
the value 0 simultaneously. If WHMp,q satisfies

WHMp,q(z1, z2, · · · , zn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=1

(nwizi)
p(nwjzj

)q
) 1

p+q

, (26)

then WHMp,q is the weighted HM operator with a parameter. Usually, we can set p = q = 1.

The comprehensive loss function matrix of each target under multi-attribute informa-
tion via the weighted HM operator is expressed as

λi =


λi

PP λi
PN

λi
BP λi

BN

λi
NP λi

NN

 =


0 WHM1,1(λi1

PN , λi2
PN , · · · , λin

PN
)

WHM1,1(λi1
BP, λi2

BP, · · · , λin
BP
)

WHM1,1(λi1
BN , λi2

BN , · · · , λin
BN
)

WHM1,1(λi1
NP, λi2

NP, · · · , λin
NP
)

0

. (27)

(5) Calculate the comprehensive decision threshold.
The corresponding decision thresholds of each target are calculated by

αi =

(
λi

PN − λi
BN
)(

λi
PN − λi

BN
)
+
(
λi

BP − λi
PP
) , (28)

βi =

(
λi

BN − λi
NN
)(

λi
BN − λi

NN
)
+
(
λi

NP − λi
BP
) . (29)

3.6. Obtaining Three-Way Decision Rules

The three-way decisions rules are as follows:
(P1) If Pr(A|Ti) ≥ αi, decide Ti ∈ POS(A), which means that the target threat level is

high and there is a need to attack or interfere first;
(B1) If βi < Pr(A|Ti) < αi, decide Ti ∈ BND(A), which means that the target needs

more situation information to be analyzed;
(N1) If Pr(A|Ti) ≤ βi, decide Ti ∈ NEG(A), which means that the target threat level

is low and there is not a need to attack or interfere first.
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4. Case Study

The case is from [6], which is about dynamic threat assessment of an unmanned aerial
vehicle (UAV) swarm against ground targets. Assume there are three UAVs in the swarm,
four ground targets in the combat area, six evaluation attributes, and three moments’
information, i.e., T = {T1, T2, T3, T4}, A = {A1, A2, A3, A4, A5, A6}, and t = {t1, t2, t3}.
More specifically, the six evaluation attributes are the number of fire units, reliability,
viability, searching ability, damage ability, and anti-jamming ability.

The evaluation process in study [6] is divided into consensus process and selection
process. For the multiple UAV consensus-reaching process, we do not need to pay attention
to it. We just compare the threat assessment method used in its selection process with our
method. As for dynamic heterogeneous information processing, the two papers are similar.

4.1. Three-Way Threat Assessment Based on Heterogeneous Information Processing

The comprehensive evaluation matrix MSṼ of study [6] is exactly the comprehensive
evaluation information matrix Z̃ =

(
z̃ij
)

m×n of this paper, as listed in Table 4.

Table 4. Comprehensive evaluation information matrix.

A1 A2 A3 A4 A5 A6

T1 0.473 0.961 [0.836, 0.862] [0.830, 0.846] [0.802, 0.828, 0.862] [0.913, 0.936, 0.948, 0.970]
T2 1.000 0.973 [0.841, 0.870] [0.941, 0.956] [0.949, 0.971, 0.983] [0.838, 0.861, 0.877, 0.900]
T3 0.622 0.950 [0.871, 0.910] [0.984, 0.988] [0.833, 0.850, 0.855] [0.798, 0.828, 0.856, 0.869]
T4 0.342 0.983 [0.921, 0.941] [0.811, 0.847] [0.814, 0.855, 0.863] [0.842, 0.863, 0.879, 0.887]

The key steps are as follows:
(1) Based on Formulas (10)–(14), we can obtain the conflictual relationship of evalua-

tion attributes.
R = (1.5956 1.0910 1.4764 0.9230 0.9377 1. 2690);

then, the weight vector of evaluation attributes is calculated as
W = (0.3745 0.0127 0.0939 0.1382 0.1715 0.2092).

(2) Based on Formulas (15)–(22) of heterogeneous weighted TOPSIS, we can obtain z+

and z−, which are calculated as

Z+ = (1.000 0.9830 [0.9210 0.9410][0.9840 0.9880] [0.9490 0.9710 0.9830]⌊0.9130 0.9360 0.9480 0.9700⌋),

Z− = (0.3420 0.9500 [0.8360 0.8620][0.8110 0.8460][0.8020 0.8280 0.8550][0.7980 0.8280 0.8560 0.8690]).

Then, the conditional probabilities of the target are calculated as

Pr(A|T) = (0.3015 0.8149 0.3558 0.1057).

(3) The adaptive risk avoidance coefficients can be calculated by Formula (24), ex-
pressed as

σ
(

Z̃
)
=


0.5000 0.5000 0.3421 0.3125 0 0.2692
0.5000 0.5000 0.2632 0.3281 0.3421 0.1346
0.5000 0.5000 0 0.5000 0.5000 0
0.5000 0.5000 0.5000 0 0.1447 0.5000

.

(4) Based on Formulas (25)–(27), the comprehensive loss function matrix of each target
based on multi-attribute information is listed in Table 5.
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Table 5. Comprehensive loss function matrix.

A ¬A

T1

aP 0 0.1656
aB 0.1881 0.0184
aN 3.2251 0

T2

aP 0 0.0284
aB 0.3480 0.0011
aN 4.1386 0

T3

aP 0 0.1456
aB 0.2270 0.0127
aN 3.3164 0

T4

aP 0 0.2478
aB 0.3405 0.0387
aN 2.9068 0

(5) We can further calculate the decision thresholds based on Table 5 via Formulas (28)
and (29). The results of each target are shown in Table 6.

Table 6. Conditional probability and decision thresholds.

T1 T2 T3 T4

αi 0.4389 0.0727 0.3693 0.3804
βi 0.0060 0.0003 0.0041 0.0149

Pr(A|Ti) 0.3015 0.8149 0.3558 0.1057

(6) From Table 6, we can obtain the ranking results based on conditional probability,
i.e., T2 ≻ T3 ≻ T1 ≻ T4. We can further obtain the classification results based on decision
rules P(1)–N(1): POS(A) = {T2} and BND(A) = {T1, T3, T4}. They imply that we should
attack or interfere with T2 first and need more information to analyze T1, T3, and T4.

Here, the comparison of the proposed method with study [6] is shown in Figure 3. For
comparison, the threat degree of our method is represented by Pr(A|Ti) and the threat
degree from study [6] is converted to

Threat(Ti) = 1 − Qi (30)

Figure 3. The results of the proposed method (a) and method in [6] (b).

From Figure 3, we can see that the ranking results are basically the same. They all agree
that T2 and T3 have the highest and second highest threat levels. For the difference between
T1 and T4, which is due to the difference in the calculation of attribute weights, this paper
uses a data-based objective weighting method, whereas the AHP used in [6] is based on
subjective judgement. The weight vector in [6] is W = (0.041 0.138 0.227 0.158 0.347 0.089).
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In order to avoid the decision conflict caused by different methods, this paper intro-
duces heterogeneous weighted TOPSIS into the multi-target threat assessment method,
which can obtain the threat ranking along with the threat classification. With the above
heterogeneous information processing, T1 and T4 are in the BND(A), which means that
more information is needed to assess whether priority strikes or interference are required.

4.2. Analysis of Attribute Relevance

The attribute relevance is considered by the weight calculation and the aggregation
of relative loss functions under multiple attributes, i.e., the heterogeneous CRITIC and
weighted HM operators are used, respectively.

In order to analyze the advantages of the correlation processing, we compare the
classification results of the proposed method with those methods without an HM operator,
without CRITIC, etc. The specific methods are denoted and described as follows:

TH1: Instead of using the HM operator in our method, the weighted average operator
is used.

TH2: Instead of using the HM operator and CRITIC in our method, the weighted
average operator and equal weights are used.

TH3: Instead of using the HM operator and CRITIC in our method, the weighted
average operator and weights from [6] are used.

TH4: Instead of using the CRITIC in our method, the weights from [6] are used.
The differences among these methods are listed in Table 7.

Table 7. The differences among evaluation methods.

Method Weight Calculation Information Aggregation

Proposed method Heterogeneous CRITIC Weighted HM
TH1 Heterogeneous CRITIC Weighted average operator
TH2 Equal weights Weighted average operator
TH3 AHP in [6] Weighted average operator
TH4 AHP in [6] Weighted HM

The conditional probability of targets under different methods is listed in Table 8.

Table 8. The conditional probability.

Method/Pr(A|Ti) T1 T2 T3 T4

Proposed
method 0.3015 0.8149 0.3558 0.1057

TH1 0.3015 0.8149 0.3558 0.1057
TH2 0.2914 0.7360 0.3648 0.1821
TH3 0.1642 0.7552 0.3276 0.2293
TH4 0.1642 0.7552 0.3276 0.2293

The threat degree of TH1 is the same as the proposed method, and the threat degrees
of TH2 and TH3 (TH4) are shown in Figure 4.

The comprehensive decision thresholds of different methods are listed in Table 9.
Accordingly, the POS(A), BND(A), and NEG(A) of different methods are listed in

Table 10.
In order to analyze the effectiveness of the attribute relevance, the above methods are

discussed through the ranking results, the classification results, the relative magnitude of
the threat degree of the target, and the relative magnitude of the decision domains. The
ranking and classification results directly reflect the output of the methods. The relative
magnitude of the threat degree of the targets can help analyze the reasonableness of target
classification. The relative magnitude of the decision domains is obtained through the
decision thresholds, representing the probability of classifying the target into this domain.
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For a target with a large threat degree, the larger the positive domain is, the more beneficial
it is to divide it into the positive region, and the more reasonable it is.

Figure 4. The results of TH2 method (a) and TH3/TH4 method (b).

Table 9. Comprehensive decision thresholds.

Method Thresholds T1 T2 T3 T4

Proposed method αi 0.4389 0.0727 0.3693 0.3804
βi 0.0060 0.0003 0.0041 0.0149

TH1
αi 0.3847 0.1872 0.3608 0.3403
βi 0.0906 0.0220 0.0773 0.1003

TH2
αi 0.3278 0.1879 0.3038 0.2766
βi 0.0627 0.0262 0.0532 0.0936

TH3
αi 0.4282 0.1551 0.2296 0.3030
βi 0.0348 0.0273 0.0636 0.0505

TH4
αi 0.4416 0.0537 0.1464 0.2351
βi 0.0009 0.0004 0.0023 0.0016

Table 10. Decision domains of different methods.

Method POS(A) BND(A) NEG(A)

Proposed method {T2} {T1, T3, T4} ∅
TH1 {T2} {T1, T3, T4} ∅
TH2 {T2, T3} {T1, T4} ∅
TH3 {T2, T3} {T1, T4} ∅
TH4 {T2, T3} {T1, T4} ∅

More specifically, combining the analysis in Section 4.1 and the results in Table 9, we
can see that

(1) T1 and T4 receive different ranking results under different decision-making meth-
ods; thus, they need more information to analyze. All the methods in Table 8 put them in
the boundary domain. The results of the calculations are compatible with the theoretical
analyses.

(2) From Figures 3 and 4, in terms of the relative magnitude of the target’s threat
degree, the relative difference between T1 and T3, expressed as ∆Threat(T3, T1), is smaller
than the relative difference between T1 and T4, expressed as ∆Threat(T1, T4). When both
T1 and T4 belong to the boundary domain, it is more reasonable that T1 also belongs to
the boundary domain. Therefore, the proposed method and the results of TH1 are more
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reasonable. The reason why their methods are more reasonable is that their attribute
weights are calculated by heterogeneous CRITIC.

(3) The relative magnitudes of decision domains under different methods are shown in
Figure 5. We can further compare the proposed method with the TH1 method, both of which
use heterogeneous CRITIC. However, for T2, which has the significantly highest threat
degree, the proposed method has a smaller boundary domain and a higher discrimination
degree. This makes it easier to determine T2 as the priority target in the proposed method.
This effect is due to the further use of the HM operator in the proposed method.

Figure 5. The relative magnitude of decision domains of T2.

Combining the above analyses, the proposed method can achieve more reasonable
three-way classification results by considering the attribute relevance.

4.3. Analysis of Risk Avoidance Coefficient

The risk avoidance coefficients are used in the construction of the relative loss function
matrices. Compared with existing methods, this paper exploits adaptive risk avoidance coeffi-
cients, which can directly be calculated according to the uncertainty of the assessed values.

Based on the related content of Section 3.5, the adaptive risk avoidance coefficient
curves via Formula (24) for different attributes are shown in Figure 6. Since the values of
A1 and A2 are real numbers, we consider that there is no uncertainty. Thus, the curves in
Figure 6 are only for A3, A4, A5, and A6.

As we can see from Figure 6, the corresponding risk avoidance coefficients can be
obtained directly based on the uncertainty of the assessed attribute values. Table 11 gives
the comparison between the proposed method and the existing threat assessment methods
on setting the risk avoidance coefficient.

It can be seen from Table 10 that, in the construction of risk avoidance coefficients,
existing methods usually preset or subjectively set the risk avoidance coefficients. And
for the convenience of calculation, they set the same coefficient for each evaluation value.
This is not in line with the actual situation. Accordingly, the advantages of constructing it
objectively in this paper are as follows:

(1) As mentioned in Remark 4, the risk avoidance coefficient reflects the acquisition of
information. Each assessment attribute has a different source, and it is not reasonable to set
its risk avoidance coefficient as the same value. We set it via the uncertainty of information,
which is more in line with the reality.
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(2) The risk avoidance coefficients are calculated directly and do not need to be set by
a human. Timeliness and objectivity of target threat assessment can be guaranteed.

Figure 6. Adaptive risk avoidance threshold curves of A3 (a), A4 (b), A5 (c), and A6 (d).

Table 11. The comparison among different methods.

Method Are There Risk Avoidance
Coefficients Involved?

How to Calculate Risk
Avoidance Coefficients?

Are All Risk Avoidance
Coefficients the Same?

Gao et al. [25] Yes Subjectively setting Yes
Gao et al. [26] Yes Subjectively setting Yes
Yin et al. [27] Yes Subjectively setting Yes
Li et al. [29] Yes Subjectively setting Yes
Peng et al. [31] Yes Subjectively setting Yes
Our method Yes Objectively calculating No

Remark 5. The mainstream trend of multi-target three-way threat assessment methods is to
construct a relative loss function matrix through risk avoidance coefficients and ultimately calculate
decision thresholds. However, there are still some methods that do not use risk avoidance coefficients,
such as subjectively constructing loss function matrices, which are not within the scope of discussion.
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5. Conclusions

For the problem of multi-target threat assessment with heterogeneous information and
attribute relevance, we propose a new multi-target three-way threat assessment method.
First, the dynamic assessment information is represented by heterogenous forms. The
comprehensive evaluation information matrix can be obtained by the normalization and
aggregation. Based on the comprehensive evaluation information matrix, attribute weights
are calculated by heterogeneous CRITIC. The conditional probability is calculated by
the heterogeneous weighted TOPSIS. Then, the adaptive risk avoidance coefficients are
constructed by the uncertainty of the assessment value, and the relative loss function
matrices are constructed. Subsequently, the comprehensive loss function matrices are
obtained by the weighted HM operator. The three-way decision rules are obtained via
decision thresholds. The case study shows that the proposed method can effectively handle
the heterogeneous information and attribute relevance, which is more suitable for the
combat environment. Compared with existing methods, this study has the following
features and benefits:

(1) It expands the research of three-way decision and target threat assessment. In
particular, both the heterogeneity and the relevance of information have been considered in
target threat assessment. This is rare in the study of existing multi-target threat assessment
based on three-way decision. Therefore, this study is more in line with an actual combat
mission environment.

(2) For the representation and processing of heterogeneous information, there is no
loss of information. Neither the calculation of conditional probabilities by heterogeneous
weighted TOPSIS nor the calculation of weights by heterogeneous CRICTIC involves
the conversion of heterogeneous information formats. Whereas in some of the existing
studies, the conversion of heterogeneous information into the same format may result in
information loss.

(3) The treatment of attribute correlation is relatively comprehensive and includes
both weight calculation and information aggregation. The proposed method considers the
attribute relevance in terms of both in the weights’ calculation and in the aggregation of
relative loss function matrices, which is rarely considered by the other three-way threat
assessment methods. The consideration of attribute relevance makes the results of target
threat classification more reasonable and credible.

(4) The adaptive risk avoidance coefficients can be calculated based on the uncertainty
of the attribute information. Compared with other methods in which the risk avoidance
coefficients are set subjectively, it is more reasonable and effective, and avoids subjective
experience limitations. It can meet the timeliness need for a wartime decision.

However, despite the above-mentioned advantages, there are still some issues that
need further investigation. First, the diversity of heterogeneous information representations
deserves further study. For example, heterogeneous information is represented by linguistic
variables, hesitant fuzzy numbers, etc. Second, when the decision makers are groups, how
can the method of this paper be generalized to three-way group decision making [55]?
Finally, adaptive risk aversion function curves can be optimized in conjunction with human
psychological decision theories such as regret theory [56].
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