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Abstract: Traditional image steganography conceals secret messages in unprocessed natural images by
modifying the pixel value, causing the obtained stego to be different from the original image in terms
of the statistical distribution; thereby, it can be detected by a well-trained classifier for steganalysis.
To ensure the steganography is imperceptible and in line with the trend of art images produced by
Artificial-Intelligence-Generated Content (AIGC) becoming popular on social networks, this paper
proposes to embed hidden information throughout the process of the generation of an art-style image
by designing an image-style-transformation neural network with a steganography function. The
proposed scheme takes a content image, an art-style image, and messages to be embedded as inputs,
processing them with an encoder–decoder model, and finally, generates a styled image containing
the secret messages at the same time. An adversarial training technique was applied to enhance the
imperceptibility of the generated art-style stego image from plain-style-transferred images. The lack
of the original cover image makes it difficult for the opponent learning steganalyzer to identify the
stego. The proposed approach can successfully withstand existing steganalysis techniques and attain
the embedding capacity of three bits per pixel for a color image, according to the experimental results.

Keywords: Generative Adversarial Network (GAN); image steganography; style transfer

MSC: 68T07

1. Introduction

Image steganography is a concealed communication method that uses seemingly
benign digital images to conceal sensitive information. An image with hidden messages
is known as a stego. The existing mainstream approaches for image steganography are
content-adaptive, which embed secrets into highly textured or noisy regions by minimizing
a heuristically defined distortion function, which measures the statistical detectability
or distortion. Based on the near-optimal steganographic coding scheme [1,2], numerous
efficient steganographic cost functions have been put forth over the years, and many of
them are based on statistical models [3,4] or heuristic principles [5–7]. The performance
of steganography could also be enhanced by taking into account the correlations between
nearby picture elements, such as in [8–10].

Image steganalysis, on the other hand, seeks to identify the presence of a hidden
message inside an image. Traditional steganalysis methods are based on statistical analysis
or training a classifier [11] based on hand-crafted features [12–14]. In recent years, deep
neural networks have been proposed for steganalysis [15–19], and they have outperformed
traditional methods, which challenges the security of the steganography. To defend against
steganalysis, some researchers have proposed embedding secret messages using deep
neural networks and simulating the competitionbetween steganography and steganalysis
by a Generative Adversarial Network (GAN), which alternatively updates a generator
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and a discriminator by which enhanced cover images or distortion costs can be learned.
However, since these methods embed messages based on an existing image, it is possible
for the adversary to generate cover–stego pairs, which will provide more information for
the steganalysis. To solve this problem, some works utilize GANs to learn how to map the
pieces of the secret information to the stego and directly produce stego images without
the cover [20–25]. But, the images obtained by the GAN are not satisfying in terms of the
visual quality due to the difficulty of the image-generation task.

The goal of the above-mentioned methods is to keep the stego images indistinguishable
from the unprocessed natural images since the transfer of the natural images has been
a common phenomenon in recent years. Recently, with the rapid growth of AGI, the
well-performing image-generation and image-processing models have emerged in great
numbers, such as dalle2 [26] and stable diffusion [27], increasing the attention to the
steganography of the AI-generated or -processed images [28,29]. Among the images
produced by AI, the art-style images have become more popular on social networks,
thereby generating stegos that are indistinguishable from style-transferred images, which
could be a new way for high capacity and secure steganography. In [30], Zhong et al.
proposed a steganography method in stylized images. They produced two similar stylized
images with different parameters, and one of them was used for embedding and the other
as a reference. However, because it remains dependent on the framework of embedding
distortion and STC coding, the adversary may detect the stego by generating cover–stego
pairs and training a classifier; thereby, the stego images face the risk of being detected.
In this paper, we propose to encode secret messages into images at the same time as the
generation of style-transferred images. The contributions of the paper are as below:

1. We designed a framework for image steganography during the process of image style
transfer. The proposed method is more secure compared to traditional steganography
since the steganalysis without the corresponding cover–stego pairs is difficult.

2. We validated the effectiveness of the proposed method by experiments. The results
showed that the proposed approach can successfully embed 1 bpcpp, and the gener-
ated stego cannot be distinguished from the clean style-transferred images generated
by a model without steganography. The accuracy of the recovered information was
99%. Though it was not 100%, this can be solved by coding secret information using
error-correction codes before hiding them in the image.

2. Related Works
2.1. Image Steganography

The research on steganography is usually based on the “prisoner’s problem” model,
which was proposed by American scholar Simmons in 1983 and is described as follows:
“Assuming Alice and Bob are held in different prisons and wish to communicate with each
other to plan their escape, but all communication must be checked by the warden Wendy”.
The steganographic communication process is shown in Figure 1. The sender, Alice, hides
the message in a seemingly normal carrier by selecting a carrier that Wendy allows and
using the key shared with the receiver, Bob. This process can be represented as:

Emb(c, m, k) = s (1)

Then, the carrier is transmitted to the receiver, Bob, through a public channel. Bob receives
the carrier containing the message and uses a shared key to extract the message:

Ext(s, k) = m. (2)

Wendy, the monitor in the public channel, aims to detect the presence of covert communication.
Existing steganography methods can be divided into three categories: (1) cost-based

steganography, (2) model-based steganography, and (3) generative steganography.
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Figure 1. Comparison with traditional image steganography and style transfer steganography.

2.1.1. Cost-Based Steganography

Each cover element i ∈ 1, · · · N of the cover is allocated a cost ρi ≥ 0 and a proba-
bility βi for modifying its value according to the image content, and techniques such as
UNIWARD, WOW, and HILL propose a variety of cost-designing methods. The objective
of cost-based steganography is to embed the secret message into the cover in a way that
minimizes the sum of the predicted costs of all modified pixels, which is calculated by
d = ∑N

i=1 βiρi. To this end, the problem of secret embedding is recognized as source coding
with a fidelity constraint, and near-optimal coding schemes Syndrome-Trellis Codes (STCs)
and Steganographic Polar Codes (SPCs) have been developed. Cost-based steganography
adaptively embeds secrets; hence, the steganography is imperceptible. However, the costs
are occasionally determined via heuristic methods and cannot be mathematically associated
with the potential of the changes in the embedding being detected. Moreover, when a well-
informed adversary is cognizant of the changing rates of the embedding, which is taken
as a kind of side information in steganalysis, it can be used by the adversary to improve
the steganalysis’s accuracy by utilizing selection-channel-aware features or Convolutional
Neural Networks.

2.1.2. Model-Based Steganography

Model-based steganography establishes a mathematical model for the distribution
of carriers, aiming to embed messages while preserving the inherent distribution model
as much as possible. MiPOD is an example of the model-based steganographic scheme.
It assumes the noise residuals in a digital image follow a Gaussian distribution with zero
mean and variances σ2

i , which are estimated for each cover element i. The messages
are embedded, aiming to reduce the effectiveness of the most-advanced detector that an
adversary can create. While this approach is theoretically secure, challenges arise due
to variations in the distribution models among multimedia data, such as images and
videos, acquired by different sensors. Furthermore, the influence of distinct temporal
and environmental factors on the pixel distribution complicates the identification of a
universally applicable model for accurately fitting real-world distributions.

2.1.3. Coverless Steganography

Unlike cost-based methods or model-based methods, where a prepared cover object is
used to hide the data by modifying the pixel values, coverless steganography is based on
the principle that natural carriers may carry the secret information that both parties want to
transmit in secret communication. This does not require preparing the cover to be modified,
but aims to embed information directly within the carrier medium itself, without relying
on modifying a distinct cover. Traditional methods achieve this by selecting an image
that is suitable for the message to be transmitted. With the development of generative
models, recent research has proposed to embed the messages during the image-generation
or processing.
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2.2. Image Style Transfer

Image style conversion methods can be divided into non-realistic rendering (Non)
Photorealistic Rendering (NPR) methods and computer vision methods. The NPR methods
have developed into an important area in the field of computer graphics; however, most
NPR stylization algorithms are designed for specific artistic styles, and it is not easily
extended to other styles. The method of computer vision regards style transformation as a
texture synthesis problem, that is the extraction and transformation from the source texture
to the target texture. The framework of “image analogy” learning achieves universal style
conversion by learning from examples of the provided unshaped and stereotypical images.
But, these methods only use low-level image patterns.

Physical features cannot effectively provide advanced image structural features. In-
spired by Convolutional Neural Networks (CNN)s, Gatys et al. [31] first studied how to
use Convolutional Neural Networks to transform natural images into famous painting
styles, such as van Gogh’s Starry Night. They proposed modeling the content of photos as
intermediate-layer features of pretrained CNNs and modeling artistic styles as the statistics
of intermediate-layer features.

With the rapid development of style transition networks based on CNNs, the efficiency
of image style conversion has gradually improved, and image-processing software such as
Prisma and Deep Forger have become popular, making sending artistic style images on
social platforms a common phenomenon. Therefore, covert communication using stylized
images as carriers should not be easily suspected. Based on this, this section proposes
a steganography method for image style transfer, which embeds secret messages while
performing image stylization, making the generated encrypted image indistinguishable
from the clean stylized image, improving the steganography’s security and capacity.

3. Proposed Methods

It is shown that deep neural networks can learn to encode a wealth of relevant infor-
mation by invisible perturbations [24]. Image style transfer could be taken as encoding
the target style information into the content image. Therefore, we encoded the secret
information during the process of image style transfer, directly creating a stylized image
with hidden secret messages, as opposed to first computing the steganographyand then
applying encoding methods to the image. The style-transferred image containing the
secret message is expected to be indistinguishable from the one without the secret message,
and to enhance its visual quality, a GAN model was used, where SRNet was utilized as
the discriminator, which learns the detailed features of the image and performs well at
distinguishing the traditional stego and cover.

As shown in Figure 2, the network architecture consists of four parts: (1) a gener-
ator G, which takes the content image and the to-be-embedded message as the inputs,
simultaneously achieving style transformation and information embedding; (2) a message
extractor E, which is trained along with G, takes the stego image as the input, and precisely
retrieves hidden information; (3) a discriminator A, which is iteratively updated with the
generator and extractor; and (4) a style transformer loss-computing network L, which is a
pretrained VGG model; it is employed to determine the resulting image’s style and content
loss. The whole model is trained by the sender, and when the model is well trained, the
message-extraction network E is shared with the receiver to extract the secret messages that
are hidden in the received image. The implementation details of each part are as follows.

In our implementation, we adopted the architecture of image transformation networks
in [32] as the generator G; it first utilizes two stride-2-convolutions to down-sample the
input, followed by several residual blocks, then two convolutional layers with stride 1/2
are used to upsample, followed by a stride-1 convolutional layer, which uses a 9 × 9 kernel.
Instance Normalization [33] is added to the start and end of the network.

To encode secret messages during the image style transfer, we concatenated the
message M of size Cm × H ×W with the output of the first convolutional layer with respect
to the input content image Xc of size C × H × W and took the resulting tensor as the input
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of the second convolutional layer; in this way, we obtain a feature map that contains both
the secret messages and the input content. The following architecture is like an encoder–
decoder, which first combines and condenses the information and, then, restores an image
with the condensed feature. The final output of G is a style-transferred image Ys of size
C ∗ H ∗ W, which also contains the secret messages. The details of the architecture are
shown in Table 1.

Figure 2. Framework of hiding information in style transform network.

Table 1. Structure of message-embedding network and message-extraction network.

Message-Embedding Network Message-Embedding Network

Network Layer Output Size Network Layer Output Size

input 3 × 256 × 256 input 3 × 256 × 256
padding(40 × 40) 3 × 336 × 336 3 × 9 × 9 conv, step 1 3 × 256 × 256

32 × 9 × 9 conv, step 1 32 × 336 × 336 32 × 3 × 3 conv, step 1/2 32 × 128 × 128
secret message 3 × 336 × 336 64 × 3 × 3 conv, step 1 64 × 64 × 64
message concat 35 × 336 × 336 residual block, 128 filters 128 × 64 × 64

64 × 3 × 3 conv, step 2 64 × 168 × 168 residual block, 128 filters 128 × 68 × 68
128 × 3 × 3 conv, step 2 128 × 84 × 84 residual block, 128 filters 128 × 72 × 72

residual block, 128 filters 128 × 80 × 80 residual block, 128 filters 128 × 76 × 76
residual block, 128 filters 128 × 76 × 76 residual block, 128 filters 128 × 80 × 80
residual block, 128 filters 128 × 72 × 72 128 × 3 × 3 conv, step 2 128 × 84 × 84
residual block, 128 filters 128 × 68 × 68 64 × 3 × 3 conv, step 2 64 × 168 × 168
residual block, 128 filters 128 × 64 × 64 32 × 9 × 9 conv, step 2 32 × 336 × 336
64 × 3 × 3 conv, step 1/2 64 × 128 × 128 3 × 9 × 9 conv, step 1 3 × 336 × 336
32 × 3 × 3 conv, step 1/2 32 × 256 × 256

3 × 9 × 9 conv, step 1 3 × 256 × 256

3.1. Style Transfer Loss Computing

The resulting images should possess similar content to Xc and possess the target style,
which is defined by a target style image Xs. For this reason, we applied a loss calculation
network L to quantify in the high-level content the difference between the resulting image
and Xc and style difference between the resulting image and Xs, respectively. L is imple-
mented as a 16-layer VGG network, which is pre-trained on the ImageNet dataset for the
image-classification task in advance. To achieve style transfer, two perceptual losses were
designed, namely the content reconstruction loss and style reconstruction loss.

3.1.1. Content Reconstruction Loss

We define the content reconstruction loss as the difference between the activations of
the intermediate layers of L with respect to Xc and Ys as the inputs. The activation maps of
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the j-th layer of the network in terms of the input image x are represented as ϕj(x), then
the content loss is defined as the mean-squared error between the activation map of Ys and
Xc, represented as:

Lcont(Xc, Ys, j) =
1

Cj HjWj
∑
i,j
∥ϕ(Xc)− ϕ(Ys)∥2 (3)

It is shown in [32] that the high-level content of the image is kept in the responses
of the higher layers of the network, while the detailed pixel information is kept in the
responses of the lower layers. Therefore, we calculated the perceptual loss for style transfer
at the high layers. This does not require that the output image Ys perfectly matches Xc;
instead, it encourages it to be perceptually similar to Xc; hence, there is extra room for us to
implement style transfer and steganography.

3.1.2. Style Reconstruction Loss

To implement style transfer, except for content loss, style reconstruction loss is also
required to penalize the differences in style such as the colors and textures between Ys and
Xs when Ys deviates from the input Xc in terms of style. To this end, we first define the
Gram matrix Gϕ

j (x) to be a matrix of size Cj × Cj, and the elements of Gϕ
j (x) are defined as:

Gϕ
j (x)c,c′ =

1
Cj × Hj × Wj

Hi

∑
h=1

Wi

∑
w=1

ϕj(x)h,w,cϕj(x)h,w,c′ (4)

To achieve better performance, we calculated the style loss Lsty from a set of layers J
instead of a single layer j. Specifically, Lsty is defined as the sum of the losses for each layer
j ∈ J, as described in Equation (5).

Lsty = ∑
j∈J

∥∥∥Gϕ
j (Xsty)− Gϕ

j (Ys)
∥∥∥

2
(5)

3.2. Extractor

To accurately recover the embedded information, a message-extraction network E,
which has the same architecture as the generator G, is trained together with G. It takes the
generated image, i.e., Ys, as the input and outputs O of size Cm × H × W. The revealed
message M′ is obtained according to O:

M′
i,j,k =

{
0 if Oi,j,k < 0

1 if Oi,j,k ≥ 0
(6)

The loss for revealing the information is defined as the mean-squared error between the
embedded message M and the extracted message M′:

Lext =
∥∥M − M′∥∥

2 (7)

When the model is well trained, E is shared between Alice and Bob for convert
communication, which plays the role of the secret key. Therefore, it is crucial to keep the
secret of the trained E.

3.3. Adversary

To enhance the resulting Ys’s visual quality, an adversarial training technique is
applied, where SRNet [18] is applied as a discriminator to classify the generated style-
transferred images containing secret messages and clean style-transferredimages generated
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by a style-transfer network without the steganography function. The cross-entropy loss is
applied to measure the performance of the discriminator, which is defined as Equation (8).

Ladv = ylogϕ(x) + (1 − y)log(1 − ϕ(x)) (8)

When updating the generator, the objective is to maximize Ladv, while when updating the
discriminator, the objective is to minimize Ladv.

3.4. Training

In the training process, we iteratively update the parameters of the generator and
adversary. Each iteration contains two epochs: in the first epoch, we leave the parameters
of the discriminator unchanged and update the parameters of the first convolution layer,
the generator, and the extractor by minimizing the content loss Lcont, style loss Lsty, and
message extraction loss Lext, but maximizing the discriminator’s loss Ladv; hence, the total
loss for training is defined as follows:

Ltotal = αLcont + βLsty + λLext − γLadv, (9)

where α, β, λ, and γ are hyper-parameters to balance the content, style, message-extraction
accuracy, and risk of being detected by the discriminator. In the second epoch, we update
the parameters of the adversary by using the loss defined in Equation (8) while keeping the
remaining parameters fixed.

4. Experiments

To verify the efficiency of the suggested approach, we randomly chose a style image
from the WikiArt dataset as the target style and randomly took 20,000 content images from
COCO [34], 10,000 for training and 10,000 for testing. We repeated the experiments 10 times.
All the images were resized to 512 × 512 px with the channel of 3, and the messages to
be embedded were binary data with the size of 3 × 512 × 512, i.e., the payload was set
as 1 bit per channel per pixel (bpcpp). In the training, the Adam optimizer was applied,
and the learning rate was set as 1 × 10−4. We trained the network for 200 epochs. The
performance of the proposed method was evaluated from two aspects: (1) the accuracy
rate of message extraction and (2) the ability to resist steganalysis. To demonstrate the
versatility and robustness of the proposed method, we also validated the proposed method
on the other style image on the Internet.

4.1. Message Extraction Accuracy Analysis

We assumed the sender and the receiver share the parameters and architecture of the
extractor, the adversary knows the algorithm for data hiding and can train a model by
herself but will obtain mismatched parameters. We explored, in such a situation, whether
the hidden message can be extracted accurately by the receiver and whether the secret
messages could be leaked to the adversary.

We trained five models of the same architecture, but with different random seeds, and
these architectures are illustrated in Figure 2. The well-trained networks are represented
as Net1, Net2, Net3, Net4, and Net5, respectively. We randomly split the content dataset
into two separate sets, one for testing and the other for training. The secret messages to be
embedded were randomly generated binary sequences and were reshaped as 3 × 256 × 256.
In the testing stage, we extracted the hidden messages by using extractors from different
trained models. The results are displayed in Table 2, from which we can infer that the
matched extractor can successfully extract the concealed message, and the accuracy rate
of the extracted message reached 99.2%, demonstrating that the receiver could accurately
recover the messages. But, an adversary cannot steal the secret messages hidden by
the proposed method since the mismatched extractor can only recover less than 50% of
the messages.
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Table 2. Message recovery accuracy using different extractors.

Nettrain

Nettest Net1 Net2 Net3 Net4 Net5

Net1 0.99 0.39 0.31 0.28 0.32
Net2 0.37 0.99 0.28 0.23 0.38
Net3 0.31 0.19 0.99 0.33 0.41
Net4 0.40 0.29 0.31 0.99 0.34
Net5 0.29 0.32 0.37 0.19 0.98

The results of using the matched extractor is represented in bold font. Net1, Net2, Net3, Net4, and Net5 are the
same architectures as illustrated in Figure 2.

4.2. Security in Resisting Steganalysis

To verify the security of the embedded secret messages, we compared the generated
stego style-transferred images with the clean style-transferred images generated by the style-
transfer network without steganography [32]. We trained four networks Mc1, Mc2, Ms1,
and Ms2. Ms1 and Ms2 are the same architecture proposed in this paper, but with different
parameters; Mc1 and Mc2 are style-transfer networks without steganography [32]. The
generated images are displayed in Figure 3, where it is clear that the message embedding
had no effect on the image visually.

Figure 3. Comparison of clean style-transferred images without steganography (columns (c,d)) and
stego style-transferred images (columns (e,f)).

The residual of clean image and stego image with secret are shown in Figure 4. It
should be noted that the difference between the generated stegos style-transferred and
style-transferred images without hidden messages is not only caused by the message
embedding, but also due to the different parameters of the model, e.g., the images generated
by M1 are different from those by M2, but are also different from M3 and M4. Thereby,
it is difficult to tell whether the image has been produced by a style-transfer network
with the steganography function or by another ordinary style-transfer network without
steganography. To verify the security of the proposed method, we assumed the attacker
is trying to distinguish the generated stego from the cover generated by other normal
style-transfer networks without the steganography function. According to the Kerckhoff
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principle, we considered a powerful steganalyzer who knows the target style image and
all the knowledge of the model (i.e., the architecture and parameters) the steganographer
has used. In this case, the attacker can generate the same stego as the steganographer,
taking the generated stegos as positive samples and the covers generated by the models as
negative samples to train a binary classifier. We applied different steganalysis methods,
including using traditional SPAM [13] and SRM [14] features to train a classifier, as well
as using the deep learning methods XuNet [16] and SRNet [18]. Similar to steganalysis,
we preserved the cover and stego of the same content in the same batch when training the
deep-learning-based steganalyzer. Table 3 contains the experimental findings. The average
testing errors were all about 0.5, confirming the safety of the suggested procedure. We
compared the security of the proposed method with other state-of-the-art steganography
methods. The performance under a 0.4 bpp payload is shown in Table 4. It can be seen that
the detection error of our method was about 0.5, which equals random guessing; hence, we
can infer that our method cannot be detected. Since traditional methods embed secrets by
modifying the pixel value of the original image, the modification traces could be reflected
by some statistical features or be learned by a deep neural network. Instead, the proposed
method embeds the secrets during the image generation; there is no exact cover for the
steganalyzer to refer to, so it is difficult to detect.

Figure 4. Residual of the style transferred image with and without secret information: CMc1 , CMc2

respectively referred to the style transferred image generated by the clean model Mc1 and Mc2,
SMs1 , SMs2 respectively referred to the style transferred image with secret message generated by the
steganography model Ms1 and Ms2.

Table 3. Average error of stego with 1 bpp under the detection of different steganalysis methods.

Steganalysis Method SPAM [13] SRM [14] XuNet [16] SRNet [18] SCA-SRNet [18]

PE 0.48 0.49 0.51 0.47 0.48

Table 4. Detection error comparison with different steganography methods with 0.4 bpp.

Steganography WOW [5] SUNIWAR [6] HILL [7] Ours

SRNet 0.91 0.89 0.86 0.47

SCA-SRNet 0.92 0.91 0.87 0.49
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5. Conclusions

In this study, we proposed a high-capacity and safe method for image steganography.
We hid secret messages in an art-style image in the process of image generation by a GAN
model. It was verified by experiments that the proposed approach can achieve a high
capacity of 1 bpcpp, and the generated images cannot be distinguished from the clean
images of the same content and style. The proposed method provides a new way for
covert communication on social networks. However, there are still some limitations in its
application. The message recovery accuracy did not achieve 100%; in addition, there will be
complex noise in the real-world communication channel, and some platforms will compress
the image before transmission, which will decrease the accuracy of message recovery.
In the future, we will consider performing error-correction coding on secret messages
before embedding them into the image and explore how to improve the robustness of
the steganography.
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