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Abstract: In this work, an innovative technique is presented to solve Emden-Fowler-type singular
boundary value problems (SBVPs) with derivative dependence. These types of problems have
significant applications in applied mathematics and astrophysics. Initially, the differential equation is
transformed into a Fredholm integral equation, which is then converted into a system of nonlinear
equations using the collocation technique based on Chebyshev polynomials. Subsequently, an
iterative numerical approach, such as Newton’s method, is employed on the system of nonlinear
equations to obtain an approximate solution. Error analysis is included to assess the accuracy of the
obtained solutions and provide insights into the reliability of the numerical results. Furthermore, we
graphically compare the residual errors of the current method to the previously established method
for various examples.

Keywords: Chebyshev polynomials; Emden-Fowler-type SBVPs; derivative dependence; functional
approximation; Green’s function

MSC: 34B05; 34B15; 34B16; 65L10

1. Introduction

Consider Emden—-Fowler-type SBVPs with derivative dependence, as expressed by the
following equation:

{<p<t>w'<t>>’—a<t>¢< w(t), p(Hyw' (1)), te€(0,1),
w(0) = By or lim, g p(t)w'(t) = 0, By w(1) + P w'(1) = B3,

where B1 > 0, B2, B3, and B4 are real constants. Here, ¢(t, w(t), p(t)w'(t)) is the source
function dependent on both w(t) and w'(t).

The conditions p(t) = t*p(t), p(0) # 0, o(t) = t%q(t), g(0) # 0, with p(0) =0 and
the allowance of ¢(t) to be discontinuous at f = 0, lead to a reduction of the problem to
double SBVPs [1]. Such problems are prevalent in various areas of astrophysics, including
thermal explosion modeling in a rectangular slab [2,3], heat source measurements in human
heads [4], oxygen concentration within spherical cells [5], shallow membrane cap theory [6],
heat conduction problems [7], unsteady Poiseuille flow in a pipe [8], electroelastic dynamic
problems [9], and heat explosions [10].

Solving Emden-Fowler SBVPs with derivative dependence is crucial for predicting
system behaviors, such as changes in pressure, density, or temperature within stars or
gaseous spheres. The solutions provide valuable insights into the structure and evolution
of these systems. Finding numerical solutions for derivative-dependent second-order
singular differential equations is particularly challenging due to strong nonlinearity from
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derivatives in the source function and the singular behavior at the origin. The motivation
lies in developing numerical methods that require less computational effort while main-
taining high accuracy. The collocation method has gained popularity with the widespread
availability and efficiency of computers, being applied to problems in physics, engineering,
and other fields.

The existence and uniqueness of the estimated solution of Equation (1) were readily

1
obtained in [11-16] under the conditions of p € C[0,1] N C!(0,1] with [ % < oo and
0

1
J o(t)dt < oo for p(t),o(t) > 0on (0, 1].
0
Several numerical methods have been developed to solve Equation (1) when

¢(t, w, pw') = ¢(t, w), including the cubic spline method [17], the finite difference method [18-22],
the Adomian decomposition method (ADM) [23-28], the B-spline collocation method [29,30],
the classical polynomial approximation method [31], etc. However, there are limited tech-
niques available for solving Emden—Fowler SBVPs with derivative dependence. In 2014,
Singh et al. [26] discussed the Adomian decomposition technique to solve an original utiliz-
ing Green’s function. In 2018, Roul [32] presented an improved normal homotopy analysis
method to solve derivative-dependent SBVPs, and in 2019, Roul et al. [33] discussed quin-
tic spline interpolation. In 2020, Shahni et al. [34] established an approximate solution
for Emden-Fowler-type SBVPs with derivative dependence using Bernstein polynomials.
Upon examining existing techniques, limitations were identified, such as a significant
amount of computational work, especially for nonlinear singular boundary value prob-
lems. Therefore, there is a need for more efficient numerical methods that can overcome
these limitations and provide a more accurate solution for nonlinear singular boundary
value problems.

This work introduces a constructive approach for solving Emden—Fowler-type SBVPs
with derivative dependence. In Section 2, the differential equation is converted into
its equivalent Fredholm integral form. In Section 3, a collocation technique based on
Chebyshev polynomials (CCM) is employed to obtain the system of nonlinear equations
upon transformation of the Fredholm integral equation. Subsequently, Newton’s method
is implemented to solve the system and obtain the required solution. In Section 4, the
algorithm for the methodology is provided for implementing the method. In Section 5,
error analysis is included to assess the accuracy of the current method. In Section 6, the
maximum absolute error of the current method is computed for various examples using Lo
and L norm. These numerical results are compared with those obtained using the existing
BCM method [34]. The residual errors between CCM and a previously established method,
i.e.,, BCM, are also compared graphically.

2. The Construction of the Method

The corresponding integral equations of the Emden—Fowler SBVPs are presented in
this section.

2.1. Emden—Fowler SBVPs with Dirichlet—Robin Boundary Conditions

We consider the following differential equation:

{ (p(w' ()" = o(t) g(t,w(t), p(t)w' (1)), t € (0,1), ?
w(0) = Bs, p1w(l)+ 2 w'(1) = 3.

The equivalent Fredholm integral form of Equation (2) is

1
— (AB _ﬁ :B ) /
w(t) = Bat gy gy O+ 0/ K(,0) 0(0) p(,w(@),p(Q)' (@)L, tE (0,1), ()
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where
_(__B(Dh() )
[0 (it < ) #=¢
00— (s S ) E<t
P1h(1) + Bah' (1)
t 1
h(t) = bf ﬁdg, h(1) = Of pgT)dg and 1'(1) = ﬁ
2.2. Emden—Fowler SBVPs with Neumann—Robin Boundary Conditions
We consider the following differential equation:
{ (0w ©) = o) (L0, p02' (1), 1€ 0.1) 5
lim o+ p(H)w'(t) =0, By w(1)+ pa w'(1) = Bs.
Its equivalent Fredholm integral form is
1
wlt) = B+ [x(.0) 0(@) 92,00, 000 @ )2, te 0) ©
0
where
; B2
I3+ oy t<t
(D) =14 ° t ; )
1 2
Pt = L™ gy €5

3. Chebyshev Collocation Method (CCM)

This section includes the derivation of the CCM to approximate integral Equations (3)
and (6).

Definition 1. Shifted Chebyshev polynomials (SCPs) are defined on [0, 1] by introducing a new
variable (s = 2t — 1) as

To(t) =1,
7(t) =2t—1, (8)
Tu(t) = 202t — 1) 1 (E) — Tua(t).

We can approximate a function (f(t) € L?[0,1]) by shifted Chebyshev polynomials
(SCPs) as

f(t) = i cr T (). 9)
r=0

For the purpose of numerical calculations, we take into account the initial (n + 1)
terms of the aforementioned expansion, and it becomes

n
fO) =Y o w(t) = AT T(t), (10)
r=0
where A and 7(t) are column vectors, as follows:

A =[co, 1, ,cn]T, T(t) = [w(t), T (t),- - ,’l’n<t)]T. (11)
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3.1. Dirichlet—Robin Boundary Conditions
To apply the current approach, we consider Equation (3) as
(Bs — P151) /
_ 3~ P1Pa /
W(t) = Ps+ gt gy h() 0/ K(t,2) 7(2) $(2,w(0), Q) (0)dT, € (0,1).
We take
=() = (10000 ()). (12)
We approximate w(t), w'(t) and z(t) by using Equation (10),
n
~ Y on(t) (13)
r=0
n
~ ) oT(t) (14)
r=0
~ Z d,7(t) (15)
r=0
By substituting Equations (12), (13), and (15) into (3), we obtain
- (B3 — P1Pa) /
t) = d 16
Eocm() Pt 5y T pal (1 +270K (16)
It can be expressed as
. (B3 — P1P4) .
crTr(t) = Ba+ h(t) + )  d. K. (t 17
’;) r r( ) ,54 ,Blh(l)+ﬁ2h/(1) ( ) };) r 7‘( ) ( )
where
1
Ki(t) = [x(6,0) 0(@) w(©)dg, r=01,-,n. (18)
0
We differentiate Equation (17) with respect to t as
- (Bs —P1Pa) 4 oY
cr To(t) = W (t)+ Y dr K(t 19
where
p 1
ki) = ([ ¥ o@ @ ), =01, 20
0
Then, by plugging Equations (13)—(15) into (12), we obtain
Z d, 7 (t) = ( Z cr T (t 2 Cr Ty ) (21)
r=0
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By substituting Equations (17) and (19) into (21) and inserting the collocation points

(ts = %{COS ( QS;””) + l}, wheres = 0,1, -+, n) into Equation (21), we have

. _ (Bs — B1B4) <
r;()dr'fr(ts) ¢<ts/.34 + ,51}1(1) T ﬁgh’(l)h(ts> + rg;,)drKr(ts),

(Bs —B1Bs) < / _ —01.-..
p(ts)ﬁlh(l) +ﬁ2h’(1)h (ts) +r;)d, K,(ts)> =0, s=0,1,---,n, (22)

where dy, dy, - - - ,d, are unknowns.

In order to obtain the approximate solution of Equation (3), we substitute the un-
known coefficients in Equations (17) and (19), which are obtained by applying the iteration
approach to Equation (22).

Note that a desired accuracy (€) of Newton’s method can be obtained by using the
stopping criteria (|| T+l — 7| < e).

3.2. Neumann—Robin Boundary Conditions

Consider Equation (6) as

1
wit) = £+ [ x(0,0) o(0) 92 w(@) PO (D)L, 1 O 23)
0

Using similar steps as in the previous subsection, we input the expressions from
Equations (13) and (14) into (23), yielding

n n 1
Yem(t) = £+ Y dr [ x(,0) o(@) w0, (1)
r=0 1 r=0 0

which can be represented as

i ot (t) = Ps + 3 d. K, (t) (25)
r=0 ﬁl r=0
and
i ot (t) = i d, K (t). (26)
r=0 r=0

Then, by plugging Equations (25) and (26) into (21) and inserting the collocation points
(ts = %{COS((%;})H) + 1}, s=0,1,---,n), we obtain

f dyte(ts) — <p(t5, §3 + i dr K (ts), p(ts) i dy K;(ts)) =0, s=0,1,---,n.  (27)
r=0 1 r=0 r=0

In order to obtain the approximate solutions of Equation (23), we substitute the
unknown coefficients (dy, dy, - - - ,dy) into Equations (25) and (26), which are obtained by
applying Newton’s method [35] to Equation (27).

4. Algorithm of the Methodology

The procedure for determining unknown coefficients in the CCM method is outlined
by the following algorithm:

1.  Input the degree of the Chebyshev polynomials, i.e., n.
2. Approximate w(t) and ¢ (¢, w(t), p(t)w'(t)) via Equation (13).
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3. Input the collocation points (t; = %{cos( (252+nl)7f> + 1}, s=0,1,---,n).
4. Obtain a nonlinear equation in unknowns, i.e., do,d1, - - ,dy.
5.  Via Newton’s method, the numerical solution is obtained.
5. Error Analysis
Let the norm of the Banach space (X = C[0,1] N ck(o, 1]) be defined as
[wl| = max{|[wllo, [w[1}, we X, (28)
where
wllop = max |w(t)|, 29
ol = max fw(e) 9
[wly = max |o(t) w'(t)]. (30)

te[0,1]

Theorem 1. Let the sequence {T,(f)} converge uniformly to f(t) € C[0,1], where
Ta(f) = Yo cr T (t) is the Chebyshev approximation function. Then, for a given € > 0, there
exists a number (n) such that

lTn(f) = fIl <e

Proof of Theorem 1. The proof is provided in [36]. O

Theorem 2. Consider a bounded function (f) in [0, 1] and that its second derivative exists. Then,
the error bound can be derived as

o) — £l < 20 ma 12—y = L2 @

2n  tefo,1]

which exhibits the rate of convergence (1/n) for Chebyshev’s approximation function [37], provided

£1(t) £ 0.
Proof of Theorem 2. The proof is provided in [38]. O

Theorem 3. Consider a Banach space (X) with the norm as defined in Equation (28). Let wy (t) and
w(t) represent the approximate and exact solutions of the integral Equation (3), respectively. Fur-
thermore, the nonlinear function ¢(t,w(t), pw'(t)) also satisfies the Lipschitz condition, as follows:

ot w, pw') = @(t,wy, pwy,)| < hfw — wy| + Lp(w' —w})], (32)

where 11 and Iy are the Lipschitz constants. Then, for the CCM, the estimated error bound is
determined as

o= wall < 5, )
where | = max(Iy,lp), m = max(mq, my), v = ||[0"||,
1
m = max| [x(1,0) (@) < 9
1
o2 = max| 7 p(6(1,0) (0|4 < o 35)
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Proof of Theorem 3. Consider

1

nw—wuw—gg]!uund@(waw@»wwn—¢@waom@w¢@»)d
= max [¢(&w(0). p(Q)w' (©)) ~¢(& wn(2),pO)wn ()]
Ax@@a@ﬂd

Using Equations (32) and (34), we obtain

X max
te[0,1]

[l = wnllo < m max h|(@(Z) = wa(0))] + Llp(0) (W' () — w,(2))]

< 2Imy max (Hw — wWnlo, |w — wn||1>
= 2l || — w, | (36)

Similarly, we consider

|lw —wyl|l1 = max

/p 0,0 () (906000, /(©) = #(E0n(0),p(0) wh(0) ) €

= max |<l> Z,w(2),p(2)w' () = ¢(Z, wa(2), p(D)wy,(2))]

§6[01

X max /1p( (L, Q) o d@’

te[0,1]|/0

Using Equations (32) and (35), we have

[ — w1 < my ax h|(w(8) = wn(2))| + Llp(2) (@' (5) — wy(2))]

< 2Imy max (Hw — wWnlo, |w — wn||1>
= 2lmy @ — wa | (37)

From Equations (36) and (37), we have

nwmwzmwQWwﬂmmwmQ

SmM@WMW%MM%MW—WM>

< 2lmllw — wy |

= 2lm max ||w — wy]|. (38)
gel0,1]

Utilizing the CCM, we obtain the approximate solution (7, (w(t))) of Equations (3)
and (6). We replace w, ({) with the Chebyshev solution (7, (w({))), Equation (38) reduces
to

[ = wal| < 2Im Jmax [w(Z) = Tu(w (D)

<2lmllw — T, (w)]. (39)
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Replacing f with w and f with ¢ in Equation yields (31)
[ [
Th(w) —w|| < —=—— max (¢(1 — =-—. 40
o) —wl) < S5 max (21~ 0)) = T (40)
If v = ||w”||, then Equation (40) becomes
In(w) —wl < g (1)
! ~ 8n’
Inputting Equation (41) into Equation (39), we obtain
@ — wu| < 2Im (=)
"= 8n
vlm
= —. 42
1 (42)

O

6. Numerical Illustration

We utilized MATLAB (R2015a) to determine maximum absolute errors using both
Lo and Ly norms for various examples to assess the accuracy of the current approach.
Subsequently, we compared these results with those obtained using the BCM in the different
tables and also graphically compared residual errors. We define Lo, and Ly norm errors

as follows:

Loo = t) — t)|,
fé‘[oa,’f]lw() wy ()]

and
m 1/2
= w(ty) —wa(t)*)
u—(§|@> ol

where wy,(t) and w(t) represent the approximate and exact solutions, respectively.
Furthermore, the residual error is defined as:

u(t)
Ru(t)

[(p(t)w), (1)) — o (t) p(t, wu(t), p(E)wy(1))],
[(p(£)w), (1)) — () p(t,wa (), p(£)w), ()],

where r,(t) and R, (t) are obtained by using the CCM and the BCM, respectively.

Example 1.

{ (Fw') = tb+1-2 (th’ +q(b4q— 1)w), te(0,1),
w(0) =1, w(l)=e.

The equivalent integral form is

1
At [0 8 (g g 1uld)) dz
0

w(t) =1+

(43)
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where

K(t, g) =

f1-b
1-b

1-b

(1=g""),

ﬂ (1 _ tl—b),

The exact solution of differential Equation (43) is w(t) = e'’.

We present a comparison of errors using the Lo, norm of the CCM with the BCM for

g = 1and g = 2.5 in Tables 1 and 2, respectively, and a comparison of errors using the
Ly norm of the CCM with the BCM for g = 1 and g = 2.5 in Tables 3 and 4, respectively,
for Example 1. We note that achieving the desired level of accuracy is more effectively
accomplished with the CCM compared to the BCM. Furthermore, Figure 1 illustrates a
comparison of residual errors between the current technique and the BCM, revealing that

the residual errors of the CCM are significantly lower than those of the BCM.

Table 1. Comparison of errors using the Lo norm for g = 1 in Equation (43).

b =025 b=05 b =0.75
n CCM BCM CCM BCM CCM BCM
4 941%x107% 338x107° 110x107° 399x10° 127x10"° 5.04x10°°
5 293x1077 166x107¢ 326x1077 208x107°® 359x1077 258x10°°
6 635x107°  166x107° 669x1077 925x10°% 7.00x107° 1.13x1077
7 188x10710  302x107? 201x10710 368x107° 213x10°10 448 x 1077
8 390x10712 1.07x10710 404x10712 130x10710 413x10712 157 x10°10
9 117x107B 350x10712 127x1071 424x10712 136x1071 511x10"12
10 225x10715  1.04x10718 240x10715 125x10718 253%x10715 151x10°13
11 299 x 1016 — 3.26 x 10716 — 3.41 x 10716 -

Table 2. Comparison of errors using the Lo norm for g = 2.5 in Equation (43).

b =0.25 b=0.5 b =0.75
n CCM BCM CCM BCM CCM BCM
4 144 x 1073  210x107% 149x10% 217x107% 154x103 223x10°3
5 1.73x107%  388x107* 178x107% 399x107* 183x107*% 410x10°*
6 2901075  691x1075 297x107° 713x107° 3.04x107° 734x10°°
7 402x107®  125x1075 4.09x107® 128x107° 415x107°® 1.32x107°
8 6.82x1077 220x107® 695x1077 227x10°® 7.08x10"7 234x10°°
9 617x1078%  361x1077 622x108 370x107 626x108 3.79x107
10 200x1078 716x10"% 208x108% 794x10°% 216x10% 953x10°8
11 221x107° - 2.39 x 10~ — 258 x 1077 —

Table 3. Comparison of errors using the Ly norm for g4 = 1 in Equation (43).

b =0.25 b=0.5 b =0.75
n CCM BCM CCM BCM CCM BCM
3  335x107% 123x1073 387x107% 142x107% 442x107*% 1.63x1073
4 120x107°  646x107°  135x107° 740x107° 150x107°  842x107°
5 3.72x 1077 322x107% 4.05x1077 366x107°¢ 437x1077 4.14x10°°
6 1.01x10°8 322x10°® 1.07x10°% 155x1077 1.13x10°% 1.74x1077
7 239x10710 552x107? 253x10710  621x107° 265x10710 694 x107°
8 596x10712 193x10710 634x10712 216x10710 670x10°12 241x10°10
9 148x1071B 643x10712 153x10718 717x10712 162x107183 797x10°12
10 324x10°1% 190x10° 1B 338x10°1® 211x10718 353x10°1® 234x10°13
11 538 x 10716 - 552 x 10716 — 5.89 x 1016 -
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Table 4. Comparison of errors using the Ly norm for 4 = 2.5 in Equation (43).
b =025 b=05 b = 0.75
n CCM BCM CCM BCM CCM BCM
3 153x1072  2.02x1072 167x1072 218x1072 1.85x1072 237x1072
4 225%x1073  270x1073 235x1073 284x1073 245x107% 299x10°°
5 301x107% 527x107% 310x107%* 572x107* 319x10~* 629x10°*
6 462x107° 816x10° 475x107° 860x10° 487x107° 9.06x107°
7 623x107°% 178x107° 636x107® 193x107° 649x107°® 213x10°°
8 108x107°® 278x107® 110x107® 293x107® 1.13x107°® 3.10x10°°
9 1.07x1077  518x1077 1.07x1077 552%x1077 1.08x1077 593x10°7
10 387x10% 120x1077 401x10"% 133x1077 416x10°8% 1.48x10°7
11  5.64x107? - 6.09 x 1077 — 6.56 x 10~ -
1 ><1O'12 : -
T ______ Rm /I \\
5 0.5 o l’l “f
S O ¢ e 9 e ok mie o S A A K KKK Ko I"’ |.+
-0.5F Th ! .
-1 | | | | | | | | |
0.5 0.55 0.6 0. 65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 1. Comparison of residual errors obtained by the CCM and the previously established BCM
for Example 1.

Example 2.
(tbw’)/ = ! < —tw'e” —be” |, te(0,1],
w(0)=In(3), w(1)=1In(3).

Its equivalent integral form is

(44)

w(t) =In(3) + ~—Fg gt '+ [t (— gw'(§)e"® — bew@) az,
0
where
1_b(l—gH’) t<y,
1—_17(1 -, <t

The exact solution of differential Equation (44) is

w(t) = In <t+12)
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Residual error — 5
N

We present a comparison of errors of the CCM with those of the BCM for g = 1 using
the Lo and L, norms in Tables 5 and 6, respectively for Example 2. We note that achieving the
desired level of accuracy is more effectively accomplished with the CCM compared to the BCM.
Furthermore, Figure 2 illustrates a comparison of residual errors between the current technique
and the BCM, revealing that the residual errors of the CCM are significantly lower than those of
the BCM.

Figure 2. Comparison of residual errors obtained by the CCM and the BCM for Example 2.

Table 5. Comparison of errors using the Lo, norm for g = 1 in Equation (44).

b =025 b=05 b =0.75

n CCM BCM CCM BCM CCM BCM

4 245%x107%  782x107¢% 3.03x107® 106x10° 382x10% 152x10°°
5 189 x 1077 1.03x107® 221x1077 138x107% 267x1077 194x10°°
6 110x108 134x1077 128x10% 177x1077 158x10°8 243 x1077
7 106 x107° 176 x1078 120x107° 231x1077 137x107 317x10°8
8 794x1071 230x107° 879x1071  300x1077 1.09x10710 407 x107°
9  1.04x10711 306x10710 119%x1071 399x10710 137x1071! 542 x 10710
10 866x1071 405x10°1 966x1071% 527x1071! 110x10712 714 x 101!
11 5.61x 10714 - 6.07 x 10714 — 6.68 x 10714 —

Table 6. Comparison of errors using the L, norm for g = 1 in Equation (44).
b =025 b=05 b = 0.75

n CCM BCM CCM BCM CCM BCM

3 390x107° 125x107% 486x107° 162x107* 622x107° 217x107*
4 297x107%  142x107> 358x107° 1.82x107° 443x10°%® 240x10°°
5 226x1077 1.79x107¢ 261x1077 227x107°% 312x1077 298 x10°°
6 1.73x 1078  221x1077 197x1078% 278x1077 234x10% 362x1077
7 130x107% 292x1078% 149x10? 3.66x10°% 1.78x107° 475x10°8
8 121x10710 376x107° 138x10710 467x1077 164x10°10 6.04%x107°
9 125x10711 509x10710 139x1071 633x10710 159x10"11 817 x 10710
10 1.12x10712 671 x10711 123x10712 831x1071! 142x10"12 1.07x10°10
11 793 x 10714 - 937 x 10714 — 117 x 10713 -

Example 3.

(Pw') = —1+172 (gtw'e® + q(b+ g — l)ew>, te (0,1],
w(0)=In(}), w(l)=Imn(3).

(45)
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Its integral form is

where

w(t) =In (4

1

(m@)

in(}))

)+

K(t, C) =

1

b)2

1-b

1-0
glfh
1-0

(1-¢7%, t<g

(1-#7Y), ¢<t

The exact solution of differential Equation (45) is

w(t) = ln(

1
44+11)°

1
“‘/K(t,g) ngFQ*Z <q€ w/(g)ew(g) +q(b+q_1)ew(§)) dg,
0

We present a comparison of errors using the Lo and L, norms of the CCM with those
of the BCM for q = 1 for Example 3 in Tables 7 and 8, respectively. We clearly observe that
achieving the desired level of accuracy is more effectively accomplished with the CCM
compared to the BCM. Furthermore, Figure 3 illustrates a comparison of residual errors
between the current technique and the BCM, revealing that the residual errors of the CCM
are significantly lower than those of the BCM.

Table 7. Comparison of errors using the Lo, norm for g = 1 in Equation (45).

b =025 b=05 b =0.75

n CCM BCM CCM BCM CCM BCM

4  708x107% 237x1077 862x108 313x1077 1.06x1077  438x 1077
5 298x1077 1.69x107% 345x107° 225x107% 408x107° 3.09x10°8
6 962x10711 121x107° 1.09%x10°0 158x107? 131x10°10 213x10°°
7 533x10712 882x101 594x10712 1.14x10710 669x10712 153x10°10
8§ 218x1071 635x10712 227x107B 817x10712 288x10713 1.09x10°1
9  150x107% 466x1078 197x10°¥ 600x10718 447x10"% 800x10°13
10 1.78x10°1 341x1071 141x1071¥ 438x1074 248x10°1 581 x1071

Table 8. Comparison of errors using the L, norm for g = 1 in Equation (45).
b =025 b=05 b =0.75

n CCM BCM CCM BCM CCM BCM

3 207x107®  7.01x107® 253x107°® 575x107* 315x107® 1.16x107°
4 867x108  434x1077 1.02x1077 544x1077 124x1077  7.00x10°7
5 365x107% 301x10% 416x107° 374x10% 484x10° 480x10°8
6 156x10710 204x10° 175x10°10 252x107? 202x1071°0 3.19x107?
7 655x10712 149x10°10 735x10712 183x10710 852x10712 232x10°10
8 335x1071 105x1071 377x107B  129x1071! 435x1071 1.62x10"1
9 191x107¥ 790x1071B 209x107¥ 965x10°18 234x10" 121x10"12
10 1.07x10°% 575x1071# 117x107> 700x107% 133x10°1 878x 10714
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Figure 3. Comparison of residual errors obtained by the CCM and the BCM for Example 3.

Example 4.

(Pw') = tb+a-2 (tw’ +(b+q— 1)w>, te (0,1, g>0,
lim; o+ r(H)w'(£) =0, w(l) =e.

(46)
The equivalent integral form is

1
wlt) = e [x(,0) 072 (20 Q)+ W0+ - @) ) &,
0

where

‘H

(1-¢7Y), t<g

(1-#7Y), ¢<t

—_

=
S¥

K(t, Q) =

—_
S

The exact solution of differential Equation (46) is w(t) = e'’.

We present a comparison of errors using the Lo and L, norms of the CCM with those
of the BCM for 4 = 1 and b = 2 for Example 4 in Table 9. We clearly observe that achieving
the desired level of accuracy is more effectively accomplished with the CCM compared
to the BCM. Furthermore, Figure 4 illustrates a comparison of residual errors between
the current technique and the BCM, revealing that the residual errors of the CCM are
significantly lower than those of the BCM.

Table 9. Comparison of errors using the Lo, and Ly norm for g = 1 and b = 2 in Equation (46).

Lo Ly

n CCM BCM CCM BCM

3 1.87 x 10~% 3.96 x 1073 3.55 x 10~* 6.63 x 1073
4 6.95 x 1076 711 x 1074 1.22 x 1073 1.34 x 1073
5 251 x 107 520 x 1074 3.82x 107 8.82 x 1074
6 6.62 x 1077 171 x 1074 1.09 x 10~8 313 x 1074
7 1.85 x 10~10 1.38 x 1074 298 x 1010 2.56 x 1074
8 5.25 x 10712 6.20 x 107° 7.68 x 10712 115 x 1074
9 9.90 x 10~ 14 484 x107° 1.71 x 10713 1.02 x 1074
10 1.42 x 10715 279 x 10~° 297 x 10715 533 x 107°
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Figure 4. Comparison of residual errors obtained by the CCM and the BCM for Example 4.
Example 5. Consider a numerical problem without exact solution
0.76129w
(') = 2710 01y,
w +0.03119 (47)

w'(0) =0, 5w(l)+w'(1) =5.

Its equivalent form is

1
0.76129 w({)
o +0/th CZ( (C)+003119>d§' te(01),

where
(1 — l) 1
_ 4 5/
f 5
andb:Z,,[%1:5,ﬁ2:1,ﬁ3:5.
We compare the absolute difference of estimated solutions (Es5 = ||wy — ws||) of the
CCM with the BCM in Table 10. It can be seen from the table that fewer errors in numerical

solutions are obtained by the present method than the BCM [39].

Table 10. Comparison of the numerical results of Equation (47).

CCM BCM [39]

t wy wWs Eys5 wy ws Eys

0.1  0.82970609 0.82970609 853 x 10719 0.82970610 0.82970609  5.21 x 107°
0.2 0.83337473 0.83337473  6.07 x 10719 0.83337474 0.83337473  6.83 x 107°
0.3 0.83948991 0.83948991 337 x 10710  0.83948992 0.83948991  4.07 x 109
04  0.84805278 0.84805278 122 x 10719  0.84805279 0.84805278  4.58 x 1010
0.5  0.85906492 0.85906492  1.06 x 10719 0.85906493 0.85906493  1.09 x 10~°
0.6  0.87252832 0.87252831 750 x 10711 0.87252832 0.87252832  4.46 x 10710
0.7  0.88844530 0.88844530  6.95 x 10711 0.88844531 0.88844531  4.49 x 10710
0.8  0.90681854 0.90681854 215 x 10~11  0.90681855 0.90681855  2.70 x 1010
0.9  0.92765098 0.92765098  1.82 x 10711 0.92765099 0.92765099  2.35 x 10~°
1.0  0.95094579 0.95094579 128 x 10711 0.95094580 0.95094580  2.90 x 107

7. Conclusions

We employed an efficient technique to approximate the numerical solution of Emden—
Fowler-type SBVPs with derivative dependence. This approach utilizes the collocation
technique based on Chebyshev polynomials, considering the equivalent Fredholm integral
form. The major advantage of the current technique is its ability to reach the requisite level
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of accuracy compared to previously established methods, such as the BCM [34]. Under
quite general conditions, an error analysis was established to asses the accuracy of the
current technique. To validate this accuracy, we considered various numerical examples
to compute the maximum absolute errors using the Lo, and L, norms. These results were
then compared with those of the existing BCM method [34], demonstrating that the current
approach is superior. Moreover, a graphical comparison of residual errors between the
CCM and the BCM illustrates that the residual errors of the CCM are significantly lower
than those of the BCM. Overall, the current method (CCM) renders a promising and
accurate solution of these types of mathematical problems. The proposed techniques can be
extended to solve systems of higher-order singular differential equations with a set of local
and nonlocal boundary conditions. Additionally, the presented collocation techniques can
be applied to gain insights into nonlinear singular pantograph delay differential models
arising in various natural and physical phenomena. Furthermore, the current approach can
be applied to solve Fredholm—Volterra- type integro-differential equations and fractional
Lane-Emden-Fowler-type equations.
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