
Citation: Trusov, A.; Limonova, E.;

Nikolaev, D.; Arlazarov, V.V. 4.6-Bit

Quantization for Fast and Accurate

Neural Network Inference on CPUs.

Mathematics 2024, 12, 651. https://

doi.org/10.3390/math12050651

Academic Editor: Xinsong Yang

Received: 27 December 2023

Revised: 11 February 2024

Accepted: 21 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

4.6-Bit Quantization for Fast and Accurate Neural Network
Inference on CPUs
Anton Trusov 1,2,3,* , Elena Limonova 1,2 , Dmitry Nikolaev 2,4 and Vladimir V. Arlazarov 1,2

1 Department of Mathematical Software for Computer Science, Federal Research Center “Computer Science
and Control” of the Russian Academy of Sciences, 119333 Moscow, Russia;
limonova@smartengines.com (E.L.); vva@smartengines.com (V.V.A.)

2 Smart Engines Service LLC, 117312 Moscow, Russia; dimonstr@iitp.ru
3 Phystech School of Applied Mathematics and Informatics, Moscow Institute of Physics and Technology,

141701 Dolgoprudny, Russia
4 Vision Systems Laboratory, Institute for Information Transmission Problems of Russian Academy of Sciences,

127051 Moscow, Russia
* Correspondence: trusov.av@smartengines.com

Abstract: Quantization is a widespread method for reducing the inference time of neural networks
on mobile Central Processing Units (CPUs). Eight-bit quantized networks demonstrate similarly
high quality as full precision models and perfectly fit the hardware architecture with one-byte
coefficients and thirty-two-bit dot product accumulators. Lower precision quantizations usually
suffer from noticeable quality loss and require specific computational algorithms to outperform eight-
bit quantization. In this paper, we propose a novel 4.6-bit quantization scheme that allows for more
efficient use of CPU resources. This scheme has more quantization bins than four-bit quantization and
is more accurate while preserving the computational efficiency of the later (it runs only 4% slower).
Our multiplication uses a combination of 16- and 32-bit accumulators and avoids multiplication depth
limitation, which the previous 4-bit multiplication algorithm had. The experiments with different
convolutional neural networks on CIFAR-10 and ImageNet datasets show that 4.6-bit quantized
networks are 1.5–1.6 times faster than eight-bit networks on the ARMv8 CPU. Regarding the quality,
the results of the 4.6-bit quantized network are close to the mean of four-bit and eight-bit networks of
the same architecture. Therefore, 4.6-bit quantization may serve as an intermediate solution between
fast and inaccurate low-bit network quantizations and accurate but relatively slow eight-bit ones.

Keywords: neural network quantization; deep learning; efficient computing; SIMD

MSC: 68T07

1. Introduction

Neural network quantization is a field of study that focuses on improving the speed
of neural network inference by using integer weights and/or activations. This field encom-
passes algorithms for training and running quantized neural networks (QNNs). Recent
research has proven that the gap in quality between QNNs and full precision models is
negligible in many tasks [1–3]. In addition to achieving high quality, practical applications
also demand the computationally efficient inference of QNNs in various environments. Data-
processing centers tend to rely on tensor processors and specialized accelerators [4–6], which
greatly benefit from QNNs. However, edge devices such as mobile phones and smart gadgets
often perform computations on central processing units (CPUs) [7–10], which have limited
computational resources and sometimes are not able to provide high processing speed.

The most computationally challenging operation in neural networks is matrix mul-
tiplication. Both convolutional and fully connected layer computations usually rely on

Mathematics 2024, 12, 651. https://doi.org/10.3390/math12050651 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050651
https://doi.org/10.3390/math12050651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4084-4614
https://orcid.org/0000-0001-7673-9109
https://orcid.org/0000-0001-5560-7668
https://orcid.org/0000-0003-3260-9104
https://doi.org/10.3390/math12050651
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050651?type=check_update&version=1


Mathematics 2024, 12, 651 2 of 22

matrix multiplication. Thus, the implementation of QNNs is primarily focused on develop-
ing specialized algorithms for quantized matrix multiplication. CPUs have a predefined
general-purpose architecture, which imposes significant constraints on the algorithm design.

In this work, we propose a novel parametric quantization scheme called 4.6-bit quan-
tization aimed to provide fast inference on CPUs. This scheme is designed to be a faster
alternative to eight-bit QNNs on low-power (e.g., mobile and embedded) devices, and out-
perform four-bit models in terms of recognition quality. To achieve it, we restrict signed
products of weights and activations by the eight-bit register capacity and obtain corre-
sponding ranges for weights and activation values. With such an approach, these ranges
are not limited to the powers of two and provide more quantization bins than ranges of
four-bit quantization. Because the 16-bit accumulators of 8-bit products restrict the multi-
plication depth, we perform a two-stage summation with 16- and 32-bit accumulators. All
the operations are vectorized via SIMD (Single Instruction Multiple Data) CPU extension.
We develop a high-performance implementation for ARM (the processors of choice for
mobile and embedded devices) and x86 CPUs (the most popular processor architecture
used in modern desktop computers). We also perform an experimental evaluation of the
efficiency of the proposed quantization method.

We demonstrate the recognition quality achieved by 4.6-bit QNNs on CIFAR-10 and
ImageNet datasets and the semantic segmentation quality on the TCIA dataset. The pro-
posed scheme is parametric, with a parameter that governs the balance between the number
of quantization bins for weights and activations. We observe this trade-off and identify the
best balance of quantization bins for QNNs.

Thus, our contribution is as follows:

• We propose a new quantization scheme called 4.6-bit quantization. This scheme offers
higher accuracy than 4-bit quantization while preserving the same computational
efficiency on CPUs.

• We present an algorithm for computationally efficient 4.6-bit quantized matrix multi-
plication specialized for ARM and x86 CPUs.

• We demonstrate a way to build neural networks based on the proposed quantization
scheme and matrix multiplication algorithms.

• We experimentally evaluate the computational efficiency of the proposed matrix multi-
plication and prove that it is 1.9–2 times faster than floating-point matrix multiplication
on ARM and x86 CPUs. It is also 1.7 and 1.3 times faster than ten eight-bit matrix mul-
tiplication ARM and x86 CPUs, respectively. The proposed quantization is especially
interesting for fast and accurate QNN inference on mobile devices.

• We conduct experiments on 4.6-bit QNN prediction accuracy and compare it to eight-
bit and four-bit QNNs. These experiments prove that 4.6-bit quantization is noticeably
more accurate than the four-bit one, while their computational demands are compara-
ble. They can also serve as an illustration of how to train arbitrary 4.6-bit networks.

The rest of this paper is organized as follows. Section 2 provides a brief overview of re-
lated works. In Section 3, we describe neural network quantization from the computational
point of view. Section 4 presents our quantization method, and Section 5 demonstrates its
experimental evaluation. In Section 6, we discuss the limitations and impact of our work.
Finally, Section 7 concludes our work.

2. Related Works

QNNs are widely used on CPUs. For instance, an efficient implementation of 8-bit
networks with 8-bit weights and 32-bit accumulators accelerated using Single Instruction
Multiple Data (SIMD) instructions was introduced in [11].

Nowadays, there are even more efficient implementations for eight-bit quantized
networks, such as Google’s gemmlowp [12], ruy [13], Tensorflow [14] and Facebook’s
qnnpack [15] libraries. There are modern ARM CPUs that have instructions specifically
designed for machine learning purposes. These instructions can noticeably speed up eight-
bit QNN inference [16]. Fast implementations are also available for ternary [17–19] and
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binary networks [18,20]. However, binary and ternary networks still suffer from accuracy
loss compared to full-precision or eight-bit quantized networks with a similar number of
parameters and architecture, which limits their suitability for certain tasks.

Furthermore, training methods for low-precision QNNs are being actively developed.
One promising approach is post-training quantization (PTQ), which involves quantizing
an already trained floating-point neural network [21,22]. Notably, recent research [22] has
demonstrated the ability to train four-bit networks for some tasks with minimal accuracy
loss. Additionally, there is an ongoing development of quantization-aware training (QAT)
techniques for scenarios where training data are available [23,24]. These approaches show
significant potential for advancing the field of computationally efficient recognition and
facilitating the implementation of QNNs in practical applications.

Fast implementations of low-precision QNNs have also successfully been developed.
For instance, in our previous work [25] we introduced an algorithm for four-bit quantized
multiplication on ARM CPUs that works faster than the eight-bit algorithm. However,
it has limitations in handling large neural networks due to constraints on multiplication
depth. Won et al. [26] proposed a packing method that allows for placing several inputs
or weights into one register and processing them in multiplication together, increasing
its efficiency. Cowan et al. [27] perform a search for an efficient instruction sequence
to implement low-precision matrix multiplication. However, these approaches require
additional steps for both packing and unpacking, and only consider integer values for bits
per weight.

3. Quantization Background
3.1. General Quantization Scheme

During the quantization process, floating-point values are approximated by integer
ones. That is performed to reduce memory footprint and simplify computations. The
quantization scheme presented in [28] is based on the affine mapping between integer value
q and real r:

r = S(q− Z), (1)

where the real-valued scale factor (S) and the integer-valued zero-point (Z) are parameters
of quantization. Google’s gemmlowp [12] and Facebook’s qnnpack [15] libraries use this
scheme to map the real values of matrices to eight-bit unsigned integers as follows:

q = min
(

qmax, max
(

qmin,
[

Z +
r
S

]))
, (2)

where [·] stands for rounding to the nearest integer, qmin = 0, qmax = 255 (for eight-bit
quantization). In [25,29,30], the authors use the same scheme for four-bit quantization
(qmin = 0, qmax = 15).

3.2. Quantized Matrix Multiplication

Let us consider matrix multiplication of two real-valued matrices:

AM×KBK×N = CM×N ,

in which matrices A and B are approximated with integer matrices Â and B̂ using (2) with
parameters SA, ZA and SB, ZB, respectively. In this case C can be approximated by Ĉ with
scale SC = SASB and zero-point ZC = 0:

cij = ∑
k

aikbkj ≈∑
k
(Sa(âik − ZA)Sb(b̂kj − ZB))

= SaSb ∑
k
((âik − ZA)(b̂kj − ZB)),

(3)

ĉij = ∑
k
((âik − ZA)(b̂kj − ZB)). (4)
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We can see that Ĉ can be computed with integer-only arithmetic. Some algorithms for
quantized multiplication directly apply Equation (4), while others use the following approach:

ĉij = ∑
k

âik b̂kj − ZA ∑
k

b̂kj − ZB ∑
k

âik + KZAZB, (5)

where the first term is the matrix multiplication of quantized matrices, the second and the
third are easy to compute (as they require a single matrix each), and the fourth is constant.

So, to compute a network efficiently, we need to define a fast algorithm for the
multiplication of quantized matrices and quantization parameters (S and Z) for the inputs
and weights of each neural network’s layer. There exist several strategies for choosing
quantization parameters. They can be set to match the whole range of possible values [28],
set to quantize weights and inputs with minimum error [29,30], or directly learned during
network training process [1].

3.3. High-Performance Matrix Multiplication

The major part of QNN inference on CPUs is matrix multiplication. It is required for
implementations of fully connected and convolutional layers, as a convolution in neural
networks is usually transformed into the matrix multiplication using im2col or similar
algorithms [31–33].

In order to achieve optimal matrix multiplication performance, it is crucial to consider
data locality and make efficient use of cache memory. The sizes of the caches are limited, so
matrix multiplication algorithms usually load small blocks of m rows from a left matrix and
n cols from a right matrix, store values in a specific order, and provide a highly optimized
function (which is called microkernel), that computes the matrix product of them with a
size m× n. The result is accumulated directly in CPU registers, as blocks should be small
enough to fit into caches [34].

SIMD extensions are often used in the microkernel to provide maximum performance.
ARMv8 processors have 32 128-bit registers. Each of them can hold 4 32-bit integers or
floating-point values each, 8 16-bit values, or 16 8-bit values.

For example, for 4-bit efficient matrix multiplication, 16 4-bit values can be stored as
16 8-bit values in the SIMD register, then UMLAL and UMLAL2 instructions are applied to
multiply and accumulate them into a 16-bit register [25]. However, 16-bit accumulators
pose restrictions on the depth of matrix multiplication, so the algorithm could only be
applied to small QNNs.

4. 4.6-Bit QNN
4.1. 4.6-Bit Quantization

The key feature that allowed for the acceleration of the 4-bit multiplication algo-
rithm [25] in comparison to the 8-bit algorithm [12] is that it multiplied 8-bit values (16 per
128-bit SIMD register) instead of 16-bit values (8 per SIMD register) and accumulated
results in 16-bit accumulators instead of 32-bit accumulators. That is possible because the
product of four-bit values (i.e., quantized value q from Equation (2) satisfies inequality
qmin = 0 ≤ q ≤ qmax = 15) fits into the eight-bit register.

Let us consider the signed multiplication of two quantized values x and w that fit into
a signed eight-bit integer product:

−128 ≤xw ≤ 127,

|x| ≤ xmax,

|w| ≤ wmax.

(6)

This scheme allows for Nx quantization bins for x and Nw quantization bins for
w, where

Nx = 2xmax + 1,

Nw = 2wmax + 1.
(7)
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There are 21 pairs (Nx, Nw) which satisfy (6): (255, 3), (127, 5), (85, 7), (63, 9), (51, 11),
(43, 13), (37, 15), (31, 17), (29, 19), (25, 21), (23, 23) and symmetrical ones. If we compute the
average bitwidth required to store x and w as (log2 Nx + log2 Nw)/2, we obtain values in
the range 4.51–4.79. So, we name this scheme 4.6-bit quantization.

In Figure 1, we demonstrate how the three considered quantization schemes use CPU
registers. Note, that both four- and 4.6-bit schemes do not use the full capacity (256 possible
values) of the eight-bit register. However, this overhead only occurs during the inference
of the network, i.e., in random access memory (RAM) and CPU registers, and is required
for the sake of performance. When we store the network in secondary memory (e.g., hard
drive), we can use compression algorithms to ensure that the network size is small.

x ∈[0 ... 255] w ∈[0 ... 255]

16-bit product ∈[0 ... 65025]

32-bit accumulator

8-bit inputs
(in 8-bit registers)

x ∈[0 ... 15] w ∈[0 ... 15]

8-bit product ∈[0 ... 225]

16-bit accumulator

4-bit inputs
(in 8-bit registers)

x ∈[－11 ... 11] w ∈[－11 ... 11]

8-bit product ∈[－121 ... 121]

16-bit accumulator

4.6-bit inputs
(in 8-bit registers)

Figure 1. Register bitwidths in three considered quantization schemes: 8-bit [12] (left), 4-bit (middle),
and the proposed 4.6-bit [25] (right). The parameters of the 4.6-bit scheme in the right image are
Nx = Nw = 23. Note, that in 4- and 4.6-bit input, registers are not used to their full capacity (that is
why they are partially filled in the image).

We can see that that the proposed scheme allows for more quantization bins than
four-bit quantization, for which (Nx, Nw) = (16, 16). It results in a higher accuracy ap-
proximation of floating-point multiplication with the quantized one, while preserving the
same computational efficiency (the only difference is that unsigned operations are replaced
by signed).

It should be emphasized that despite the fact that the quantized values in our case
are zero-symmetric (qmin = −qmax), it does not limit the applicability of the proposed
scheme to zero-symmetric distributions. For example, let us assume that the input is
uniformly distributed in the range [0, 1] (x ∼ U(0, 1)). For quantization with Nx = 23 bins,
the following parameters are applied: qmin = −11, qmax = 11, S = 1/23, and Z = −11
according to Equation (1). The quantized values −11, 0, and 11 represent the real values 0,
0.5, and 1, respectively.

Our proposed 4.6-bit is a special case of the uniform quantization schemes (presented
in Section 3.1). Thus, it has a higher approximation error than nonuniform ones (e.g.,
quantization of LQ-Nets [35]). However, that is the price for the performance provided by
the ability to directly multiply the quantized values in order to compute matrix multiplica-
tions (3) and (4).

4.2. Memory Footprint

The memory footprint of QNNs is a crucial aspect of their practical applications. In the
context of our proposed 4.6-bit quantization and the four-bit quantization in [25], quantized
values are stored in eight-bit registers. It implies that weights and activations occupy the
same amount of memory in RAM for a fixed network architecture for four-bit, 4.6-bit,
and eight-bit QNNs.

The output values of a layer in our 4.6-bit QNNs are represented as 32-bit integers,
consistent with 8-bit QNNs. However, in the case of the 4-bit quantized layer in [25],
the outputs are 16-bit integers. This introduces a limitation on the multiplication depth that
we will explore further in the subsequent section.

Note that linear operations in a layer can be fused with activation for computational
and memory efficiency, resulting in an 8-bit output as suggested in [28]. Therefore, all the
considered QNNs exhibit nearly identical memory footprints in RAM, and this footprint is
four times smaller than that of 32-bit floating-point networks.
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However, if we consider the storage of the network in the secondary memory (e.g.,
hard drive), the network weights can be stored using data compression techniques (e.g.,
Huffman coding [36]). Thus, we can achieve significant compression. Even under the
assumption of uniform weight distribution, the memory footprint approaches log2(Nw),
where Nw is the number of quantization bins of the weights. Therefore, Nw allows us to
control secondary memory consumption, which is essential for mobile applications.

Furthermore, the actual distribution of weights in the network is not uniform. Let us
consider 4.6-bit quantized U-Net from our experiments in Section 5.5. Figure 2 illustrates
the weight distribution in this model, revealing a significantly higher frequency of values
close to zero compared to those near ±11 (Nw = 23, and thus quantized weights values
belong to [−11 . . . 11]). Therefore, Huffman coding results in an even more substantial
compression rate (e.g., 3.02 bits per element in that particular case).

Figure 2. Weight distribution in 4.6-bit U-Net (Nw = 23).

4.3. Matrix Multiplication

Let us consider quantized matrix multiplication (5). In our particular case, the right
matrix is the matrix of neural network weights. Weight distribution in the trained neural
network is usually zero-symmetrical [37], as is the range of possible values in our quanti-
zation scheme. That is why we set the zero-point or the right matrix Zb to constant zero.
Thus, Equation (5) can be significantly simplified:

ĉij = ∑
k

âik b̂kj − ZA ∑
k

b̂kj. (8)

Then, we can compute the sums over columns of B̂ offline (after the network training
but before its inference). At the inference time, we only need to multiply them by ZA and
subtract them from the bias (which is also added channel-wise in the neural network).

Matrix multiplication is computed by microkernels—high-performance functions as men-
tioned in Section 3.3. For the microkernel to be applied, the left and right matrices should
be split: blocks of m rows are extracted from the left matrix, and blocks of n columns are
extracted from the right matrix. The values in the blocks are reordered so that the loads
from those blocks during the m × n microkernel application are sequential in memory.
It decreases the number of cache misses and thus accelerates matrix multiplication on
CPUs [34]. A simplified version of the matrix split is illustrated in Figure 3. In practice,
blocks of the left and right matrices are additionally limited in depth dimension (number
of columns in the left block and rows in the right block). This is performed so that blocks
fit into the cache memory, and the result is accumulated in CPU registers [34].



Mathematics 2024, 12, 651 7 of 22

Right matrix
split by columns

Left matrix
split by rows

Result matrix
split by microkernels

Figure 3. The split of the matrices in the process of microkernel-based matrix multiplication. Different
colors represent different microkernels.

Note that we can perform reordering blocks in the matrix of weights (in our case,
the right matrix) required for microkernel offline because the network weights do not
change during inference. On the contrary, the network inputs (and thus the left matrix of
matrix multiplication) vary. Thus, the left matrix has to be reordered at the inference time.
Note that when performing matrix multiplication, there is a need for extra memory to store
the rearranged blocks of the left matrix. Fortunately, this amount is small enough (no more
than m rows) and can be allocated only once and reused.

Thus, the main component of quantized matrix multiplication is the microkernel,
which performs the most computations in the matrix multiplication and, therefore, in the
QNN in general. Let us consider the 4-bit quantized matrix multiplication algorithm
presented in [25]. It works as follows:

• Loads four-bit values (numbers in the range [0, . . . , 15]) from the left and right blocks,
stored in eight-bit registers;

• Multiplies them using SIMD vector instructions, which perform the same operation
over several values simultaneously (in that particular case, over 16 8-bit values packed
into 128-bit registers);

• Accumulates the result in unsigned 16-bit values in SIMD registers.

This algorithm has an important limitation regarding the depth of matrix multiplica-
tion, which ensures that computations are free of overflow issues. The values of the left
and right blocks are in the range [0, . . . , 15]; thus, the element-wise products are in the
range [0, . . . , 225]. Therefore, the sum of more than ⌊(216 − 1)/225⌋ = 291 such values may
overflow the register and lead to incorrect results.

The proposed multiplication algorithm for 4.6-bit QNNs is very similar to the 4-bit
one but with the following differences:

• The values in the left and right blocks satisfy inequality (6), and thus their element-wise
products are in the range [−127, . . . , 127] by design.

• The products are accumulated as signed 16-bit values, so an overflow-free sum is
guaranteed for ⌊(215 − 1)/127⌋ = 258 iterations.

• To avoid overflow for larger depth of matrix multiplication, we use the loop-splitting
trick: in the inner loop, we accumulate values in the SIMD registers, and in the
outer loop, we accumulate those sums in 32-bit integers stored on the stack. The
loop-splitting trick is shown in Figure 4.
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Left block: outer loop

Right block:
outer loopRight block:

inner loop

Left block:
inner loop

16-bit 
accumulators

in SIMD
registers

32-bit 
accumulators

on stack

Figure 4. Loop-splitting trick in microkernels.

Due to additional load/store instructions in the outer loop and a larger memory
footprint, the considered algorithm is slightly less computationally efficient than four-bit
matrix multiplication [25] but still significantly faster than eight-bit matrix multiplication.
We experimentally show that in Section 5.

4.3.1. ARM NEON Microkernels

To implement the proposed 4.6-bit microkernel on a specific CPU, we need to consider
its instruction set and the number of available SIMD registers. The latter determines
the microkernel shape. Let us now consider ARMv8-A CPUs, which have 32 128-bit
SIMD registers.

The main microkernel for 4.6-bit matrix multiplication on ARM, which has a size
of 24× 8, is presented in Algorithm 1. This size allows for the usage of 24 128-bit SIMD
registers as 192 16-bit accumulators (c[i][j] in Algorithm 1). Another four registers (a[i] and
b) are used to read 4.6-bit quantized inputs, stored in eight-bit values. Finally, four registers
(t[i]) are used in intermediate computations to hold the broadcast values from the weight
matrix. That is how we use all the 32 SIMD registers available.

In the Algorithm 1 pseudocode, we use ARM intrinsic functions to simplify the
algorithm description. However, in practice, we used assembly code to ensure that all
registers were used efficiently. We also implemented 24× 4, 1× 8, 1× 4, 24× 1 and 1× 1
(dot product) microkernels. That allowed us to compute matrix multiplication of matrices
with arbitrary sizes.

4.3.2. x86 SSE Microkernels

Modern x86 CPU architecture also supports SIMD extensions, e.g., SSE (Streaming
SIMD Extensions), AVX (Advanced Vector Extensions), AVX2, AVX-512, etc. Here, we will
consider SSE, which supports 16 128-bit SIMD registers.
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Algorithm 1: 4.6-bit 24× 8 microkernel using ARM intrinsics.
Input: k—depth of matrix multiplication;

A—8-bit integer left matrix block 24× k stored in specific order:
(1) The first 8 values from the first column;
(2) The first 8 values from the second column;
(3) The same for the next 8 values from the first and second columns;
(4) (1–3) for all the remaining pairs of columns (if the number of columns is odd—the last one is
filled with zero-point value);
B – 8-bit integer right matrix block k× n stored in specific order:
(a) 2 values from the first column, then from the second and other columns up to the eight;
(b) (a) for the remaining pairs of rows (if the number of rows is odd—the last one is filled with
zero-point value);

Output: C—32-bit integer matrix 24× 8, C = AB
1 for int r0 ← 0; r0 < k; r0 ← r0 + 258 do
2 int8x16_t a[3], b;
3 int8x8_t t[4];
4 int16x8_t c[3][8]← 0;
5 int n← min(258, k− r0);
6 for int r1 ← 0; r1 < n; r1 ← r1 + 2 do
7 b← next 16 values from B;
8 a[0]← next 16 values from A;
9 a[1]← next 16 values from A;

10 a[2]← next 16 values from A;
11 for int j← 0; j < 16; j← j + 4 do
12 t[0]← vdup_laneq_s8(b, j + 0);
13 t[1]← vdup_laneq_s8(b, j + 1);
14 t[2]← vdup_laneq_s8(b, j + 2);
15 t[3]← vdup_laneq_s8(b, j + 3);
16 for int i← 0; i < 3; i← i + 1 do
17 c[i][j/2 + 0]← vmlal_s8(c[i][j/2 + 0], vget_low_s8(a[i]), t[0]);
18 c[i][j/2 + 0]← vmlal_s8(c[i][j/2 + 0], vget_high_s8(a[i]), t[1]);
19 c[i][j/2 + 1]← vmlal_s8(c[i][j/2 + 1], vget_low_s8(a[i]), t[2]);
20 c[i][j/2 + 1]← vmlal_s8(c[i][j/2 + 1], vget_high_s8(a[i]), t[3]);
21 end
22 end
23 end
24 loading values from C;
25 addition of corresponding values from c;
26 storing the result back to C;
27 end

There is no way to simply “translate” Algorithm 1 from ARM NEON to x86 SSE
because of the following difficulties:

• The 16 SIMD registers cannot support 24× 8 microkernel.
• There is no direct analog for DUP (vdup_laneq_s8 intrinsic) and SMLAL (vmlal_s8

intrinsic) instructions.
• There is no SIMD instruction for element-wise multiplication of signed eight-bit integers.

To overcome those limitations, we propose the following:

• Use pmaddubsw instruction (_mm_maddubs_epi16 intrinsic) to multiply unsigned 8-bit
integers from the first SIMD register by corresponding signed 8-bit integers from the
second SIMD register and add adjacent pairs of intermediate signed 16-bit integers.

• Use pshufb instruction (_mm_shuffle_epi8 intrinsic) to pack the required pairs of
eight-bit integers into the SIMD register before multiplication.

• Use a smaller microkernel. In our case, the main microkernel has a 8× 8 size.

To replace signed integers, we subtract the minimal possible value from the values of
the right matrix and its zero point. This transforms Equation (8) as follows:

ĉij = ∑
k

âik b̂kj − ZA ∑
k

b̂kj = ∑
k
(âik − Am + Am)b̂kj − ZA ∑

k
b̂kj

= ∑
k
(âik − Am)b̂kj − (ZA − Am)∑

k
b̂kj,

(9)
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where Am = −⌊Nx/2⌋ is the minimal possible value of the left matrix, according to Equation (6).
The subtraction of Am can be fused with quantization (2) of the layer input or incorporated
into value reordering of the left block before the microkernel application. Thus, it will have no
noticeable effect on the computational efficiency. This subtraction also does not overflow the
unsigned eight-bit value because from (6), we have

0 ≤ âik − Am ≤ 2⌊Nx/2⌋ ≤ Nx ≤ 255. (10)

Similar to the ARM case, we also implemented 8× 1, 1× 8, and 1× 1 microkernels to
allow for the arbitrary size of matrices in matrix multiplication.

4.4. 4.6-Bit Network

Based on our matrix multiplication algorithm, we can implement convolutional (using
im2col-like transformation), fully connected, and other multiplication-based layers.

If the input of a layer is floating-point, it is quantized to 4.6 bits and packed into
eight-bit values according to the chosen quantization scheme (see Equations (2), (6) and (7)).
The output of the layer is then a 32-bit integer vector. It allows for the usage of a 32-bit
integer bias in 4.6-bit quantized networks without any loss of performance. The output can
be converted back to a floating-point by dividing it by the multiple of input and weight
scales according to Equation (3). We refer to this process as “dequantization”.

It should be noted that if there are two consecutive 4.6-bit quantized layers stacked
together and the non-linear activation function is piecewise-linear (like Relu, Relu6, Hard-
Tanh, etc.), the dequantization of the output of the first layer, the activation function, and the
quantization of the input of the second layer can be fused into a singular “requantization”
operation. This operation applies quantization (2) directly to the 32-bit integer output
to obtain a 4.6-bit quantized input. Thsi is similar to what is performed in four-bit and
eight-bit QNNs [25,28].

Moreover, if batch normalization [38] is used in a neural network during training, it
can be “folded” into the weights and biases of a layer. It, along with requantization, allows
for integer-only inference of neural network as suggested in [28] (see Figure 5a).
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+
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(c)
Figure 5. Transformations of data type in 4.6-bit QNNs. (a) Integer-only QNN; (b) QNN with
non-linear activation; (c) residual block of ResNet QNN.

There are two major limitations to the integer-only inference of QNNs. The first is
the presence of activation functions, which cannot be approximated by requantization
(e.g., non-piecewise-linear functions as demonstrated in Figure 5b). Another limitation
arises from multiple connections in a network, which may have different scales and thus
cannot be summed (or concatenated) as integers. For example, it is the case of a resid-
ual connection in ResNets [39] (shown in Figure 5c), or skip-connection of U-Nets [40]).
However, even in such networks, 4.6-bit quantization still accelerates inference because it
replaces computationally expensive floating-point matrix multiplication with an integer
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one, and the overhead caused by quantization and dequantization is non-significant. We
demonstrate it in our experiments.

5. Experiments
5.1. Hardware and Software

In our experiments, we performed time measurements on an ARMv8-A Cortex A-73
CPU, a part of the Odroid-N2 development board. That CPU is a valid example of modern
mobile device CPUs. We also used AMD Ryzen 9 5950X CPU, which is representative of x86
CPU architecture and is widely used in desktop computers. We implemented matrix 4.6-bit
multiplication as described in Section 4.3 using ARM assembly code inside microkernels.
The rest of the code, which includes outer loops of matrix multiplication, a simple neural
network runner that uses the im2col algorithm in convolutional layers, and an interface,
was implemented in C++ programming language. The code was compiled on an end device
with a gcc 9.4 compiler with the -O3 optimization control option.

We also implemented floating-point, eight-bit, and four-bit matrix multiplications as
suggested in [18]. The eight-bit multiplication uses gemmlowp-like [12] microkernels. The
four-bit microkernels from [25] were modified for ARMv8 CPU architecture (instead of the
original ARMv7).

To train our neural networks, we used PyTorch [41] and ran the training algorithm on
Nvidia GeForce TITAN X GPU.

5.2. Matrix Multiplication Time

In our first experiment, we compared the proposed 4.6-bit quantized matrix multi-
plication with floating-point, 8-bit, and 4-bit algorithms described above. The four-bit
algorithm [18,25] is only available for ARM CPUs, so it is skipped in the x86 comparison.
We compute matrix multiplication of H × D matrix by D×W matrix, thus obtaining the
H ×W result. The parameters H, W and D are chosen as in [18]: H ∈ {72, 120, 240, 360},
W ∈ {24, 48, 72, 96}, and D ∈ {128, 256, 384, 512}. These parameters are multiples of
microkernel sizes for each algorithm, ensuring optimal efficiency. They also serve as repre-
sentative examples of matrix multiplications in small and medium-sized neural networks.

Each test was repeated 100 times, and after that, we computed the average time
per multiplication:

t = E(H,W,D)
T(H, W, D)

HWD
, (11)

where T(H, WD) denotes the average run time for matrix multiplication with parameters
(H, W, D). Those times are reported in Table 1.

Table 1. Average time per multiplication for different data types on ARM Cortex A-73 and x86 AMD
Ryzen 9 5950X.

Data Type Time on ARM, ns Time on x86, ns

32-bit float 0.2162± 0.0015 0.04355± 0.00004
8-bit 0.1813± 0.0008 0.02963± 0.00004
4-bit 0.1049± 0.0006 —

4.6-bit (ours) 0.1089± 0.0008 0.02327± 0.00007

We also compute average acceleration for each pair of matrix multiplication algorithms
as suggested in [18]:

Acceleration(A, B) = E(H,W,D)
TB(H, W, D)

TA(H, W, D)
, (12)

where A and B are two multiplication algorithms that we compare. The results are shown
in Table 2.
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Table 2. Average acceleration of multiplication algorithms (A over B) on ARM Cortex A-73.

A
B

32-Bit Float 8-Bit 4-Bit 4.6-Bit

32-bit float 1 1.192 2.062 1.988
8-bit 0.840 1 1.730 1.667
4-bit 0.485 0.578 1 0.964

4.6-bit 0.504 0.600 1.038 1

Considering ARM CPUs, from Tables 1 and 2, we can see that 4.6-bit matrix multiplica-
tion is less than 4% slower than four-bit matrix multiplication. That is an impressive result
since our 4.6-bit multiplication is not limited in terms of the overflow-free multiplication
depth. Both four- and 4.6-bit matrix multiplications are approximately 1.7 times faster
than eight-bit matrix multiplication, and about two times faster than the floating-point one.
That promises significant acceleration of a QNN if floating-point or eight-bit operations are
replaced with 4.6-bit ones.

On x86 CPUs, the distinction in inference between eight-bit and 4.6-bit QNNs is not
that high. As we can see from Tables 1 and 3, 4.6-bit multiplication is 1.3 times faster than
the eight-bit one. Yet the proposed algorithm is 1.9 times faster than the floating-point
baseline. It makes 4.6-bit QNNs also appropriate for the x86 architecture despite the absence
of the required instructions (see Section 4.3.2).

Table 3. Average acceleration of multiplication algorithms (A over B) on x86 AMD Ryzen 9 5950X.

A
B

32-Bit Float 8-Bit 4.6-Bit

32-bit float 1 1.471 1.882
8-bit 0.680 1 1.279

4.6-bit 0.534 0.784 1

5.3. Considered Neural Network Models

It is important to notice that the acceleration of QNN inference in comparison to full
precision is not completely defined by matrix multiplication efficiency.

QNNs leverage acceleration due to the smaller bitwidth of weights and activations,
and thus more efficient data transfer (e.g., in im2col reordering). However, quantiza-
tion, requantization, and dequantization operations introduce additional computational
overhead. That is why it is important to measure the computational performance of real
neural networks.

In our experiments, we used lightweight LeNet-like network architectures presented
in Table 4. Those networks are designed to classify 32× 32 colored images of the CIFAR-10 [42]
dataset. The networks vary in depth and number of parameters to represent models of different
computational complexity.

We also used two bigger networks, standard ResNet-18 and ResNet-34 [39], which we
applied to the classification of 224× 224 colored images from ImageNet dataset [43]. Those
models have 11.7M and 21.8M parameters respectively.
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Table 4. Neural network architectures: conv (c, f , k, [p]) is a convolutional layer with c-channel input,
f filters, k× k kernel and p padding (in both directions, which is 0 by default), pool(n) is 2D max-
pooling with window size n× n, bn is a batch normalization layer, HardTanh is HardTanh activation,
relu6 is ReLU6 activation, tanh is hyperbolic tangent activation, and fc(n) is a fully connected layer
with n outputs.

CNN6 CNN7 CNN8 CNN9 CNN10

conv(3, 4, 1) conv(3, 8, 1) conv(3, 8, 1) conv(3, 8, 1) conv(3, 8, 1)
HardTanh HardTanh HardTanh HardTanh HardTanh

conv(4, 8, 5) conv(8, 8, 3) conv(8, 8, 3) conv(8, 8, 3) conv(8, 16, 3, 1)
bn+relu6 bn+relu6 bn+relu6 bn+relu6 bn+relu6

conv(8, 12, 3) conv(8, 12, 3) conv(8, 12, 3) conv(16, 32, 3, 1)
bn+relu6 bn+relu6 bn+relu6 bn+relu6

pool(2) pool(2) pool(2) pool(2) pool(2)

conv(8, 16, 3) conv(12, 16, 3) conv(12, 24, 3) conv(12, 12, 3, 1) conv(32, 32, 3, 1)
bn+relu6 bn+relu6 bn+relu6 bn+relu6 bn+relu6

conv(12, 24, 3) conv(32, 64, 3, 1)
bn+relu6 bn+relu6

pool(2) pool(2) pool(2) pool(2) pool(2)

conv(16, 32, 3) conv(16, 32, 3) conv(24, 24, 3) conv(24, 24, 3) conv(64, 64, 3)
bn+relu6 bn+relu6 bn+relu6 bn+relu6 bn+relu6
pool(2) pool(2) conv(24, 40, 3) conv(24, 48, 3) conv(64, 64, 3)

bn+relu6 bn+relu6 bn+relu6
conv(64, 128, 3)

bn+relu6
fc(64) fc(64) fc(64) fc(96) fc(256)
tanh tanh tanh tanh tanh

fc(10) fc(10) fc(10) fc(10) fc(10)

Trainable parameters

15.6k 16.9k 29.1k 40.7k 315.6k

In all our networks, the first and the last layers were not quantized as in many other
works [29,44]. This was performed to simplify the learning process and guarantee better
results with minimal computational overhead, as the major computations come from the
middle layers of the neural network. For these layers, we considered three experiments:

1. The proposed 4.6-bit quantization;
2. Eight-bit quantization, and
3. no quantization at all (networks remain floating-point).

We compared all these approaches in terms of computational efficiency on ARM CPU.
We did not perform time measurements for four-bit quantization because it is impossible
to correctly implement the considered networks using the four-bit matrix multiplication
algorithm [25] due to the limitations of multiplication depth.

Our LeNet models as well as ResNets use batch normalization layers and piecewise-
linear activation functions (ReLU, ReLU6, and HardTanh). That is why, in the inference
mode, we “folded” batch normalization into the weights and bias of the corresponding
layers (see Section 4.4). For quantized layers, we also “fused” dequantization, activation,
and requantization wherever possible (see Figure 5).

To demonstrate the potential of the proposed quantization scheme on other network
architectures and other tasks, we also performed quantization of the U-Net-like model [45],
trained for abnormality segmentation of brain MRI images (presented as 256× 256 RGB
images) of the TCIA dataset [46]. It is a publicly available model, unlike the original
U-Net [40]. It contains 7.76M parameters.
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5.4. Inference Time

For each network under consideration, we measured the runtime on 100 images using
the hardware and software described in Section 5.1. The average results and their standard
deviations are presented in Table 5.

Table 5. Time measurements for QNNs (in ms). The lowest runtime is marked in bold.

Network
Quantization

Full Precision 8-Bit 4.6-Bit (Ours)

CNN6 0.49 ± 0.02 0.362 ± 0.012 0.303 ± 0.008
CNN7 0.99 ± 0.04 0.572 ± 0.008 0.515 ± 0.011
CNN8 1.07 ± 0.04 0.621 ± 0.007 0.547 ± 0.007
CNN9 1.21 ± 0.04 0.693 ± 0.007 0.611 ± 0.008

CNN10 5.47 ± 0.16 3.96 ± 0.03 3.13 ± 0.04
ResNet-18 415 ± 5 361.7 ± 1.7 242.8 ± 1.7
ResNet-34 802 ± 7 699.6 ± 1.8 444.2 ± 1.6

The 4.6-bit CNN models demonstrate 1.6–2.0 times speedup over full precision net-
works and work 1.11–1.26 times faster than eight-bit quantized models. ResNets with
4.6-bit quantization show better acceleration due to larger convolutional layers: they
work 1.7–1.8 times faster than full precision models and 1.5–1.6 times faster than eight-
bit networks.

We can see that smaller models leverage the general speedup from quantized dataflow:
eight-bit and 4.6-bit models are significantly faster than full precision, but the gap between
them is not as high as for matrix multiplication (see Section 5.2). For bigger models, the
acceleration of 4.6-bit quantized models over eight-bit ones is higher. That is due to more
matrix multiplication operations, in which 4.6-bit quantization significantly outperforms
the eight-bit one.

Our measurements confirm that 4.6-bit quantization can make neural network infer-
ence on CPU significantly faster than eight-bit quantization, which makes 4.6-bit quantiza-
tion especially interesting for resource-constrained computations on edge devices.

5.5. Training

To investigate the performance of the 4.6-bit quantization method, we trained the
networks, presented in Section 5.3, for image classification on CIFAR-10, ImageNet and
TCIA datasets.

We used a relatively simple quantization algorithm that combines features from a
well-known QAT approach and a AdaQuant [22] PTQ algorithm. We did it to simplify the
training process and allow for more experiments. Despite this, 4.6-bit quantization is not
limited to those training algorithms. In practice, one can use more complex ones, and train
networks longer, to achieve higher quality.

The source code of our experiments is available in the GitHub repository https://
github.com/SmartEngines/QNN_training_4.6bit (accessed on 20 February 2024).

5.5.1. Training Setup

CIFAR-10. We used random horizontal flips and random crops with an output size of
32, random rotations by ±9 degrees, and padding 4 as an augmentation. We trained our
models (see Table 4) for 250 epochs using AdamW [47] optimizer with default parameters,
except for weight decay, which was set to 10−5, and learning rate, which was initially set
to 2× 10−5 and decreased twice every 50 epochs. The batch size was set to 100. Thus, we
obtained baseline models.

After that, in each model, batch normalization layers were folded into weights as de-
scribed in Section 4.4. Then, the model was quantized using a simplified version of the
sequential AdaQuant post-training quantization algorithm [22]: the initial quantization pa-

https://github.com/SmartEngines/QNN_training_4.6bit
https://github.com/SmartEngines/QNN_training_4.6bit
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rameters of each layer were set to represent the whole possible range of values, after which
the layers were sequentially fine-tuned to mimic the corresponding layers of the baseline
network. To that end, we used a calibration set of 50 batches (each containing 100 images).

Finally, we fine-tuned the whole quantized network by training and gradually “freez-
ing” its layers. Specifically, we fixed all the parameters of a layer after 3 epochs of training.
During fine-tuning, we used stochastic gradient descent with momentum 0.9 and learning
rate 10−5. That procedure is similar to QAT algorithm [23].

ImageNet. For ImageNet, we used ResNet-18 and ResNet-34 [39] models. We used
pre-trained weights provided by PyTorch’s Torchvision library. All the ReLU activations
were replaced with ReLU6, batch normalization layers were fused into weights, and the
weights were quantized using a simplified AdaQuant algorithm as described above. The
calibration set was smaller: 25 batches of 64 images for ResNet-18, and 5 batches of
64 images for ResNet-34.

That allowed us to obtain quantized models quickly and simply to demonstrate the
potential of 4.6-bit quantization and compare 4.6-bit quantized models to their eight-bit,
four-bit, and full-precision counterparts.

TCIA. We used a pre-trained U-Net-like model [45]. Like in ResNet, we replaced all
the ReLU activations with ReLU6 and used a simplified AdaQuant algorithm to quantize
weights. The calibration set size was 5 batches of 10 images.

Such settings provide fast and reasonably accurate quantization, which works as
a proof of concept. A more advanced algorithm can be used for practical applications
requiring maximum quality, as the proposed 4.6-bit quantization does not limit the choice
of the QAT or PTQ algorithm and its parameters.

5.5.2. Training Results

In the experiment, we explored the accuracy of 4.6-bit quantization with a different
number of quantization bins for weights and activations. The results for CIFAR-10 are
shown in Table 6. Here, Nx and Nw denote the number of bins for activations and weights,
respectively. The experiments were performed five times. We report the average accuracy,
obtained by each model.

From Table 6, we can see that the eight-bit models demonstrate almost the same
accuracy as full-precision models, while four-bit ones are significantly inferior to them.
For 4.6-bit models, the best results are observed for a rather uniform distribution of bitwidth
between activation and weights: from (15, 37) to (31, 17). For this range, the classification ac-
curacy is noticeably better than the accuracy of four-bit models for all the CNNs. However,
the accuracy of 4.6-bit quantized models did not reach those of eight-bit or full-precision
networks. At the same time, the gap in the results is not too large and may be improved
with the development of specialized training methods.

The top 1 and top 5 accuracies for ImageNet are shown in Table 7. The best quantization
parameters (Nx, Nw) for 4.6-bit models were (23, 23). As for CIFAR-10, eight-bit models
have comparable accuracy to full precision ones, while four bits give considerably lower
results. However, 4.6-bit quantization demonstrates an intermediate level of accuracy,
being higher than for four bits and worse than for eight bits.

Let us now consider the U-Net model [45]. It inputs RGB MRI images and predicts
abnormality regions as binary masks. Some examples of such inputs and outputs are
presented in Figure 6.

We also computed several metrics to evaluate the resulting quality. We used Dice and
Intersection over Union (IoU) scores to calculate segmentation accuracy (averaged over
images at which abnormality exists). We also considered binary classification metrics (is
there abnormality or not): accuracy, precision, recall, type I errors (false positive), and type
II errors (false negatives). All those metrics are presented in Table 8.
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Table 6. Classification accuracy on CIFAR10 dataset of 4.6 bit quantized models with (Nx, Nw)
parameters in comparison to four-bit, eight-bit and full-precision models of the same architecture.
The highest accuracies for the 4.6-bit models are marked in bold.

Quantization Accuracy, %

Nx Nw CNN6 CNN7 CNN8 CNN9 CNN10

5 127 63.5 ± 0.3 69.6 ± 0.1 70.6 ± 0.3 71.7 ± 0.3 81.3 ± 0.3
7 85 68.4 ± 0.3 73.4 ± 0.1 74.7 ± 0.2 76.2 ± 0.2 85.4 ± 0.1
9 63 70.9 ± 0.1 75.0 ± 0.2 76.4 ± 0.2 78.0 ± 0.2 86.9 ± 0.2

11 51 71.8 ± 0.3 75.7 ± 0.1 77.4 ± 0.1 79.0 ± 0.2 87.6 ± 0.1
13 43 72.7 ± 0.2 76.2 ± 0.1 77.8 ± 0.1 79.5 ± 0.1 88.0 ± 0.1
15 37 73.1 ± 0.2 76.4 ± 0.1 78.1 ± 0.1 79.8 ± 0.2 88.2 ± 0.2
17 31 73.0 ± 0.1 76.6 ± 0.2 78.1 ± 0.3 79.8 ± 0.2 88.2 ± 0.1
19 29 73.1 ± 0.2 76.4 ± 0.2 78.5 ± 0.1 80.0 ± 0.3 88.5 ± 0.3
21 25 73.4 ± 0.2 76.7 ± 0.3 78.3 ± 0.2 79.9 ± 0.1 88.4 ± 0.2
23 23 73.3 ± 0.3 76.5 ± 0.1 78.2 ± 0.2 79.9 ± 0.3 88.4 ± 0.2
25 21 73.1 ± 0.1 76.6 ± 0.2 78.2 ± 0.2 79.9 ± 0.2 88.5 ± 0.2
29 19 73.0 ± 0.1 76.3 ± 0.1 78.3 ± 0.2 79.9 ± 0.2 88.3 ± 0.2
31 17 73.1 ± 0.2 76.1 ± 0.1 78.0 ± 0.3 79.7 ± 0.2 88.2 ± 0.1
37 15 72.8 ± 0.2 75.5 ± 0.4 77.7 ± 0.3 79.4 ± 0.2 87.9 ± 0.3
43 13 72.0 ± 0.4 74.8 ± 0.2 77.5 ± 0.2 79.0 ± 0.3 87.9 ± 0.1
51 11 70.9 ± 0.3 74.0 ± 0.1 76.0 ± 0.3 78.1 ± 0.2 87.5 ± 0.1
63 9 69.0 ± 0.4 71.7 ± 0.3 74.3 ± 0.5 76.7 ± 0.4 86.3 ± 0.1
85 7 65.9 ± 0.5 67.7 ± 1.0 70.6 ± 0.4 73.4 ± 0.7 84.5 ± 0.3
127 5 47.5 ± 0.4 55.2 ± 0.6 58.2 ± 1.1 67.5 ± 0.4 74.9 ± 2.3

4-bit 72.0 ± 0.2 75.4 ± 0.2 77.3 ± 0.2 79.3 ± 0.3 87.7 ± 0.2
8-bit 74.7 ± 0.1 77.6 ± 0.1 79.4 ± 0.1 80.8 ± 0.1 89.2 ± 0.1

Full precision 74.95 77.83 79.66 81.4 89.07

Table 7. Classification accuracy on ImageNet dataset of 4.6 bit quantized models with (Nx, Nw)
parameters in comparison to four-bit, eight-bit and full precision models of the same architecture.
The highest accuracies for the 4.6-bit models are marked in bold.

Quantization ResNet-18 ResNet-34

Nx Nw top1, % top5, % top1, % top5, %

29 19 65.6 ± 0.3 86.7 ± 0.1 68.6 ± 0.1 88.5 ± 0.1
25 21 65.9 ± 0.2 86.9 ± 0.1 68.8 ± 0.3 88.7 ± 0.2
23 23 66.1 ± 0.1 87.0 ± 0.1 69.1 ± 0.2 88.9 ± 0.1

4-bit 64.2 ± 0.2 85.7 ± 0.1 66.1 ± 0.3 87.0 ± 0.2
8-bit 68.3 ± 0.1 88.3 ± 0.1 71.4 ± 0.1 90.1 ± 0.1

Full precision 68.7 88.5 72.3 90.8

Table 8. Segmentation and classification scores of quantized U-Net models on TCIA dataset. The
up arrow (↑) indicates that a higher value is better for the corresponding metric, whereas the down
arrow (↓) indicates that a lower value is better. The best values of the metrics are marked in bold.

Baseline 8-Bit 4.6-Bit 4-Bit

Dice ↑ 0.7643 0.7843 ± 0.0008 0.769± 0.006 0.746± 0.009
IoU ↑ 0.6875 0.7046 ± 0.0008 0.688± 0.005 0.662± 0.009

Accuracy ↑ 0.8119 0.8124 ± 0.0013 0.781± 0.013 0.57± 0.06
Precision ↑ 0.6654 0.6624± 0.0016 0.623± 0.015 0.45± 0.04

Recall ↑ 0.9286 0.9447± 0.0009 0.948± 0.004 0.969 ± 0.013
Type I ↓ 0.1631 0.1682± 0.0011 0.201± 0.013 0.42± 0.07
Type II ↓ 0.0249 0.0193± 0.0003 0.0182± 0.0013 0.011 ± 0.005
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Figure 6. Results of quantized U-Net evaluation on TCIA images.

From Figure 6 and Table 8, we can see that eight-bit quantization is slightly better
than the baseline: it increases type I error but, to some degree, improves the segmentation
results. However, four-bit quantization leads to severe quality degradation and noticeable
noise-like artifacts in Figure 6. At the same time, 4.6-bit quantization preserves reasonable
quality, comparable to eight-bit and baseline.

Consequently, our time measurements and training experiments prove that the pro-
posed 4.6-bit quantization scheme can be a step between eight-bit and low-precision QNNs.
It provides higher quality than four-bit quantization, working almost as fast and signifi-
cantly faster than eight-bit quantization.
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6. Discussion

In this paper, we proposed a 4.6-bit quantization scheme and an associated quantized
matrix multiplication algorithm for fast inference of 4.6-bit quantized layers on CPUs.
This matrix multiplication algorithm is very similar to that of four-bit networks but does
not have the strict limitation on the depth of multiplication. That property is achieved
using a loop-splitting trick, which is described at the end of Section 4.1 and presented
in Algorithm 1. If not for this trick, four- and 4.6-bit matrix multiplications would have
been the same up to the data type (signed integers in 4.6-bit quantization and unsigned in
four-bit quantization); thus, their computational performance would have been identical.

Since 4.6-bit quantization allows for more quantization bins than the four-bit variant,
higher accuracy can be expected. Our experiment results confirmed this expectation.
However, we used a relatively simple algorithm for QNN training, which can be seen as
a limitation of our research. Still, even if a more advanced training method is employed
and the QNN quality is higher, the 4.6-bit quantization will not be worse than the four-bit
quantization because it provides more quantization bins than the four-bit one. Therefore,
we can consider 4.6-bit quantization as an in-place replacement for four-bit quantization
with potentially higher quality and almost the same efficiency on CPUs.

Currently, eight-bit quantization is the standard for fast neural network inference.
That is why it is reasonable to compare our method with eight-bit quantization in terms
of accuracy and speed. Our experiments proved that the proposed 4.6-bit quantization
allows for a significant speed-up compared with eight-bit and full-precision QNNs. It
works particularly well for rather large neural networks, such as ResNet-18 or ResNet-
34, achieving over 40% acceleration compared with full-precision models (or over 30%
compared to 8-bit counterparts).

A significant limitation of 4.6-bit quantization is the potential accuracy degradation
caused by quantization. Even though it is not as high as for four-bit QNNs, it is not
negligible as in eight-bit ones. However, if we consider a more complex 4.6-bit network and
a simpler eight-bit network, which have the same runtime, it may turn out that the 4.6-bit
network is even more accurate. Our experiments support this claim: if we compare 4.6-bit
CNN8, to eight-bit CNN7 (see Tables 5 and 6), we can see that the first network works faster
and achieves higher accuracy than the second one. The same holds for 4.6-bit CNN9 and
eight-bit CNN8. That is why we believe that our 4.6-bit quantization can serve as a useful
tool when the trade-off between the quality and running time of a neural network needs to
be biased towards faster computation (e.g., in real-time applications on edge devices).

It is important to note, that in our implementation of 4.6-bit multiplication, the 4.6-bit
quantized values are packed into eight-bit registers, resulting in some memory overhead.
However, this overhead only exists in the RAM during the computation time. In the
secondary memory, the network weights can be stored using data compression techniques,
achieving a memory usage of fewer than five bits per weight. When a network is initial-
ized in RAM, those weights are decompressed back to eight-bit registers. Thus, 4.6-bit
quantization can also improve secondary memory consumption, which is important for
mobile devices.

4.6-bit quantization is in fact a parametric family of algorithms with different numbers
of quantization bins for inputs (Nx) and weights (Nw). In our experiments, we used the
same values of those parameters for all the layers of a network. We concluded that the
best results are provided by close-to-uniform distributions of bitwidth between activation
and weights from Nx = 15, Nw = 31, to the symmetric Nw = 31, Nw = 15. Therefore,
in practice, we can apply Nx = Nw = 23 and expect reasonably good results. However,
the ability to choose the balance of Nx and Nw also provides us with the opportunity to
control the trade-off between network size in secondary memory (the lower the Nw, the
lower the effective bitwidth of the weights) and its quality. That may be important for some
practical applications.

Let us now consider the limitations of the study. The main limitation is that we used
only simple QAT and PTQ algorithms in our experiments, so they do not demonstrate the
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full potential of 4.6-bit quantization in terms of quality. However, our experiments prove
the proposed scheme is viable and works better than four-bit quantization.

Also, in our study, we only experimented with equal quantization schemes Nx and Nw
for all 4.6-bit quantized layers of the neural network. However, networks with mixed
precision can provide the optimal balance between recognition quality and computational
efficiency. Exploring 4.6-bit quantization in mixed-precision QNNs is one of the possible
directions for future research. Other directions include but are not limited to the following:

• Investigating more advanced techniques for 4.6-bit QNN training;
• Applying 4.6-bit quantization to a wider variety of neural network architectures and

different practical tasks;
• And analyzing the impact of replacing eight-bit QNNs with 4.6-bit QNNs on complex

recognition systems’ quality and computational efficiency.

7. Conclusions

Currently, eight-bit quantization is a standard solution for fast neural network com-
putations on CPUs. This quantization scheme is supported by popular PyTorch and
TensorFlow frameworks for both training and execution. The success of this method lies in
its simplicity and efficiency for modern processor architectures, while still maintaining a
high result quality.

We propose a 4.6-bit quantization scheme, which is based on the architectural features
of general-purpose CPUs. This scheme minimizes the number of necessary instructions in
matrix multiplication while maintaining the maximum possible number of quantization
bins. So, it is an elegant and efficient expansion of the eight-bit approach. Due to the
increased bitwidth for weights and activations, 4.6-bit quantization achieves higher quality
than four-bit quantization while maintaining comparable speed. Therefore, it can be used
as an in-place replacement for four-bit quantization with higher accuracy, or as a faster
alternative for eight-bit quantization.

We experimentally evaluated the proposed scheme using various convolutional neural
networks on the CIFAR-10 and ImageNet image classification datasets. The accuracy of
4.6-bit networks falls between four- and eight-bit networks, significantly improving the
four-bit results. For example, quantized ResNet18 networks demonstrated the following ac-
curacies on Image-Net dataset: 64.2% (4-bit), 66.1% (4.6-bit), and 68.7% (8-bit), respectively.
For ResNet34, those accuracies are as follows: 66.1% (4-bit), 69.1% (4.6-bit), and 71.4% (8-bit).
So, the accuracies of the 4.6-bit quantized model are approximately in the middle, between
four-bit and eight-bit ones. However, the inference of 4.6-bit networks on CPU, which is
equal to that on four-bit ones, is 1.5–1.6 times faster than that of their eight-bit counterparts.

Thus, the proposed 4.6-bit quantization is a viable scheme for fast and accurate
inference of QNNs lower than eight bits on CPUs.
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Abbreviations
The following abbreviations are used in this manuscript:

AVX Advanced Vector Extensions
CNN Convolutional Neural Network
CPU Central Processing Unit
HDD Hard Disk Drive
MRI Magnetic Resonance Imaging
PTQ Post-Training Quantization
RAM Random-Access Memory
SIMD Single Instruction, Multiple Data
SSE Streaming SIMD Extensions
QAT Quantization Aware training
QNN Quantized Neural Network
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