
Citation: Xu, J.; Lin, Y. Energy

Management for Hybrid Electric

Vehicles Using Safe Hybrid-Action

Reinforcement Learning. Mathematics

2024, 12, 663. https://doi.org/

10.3390/math12050663

Academic Editors: Simira

Papadopoulou and Spyros

Voutetakis

Received: 2 February 2024

Revised: 20 February 2024

Accepted: 22 February 2024

Published: 24 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Energy Management for Hybrid Electric Vehicles Using Safe
Hybrid-Action Reinforcement Learning
Jinming Xu and Yuan Lin *

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology,
Guangzhou 510641, China; wi_jinming@mail.scut.edu.cn
* Correspondence: yuanlin@scut.edu.cn

Abstract: Reinforcement learning has shown success in solving complex control problems, yet
safety remains paramount in engineering applications like energy management systems (EMS),
particularly in hybrid electric vehicles (HEVs). An effective EMS is crucial for coordinating power
flow while ensuring safety, such as maintaining the battery state of charge within safe limits, which
presents a challenging task. Traditional reinforcement learning struggles with safety constraints,
and the penalty method often leads to suboptimal performance. This study introduces Lagrangian-
based parameterized soft actor–critic (PASACLag), a novel safe hybrid-action reinforcement learning
algorithm for HEV energy management. PASACLag utilizes a unique composite action representation
to handle continuous actions (e.g., engine torque) and discrete actions (e.g., gear shift and clutch
engagement) concurrently. It integrates a Lagrangian method to separately address control objectives
and constraints, simplifying the reward function and enhancing safety. We evaluate PASACLag’s
performance using the World Harmonized Vehicle Cycle (901 s), with a generalization analysis of
four different cycles. The results indicate that PASACLag achieves a less than 10% increase in fuel
consumption compared to dynamic programming. Moreover, PASACLag surpasses PASAC, an
unsafe counterpart using penalty methods, in fuel economy and constraint satisfaction metrics during
generalization. These findings highlight PASACLag’s effectiveness in acquiring complex EMS for
control within a hybrid action space while prioritizing safety.

Keywords: hybrid electric vehicles; energy management strategy; safe reinforcement learning;
hybrid action space; Lagrangian methods

MSC: 68T40

1. Introduction

Deep reinforcement learning (DRL) has achieved significant success in solving com-
plex control problems, such as StarCraft [1], balloon navigation [2], Gran Turismo [3], and
drone racing [4]. However, these impressive applications mainly focus on making spe-
cific decisions or outputting control commands to achieve optimal performance, without
considering the safety of the system. In some safety-critical applications, such as energy
management systems [5], autonomous driving [6], and robot control [7], ensuring safety is
of paramount importance. Failure to guarantee safety in these contexts can lead to system
damage or even casualties.

In recent years, there has been a significant surge in the development of a reinforcement
learning-based energy management strategy (EMS) for hybrid electric vehicles (HEVs) [8].
In a typical HEV, energy can be sourced from multiple power sources, including internal
combustion engine (ICE), electric motor, and energy storage systems such as batteries or
supercapacitors. The EMS plays a vital role in coordinating the power flow between these
sources based on various factors, including driving conditions, battery state of charge
(SOC), power demand, and user preferences.

Mathematics 2024, 12, 663. https://doi.org/10.3390/math12050663 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050663
https://doi.org/10.3390/math12050663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0092-6984
https://orcid.org/0000-0003-2365-3613
https://doi.org/10.3390/math12050663
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050663?type=check_update&version=4

Mathematics 2024, 12, 663 2 of 20

Traditionally, EMSs for HEVs rely on rule-based or optimization-based methods [9,10].
However, with the advent of reinforcement learning (RL) techniques, researchers have
started exploring the application of RL algorithms in EMS development. RL is a branch of
machine learning in which an agent learns to make optimal decisions through interactions
with an environment. By applying RL, the EMS can adapt and optimize itself over time
based on real-time data with a low computational cost. Utilizing RL for an EMS has the
potential to improve fuel economy, reduce emissions, and enhance the overall performance
of HEVs [8].

There have been various research efforts on applying RL to EMSs for HEVs. Hu
et al. [11] proposed a deep Q-network (DQN)-based EMS for a parallel HEVs, where the
control action is discretized output torque from the ICE. A simulation on ADVISOR showed
that the equivalent fuel consumption of the proposed DQN-based EMS was 2.57% lower
than that of the rule-based control strategy. To handle the continuous torque output directly,
Liessner et al. [12] employed the deep deterministic policy gradient (DDPG) algorithm to
the EMS. The researchers trained the model using stochastic driving cycles that shared
similar characteristics with the testing conditions. The results showed that the DDPG
strategy exhibited a fuel economy gap 0.9–1.7% higher than the dynamic programming
(DP) approach. Additionally, Liu et al. [13] utilized the twin delayed deep deterministic
policy gradient (TD3) algorithm to overcome the overestimation problem of the DDPG,
and the results showed that the TD3-based EMS outperformed the DDPG-based EMS by
7.28% in terms of fuel consumption.

In addition to the consideration of a single action space in an EMS, researchers have
also explored the application of reinforcement learning algorithms to handle more complex
control tasks that involve both discrete and continuous actions. Li et al. [14] utilized a similar
framework to the parameterized DDPG (PA-DDPG) proposed by Hausknecht et al. [15],
where the weights of the discrete action driving mode and the continuous action engine
torque are directly output by the actor network. Tang et al. [16] combined the DQN and
DDPG, obtaining the gear ratio and engine throttle separately using the DQN and DDPG.
Wang et al. [17] proposed the same algorithm as the parameterized DQN (P-DQN) [18]
to control the clutch state and engine torque, in which the actor network first outputs the
continuous engine torque for all clutch states, and then the Q-network selects the optimal
clutch state with the highest Q-value.

Although the use of RL has demonstrated significant potential in the development of
EMSs, it is crucial to acknowledge the challenges associated with ensuring the safety and
dynamic constraints of RL-driven EMS applications. The exploratory nature and stochastic
characteristics of RL algorithms can lead to the production of unreasonable actions, posing
potential risks [8]. In the specific context of HEV systems, the initial stages of training
and the assumption of unrestricted exploration may result in behaviors that cause damage
to vehicle components and lead to hazardous outcomes [5]. For instance, an unbounded
exploration in the action space can lead to excessive engine torque, causing overheating and
damage to the engine. Similarly, excessive battery discharge resulting from uncontrolled
exploration can lead to battery degradation and a reduced lifespan. Consequently, it is
imperative to develop safe RL algorithms that effectively manage energy flow in HEVs
while adhering to safety constraints.

A commonly employed strategy for handling safety constraints in RL is to introduce
penalty terms into the reward function [19–21]. By incorporating these penalties, the agent
receives negative rewards for violating the constraints during the learning process. Never-
theless, this formulation transforms the EMS problem into a multi-objective optimization
problem, where the optimization objective encompasses both fuel economy and adherence
to safety constraints. The balance between multiple objectives is regulated by the penalty
coefficient, which poses a challenge as its determination is often non-trivial.

Fan et al. [22] added an additional safety layer to correct the continuous actions
generated by the RL agent, which is trained using the penalty method in the first stage.
The safety layer comprises a neural network that estimates how action changes affect the

Mathematics 2024, 12, 663 3 of 20

safety sensitivity of the constrained variables by performing a first-order approximation
of the constraints. Similarly, Zhang et al. [5] proposed a coach–learner framework, where
the action output by the RL agent is first processed by a coach function, which determines
whether the action satisfies all the constraints. If the action violates any of the constraints, a
rule-based controller is activated to generate safe action. However, these methods require
additional measures to ensure the safety of the system, which increases the complexity of
the model and may reduce computational efficiency.

Lagrangian methods offer an alternative approach to address constraints in RL. This
methodology involves initially modeling the system as a constrained Markov decision
process (CMDP) [23], and subsequently converting the CMDP optimization problem into
an unconstrained optimization problem by introducing Lagrange multipliers [24]. In
particular, Chow et al. [24] proposed a gradient-based method for risk-constrained RL,
which involves taking policy gradient steps on an objective that balances the trade-off
between return and risk. A subsequent improvement to this approach was presented
by Liang et al. [25], who enhanced the efficiency of the algorithm by incorporating off-
policy trained dual variables. While these methodologies have demonstrated convergence
towards constraint-satisfying policies, it is noteworthy that there has been limited research
on the application of Lagrangian methods to hybrid action spaces thus far.

Recognizing these challenges, it is imperative to integrate principles of safe rein-
forcement learning to mitigate risks and ensure the reliability of EMS operations. Our
work contributes to this endeavor by presenting a novel, safe hybrid-action reinforce-
ment learning algorithm for HEV energy management. The proposed algorithm, named
Lagrangian-based parameterized soft actor–critic (PASACLag), distinguishes itself by lever-
aging a distinctive composite action representation and Lagrangian methods to effectively
manage both continuous and discrete variables concurrently. The principal contributions
of this study can be summarized as follows:

1. The introduced energy management strategy, which utilizes a composite action repre-
sentation method, showcases the ability to output two discrete actions, gear shift and
clutch engagement, along with one continuous action, engine torque, simultaneously.
This systematic optimization of both the continuous and discrete control variables is
effective in improving the fuel economy of the HEV [26].

2. Extending beyond the hybrid action space, a novel safe hybrid-action reinforce-
ment learning algorithm, PASACLag, is proposed for energy management in HEVs.
PASACLag uniquely incorporates a Lagrangian method into this framework, facilitat-
ing the separate treatment of control objectives and constraints. This methodology not
only simplifies the reward function but also bolsters the overall safety of the system.

The remainder of this paper is organized as follows: Section 2 provides the background
on the constrained Markov decision process and hybrid action space. Section 3 introduces
the proposed Lagrangian-based parameterized soft actor–critic. Section 4 presents the case
study on an HEV. The experimental results are discussed in Section 5. Finally, Section 6
concludes the paper and discusses future work.

2. Preliminaries

We begin by introducing the basic concepts of the Markov decision process and
extend it to the constrained Markov decision process. Following this, we provide a concise
overview of the action space in reinforcement learning and introduce the concept of a
hybrid action space.

2.1. Constrained Markov Decision Process

A Markov decision process (MDP) is a mathematical framework used to model sequen-
tial decision-making problems under uncertainty, which is commonly used in reinforcement
learning [27]. It is represented by a tuple (S ,A,P ,R, γ), where:

• S is the set of states representing the possible system configurations or states of the
environment.

Mathematics 2024, 12, 663 4 of 20

• A is the set of actions representing the available choices or actions that can be taken in
each state.

• P : S ×A× S → [0, 1] is the transition probability function. It defines the probability
of transitioning from one state to another when taking a specific action.

• R : S ×A → R is the reward function. It assigns a numeric reward to each state–action
pair, representing the immediate benefit or cost associated with taking a particular
action in a specific state.

• γ ∈ [0, 1] is the discount factor that weighs the importance of immediate rewards
compared to future rewards. It determines the extent to which future rewards are
considered in the decision-making process.

In a typical RL formulation, as depicted in Figure 1, the agent observes the state st ∈ S
at each time step t, selects an action at ∈ A according to the policy π, and receives a reward
rt ∈ R, and the next state st+1 ∈ S according to the transition probability P . The goal of
the agent is to maximize the expected cumulative reward Rt = Eπ

[
∑∞

t=0 γtrt(st, at)
]
, and

the optimal policy π∗ is defined as follows [27]:

π∗ = arg max
π

Eπ

[
∞

∑
t=0

γtrt(st, at)

]
. (1)

Therefore, define the action-value function Qπ(s, a) as follows:

Qπ(s, a) = Eπ

[
∞

∑
t=0

γtrt(st, at) | s0 = s, a0 = a

]
, (2)

where the optimal action at each state can be obtained by maximizing the action-value
function a∗ = arg maxa Qπ(s, a).

Agent

Environment

𝑟𝑡
RewardState

𝑠𝑡
𝑟𝑡+1
𝑠𝑡+1

Action
𝑎𝑡

Figure 1. The Markov decision process for reinforcement learning.

The constrained Markov decision process extends the MDP framework by introducing
constraints. It is represented by a tuple (S ,A,P ,R, γ, c, ϵ), where c is the constraint
function and ϵ is the constraint threshold. The objective of the agent is to maximize the
expected cumulative reward Rt while satisfying the constraint c(st, at) ≤ ϵ.

Definition 1. A policy π is considered optimal in a constrained Markov decision process if it
maximizes the expected cumulative reward Rt subject to a set of constraints C. The optimal policy
π∗ can be formulated as follows:

π∗ = arg max
π

Eπ

[
∞

∑
t=0

γtrt(st, at)

]

s.t. Eπ

[
∞

∑
t=0

γtct(st, at)

]
≤ ϵ.

(3)

Mathematics 2024, 12, 663 5 of 20

2.2. Hybrid Action Space

RL algorithms can be broadly classified into three categories based on the nature of
the action space: discrete action space, continuous action space, and hybrid action space. A
discrete action space consists of a finite set of distinct actions, represented as follows:

A = {a1, a2, · · · , an}, (4)

where ai ∈ A represents the i-th discrete action and n denotes the total number of actions.
The action space can also be extended to a multidimensional discrete action space:

A = A1 ×A2 × · · · × An, (5)

where Ai represents the i-th discrete action space. On the other hand, a continuous action
space is a set of continuous actions represented as follows:

A = Rn, (6)

where n is the dimension of the action space.
The hybrid action space is a combination of discrete and continuous action spaces. A

significant body of RL research treats this space as a parameterized action space [28]:

A =
⋃

a∈Ad

{(a, x) | x ∈ Xa}, (7)

where Ad = {a1, a2, . . . , ak} represents a finite set of discrete actions, and each discrete
action ai ∈ Ad is associated with a set of continuous parameters Xa ⊆ Rna , where na repre-
sents the dimensionality. The action output typically follows a hierarchical relationship,
with discrete actions at the top level and continuous parameters at the bottom level.

In this study, we investigate the concept of a parallel architecture to examine the
hybrid action space. Within this framework, discrete and continuous actions are treated as
separate entities without direct interdependence.

Definition 2. A hybrid action space is a set of actions that comprises both discrete and continuous
components. It is defined as follows:

A =
{

a = (ad, ac) | ad ∈ Ad, ac ∈ Ac
}

, (8)

where Ad ⊆ Nm represents a finite set of discrete action spaces, Ac ⊆ Rn denotes a continuous
action space, and ad and ac denote the discrete and continuous actions, respectively.

3. Lagrangian-Based Parameterized Soft Actor–Critic
3.1. Entropy-Regularized Reinforcement Learning

Entropy is a quantity that measures the uncertainty of a random variable. Specifically,
let p(x) be the probability distribution of a random variable x, then the entropy of x is
defined as follows:

H(x) = −Ex∼p(x)[log p(x)]. (9)

In the context of reinforcement learning, we can use entropy to represent the uncer-
tainty of the policy π under a given state st [29]:

H(π(·|st)) = −Ea∼π(·|st)[log π(a|st)]. (10)

The objective of entropy-regularized reinforcement learning is to maximize the ex-
pected cumulative reward Rt while maximizing the entropy of the policy π, which will

Mathematics 2024, 12, 663 6 of 20

encourage the agent to explore more actions and avoid premature convergence to subopti-
mal policies. This can be achieved by adding an entropy term to the objective function (1):

π∗ = arg max
π

Eπ

[
∞

∑
t=0

γt(rt(st, at) + αH(π(·|st)))

]
, (11)

where α > 0 is the entropy regularization coefficient that controls the trade-off between the
expected cumulative reward and the entropy of the policy.

With the introduction of the entropy term, the Bellman optimality equation of the
action-value function Qπ(s, a) can be rewritten as follows:

Qπ(s, a) = Es′∼P ,a′∼π

[
r(s, a) + γ

(
Qπ(s′, a′) + αH(π(·|s′))

)]
= Es′∼P ,a′∼π

[
r(s, a) + γ

(
Qπ(s′, a′)− α log π(a′|s′)

)]
.

(12)

3.2. Parameterized Soft Actor–Critic

The soft actor–critic (SAC) [29] is an off-policy actor–critic algorithm that combines the
maximum entropy reinforcement learning framework with the neural network function
approximator. While the original SAC algorithm is designed for continuous action spaces,
we propose an extension of the SAC algorithm to handle hybrid action spaces, which we
refer to as parameterized soft actor–critic (PASAC).

An actor–critic architecture consists of two neural networks: the actor network πθ

parameterized by θ and the critic network Qω parameterized by ω. The actor network πθ

outputs the action at given the state st, and the critic network Qω estimates the action-value
function Q(s, a). Through iterative updates to the actor and critic networks, the actor
network learns to output the optimal action a∗ that maximizes the action-value function
Q(s, a), and the critic network learns to estimate the optimal action-value function Q∗(s, a).

3.2.1. Learning the Critic Network

Update to the critic network is performed by minimizing the temporal difference error:

LQ(ω) = Est ,at ,rt ,st+1∼D
[
(Qω(st, at)− yt)

2
]
, (13)

where D is the replay buffer that stores the transitions (st, at, rt, st+1), and yt is the target
given by the following:

yt = rt + γ(Qω−(st+1, at+1)− α log πθ(at+1|st+1)). (14)

To mitigate the overestimation problem that is known to degrade the performance of
Q-learning algorithms [30], two target networks Qω−1

and Qω−2
are introduced to compute

the target value yt, each of which corresponds to a Q-network (Qω1 and Qω2 , respectively).
The minimum of the two target values is used as the final target, i.e.,

yt = rt + γ min
j=1,2

(
Qω−j

(st+1, at+1)− α log πθ(at+1|st+1)

)
. (15)

3.2.2. Learning the Actor Network

The actor network is updated by maximizing the expected cumulative reward Rt
while maximizing the entropy of the policy π. The objective function is defined as follows:

Jπ(θ) = Est∼D,at∼πθ
[Qω(st, at)− α log πθ(at|st)]

= Est∼D,at∼πθ

[
min
j=1,2

Qωj(st, at)− α log πθ(at|st)

]
.

(16)

Mathematics 2024, 12, 663 7 of 20

Here, the minimum of the two Q-networks is utilized as the estimation of the action-
value Q(st, at). For a continuous action space, the actor network outputs the mean µθ(st)
and the standard deviation σθ(st) of a Gaussian distribution, and the action at is sampled
from the Gaussian distribution N (µθ(st), σθ(st)). However, the sampling process is not
differentiable, so the reparameterization trick is used to obtain a differentiable function.
Specifically, the action at is sampled from a standard Gaussian distribution N (0, 1), and
then the action at is transformed to µθ(st) + σθ(st)⊙ δ, where δ ∼ N (0, 1) is a random
noise vector and ⊙ denotes the element-wise product. Therefore, the objective function of
the actor network can be rewritten as follows:

Jπ(θ) = Est∼D,δ∼N (0,1)

[
min
j=1,2

Qωj(st, ãt)− α log πθ(ãt|st)

]
, ãt = µθ(st) + σθ(st)⊙ δ. (17)

3.2.3. Practical Implementation for Hybrid Action Space

As introduced in Section 2.2, the hybrid action space is defined as follows:

A =
{

a = (ad, ac) | ad ∈ Ad, ac ∈ Ac
}

, Ad ⊆ Nm, Ac ⊆ Rn. (18)

To represent this hybrid action space in a linear fashion suitable for neural network
outputs, we flatten the multi-dimensional discrete and continuous components into a single
composite vector:

a = (ad, ac)→ [ad
1, ad

2, . . . , ad
i , . . . , ad

m, ac
1, ac

2, . . . , ac
i , . . . , ac

n]. (19)

Here, each discrete action ad
i is an element selected from a finite set of possible actions

Ad
i . The total number of possible combinations for the discrete actions is, thus, the product

of the number of feasible choices for each action, represented as ∏m
i=1 di.

We configure the output dimension of the actor network to accommodate both sets of
actions, setting it at m+ n, where m = ∏m

i=1 di. The output from the actor network, denoted
as a, is as follows:

a = [a1, a2, . . . , am, am+1, . . . , am+n]. (20)

For discrete actions ad, we apply the argmax function to the segments of a correspond-
ing to each discrete action’s dimension, effectively selecting the action with the highest
utility from the feasible action set. The continuous actions ac are directly based on the
remaining elements of a, which represent real-valued actions.

3.3. Lagrangian-Based Parameterized Soft Actor–Critic

In this study, we employ the Lagrangian method as our chosen approach to address
the constrained optimization problem in the context of CMDP within the PASAC frame-
work. Lagrangian methods are a well-established and widely used technique for handling
constrained optimization problems. By introducing a Lagrangian multiplier, we can trans-
form the original constrained optimization problem into an unconstrained optimization
problem [31]. This transformation simplifies the RL reward function by decoupling the
learning of reward and cost networks. The dual-network approach, supported by the
Lagrange multiplier, enables the RL agent to learn policies that simultaneously maximize
rewards while respecting constraints, which may represent safety requirements.

Mathematics 2024, 12, 663 8 of 20

The constrained optimization problem of the CMDP in PASAC can be formulated as
follows:

π∗ = arg max
π

Eπ

[
∞

∑
t=0

γt(rt(st, at) + αH(π(·|st)))

]

s.t. Eπ

[
∞

∑
t=0

γtct(st, at)

]
≤ ϵ.

(21)

The optimal policy π∗ can then be obtained by solving the corresponding uncon-
strained optimization problem:

(π∗, λ∗) = arg min
λ≥0

max
π
L(π, λ)

= arg min
λ≥0

max
π

(
Eπ

[
∞

∑
t=0

γt(rt(st, at) + αH(π(·|st)))

]

− λ

(
Eπ

[
∞

∑
t=0

γtct(st, at)

]
− ϵ

))
,

(22)

where λ denotes the Lagrangian multiplier, dynamically adjusted to penalize the policy
proportionally to the cost incurred, thus enforcing the constraints.

In practice, the optimal policy π∗ can be obtained by alternating between the following
two steps:

1. Solve the unconstrained optimization problem (22) to determine a feasible policy π.
2. Increase the Lagrangian multiplier λ until the constraint is satisfied.

In the initial step, the unconstrained optimization problem (22) can be addressed
through the PASAC algorithm by incorporating the Lagrangian multiplier λ into the
objective function (17):

Jπ(θ) = Est∼D,at∼πθ

[
min
j=1,2

Qωj(st, ãt)− α log πθ(ãt|st)− λ
(
Qϕ(st, ãt)− ϵ

)]
, (23)

where Qϕ is the cost network that estimates the constraint violations. It follows a similar
update rule to the critic network using the temporal difference error. The Lagrangian
multiplier λ is treated as a constant, and the actor network is updated through gradient
descent:

θ ← θ − β∇θLπ(θ), (24)

where β is the step size. It is noteworthy that when λ assumes large values, the update in
Equation (24) may induce excessively large changes to the parameter θ, potentially leading
to instability. Motivated by the approach presented in Ref. [32], we introduce a rescaled
objective function to ensure consistent step sizes:

θ ← θ − β
1

1 + λ
∇θLπ(θ). (25)

In the subsequent step, the Lagrangian multiplier λ is updated through gradient
descent:

λ← λ− η
(
ϵ−Qϕ(st, at)

)
, (26)

where η represents the step size.
The pseudocode of the PASACLag algorithm is presented in Algorithm 1.

Mathematics 2024, 12, 663 9 of 20

Algorithm 1: Pseudocode of the PASACLag Algorithm

Input: Gradient stepsizes {α, β, ξ, η} ≥ 0, empty replay buffer D, minibatch size
B, discount factor γ, soft target update rate τ, cost limit ϵ, initial
Lagrangian multiplier λ.

1 Initialize the Q-network Qω1 , Qω2 , actor network µθ , and cost network Qϕ with
random weights ω1, ω2, θ, ϕ;

2 Initialize the target networks ω−1 ← ω1, ω−2 ← ω2, ϕ− ← ϕ;
3 for t = 1 : T do
4 Observe state st and select action at according to policy πθ ;
5 Execute action at and observe reward rt and the next state st+1;
6 Store transition (st, at, rt, ci, st+1) in replay buffer D;
7 If st+1 is a terminal state, reset the environment;
8 Sample B transitions {(si, ai, ri, ci, si+1)}i∈[B] from D;
9 Compute the target value for the Q networks

yi = ri + γ min
j=1,2

(
Qω−j

(si+1, ai+1)− α log πθ(ai+1|si+1)

)
;

10 Update the two Q-networks by one step of gradient descent

ωj ← ωj − α∇ωj

1
|B| ∑

i∈[B]

(
Qωj(si, ai)− yi

)2
, for j = 1, 2;

11 Update the cost network by one step of gradient descent

ϕ← ϕ− ξ∇ϕ
1
|B| ∑

i∈[B]

(
Qϕ(si, ai)−

(
ci + γQϕ−(si+1, ai+1)

))2
;

12 Update the actor network by one step of gradient ascent

θ ← θ +
β

1 + λ
∇θ

1
|B| ∑

i∈[B]

(
min
j=1,2

Qωj(si, ãi)− α log πθ(ãi|si)− λ
(
Qϕ(si, ãi)− ϵ

))
,

where ãi = µθ(si) + σθ(si)⊙ δ, δ ∼ N (0, 1) ;
13 Update the target networks with

ω−j ← τωj + (1− τ)ω−j , for j = 1, 2

ϕ− ← τϕ + (1− τ)ϕ−;

14 Update the Lagrangian multiplier λ by one step of gradient descent

λ← λ− η
1
|B| ∑

i∈[B]

(
ϵ−Qϕ(si, ai)

)
;

15 end

4. Case Study
4.1. Modeling of the HEV Powertrain

The host vehicle studied in this work was a parallel hybrid electric vehicle [33] with
an internal combustion engine, an electric motor, an automatic clutch, and a 6-speed
automated manual transmission, as depicted in Figure 2. The main parameters of the
vehicle are provided in Table 1.

Mathematics 2024, 12, 663 10 of 20

Engine
Motor/

Generator
Transmission

Final

Drive

Battery

Clutch

Mechanical

Electrical Wheel

Wheel

Figure 2. The parallel hybrid powertrain architecture.

Table 1. Main parameters of the HEV.

Symbol Value Unit Description

ωmax 250 rad/s Maximum motor/engine angular velocity
Tb,max 6000 Nm Maximum mechanical brake torque
id 4.11 - Final drive gear ratio
η f 0.931 - Final drive efficiency
ηg 0.931 - Transmission efficiency
Qmax 6.5 Ah Battery capacity
Nb 112 - Number of battery cells
m 5000 kg Vehicle mass
A 6.73 m2 Vehicle cross-sectional area
r 0.5715 m Tyre radius
µ 0.01 - Rolling resistance coefficient
ρ 1.1985 kg/m3 Air density
Cd 0.65 - Air drag coefficient
θ 0 rad Road grade

The vehicle dynamics are described by the following equation:

Tw =

(
ρCd Av2

2
+ µmg cos θ + mg sin θ + ma

)
r, (27)

where Tw is the torque acting on the wheel, ρ is the air density, Cd is the air drag coefficient,
A is the vehicle’s cross-sectional area, v is the vehicle velocity, µ is the coefficient of rolling
resistance, m is the vehicle mass, g is the gravitational acceleration, θ is the road grade, a is
the vehicle acceleration, and r is the tire radius. The shaft speed of the wheel is related to
the vehicle velocity as follows:

ω =
v
r

idig, (28)

where id is the final drive gear ratio and ig is the transmission gear ratio. Since the motor is
directly connected to the transmission, the motor speed is equal to the transmission speed.

The torque on the wheel is transmitted from the engine and motor through the clutch
and transmission, which can be described as follows:

Tw + Tb
idigηdηg

= ϱTe,d + Tm, (29)

where Tb is the mechanical brake torque, id is the final drive gear ratio, ig is the transmission
gear ratio, ηd is the final drive efficiency, ηg is the transmission efficiency, Te,d is the engine
driving torque, Tm is the motor torque, and ϱ is the clutch engagement status, which is a
binary variable that takes the value of 1 when the clutch is engaged and 0 when the clutch
is disengaged.

Mathematics 2024, 12, 663 11 of 20

The engine torque is separated into two parts: the driving torque Te,d, which propels
the vehicle, and the idle torque Te,i, which powers the auxiliary systems. The engine speed
is governed by the following equation:

ωe =

{
ω, if ϱ = 1,
ωe,i, if ϱ = 0,

(30)

where ω is the motor angular velocity, and ωe,i is the engine idle angular velocity. The
engine fuel map and the maximum engine torque are shown in Figure 3a, where the engine
fuel consumption rate ṁ f = f f (ω, Te) is a function of the engine angular velocity ω and the
engine torque Te. The motor efficiency map and the maximum/minimum motor torque are
shown in Figure 3b, where the motor efficiency ηm = fη(ω, Tm) is a function of the motor
angular velocity ω and the motor torque Tm.

100 125 150 175 200 225 250
Engine speed (rad/s)

0

100

200

300

400

500

600

E
ng

in
e

to
rq

ue
(N

m
)

0.0003

0.0010

0.0018

0.0025

0.0033

0.0040

0.0048

0.0055

0.0063
E

ng
in

e
fu

el
ra

te
(k

g/
s)

0 50 100 150 200 250
Motor speed (rad/s)

−600

−400

−200

0

200

400

600

M
ot

or
To

rq
ue

(N
m

)

0.70

0.72

0.75

0.77

0.80

0.82

0.84

0.87

0.89

0.92

M
ot

or
E

ffi
ci

en
cy

(a) (b)

Figure 3. (a) The engine fuel map and the maximum engine torque (blue line). (b) The motor
efficiency map and the maximum/minimum motor torque (blue line).

The battery state of charge is calculated using the following:

˙SOC = − Ib
Qmax

= −E−
√

E2 − 4RbTmωη
sgn(−Tm)
m

2RbQmax
, (31)

where Qmax is the battery capacity; the open-circuit voltage E of the battery cell and the
battery internal resistance Rb are denoted as functions of the SOC, as shown in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
State of Charge (SOC)

1.25

1.50

1.75

2.00

B
at

te
ry

R
es

is
ta

nc
e

(Ω
)

3.50

3.75

4.00

4.25

O
pe

n
C

ir
cu

it
Vo

lta
ge

(V
)

Figure 4. The open-circuit voltage and resistance of the battery cell.

Mathematics 2024, 12, 663 12 of 20

4.2. Problem Formulation

The goal of an HEV energy management system is to determine the optimal power
split between the engine and the motor to minimize the fuel consumption while satisfying
the vehicle dynamics and the battery SOC constraints. Therefore, the optimization problem
can be formulated as follows:

min
Tcyc

∑
t=0

ṁ f (t) (32)

s.t.

0 ≤ ω ≤ ωmax,
0 ≤ Te ≤ Te,max,
Tm,min ≤ Tm ≤ Tm,max,
0 ≤ Tb ≤ Tb,max,
SOCmin ≤ SOC ≤ SOCmax,

(33)

where T0 and Tcyc denote the initial and final times of the driving cycle.

4.3. Implementation of PASACLag

Based on the problem formulation, the key components of the PASACLag algorithm
are described as follows.

State: The observation at each time step is defined as follows:

s = [v, a, Tw, SOC, ig, ϱ]. (34)

Here, the vehicle velocity v, the vehicle acceleration a, and the required torque Tw provide
the power demand information of the vehicle, and the SOC, the transmission gear ratio ig,
and the clutch engagement status ϱ provide the information of the powertrain.

Action: The hybrid action is defined as follows:

a = [Te, ς, ϱ], (35)

where ς represents a shift command with three options: upshift, downshift, and no shift.
To comprehensively ascertain the power distribution between the engine and the

motor, the system takes into account two distinct scenarios. Firstly, when the demanded
torque Tw assumes a negative value, the system prioritizes the utilization of regenerative
braking to recharge the battery, with any surplus torque being supplied by mechanical
braking. In cases where the regenerative braking capacity falls short of meeting the power
requirements, the remaining torque is supplemented through mechanical braking. Secondly,
in situations where the demanded torque Tw is positive, the braking torque is set to zero,
and the required torque is jointly supplied by the engine and the motor.

Reward: Since the objective of the energy management system is to minimize the fuel
consumption, the reward function is defined as the negative of the fuel consumption rate:

r = −ṁ f . (36)

CMDP formulation: Recapping the constraints specified in Equation (33), the engine
torque constraint can be directly achieved through the definition of the action space, and the
braking torque constraint can be implemented during the execution of the action. However,
direct enforcement of the remaining constraints is not feasible due to system dynamics. To
address these constraints within the CMDP framework uniformly, an indicator function is
introduced to evaluate the violation of each constraint individually:

Mathematics 2024, 12, 663 13 of 20

c = I(ω) + I(SOC) + I(Tm), (37)

I(∗) =
{

0, if ∗ ∈ [∗min, ∗max],
1, otherwise.

(38)

Thus, the CMDP formulation of the problem is as follows:

π∗ = arg max
π

Eπ

[
∞

∑
t=0

γt(r(st, at) + αH(π(·|st)))

]

s.t. Eπ

[
∞

∑
t=0

γtc(st, at)

]
≤ 0.

(39)

It is worth noting that the constraint threshold is set to zero, indicating an ideal
scenario where no constraint violation occurs throughout the entire driving cycle.

5. Experiments
5.1. Experimental Setup

The proposed algorithm was evaluated on the urban driving segment of the World
Harmonized Vehicle Cycle (WHVC), as depicted in Figure 5. This segment contains frequent
speed changes, stops, and idling, which makes it challenging to achieve optimal and safe
energy management.

0 200 400 600 800
0

10

20

V
el

oc
ity

(m
/s

)

0 200 400 600 800
Time (s)

−2

−1

0

1

2

A
cc

el
er

at
io

n
(m

/s
2)

Figure 5. The urban driving segment of World Harmonized Vehicle Cycle.

The performance of the proposed algorithm was evaluated through a comparative
analysis with DP and PASAC. DP employs the MATLAB toolbox developed by Sund-
ström et al. [34], which enables the imposition of constraints on variables and the direct
definition of the loss function as the fuel consumption of the system. With fine-grained
discretization, DP can be regarded as the optimal solution to the problem. The state vari-
able selected was the SOC, with 400 grids ranging from 0.4 to 0.8. The input variables
chosen were the same as those used in the RL algorithm, i.e., the engine torque Te, the shift
command ς, and the clutch engagement status ϱ. Notably, the continuous engine torque
was discretized with an interval of 5 Nm.

Mathematics 2024, 12, 663 14 of 20

As outlined in Section 3.2, PASAC is introduced. Since PASAC cannot directly handle
safety constraints, a penalty term is incorporated into the reward function to penalize
constraint violations. The updated reward function is expressed as follows:

r = −ṁ f − pω − pTm − pSOC, (40)

pω = 10p̃, if ω > ωmax, (41)

pTm = 10p̃, if Tm > Tm,max, (42)

pSOC =

0, if SOCmin ≤ SOC ≤ SOCmax,

10p̃ · |SOC−SOCmax |
1−SOCmax

, if SOC > SOCmax,

10p̃ · |SOC−SOCmin |
SOCmin

, if SOC < SOCmin,

(43)

where p̃ represents a reference penalty value set to be the intermediate value of the fuel
consumption rate.

The environment was implemented using the Safety-Gymnasium framework [35],
which is an extension of the OpenAI Gym framework [36] designed for safety-critical
applications in RL. Upon each reset of the environment, the initial SOC was randomly
drawn from a uniform distribution within the range of SOCmin to SOCmax. Additionally,
the start time of the driving cycle was sampled from a uniform distribution between
T0 and Tcyc to introduce variability in the initial conditions of each episode. The RL
training process involved a total of 3000 episodes, with each episode corresponding to
the length of a single driving cycle. The actor networks and the critic networks of the
RL algorithms were instantiated as fully connected neural networks, each comprising
two hidden layers. Specifically, PASACLag featured 64 neurons in each layer, while
PASAC boasted 128 neurons in each layer. The optimization of network parameters was
executed using the Adam optimizer [37], which is recognized for its efficiency in dealing
with large-scale and non-convex optimization problems. We set a learning rate of 0.0003
for both the actor and critic networks, a value that was determined empirically to yield
stable convergence during preliminary testing. All the experiments were conducted on a
workstation equipped with an AMD Ryzen 9 5950X CPU and an NVIDIA RTX 3080Ti GPU.

5.2. Learning Ability Assessment

The training results of the RL algorithms are depicted in Figure 6. For robust result
reliability, each algorithm underwent three training iterations using different random seeds.
Each seed generated a unique random initial state for the environment. Initially, both
PASAC and PASACLag displayed a rapid increase in average reward during the training
process, accompanied by relatively high costs. This phenomenon indicated a tendency to
violate constraints in pursuit of a higher reward at the beginning. However, as training
progressed, the average reward for both algorithms gradually converged to a stable value,
with simultaneous reduction in costs to a lower level. This suggested that both algorithms
successfully learned a policy that adhered to the specified constraints. Comparing the two,
PASACLag exhibited a slightly higher average reward than PASAC, and its cost could
converge to zero. This implies that PASACLag not only learned a policy satisfying the
constraints but also demonstrated superior performance compared to PASAC.

The results in Table 2 provide insights into the computational efficiency of different
strategies. DP does not have a training time as it focuses on solving a known problem
optimally without a dedicated training phase. The average execution time represents
the computational effort per step. PASACLag and PASAC exhibit significantly lower
execution times compared to DP, indicating faster decision-making and policy updates.
However, it is worth noting that PASACLag has a slightly slower execution time (0.94 mil-
liseconds per step) compared to PASAC (0.91 milliseconds per step). This difference can
be attributed to PASACLag having an additional cost network to learn, which adds some
computational overhead.

Mathematics 2024, 12, 663 15 of 20

0 500 1000 1500 2000 2500 3000
Episodes

−1.2

−1.0

−0.8

−0.6

−0.4

R
ew

ar
ds

PASACLag
PASAC
DP (Optimal)

0 500 1000 1500 2000 2500 3000
Episodes

0

200

400

600

800

C
os

ts

PASACLag
PASAC
Cost limit

Figure 6. Training results of the RL algorithms on the WHVC driving cycle. The solid lines represent
the average reward of the three different seeds, and the shaded areas represent the standard deviation.
Note that the penalty term is excluded from the reward plot for PASAC.

Table 2. The training time and average execution time comparison.

Strategy Training Time (h) Execution Time (ms)

DP N/A 592,077
PASACLag 4.90 0.94

PASAC 3.89 0.91

5.3. Energy Management Performance

The SOC trajectories of the three algorithms are shown in Figure 7. Both PASAC and
PASACLag show a similar SOC change trend to the optimal DP solution and successfully
maintain the SOC within the desired range. The discrepancies in the SOC trajectories
are mainly attributed to the different constraint satisfaction strategies and the learning
dynamics of the RL algorithms.

0 200 400 600 800
Time [s]

0.45

0.50

0.55

0.60

SO
C

DP
PASACLag
PASAC

Figure 7. SOC trajectories for WHVC driving cycle.

Mathematics 2024, 12, 663 16 of 20

To ensure a fair comparison of fuel consumption performance, the final SOC of the
three methods needs to be corrected. The GB/T 19754 standard provides a systematic
conversion method [38]. The aim of the correction is to determine an equivalent factor
that translates the difference in SOC into a corresponding fuel consumption adjustment.
The trained model used different initial SOC values for simulation. A total of six groups
were tested, with three groups sampled from [SOC0, SOCmax] for initial SOC, and the
other three groups sampled from [SOCmin, SOC0]. The differences in SOC (∆SOC) and fuel
consumption were recorded and used to obtain the equivalent factor, which is represented
by the least square fitting line shown in Figure 8. The positive slope of the line represents
the equivalent coefficient between ∆SOC and the fuel consumption. If the ∆SOC in a
cycle is positive, it indicates that electrical energy is being consumed, and additional fuel
consumption should be added to the originally simulated fuel consumption to ensure a fair
comparison of fuel consumption.

−0.3 −0.2 −0.1 0.0 0.1
∆ SOC

0.60

0.65

0.70

0.75

0.80

Fu
el

co
ns

um
pt

io
n

(k
g)

y = 0.7349 + 0.4711x

Figure 8. The least square fitting line of the data.

The final SOC using the DP strategy serves as the reference in the comparison. The
results of the comparison are summarized in Table 3. Across the three different seeds, the
average fuel consumption of PASACLag and PASAC is 9.32% and 11.11% higher than that
of DP, respectively. Notably, PASACLag exhibits no constraint violations throughout the
entire driving cycle, while PASAC averages one constraint violation.

Table 3. The energy management performance comparison when trained and tested with the same
driving cycle WHVC (SOC0 = 0.6).

Strategy Seed SOCo
Fuelo
(kg) SOCe

Fuele
(kg) Gap ψ

DP - 0.5858 0.6678 0.5858 0.6678 0 0

PASACLag
0 0.6394 0.7526 0.5858 0.7292 9.19% 0
1 0.7221 0.8138 0.5858 0.7521 12.62% 0
2 0.4892 0.6979 0.5858 0.7447 11.51% 0

PASAC
0 0.4751 0.6871 0.5858 0.7329 9.74% 1
1 0.5468 0.7076 0.5858 0.7290 9.17% 0
2 0.5402 0.7054 0.5858 0.7282 9.05% 0

SOCo : the original unconverted final SOC; Fuelo : the original unconverted fuel consumption; SOCe: the converted
final SOC; Fuele: the converted equivalent fuel consumption; ψ: the number of constraint violations.

Figure 9 illustrates the power distribution and hybrid action output of DP and RL
for WHVC. The continuous engine torque and motor torque of RL fall within the desired
range. Regarding discrete actions, the gear shift and clutch engagement of RL exhibit a
sequence similar to that of DP, with slightly more frequent transitions. This observation

Mathematics 2024, 12, 663 17 of 20

suggests that the RL algorithm successfully learned a judicious power distribution strategy
within the hybrid action space.

0 200 400 600 800
0

500 DP

0 200 400 600 800
0

500 PASACLag

0 200 400 600 800
0

500 PASAC

Time [s]

E
ng

in
e

To
rq

ue
[N

m
]

0 200 400 600 800

−500

0

500 DP

0 200 400 600 800

−500

0

500 PASACLag

0 200 400 600 800

−500

0

500 PASAC

Time [s]

M
ot

or
To

rq
ue

[N
m

]
(a) (b)

0 200 400 600 800
1
2
3
4
5
6

DP

0 200 400 600 800
1
2
3
4
5
6

PASACLag

0 200 400 600 800
1
2
3
4
5
6

PASAC

Time [s]

G
ea

r

0 200 400 600 800
0

1
DP

0 200 400 600 800
0

1
PASACLag

0 200 400 600 800
0

1
PASAC

Time [s]

C
lu

tc
h

(c) (d)

Figure 9. The power distribution and hybrid action output of DP and RL for WHVC. (a) Engine
torque. (b) Motor torque. (c) Gear shift sequence. (d) Clutch state (0 = disengaged, 1 = engaged).

5.4. Generalization Validation

To assess the generalization capability and robustness of the proposed algorithm, the
trained model underwent testing on four additional driving cycles: HD-UDDS, CHTC-
LT, JE05, and HHDDT. The summarized results are presented in Table 4. Evidently,
across all four driving cycles, the fuel consumption and constraint violations of PASACLag
consistently outperformed those of PASAC, underscoring the superior performance of
PASACLag in terms of both fuel economy and compliance with constraints. The results have
significant implications for real-world applications, as they demonstrate the algorithm’s
potential for delivering consistent performance and efficiency across a wide range of driving
scenarios. Nevertheless, the granular analysis of violations reveals that PASACLag incurs a
modest number of infractions related to motor torque and SOC. This suggests that, while
effective, the algorithm does not achieve flawless generalization across new driving cycles.

Mathematics 2024, 12, 663 18 of 20

Table 4. Generalization results of the new driving cycles.

Cycle Strategy Fuele (kg) Gap
Number of Constraint Violations

ψTm ψω ψsoc

HD-UDDS
DP 1.2408 0 - - -

PASACLag 1.3058 5.24% 17 0 0
PASAC 1.3453 8.42% 2 8 60

CHTC-LT
DP 1.9460 0 - - -

PASACLag 2.0861 7.20% 4 0 0
PASAC 2.1112 8.49% 1 4 192

JE05
DP 1.7387 0 - - -

PASACLag 1.8644 7.23% 4 0 0
PASAC 1.8914 8.78% 2 3 156

HHDDT
DP 4.9813 0 - - -

PASACLag 5.1889 4.17% 0 0 44
PASAC 5.2949 6.29% 0 32 1352

Tm: motor torque; ω: shaft angular velocity; soc: SOC.

6. Conclusions

This paper introduces a novel RL algorithm, PASACLag, for HEV energy management.
PASACLag’s innovative composite action representation adeptly manages the intricacies
of continuous and discrete control actions, such as engine torque adjustments and gear
shifts. By incorporating a Lagrangian approach to distinctly tackle control objectives and
constraints, the algorithm not only simplifies the reward structure but also significantly
improves the safety of the learning process.

Our comprehensive evaluation demonstrates that PASACLag consistently outper-
forms its predecessor, PASAC, by achieving better fuel economy and adhering better to
operational constraints, with a less than 10% increase in fuel consumption compared to the
benchmark set by dynamic programming across various driving cycles.

The significance of these findings lies in PASACLag’s ability to balance complex
control demands within a hybrid action space, ensuring both efficiency and safety, which
are critical in the context of HEV energy management. Furthermore, the execution speed of
the algorithm bolsters its practicality for real-time applications.

Looking ahead, we are committed to advancing this research by conducting hardware-
in-the-loop simulations to validate the feasibility and durability of PASACLag in real-
world scenarios. Additionally, we aim to refine the algorithm’s generalization capabilities
to further enhance its adaptability and performance across diverse and unpredictable
driving conditions.

Author Contributions: Conceptualization, Y.L.; data curation, J.X.; formal analysis, J.X.; funding
acquisition, Y.L.; investigation, J.X.; methodology, J.X. and Y.L.; project administration, Y.L.; resources,
Y.L.; software, J.X.; supervision, Y.L.; validation, J.X. and Y.L.; visualization, J.X.; writing—original
draft, J.X.; writing—review and editing, J.X. and Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by Guangzhou Basic and Applied Basic Research Program
under Grant 2023A04J1688, and in part by South China University of Technology faculty start-up fund.

Data Availability Statement: The data presented in this study are available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2024, 12, 663 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

CMDP Constrained Markov decision process
DDPG Deep deterministic policy gradient
DP Dynamic programming
DQN Deep Q-network
DRL Deep reinforcement learning
EMS Energy management strategy
HEV Hybrid electric vehicle
ICE Internal combustion engine
MDP Markov decision process
P-DQN Parameterized deep Q-network
PASAC Parameterized soft actor–critic
PASACLag Lagrangian-based parameterized soft actor–critic
RL Reinforcement learning
SAC Soft actor–critic
SOC State of charge
TD3 Twin delayed deep deterministic policy gradient
WHVC World Harmonized Vehicle Cycle
π Policy
s State
a Action
r Reward
c Constraint
Q(s, a) Action-value function
A Action space
H(π) Entropy of the policy
L Loss function
J Objective function

References
1. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.;

Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354.
[CrossRef]

2. Bellemare, M.G.; Candido, S.; Castro, P.S.; Gong, J.; Machado, M.C.; Moitra, S.; Ponda, S.S.; Wang, Z. Autonomous navigation of
stratospheric balloons using reinforcement learning. Nature 2020, 588, 77–82. [CrossRef] [PubMed]

3. Wurman, P.R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.; Subramanian, K.; Walsh, T.J.; Capobianco, R.; Devlic, A.; Eckert,
F.; Fuchs, F.; et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 2022, 602, 223–228.
[CrossRef]

4. Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Champion-level drone racing using deep
reinforcement learning. Nature 2023, 620, 982–987. [CrossRef]

5. Zhang, H.; Peng, J.; Tan, H.; Dong, H.; Ding, F. A deep reinforcement learning-based energy management framework with
Lagrangian relaxation for plug-in hybrid electric vehicle. IEEE Trans. Transp. Electrif. 2020, 7, 1146–1160. [CrossRef]

6. Lin, Y.; McPhee, J.; Azad, N.L. Co-optimization of on-ramp merging and plug-in hybrid electric vehicle power split using deep
reinforcement learning. IEEE Trans. Veh. Technol. 2022, 71, 6958–6968. [CrossRef]

7. Zhang, X.; Jin, S.; Wang, C.; Zhu, X.; Tomizuka, M. Learning insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks. In Proceedings of the International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; pp. 9881–9887.

8. He, H.; Meng, X.; Wang, Y.; Khajepour, A.; An, X.; Wang, R.; Sun, F. Deep reinforcement learning based energy management
strategies for electrified vehicles: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2024, 192, 114248. [CrossRef]

9. Hu, X.; Liu, T.; Qi, X.; Barth, M. Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management:
Recent advances and prospects. IEEE Ind. Electron. Mag. 2019, 13, 16–25. [CrossRef]

10. Zhang, F.; Wang, L.; Coskun, S.; Pang, H.; Cui, Y.; Xi, J. Energy management strategies for hybrid electric vehicles: Review,
classification, comparison, and outlook. Energies 2020, 13, 3352. [CrossRef]

11. Hu, Y.; Li, W.; Xu, K.; Zahid, T.; Qin, F.; Li, C. Energy management strategy for a hybrid electric vehicle based on deep
reinforcement learning. Appl. Sci. 2018, 8, 187. [CrossRef]

http://doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1038/s41586-020-2939-8
http://www.ncbi.nlm.nih.gov/pubmed/33268863
http://dx.doi.org/10.1038/s41586-021-04357-7
http://dx.doi.org/10.1038/s41586-023-06419-4
http://dx.doi.org/10.1109/TTE.2020.3043239
http://dx.doi.org/10.1109/TVT.2022.3167435
http://dx.doi.org/10.1016/j.rser.2023.114248
http://dx.doi.org/10.1109/MIE.2019.2913015
http://dx.doi.org/10.3390/en13133352
http://dx.doi.org/10.3390/app8020187

Mathematics 2024, 12, 663 20 of 20

12. Liessner, R.; Schroer, C.; Dietermann, A.M.; Bäker, B. Deep reinforcement learning for advanced energy management of hybrid
electric vehicles. In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART), Madeira,
Portugal, 16–18 January 2018; pp. 61–72.

13. Liu, Z.E.; Zhou, Q.; Li, Y.; Shuai, S. An intelligent energy management strategy for hybrid vehicle with irrational actions using
twin delayed deep deterministic policy gradient. IFAC Pap. Line 2021, 54, 546–551. [CrossRef]

14. Li, Y.; He, H.; Khajepour, A.; Wang, H.; Peng, J. Energy management for a power-split hybrid electric bus via deep reinforcement
learning with terrain information. Appl. Energy 2019, 255, 113762. [CrossRef]

15. Hausknecht, M.; Stone, P. Deep reinforcement learning in parameterized action space. In Proceedings of the International
Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.

16. Tang, X.; Chen, J.; Pu, H.; Liu, T.; Khajepour, A. Double deep reinforcement learning-based energy management for a parallel
hybrid electric vehicle with engine start–stop strategy. IEEE Trans. Transp. Electrif. 2021, 8, 1376–1388. [CrossRef]

17. Wang, H.; He, H.; Bai, Y.; Yue, H. Parameterized deep Q-network based energy management with balanced energy economy and
battery life for hybrid electric vehicles. Appl. Energy 2022, 320, 119270. [CrossRef]

18. Xiong, J.; Wang, Q.; Yang, Z.; Sun, P.; Han, L.; Zheng, Y.; Fu, H.; Zhang, T.; Liu, J.; Liu, H. Parametrized deep Q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space. arXiv 2018, arXiv:1810.06394.

19. Lian, R.; Peng, J.; Wu, Y.; Tan, H.; Zhang, H. Rule-interposing deep reinforcement learning based energy management strategy
for power-split hybrid electric vehicle. Energy 2020, 197, 117297. [CrossRef]

20. Wu, J.; Wei, Z.; Li, W.; Wang, Y.; Li, Y.; Sauer, D.U. Battery thermal-and health-constrained energy management for hybrid electric
bus based on soft actor-critic DRL algorithm. IEEE Trans. Ind. Inform. 2020, 17, 3751–3761. [CrossRef]

21. Wu, J.; Wei, Z.; Liu, K.; Quan, Z.; Li, Y. Battery-involved energy management for hybrid electric bus based on expert-assistance
deep deterministic policy gradient algorithm. IEEE Trans. Veh. Technol. 2020, 69, 12786–12796. [CrossRef]

22. Fan, X.; Guo, L.; Hong, J.; Wang, Z.; Chen, H. Constrained hierarchical hybrid Q-network for energy management of HEVs.
IEEE Trans. Transp. Electrif. 2024. [CrossRef]

23. Altman, E. Constrained Markov Decision Processes; CRC Press: Boca Raton, FL, USA, 1999; Volume 7.
24. Chow, Y.; Ghavamzadeh, M.; Janson, L.; Pavone, M. Risk-constrained reinforcement learning with percentile risk criteria. J. Mach.

Learn. Res. 2018, 18, 6070–6120.
25. Liang, Q.; Que, F.; Modiano, E. Accelerated primal-dual policy optimization for safe reinforcement learning. arXiv 2018,

arXiv:1802.06480.
26. Ngo, V.; Hofman, T.; Steinbuch, M.; Serrarens, A. Optimal control of the gearshift command for hybrid electric vehicles.

IEEE Trans. Veh. Technol. 2012, 61, 3531–3543. [CrossRef]
27. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
28. Masson, W.; Ranchod, P.; Konidaris, G. Reinforcement learning with parameterized actions. In Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, USA, 12–17 February 2016; Volume 30, pp. 1934–1940.
29. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In Proceedings of the International Conference on Machine Learning (ICML) 2018, Stockholm, Sweden,
10–15 July 2018; pp. 1861–1870.

30. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning (ICML) 2018, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

31. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
32. Stooke, A.; Achiam, J.; Abbeel, P. Responsive safety in reinforcement learning by pid Lagrangian methods. In Proceedings of the

International Conference on Machine Learning (ICML) 2020, Vienna, Austria, 12–18 July 2020; pp. 9133–9143.
33. Yu, H.; Zhang, F.; Xi, J.; Cao, D. Mixed-integer optimal design and energy management of hybrid electric vehicles with automated

manual transmissions. IEEE Trans. Veh. Technol. 2020, 69, 12705–12715. [CrossRef]
34. Sundström, O.; Guzzella, L. A generic dynamic programming matlab function. In Proceedings of the IEEE Control Applications

(CCA) & Intelligent Control (ISIC) 2009, St. Petersburg, Russia, 8–10 July 2009; pp. 1625–1630.
35. Ji, J.; Zhang, B.; Zhou, J.; Pan, X.; Huang, W.; Sun, R.; Geng, Y.; Zhong, Y.; Dai, J.; Yang, Y. Safety Gymnasium: A unified safe

reinforcement learning benchmark. In Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track, New Orleans, LA, USA, 10–16 December 2023.

36. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540.

37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

38. GB Standard 19754; Test Methods for Energy Consumption of Heavy-Duty Hybrid Electric Vehicles. Standardization Administra-
tion of China: Beijing, China, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ifacol.2021.10.219
http://dx.doi.org/10.1016/j.apenergy.2019.113762
http://dx.doi.org/10.1109/TTE.2021.3101470
http://dx.doi.org/10.1016/j.apenergy.2022.119270
http://dx.doi.org/10.1016/j.energy.2020.117297
http://dx.doi.org/10.1109/TII.2020.3014599
http://dx.doi.org/10.1109/TVT.2020.3025627
http://dx.doi.org/10.1109/TTE.2024.3353765
http://dx.doi.org/10.1109/TVT.2012.2207922
http://dx.doi.org/10.1109/TVT.2020.3018445

	Introduction
	Preliminaries
	Constrained Markov Decision Process
	Hybrid Action Space

	Lagrangian-Based Parameterized Soft Actor–Critic
	Entropy-Regularized Reinforcement Learning
	Parameterized Soft Actor–Critic
	Learning the Critic Network
	Learning the Actor Network
	Practical Implementation for Hybrid Action Space

	Lagrangian-Based Parameterized Soft Actor–Critic

	Case Study
	Modeling of the HEV Powertrain
	Problem Formulation
	Implementation of PASACLag

	Experiments
	Experimental Setup
	Learning Ability Assessment
	Energy Management Performance
	Generalization Validation

	Conclusions
	References

