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Abstract: Crack detection is integral in civil infrastructure maintenance, with automated robots
for detailed inspections and repairs becoming increasingly common. Ensuring fast and accurate
crack detection for autonomous vehicles is crucial for safe road navigation. In these fields, existing
detection models demonstrate impressive performance. However, they are primarily optimized for
clear weather and struggle with occlusions and brightness variations in adverse weather conditions.
These problems affect automated robots and autonomous vehicle navigation that must operate
reliably in diverse environmental conditions. To address this problem, we propose Auxcoformer, de-
signed for robust crack detection in adverse weather conditions. Considering the image degradation
caused by adverse weather conditions, Auxcoformer incorporates an auxiliary restoration network.
This network efficiently restores damaged crack details, ensuring the primary detection network
obtains better quality features. The proposed approach uses a non-local patch-based 3D transform
technique, emphasizing the characteristics of cracks and making them more distinguishable. Con-
sidering the connectivity of cracks, we also introduce contrastive patch loss for precise localization.
Then, we demonstrate the performance of Auxcoformer, comparing it with other detection models
through experiments.

Keywords: auxiliary and contrastive transformer; 3D discrete cosine transform; crack detection;
adverse weather conditions; contrastive patch loss; robust representation

MSC: 68T45

1. Introduction

As civil infrastructure continues to age and suffer from poor construction, the role of
automated robots in crack detection has become increasingly crucial. These cracks weaken
the structural integrity of buildings, bridges, and roads and pose significant risks to public
safety. Specifically, they affect vehicle wear and tear, carbon emissions, and even the rate
of accidents, such as structural collapses. The risk is further heightened in areas prone to
natural disasters, such as earthquakes, where even minor cracks can lead to catastrophic
failures. Moreover, manual inspection for crack detection is labor-intensive and costly,
and delays in identifying and addressing these cracks can lead to exponentially higher
repair costs over time. Given these severe risks and financial implications, deploying
automated robots, such as unmanned aerial vehicles (UAVs), for accurate and timely crack
detection has become an essential strategy for enhancing public safety and preserving
civil infrastructure.

While existing models [1–28] for crack detection have impressive performance, their
effectiveness is primarily confined to favorable weather conditions. These models often
fail to detect cracks accurately in adverse weather conditions, such as rain, snow, or fog,
which are factors leading to low-quality media data. Figure 1 compares crack detection
performance in adverse weather conditions using two state-of-the-art (SOTA) models,
the CNN-based you only look once, version 8 (YOLOv8) [25] and the transformer-based
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co-DETR [29]. Performance is evaluated using average precision (AP). According to the
analysis, although the models perform well in crack detection on clean images, they miss
or makes incorrect predictions when dealing with images affected by rain and snow. These
adverse weather conditions can make the detection process more challenging. For example,
snowflakes and rain streaks can lead to occlusion in visual sensors. These occlusions
are particularly problematic in crack detection because they can disrupt the perceived
connectivity of cracks. Furthermore, adverse weather conditions can cause variations in
brightness, affecting the accuracy of vision-based detection models. Beyond the challenges
in detection, such conditions can make cracks even more dangerous by weakening the
surface material of roads and building exteriors. Consequently, while rapid and accurate
detection through automated robots is crucial, existing methods often overlook adverse
weather conditions. Specifically, transformer-based detection models [29–33] struggle with
real-time performance, making them unsuitable for real-world applications.

Numerous adverse weather restoration models [34–45] exist to address these chal-
lenges in adverse weather conditions and have demonstrated remarkable performance.
However, these models operate independently of detection models, leading to high compu-
tational costs and slow inference times. This sequential and independent operation becomes
a bottleneck, especially in emergencies, where rapid response is crucial. Moreover, because
these restoration models do not directly interact with the detection models, they cannot
achieve optimal performance. Another significant limitation of existing restoration models
is that they are not explicitly designed for crack detection. These models are generally
designed to improve image quality under adverse weather conditions but do not contain
terms or features optimized for identifying structural defects, such as cracks. Therefore,
they may not perform effectively in the context of defect detection.

Figure 1. Comparative analysis of the crack detection performance in the existing state-of-the-art
models in clean and adverse weather conditions. Predicted bounding boxes are red and ground truth
boxes are green.
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To overcome these problems, we propose Auxcoformer, an auxiliary and contrastive
vision transformer designed to detect cracks in adverse weather conditions by efficiently
incorporating an auxiliary restoration network into the crack detection model. Additionally,
it uses a contrastive network that considers the inherent connectivity of cracks by comparing
predicted patches with their adjacent patches, leading to more precise predictions. We
summarize the contributions as follows:

• We propose a unified approach that combines a primary crack detection network
with an auxiliary weather restoration network to leverage a robust representation of
restored crack features. This integration performs efficient and robust crack detection
using the synergy between restoration and detection tasks.

• We propose a 3D frequency augmentation (FA) block to optimize crack detection. This
block uses non-local matching of adjacent and similar patches to perform a 3D discrete
cosine transform (DCT) and selectively amplify crack-related frequency components
while minimizing noise.

• We propose a contrastive patch loss function designed for precisely localizing cracks.
This loss function evaluates the similarity between patches inside and adjacent to the
bounding boxes to capture the inherent connectivity of cracks and improve detec-
tion accuracy.

2. Related Work
2.1. Crack Detection

Deep learning methods, such as Fast R-CNN [1], Faster R-CNN [2], and Cascade
RCNN [3], are commonly used for crack detection. Various detection models [4–6] apply
these methods. Pei et al. [7] applied the Cascade RCNN and introduced a consistency
filtering mechanism, leveraging self-supervised learning to make the most of unlabeled
data. Moreover, one-stage models [8–14] treat object detection as a regression task, di-
rectly predicting bounding boxes and categories across the image. YOLO-based detection
models [15–28] have been studied for real-time detection. Yu et al. [27] proposed a multi-
source domain adaptation model for crack detection that uses ensembled labels to realign
source and target domains. Hong et al. [28] improved detection with the high-frequency
characteristics of cracks by preserving the edges, which is advantageous for detecting cracks
using the morphological characteristics of the area and connectivity. Zong et al. [29] pro-
posed enhancing the learning ability of the encoder in end-to-end detectors using multiple
parallel heads. These detection models have effective performance but are limited to clear
weather conditions. Although some other models, such as [46], address adverse weather
conditions, to our knowledge, specific solutions targeting crack detection under such con-
ditions are scarce. Additionally, while transformer-based detection models [30–33] have
emerged and shown excellent performance, these models have limitations in real-time ap-
plications. We propose a method to overcome these limitations through auxiliary learning.

2.2. Adverse Weather Restoration

There have been numerous attempts [36–41] to restore images degraded by adverse
weather conditions through deep learning. Zamir et al. [42] introduced Restormer, an effi-
cient transformer architecture designed for multi-scale local-global representation learning
for image restoration tasks. Özdenizci et al. [43] proposed a patch-based image restoration
method using denoising diffusion models, enabling patch-size-agnostic restoration through
guided denoising and smoothed noise estimates. In addition, Valanarasu et al. [44] intro-
duced TransWeather, an end-to-end transformer-based model that uses intra-patch trans-
former blocks to improve attention within patches, effectively removing minor weather
degradations. Lee et al. [45] introduced a task-driven enhancement network linked to
high-level vision tasks using dense block layer connections. Further, Kalwar et al. [34] intro-
duced the GDIP block, that learns to reconstruct adverse weather images directly through
downstream object detection loss. Xia et al. [35] proposed a training objective leveraging
coarsely aligned image pairs. That training scheme led to better image translation quality
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and improved downstream tasks. Although these models excel in restoration, their limited
interaction with detection tasks poses a challenge. We address this by efficiently integrating
the restoration task.

2.3. Auxiliary Learning

Auxiliary learning is a prevalent technique in deep learning. This learning strategy
enhances primary task performance by integrating carefully designed auxiliary loss. Most
existing studies [47–49] linearly merge the auxiliary loss with the primary loss and employ
the combined loss for overall model optimization. The weights associated with auxil-
iary loss are adjusted to prevent any detrimental influence on the primary task. Recent
endeavors [50–53] have introduced a dynamic approach to adjust the weights of auxiliary
loss automatically during training. Specifically, Shi et al. [51] used a similar concept to
Lin et al. [52], aiming to ensure that the weighted sum of gradients was close to the primary
task gradient. Furthermore, Navon et al. [54] suggested learning a nonlinear fusion of
auxiliary loss. In contrast, Chen et al. [55] proposed selecting tasks and individual data
samples within each task to maximize auxiliary information utilization.

2.4. Contrastive Learning

Contrastive learning, a technique of learning through comparison, has made re-
markable strides in self-supervised representation learning [56–61]. Recently, a trend
has emerged where contrastive learning is harnessed to enhance self-supervised computer
vision tasks [62–64]. Data augmentation generates positive and negative sample pairs for
each anchor image in this approach. These pairs undergo contrastive learning to bring sim-
ilar samples closer and dissimilar ones apart in the embedding space. However, traditional
contrastive learning often ignores higher-level class semantics, relying solely on augmented
image views. Khosla et al. [65] directly employed class labels to define similarity, labeling
samples from the same class as positive and those from different classes as negative to
overcome this. Drawing inspiration from the success of these techniques, we incorporate a
contrastive learning mechanism into Auxcoformer by introducing a subnetwork.

3. Method
3.1. Overview

As depicted in Figure 2, we introduce Auxcoformer, designed for robust crack detec-
tion under adverse weather conditions. The shared CNN-based backbone takes an image
degraded by adverse weather conditions as input and extracts features related to cracks and
the surrounding background. These features are forwarded to the primary detection and
auxiliary restoration networks. The auxiliary restoration network restores the degraded
image and forwards the restored feature information to the primary detection network.
This primary network incorporates a cross-attention mechanism with query (Q), key (K),
and value (V), leveraging local representations from the CNN-based backbone and global
restored representations from the auxiliary network. The network sequentially passes
the features through multiple blocks and a fully connected (FC) layer to predict bounding
box coordinates. Then, a separate contrastive net receives patches within and surround-
ing the predicted bounding box Bpred to compute the loss for more precise localization.
Finally, all loss terms are aggregated and backpropagated, including the primary loss Lpri,
which consists of detection loss and contrastive patch loss Lcon, and the auxiliary loss Laux
for restoration.
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Figure 2. Overview of the proposed Auxcoformer network.

3.2. Auxiliary Restoration Network for Crack Detection

General crack detection models often fall short in real-world conditions due to their
inability to account for weather variations. Existing weather restoration models, while
helpful, operate independently and have high computational costs. To address these
challenges, we introduce an auxiliary restoration network that improves the robustness of
the primary detection task and reduces computational costs through synergistic interaction
between restoration and detection.

The auxiliary restoration network receives features extracted from the shared CNN-
based backbone and passes them through a transformer block and convolution layer. This
structure aids in capturing the global features, enhancing the crack detection performance
through restoration. Subsequently, the auxiliary restoration network employs a hierarchical
structure comprising these transformer blocks and convolution layers. This architecture
allows for a progressive upscaling of the resolution while gradually restoring critical
information degraded due to adverse weather conditions.

Additionally, we introduce a 3D FA block, inspired by BM3D [66], within the auxiliary
restoration network to emphasize the crack characteristics. The 3D FA block collects
non-local patches across the feature map and enhances specific frequencies to accentuate
the features relevant to crack detection. As illustrated in Figure 3, the first step involves
reducing the channel dimensions of the input feature maps using a 3 × 3 convolution. This
step simplifies the computational requirements and prepares the features for the subsequent
patch-matching process. For patch matching, we use the Euclidean distance to find similar
patches in the spatial domain, forming a set of eight non-local patches for each target patch
in the restored feature maps. The distance between two patches Pi and Pj is calculated
as follows:

dist(Pi, Pj) =
∥∥Pi − Pj

∥∥2
2 , (1)

where Pi denotes the i-th reference patch, and Pj indicates a j-th non-local patch among the
total patches. A smaller distance indicates a higher similarity, and based on this metric we
collect non-local patches that are most similar to each target patch. This approach allows us
to effectively group patches containing cracks for further processing. These sets undergo
a 3D transform to convert the features from the spatial domain to the frequency domain,
as follows:

F(u, v, w) = α(u)β(v)γ(w)
N−1

∑
x=0

M−1

∑
y=0

L−1

∑
z=0

f (x, y, z)δ(x, y, z, u, v, w) , (2)
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δ(x, y, z, u, v, w) = cos
(

πu(2x + 1)
2N

)
cos
(

πv(2y + 1)
2M

)
cos
(

πw(2z + 1)
2L

)
, (3)

α(u) =


√

1
N , u = 0√
2
N , u 6= 0

, (4)

β(v) =


√

1
M , v = 0√
2
M , v 6= 0

, (5)

γ(w) =


√

1
L , w = 0√
2
L , w 6= 0

, (6)

where F(u, v, w) represents the 3D DCT coefficient for the indices u, v, and w, and f (x, y, z)
denotes the pixel value for the indices x, y, and z. Moreover, δ(x, y, z, u, v, w) denotes
the cosine basis function, and α(u), β(v), and γ(w) represent regularization constants.
Additionally, N and M denote the height and width of the input feature, respectively, and
L represents the number of non-local patches per set collected based on Equation (1).

Subsequently, FA is applied to selectively amplify the frequencies most relevant to
identifying cracks. Inspired by BM3D, we assume that in such patch groups, the coefficients
corresponding to noise will have lower values than those representing cracks. This formula
for FA is defined as follows:

FA(F(u, v, w)) =

{
2× F(u, v, w), F(u, v, w) ≥ ε and (u, v, w) 6= (0, 0, 0)
F(u, v, w), otherwise

, (7)

where ε denotes the threshold value to limit the range of amplified DCT coefficients. By
gathering these patches, we can emphasize similar information among them through
collaborative filtering, excluding high-frequency noise components.

After FA, the transformed patches are converted back to the spatial domain using an
inverse DCT (IDCT), as follows:

f (x, y, z) =
N−1

∑
u=0

M−1

∑
v=0

L−1

∑
w=0

α(u)β(v)γ(w)F(u, v, w)δ(x, y, z, u, v, w) . (8)

These IDCT patches are then aggregated to form a restored feature map, which is passed
through another 3 × 3 convolution to bring the channel dimensions back to their original
state. By incorporating these steps, the proposed method effectively emphasizes features
crucial for crack detection while maintaining computational efficiency.

Figure 3. Architecture of the 3D frequency augmentation (FA) block.

After passing through a 3 × 3 convolution, the final output is a quarter of the size of
the original image. This reduction is intended to decrease the computational complexity
of the restoration process. For image restoration, the output image is compared with the
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ground truth (GT) image which has been resized to quarter of its original size. We calculate
the difference between these images using the L1-norm as follows:

LL1 =
1

CH′W ′
∥∥ Î − I

∥∥
1 , (9)

where Î denotes the output image of the auxiliary restoration network and I denotes
the resized GT image. Additionally, C denotes the number of channels, and H′ and W ′

represent the height and width, respectively, scaled down to a quarter of the GT image’s
dimensions. Moreover, we apply the perceptual loss [67] for comparing the feature maps
between the GT and the output images as follows:

Lp = ∑
k∈{3,9,15}

1
Ck HkWk

∥∥VGG16k( Î)−VGG16k(I)
∥∥

1 , (10)

where VGG16k(·) represents the features extracted from the k-th layer of VGG16. Specifi-
cally, we utilize the 3rd, 9th, and 15th layers to compute the perceptual loss. Furthermore,
Ck, Hk, and Wk denote the shape of the feature map at the k-th layer.

Using these losses, the auxiliary loss is defined as follows:

Laux = λL1LL1 + λpLp , (11)

where λL1 and λp control the importance of loss. Through this auxiliary loss function,
the auxiliary restoration network can assist in making Auxcoformer robust to weather
conditions by jointly learning with it.

3.3. Primary Detection Network

We employ a cross-attention mechanism to facilitate effective information sharing
between the two networks. The features obtained from the auxiliary restoration serve as
the query, whereas those from the primary detection network act as the key and value.
This approach strengthens the representation power of Auxcoformer and allows for a
more detailed understanding of the scene, especially in adverse weather conditions. The
procedure for cross-attention is specified as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

D

)
V , (12)

where Q denotes the query matrix generated by the auxiliary restoration network, K and
V denote the key and value matrices, respectively, obtained from the primary detection
network, and D is the channel dimension. Leveraging the cross-attention mechanism,
we strategically fuse the local features extracted by the CNN-based backbone with the
global contextual information captured by the transformer blocks. This fusion enables the
model to leverage the complementary strengths of local and global features. In this way,
Auxcoformer gains a more comprehensive understanding of the scene, which is crucial for
robust detection performance in adverse weather conditions. This interaction between local
and global features through cross-attention is crucial in enhancing the ability of the model
to adapt and represent complex scenes. We applied this cross-attention at each hierarchical
layer, processing the information and forwarding it to the FC layer. The FC layer merges
this multi-level information to predict the bounding boxes.

3.4. Contrastive Patch Loss

Conventional object detection models often struggle with predicting bounding boxes
that fully encompass irregularly shaped objects, such as cracks. This limitation is particu-
larly problematic when the cracks extend beyond the predicted bounding box. To address
this problem, we introduce the contrastive patch loss function in the proposed model,
Auxcoformer. This loss function refines the localization of bounding boxes around cracks.
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The contrastive patch loss is implemented using a pretrained contrastive network.
This network applies contrastive learning to patches inside the predicted bounding boxes
and their neighboring patches. The network is designed to manipulate the data distribution
through similarity operations for improved localization. As indicated in Figure 4, the
network narrows the distribution gap for positive pairs, including the prediction patch and
its neighboring patches containing cracks. Conversely, it widens the gap for negative pairs,
consisting of the prediction patch and its neighboring patches without cracks.

Figure 4. Illustration of the training process and loss function implementation in a contrastive network.

We use this pretrained network to implement the contrastive patch loss function in
Auxcoformer. The loss function is defined as follows:

Lcon = − log(−
exp(zT

i z
′
i/τ)

∑S
j=1 exp(zT

i z′j/τ)
+ 1) , (13)

where (zi, z
′
i) denotes a positive pair of patches, zi represents the patch within the pre-

dicted bounding box, and z
′
i is a neighboring patch also containing a crack. In addition,

{zi, z
′
j}S

j=1,j 6=i indicates negative pairs of patches, where z
′
j denotes a neighboring patch that

does not contain a crack, and τ denotes the temperature parameter (set to 0.1 as referred
in [65]), controlling the scaling of similarities and making the model more sensitive to
differences between patches. Finally, S is the total number of patches considered for each zi.

This loss function allows the model to assign higher similarity scores and higher loss
to cracks that extend beyond the initially predicted bounding box. Thus, we improve the
precision of the bounding boxes and enhance the ability of the model to accurately localize
and identify irregularly shaped and interconnected cracks. The detailed implementation is
presented in Algorithm 1.

Following the implementation of the contrastive patch loss, we integrate it into the
primary loss function of Auxcoformer to optimize model performance comprehensively.
For the detection task, the primary loss function Lpri is defined as follows:

Lpri = λboxLbox + λclsLcls + λconLcon , (14)

Lcls = −
1
B

B

∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (15)
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where λbox, λcls, and λcon denote the loss weights used to balance the respective contribu-
tions of each loss component in the primary loss function. The term Lbox represents the box
regression loss based on complete intersection over union [68]. Furthermore, Lcls represents
the binary cross-entropy loss for object classification, and B denotes the number of objects
in the image. Additionally, yi and ŷi represent the true and predicted labels, respectively.

Algorithm 1: The pseudocode of contrastive patch loss computation.
Input: Image I;

Predicted bounding box Bpred = (xcenter, ycenter, h, w);
Temperature parameter τ;
Contrastive network CN(·)

Output: Contrastive patch loss Lcon
1 Calculate the short side length N = min(h, w)
2 Calculate the bounding box’s corner coordinates
3 xmin = xcenter − w/2
4 xmax = xcenter + w/2
5 ymin = ycenter − h/2
6 ymax = ycenter + h/2
7 S = 0 // Initialize the number of neighbor patches
8 for y = (ymin − N) to (ymax) step N do
9 for x = (xmin − N) to (xmax) step N do

10 if (x = xmax) or (x = xmin − N) or (y = ymax) or (y = ymin − N) then
11 S += 1 // Count the number of neighbor patches
12 PS ← I[x : x + N, y : y + N] // Crop a neighbor patch

13 for j in {1, 2, · · · , S} do
14 z

′
j ← CN(Pj) // Extract feature vector of neighbor patch Pj

15 zi ← CN(Pi) // Extract feature vector of crack patch Pi in Bpred

16 Lcon ← − log
(
− exp(zT

i z
′
i /τ)

∑S
j=1 exp(zT

i z′j /τ)
+ 1
)

17 return Lcon

Thus, the total loss function Ltotal is defined as follows:

Ltotal = λpriLpri + λauxLaux , (16)

where λpri and λaux denote the loss weights used to modulate the importance between
primary and auxiliary tasks. The total loss effectively combines primary detection and aux-
iliary learning tasks. Consequently, this comprehensive loss function allows Auxcoformer
to achieve superior crack detection performance in adverse weather conditions.

4. Experiment

This section describes the datasets used to evaluate the model and explains the results.
We compared the proposed method to the existing models in adverse weather conditions
and demonstrated that it achieves significant improvements. Finally, an ablation study
demonstrates how each model component affects its performance.

4.1. Datasets

The dataset used for the experiments was EDMCrack600 [69], consisting of 600 images
of pavement cracks. Because the dataset was not divided into training and validation
subsets, we divided this dataset into two subsets: a training set with 550 images and a
validation set with 50 images. Every image in both subsets was 680 × 680 pixels.
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The DeepCrack [70] dataset comprises 537 diverse images of cracks from various scenes.
For the experiments, we divided this dataset into a training set containing 464 images and a
validation set of 73 images. Every image in both sets was 448 × 448 pixels.

The Concrete Crack (CC) [71] dataset comprises 486 high-resolution images, taken
from the walls and floors of several concrete buildings. We partitioned this dataset into a
training set containing 336 images and a validation set with 122 images. All images were
resized to 680 × 680 pixels for the experiments.

The reason for selecting these datasets is that they are most suitable for cracks that
can occur in external environments, threatening public safety. Specifically, these datasets
were chosen because they align well with conditions that are prone to exposure under
severe weather. Considering the generally small scale of crack datasets and the complexity
of each dataset, we adjusted the ratio of the training set to the validation set to ensure
stable training. Additionally, we synthesized these datasets by applying weather effects to
simulate adverse weather conditions. In our experiment, we focused on rain and snow, the
most frequently occurring weather phenomena in the real world and commonly addressed
in numerous studies. Moreover, these conditions include light-scattering effects similar
to those of fog and encompass more challenging scenarios of occlusion. Specifically, we
followed the methodology of Liu et al. [72] to introduce snow synthetically and followed
Yang et al. [73] to add synthetic rain to the images. We adopted the weather modeling
proposed in these two papers because datasets synthesized in this manner are widely used
and adopted in numerous studies. Furthermore, the rationale behind incorporating these
synthetic weather conditions was to evaluate and enhance the robustness of the proposed
model under challenging environmental conditions. This approach allowed us to test the
adaptability and efficacy of the model in diverse scenarios, providing a comprehensive
evaluation of its capabilities.

4.2. Implementation Details

We used a CNN-based backbone of YOLOv8l [25] and a transformer-based decoder
inspired by Restormer [42], which were pretrained with several crack datasets [69–71].
Specifically, the CNN-based backbone was selected because of its ability to achieve high ac-
curacy without sacrificing speed. Meanwhile, the transformer-based decoder was selected
because of its superiority in restoration by capturing global characteristics. The contrastive
network used the VGG16 [74] architecture pretrained with ImageNet [75]. In the 3D FA
block, we set the epsilon value to 50 and used a patch size of 16× 16 pixels. The loss weights
in the loss function were set to λL1 = 0.8, λp = 0.5, λcon = 0.1, λaux = 0.1, and λpri = 1.0. These
values were determined experimentally to be optimal. We used the SGD optimizer with an
initial learning rate of 0.01, momentum of 0.937, and weight decay of 0.0005. We continued
the end-to-end training process with a batch size of 2 until the loss reached a sufficient level
of convergence by observing the training and validation losses. The experimental setup
included a system equipped with an Nvidia GeForce RTX 3080 GPU.

4.3. Experimental Results and Analysis

This section presents the performance evaluation of the proposed model and compares
it with existing SOTA crack detection models [25,29] and weather restoration models [42,43].
The evaluation was conducted on three datasets: EDMCrack600, DeepCrack, and CC. The
models were tested under two weather conditions: snow and rain. The performance was
measured using AP50 (%) and AP50:95 (%). AP50 (%) measures the model’s precision in
detecting objects with a minimum 50% overlap with the actual object location, indicating
how accurately the model can identify objects. On the other hand, AP50:95 (%) averages
precision across intersection over union (IoU) thresholds from 50% to 95% in 5% steps,
offering a comprehensive evaluation of the model’s detection accuracy at varying levels of
strictness. Essentially, AP50 assesses basic localization accuracy, while AP50:95 examines
precision over a wider range of conditions. The best results for each table are denoted
in boldface. In more specific terms, we used the open-source codes from Co-DETR [29],
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AugMoCrack [28], YOLOv8 [25], MaskDINO [33], MGDIP [34], WeatherDiff [43], and
Restormer [42] for comparison, employing the default hyperparameters as outlined in their
respective papers.

Table 1 presents the comparative results of the crack detection performance under
adverse weather conditions. On the EDMCrack600 validation dataset, the proposed model
outperforms all other models with a mean AP50 of 65.2% and a mean AP50:95 of 46.1%,
demonstrating superior performance in snow and rain conditions. Similarly, on the Deep-
Crack validation dataset, the proposed model has a mean AP50 of 89.7% and a mean
AP50:95 of 64.4%. On the CC validation dataset, the proposed model achieves a mean
AP50 of 93.5% and a mean AP50:95 of 70.5%, further representing its robustness to varying
weather conditions compared to other models.

Table 1. Accuracy of crack detection models on the EDMCrack600, DeepCrack, and CC validation
datasets with adverse weather conditions (snow and rain). The bold represent the best performances.

Dataset Detection
Metric (AP50/AP50:95)

Snow Rain Mean

EDMCrack600 [69]

Co-DETR [29] 38.7/23.2 53.6/33.8 46.2/28.5
MaskDINO [33] 38.5/25.1 49.0/32.6 43.8/28.9

MGDIP [34] 40.0/19.9 45.2/20.5 42.6/20.2
AugMoCrack [28] 37.4/19.5 36.2/19.9 36.8/19.7

YOLOv8l [25] 37.3/19.9 40.6/22.3 39.0/21.1
YOLOv8x [25] 39.6/23.6 44.4/24.2 42.0/23.9

Ours 62.4/43.6 68.0/48.6 65.2/46.1

DeepCrack [70]

Co-DETR [29] 70.5/46.0 74.4/51.0 72.5/48.5
MaskDINO [33] 67.7/41.1 70.9/48.1 69.3/44.6

MGDIP [34] 73.2/38.5 71.0/40.6 72.1/39.6
AugMoCrack [28] 65.0/39.3 66.6/39.4 65.8/39.4

YOLOv8l [25] 54.1/36.3 61.8/39.8 58.0/38.1
YOLOv8x [25] 77.1/53.7 70.0/53.1 73.6/53.4

Ours 88.5/63.1 90.9/65.7 89.7/64.4

CC [71]

Co-DETR [29] 64.3/35.6 64.7/35.7 64.5/35.7
MaskDINO [33] 66.7/35.3 68.8/36.7 67.8/36.0

MGDIP [34] 79.5/46.2 76.9/39.6 78.2/42.9
AugMoCrack [28] 78.8/52.4 75.1/46.3 77.0/49.4

YOLOv8l [25] 76.0/48.1 70.0/42.0 73.0/45.1
YOLOv8x [25] 76.9/47.9 75.4/44.5 76.2/46.2

Ours 94.4/71.3 92.6/69.6 93.5/70.5

In Table 2, we observed a small performance improvement when combining the
restoration models, Restormer and WeatherDiff, with the detection models, Co-DETR and
YOLOv8x. However, the combined models still perform worse than the proposed model.
The proposed model achieves a mean AP50 of 65.2% and a mean AP50:95 of 46.1% on
the EDMCrack600 validation dataset. On the DeepCrack validation dataset, the proposed
model outperforms the combined Restormer and Co-DETR model by 9.3% and 11.8%
in AP50 and AP50:95, respectively. On the CC validation dataset, the proposed model
surpasses the combined WeatherDiff and YOLOv8x models by 6.2% and 9.5% in AP50
and AP50:95, respectively. Overall, the proposed model demonstrates robustness across
all adverse weather conditions in various datasets, indicating its potential for widespread
application in crack detection tasks.
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Table 2. Performance comparison of crack detection with restoration models on the EDMCrack600,
DeepCrack, and CC validation datasets under adverse weather conditions (snow and rain). The bold
represent the best performances.

Dataset Restoration Detection
Metric (AP50/AP50:95)

Snow Rain Mean

EDMCrack600 [69]

Restormer [42]

Co-DETR [29] 51.6/32.3 58.1/36.3 54.9/34.3
MaskDINO [33] 49.8/30.2 57.9/36.1 53.9/33.2

MGDIP [34] 50.3/30.6 59.6/35.0 55.0/32.8
YOLOv8x [25] 48.6/32.2 57.8/39.0 53.2/35.6

WeatherDiff [43]

Co-DETR [29] 44.9/27.3 52.9/31.6 48.9/29.5
MaskDINO [33] 44.0/26.5 50.8/30.2 47.4/28.4

MGDIP [34] 52.4/25.1 52.6/24.4 52.5/24.8
YOLOv8x [25] 50.5/32.8 45.4/24.6 48.0/28.7

Ours 62.4/43.6 68.0/48.6 65.2/46.1

DeepCrack [70]

Restormer [42]

Co-DETR [29] 79.8/52.0 89.8/63.9 84.8/58.0
MaskDINO [33] 76.2/50.9 87.1/62.4 81.7/56.7

MGDIP [34] 80.1/49.3 88.0/58.1 84.1/53.7
YOLOv8x [25] 74.4/50.7 82.8/56.2 78.6/53.5

WeatherDiff [43]

Co-DETR [29] 57.4/34.3 73.6/42.0 65.5/38.2
MaskDINO [33] 58.5/36.7 76.3/42.2 67.4/39.5

MGDIP [34] 65.7/40.3 77.3/45.5 71.5/42.9
YOLOv8x [25] 73.6/47.4 83.3/53.9 78.5/50.7

Ours 88.5/63.1 90.9/65.7 89.7/64.4

CC [71]

Restormer [42]

Co-DETR [29] 66.8/36.0 68.7/34.8 67.8/35.4
MaskDINO [33] 64.0/34.8 69.5/34.7 66.8/34.8

MGDIP [34] 79.2/42.6 74.4/40.6 76.8/41.6
YOLOv8x [25] 83.0/51.7 80.5/49.8 81.8/50.8

WeatherDiff [43]

Co-DETR [29] 63.4/30.5 63.2/27.4 63.3/29.0
MaskDINO [33] 62.6/29.7 60.8/27.0 61.7/28.4

MGDIP [34] 80.7/45.6 83.1/49.8 81.9/47.7
YOLOv8x [25] 87.4/60.4 87.1/61.5 87.3/61.0

Ours 94.4/71.3 92.6/69.6 93.5/70.5

Figure 5 visually compares crack detection performance between the proposed model
and YOLOv8x in adverse weather conditions. In (a) and (c), the YOLOv8x tends to predict
bounding boxes that cover a smaller range than the GT boxes. Conversely, in (d), the
YOLOv8x predicts overly large bounding boxes. In contrast, the proposed model predicts
more accurate bounding boxes in all cases. In (b), where snowflakes are heavily present,
YOLOv8x fails to make any predictions, whereas the proposed model successfully identifies
cracks under such challenging conditions.

Figures 6–8 present the restoration results of the auxiliary restoration network on the
EDMCrack600, DeepCrack, and CC validation datasets with snow and rain conditions. The
qualitative results indicate that our auxiliary restoration network effectively restores visible
information of cracks and efficiently removes weather-related noise surrounding the cracks
simultaneously. By leveraging hierarchical features from the auxiliary restoration network,
which contain detailed information about the cracks, we can enhance the detectability of
cracks, even in challenging adverse weather conditions.
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Figure 5. Visual comparison of crack detection performance across multiple datasets for (a,b) EDM-
Crack600, (c) DeepCrack, and (d) Concrete Crack (CC). Predicted bounding boxes are red and ground
truth boxes are green.

Figure 6. Visual restoration results of the auxiliary restoration network on the EDMCrack600 valida-
tion dataset with adverse weather conditions (snow and rain).
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Figure 7. Visual restoration results of the auxiliary restoration network on the DeepCrack validation
dataset with adverse weather conditions (snow and rain).

Figure 8. Visual restoration results of the auxiliary restoration network on the CC validation dataset
with adverse weather conditions (snow and rain).

Table 3 compares the computational complexity of the proposed model with detection
and restoration models in terms of floating point operations (FLOPs), number of parameters
(Param), and inference time on the EDMCrack600 dataset. The FLOPs and Param are
essential factors in determining the computational efficiency of a model. Regarding the
computational requirements, the transformer-based Co-DETR model is the most resource-
intensive, as evidenced by its 612.7 gigaFLOPs, 235.5 million parameters, and 380.8 ms of
inference time. Moreover, MaskDINO has particularly high FLOPs, which demonstrates
the high complexity of transformer-based models. In contrast, the CNN-based YOLOv8x
exhibits significantly reduced computational complexity compared to Co-DETR, using
257.8 gigaFLOPs, 68.2 million parameters, and 17.0 ms of inference time. The proposed
crack detection model shows an optimal balance between computational efficiency and
performance, with 238.5 gigaFLOPs, 69.5 million parameters, and 21.6 ms of inference time.
Despite these values being slightly higher than those of YOLOv8l, the proposed model
provides superior crack detection performance while maintaining reasonable computational
complexity. Consequently, this balanced architecture allows the proposed model to achieve
real-time operation and superior performance in crack detection under adverse weather
conditions. Through this analysis, we demonstrate that our methodology is well suited for
real-world applications, such as in UAVs.
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Table 3. Computation complexity of comparison models on the EDMCrack600 validation dataset
under snow conditions.

Task Model FLOPs (G) Param (M) Time (ms)

Detection

Co-DETR [29] 612.7 235.5 380.0
MaskDINO [33] 1326.5 223.1 163.9

MGDIP [34] 210.7 68.4 131.5
AugMoCrack [28] 203.8 86.2 14.8

YOLOv8l [25] 165.2 43.7 10.7
YOLOv8x [25] 257.8 68.2 17.0

Restoration Restormer [42] 881.2 26.1 159.8
WeatherDiff [43] 1,016,482.5 29.7 97,749.9

Ours 238.5 69.5 21.6

4.4. Ablation Study

Table 4 presents an ablation study to analyze the effectiveness of the proposed com-
ponents on EDMCrack600 validation dataset under adverse weather conditions (snow
and rain). The performance evaluation is conducted by separately averaging the AP50
and AP50:95 scores across snow and rain conditions. The first row exhibits the baseline
performance with all components activated. The second row shows the performance
without the auxiliary restoration network. Because the 3D FA block, cross-attention, and
auxiliary loss depend on the auxiliary restoration network, these components are also
deactivated. Instead, we use self-attention in place of cross-attention. As expected, the
performance significantly decreases due to not utilizing restored features and the absence
of related components (3D FA block, cross-attention, and auxiliary loss). The third row
shows the decreased performance when only the 3D FA block is deactivated. This result
indicates that the 3D FA block effectively enhances the characteristics of cracks for detec-
tion. The fourth row shows the performance with concatenated feature fusion instead
of cross-attention. In comparison, cross-attention leads to an increase of 9.0%p/7.7%p
over concatenation, demonstrating its greater effectiveness in the feature fusion process.
Moreover, the fifth and sixth rows present the performance when the proposed auxiliary
and contrastive patch losses are deactivated, respectively. The auxiliary loss leads to an
improvement of 15.0%p/9.4%p, and the contrastive patch loss leads to an improvement
of 4.1%p/3.4%p. These results indicate that each proposed component contributes to
performance improvement.

Table 4. Ablation study of Auxcoformer for the proposed components on EDMCrack600 validation
dataset under adverse weather conditions (snow and rain).

Auxiliary
Restoration

Network
3D FA Block Cross-

Attention
Auxiliary

Loss
Contrastive
Patch Loss

Mean
AP50/AP50:95

X X X X X 65.2/46.1
X 48.3/29.6

X X X X 58.7/40.0
X X X X 56.2/38.4
X X X X 50.2/36.7
X X X X 61.1/42.7

Table 5 provides insight into the influence of the weighting factors λcon, λpri, and
λaux on the EDMCrack600 validation dataset. This table was composed of meaningful
values through various experiments for analysis. By comparing the first to the third rows,
we can observe that as the ratios of λcon and λaux change relative to λpri, performance
variations occur. Furthermore, comparing the third to the seventh rows reveals the ablation
study results, showing the effects of activating or deactivating each module. We fixed λpri
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at 1.0 for all cases. When λaux is 0.0, the restoration task is not performed. Specifically,
when λaux is activated at 0.1 with λcon = 0.0, the mean AP50 and AP50:95 scores increase
by 13.4% and 12.9%, respectively, compared to when λcon and λaux are set to 0.0. Similarly,
when λcon is activated at 0.1 with λaux = 0.0, the mean AP50 and AP50:95 scores increase
by 2.5% and 6.9%, respectively, compared to when λcon and λaux are set to 0.0. The optimal
performance for the proposed model is achieved when λcon, λpri, and λaux are 0.1, 1.0, and
0.1, respectively, yielding the highest mean AP50 of 65.2% and AP50:95 of 46.1%. These
results confirm that the contrastive and auxiliary losses are instrumental in improving the
model performance. However, setting λcon or λaux values higher than 0.1 tends to nega-
tively affect the primary detection task. Additionally, as the proposed λcon and λaux values
increase, the decline in performance becomes more pronounced, presenting the model’s
increased sensitivity to these parameter variations. Therefore, a balanced contribution
and appropriate weight selection from the contrastive and auxiliary losses is crucial for
optimal performance.

Table 5. Average precision variation according to λ on the EDMCrack600 validation dataset under
adverse weather conditions (snow and rain). The bold represent the best performances.

λcon λpri λaux Snow Rain Mean

1.0 1.0 1.0 53.8/38.5 63.3/43.1 58.6/40.8
0.5 1.0 0.5 60.1/41.1 67.4/47.8 63.8/44.5
0.1 1.0 0.1 62.4/43.6 68.0/48.6 65.2/46.1
0.1 1.0 0.0 47.9/35.1 52.5/38.3 50.2/36.7
0.0 1.0 0.1 58.8/41.7 63.3/43.6 61.1/42.7
0.0 1.0 0.0 44.2/27.5 51.2/32.0 47.7/29.8

Table 6 presents an ablation study on the effect of various ε values in the 3D FA block.
We experimented with ε values of 10, 50, 100, and 10,000 to selectively amplify frequencies
most relevant to crack detection. For experimental analysis, only the necessary ε values
were selected and recorded after conducting various experiments. The ε of 50 yielded the
highest mean AP50 and AP50:95 scores of 65.2% and 46.1%, respectively. When the ε was
set to 10, performance declined, likely because a lower ε amplifies relevant frequencies for
crack detection and noise components. Similarly, the higher ε of 100 led to a decline in
performance, because it exceeds the frequency components relevant for crack detection.
When ε is set to 10,000, the coefficient range is confined to the DC value, rendering the FA
operation inactive. This is based on the observation that the 3D DCT coefficients in our
proposed FA block do not exceed this value. The performance in this case was better than
when ε was set to 100. This is likely because when ε is 100, some unnecessary frequency
components are amplified, reducing performance. Additionally, the change in ε from
50 to 10 shows a greater decrease in performance compared to the change from 50 to 100.
This is attributed to the fact that a lower ε value tends to amplify high-frequency noise as
well, to which the model is more responsive, particularly in those frequency coefficients.
Therefore, the ε of 50 provides the optimal balance for enhancing features crucial for crack
detection while minimizing noise effects.

Table 6. Average precision variation according to ε on the EDMCrack600 validation dataset under
adverse weather conditions (snow and rain). The bold represent the best performances.

ε
Metric (AP50/AP50:95)

Snow Rain Mean

10 48.5/25.9 54.6/30.6 51.6/28.3
50 62.4/43.6 68.0/48.6 65.2/46.1

100 51.6/27.9 55.7/31.4 53.7/29.7
10,000 55.1/38.2 62.3/41.7 58.7/40.0
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5. Discussion

Our crack detection method presented in this paper demonstrates considerable po-
tential for robust performance in adverse weather conditions. However, there are several
challenges that need to be addressed. Detecting cracks on ground surfaces can become
problematic when they are completely covered by accumulated rainwater or by snow. In
such scenarios, rain and snow entirely occlude the visible information of cracks required
for detection. Moreover, evaluation in real-world conditions is somewhat constrained due
to the absence of available real-world crack data in adverse weather scenarios. In these
cases, efforts will be required to collect crack data under adverse weather conditions and to
utilize additional equipment to supplement the drawbacks of cameras for detection.

As a limitation in terms of the proposed method, the auxiliary restoration network
relies on supervised learning that requires non-degraded data to be paired with degraded
data from the same scene. Alternatively, we can use the pretrained weights of the auxiliary
restoration network, which is trained on synthetic data, during the training of the primary
detection network without integrating the auxiliary loss. However, this approach may
not utilize the complete potential of the proposed framework. In our future work, we
will focus on developing methods that are not reliant on supervised learning to overcome
this limitation.

6. Conclusions

In conclusion, we presented Auxcoformer, an efficient model that integrates a primary
detection network with an auxiliary restoration network. This approach addresses the
challenges that automated robots may encounter due to visual difficulties in varying
external environmental conditions leading to low-quality data. Auxcoformer improves
crack detection performance under adverse weather conditions by employing effective loss
functions and leveraging auxiliary learning. In addition, Auxcoformer employs 3D FA to
effectively emphasize crack features, enhancing its robustness and reliability. Consequently,
this model represents a substantial advancement in crack detection, enhancing safety and
automation abilities in UAV and autonomous vehicle navigation, while also ensuring
real-time capabilities, essential for real-world applications.
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