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Abstract: In this work, an innovative technique is presented to solve Emden–Fowler-type singular
boundary value problems (SBVPs) with derivative dependence. These types of problems have
significant applications in applied mathematics and astrophysics. Initially, the differential equation is
transformed into a Fredholm integral equation, which is then converted into a system of nonlinear
equations using the collocation technique based on Chebyshev polynomials. Subsequently, an
iterative numerical approach, such as Newton’s method, is employed on the system of nonlinear
equations to obtain an approximate solution. Error analysis is included to assess the accuracy of the
obtained solutions and provide insights into the reliability of the numerical results. Furthermore, we
graphically compare the residual errors of the current method to the previously established method
for various examples.

Keywords: Chebyshev polynomials; Emden–Fowler-type SBVPs; derivative dependence; functional
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1. Introduction

Consider Emden–Fowler-type SBVPs with derivative dependence, as expressed by the
following equation:{ (

ρ(t)w′(t)
)′

= σ(t) ϕ(t, w(t), ρ(t)w′(t)), t ∈ (0, 1),
w(0) = β4 or limt→0+ ρ(t)w′(t) = 0, β1 w(1) + β2 w′(1) = β3,

(1)

where β1 > 0, β2, β3, and β4 are real constants. Here, ϕ(t, w(t), ρ(t)w′(t)) is the source
function dependent on both w(t) and w′(t).

The conditions ρ(t) = tb p(t), p(0) ̸= 0, σ(t) = taq(t), q(0) ̸= 0, with ρ(0) = 0 and
the allowance of σ(t) to be discontinuous at t = 0, lead to a reduction of the problem to
double SBVPs [1]. Such problems are prevalent in various areas of astrophysics, including
thermal explosion modeling in a rectangular slab [2,3], heat source measurements in human
heads [4], oxygen concentration within spherical cells [5], shallow membrane cap theory [6],
heat conduction problems [7], unsteady Poiseuille flow in a pipe [8], electroelastic dynamic
problems [9], and heat explosions [10].

Solving Emden–Fowler SBVPs with derivative dependence is crucial for predicting
system behaviors, such as changes in pressure, density, or temperature within stars or
gaseous spheres. The solutions provide valuable insights into the structure and evolution
of these systems. Finding numerical solutions for derivative-dependent second-order
singular differential equations is particularly challenging due to strong nonlinearity from
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derivatives in the source function and the singular behavior at the origin. The motivation
lies in developing numerical methods that require less computational effort while main-
taining high accuracy. The collocation method has gained popularity with the widespread
availability and efficiency of computers, being applied to problems in physics, engineering,
and other fields.

The existence and uniqueness of the estimated solution of Equation (1) were readily

obtained in [11–16] under the conditions of ρ ∈ C[0, 1] ∩ C1(0, 1] with
1∫

0

dt
ρ(t) < ∞ and

1∫
0

σ(t)dt < ∞ for ρ(t), σ(t) > 0 on (0, 1].

Several numerical methods have been developed to solve Equation (1) when
ϕ(t, w, ρw′) = ϕ(t, w), including the cubic spline method [17], the finite difference method [18–22],
the Adomian decomposition method (ADM) [23–28], the B-spline collocation method [29,30],
the classical polynomial approximation method [31], etc. However, there are limited tech-
niques available for solving Emden–Fowler SBVPs with derivative dependence. In 2014,
Singh et al. [26] discussed the Adomian decomposition technique to solve an original utiliz-
ing Green’s function. In 2018, Roul [32] presented an improved normal homotopy analysis
method to solve derivative-dependent SBVPs, and in 2019, Roul et al. [33] discussed quin-
tic spline interpolation. In 2020, Shahni et al. [34] established an approximate solution
for Emden–Fowler-type SBVPs with derivative dependence using Bernstein polynomials.
Upon examining existing techniques, limitations were identified, such as a significant
amount of computational work, especially for nonlinear singular boundary value prob-
lems. Therefore, there is a need for more efficient numerical methods that can overcome
these limitations and provide a more accurate solution for nonlinear singular boundary
value problems.

This work introduces a constructive approach for solving Emden–Fowler-type SBVPs
with derivative dependence. In Section 2, the differential equation is converted into
its equivalent Fredholm integral form. In Section 3, a collocation technique based on
Chebyshev polynomials (CCM) is employed to obtain the system of nonlinear equations
upon transformation of the Fredholm integral equation. Subsequently, Newton’s method
is implemented to solve the system and obtain the required solution. In Section 4, the
algorithm for the methodology is provided for implementing the method. In Section 5,
error analysis is included to assess the accuracy of the current method. In Section 6, the
maximum absolute error of the current method is computed for various examples using L∞
and L2 norm. These numerical results are compared with those obtained using the existing
BCM method [34]. The residual errors between CCM and a previously established method,
i.e., BCM, are also compared graphically.

2. The Construction of the Method

The corresponding integral equations of the Emden–Fowler SBVPs are presented in
this section.

2.1. Emden–Fowler SBVPs with Dirichlet–Robin Boundary Conditions

We consider the following differential equation:{ (
ρ(t)w′(t)

)′
= σ(t) ϕ(t, w(t), ρ(t)w′(t)), t ∈ (0, 1),

w(0) = β4, β1 w(1) + β2 w′(1) = β3.
(2)

The equivalent Fredholm integral form of Equation (2) is

w(t) = β4 +
(β3 − β1β4)

β1h(1) + β2h′(1)
h(t) +

1∫
0

κ(t, ζ) σ(ζ) ϕ(ζ, w(ζ), ρ(ζ)w′(ζ))dζ, t ∈ (0, 1), (3)
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where

κ(t, ζ) =


h(t)−

(
β1h(ζ)h(t)

β1h(1) + β2h′(1)

)
, t ≤ ζ,

h(ζ)−
(

β1h(ζ)h(t)
β1h(1) + β2h′(1)

)
, ζ ≤ t,

(4)

h(t) =
t∫

0

1
ρ(ζ)

dζ, h(1) =
1∫

0

1
ρ(ζ)

dζ and h′(1) = 1
ρ(1) .

2.2. Emden–Fowler SBVPs with Neumann–Robin Boundary Conditions

We consider the following differential equation:
(
ρ(t)w′(t)

)′
= σ(t) ϕ

(
t, w(t), ρ(t)w′(t)

)
, t ∈ (0, 1)

limt→0+ ρ(t)w′(t) = 0, β1 w(1) + β2 w′(1) = β3.
(5)

Its equivalent Fredholm integral form is

w(t) =
β3

β1
+

1∫
0

κ(t, ζ) σ(ζ) ϕ

(
ζ, w(ζ), ρ(ζ)w′(ζ)

)
dζ, t ∈ (0, 1), (6)

where

κ(t, ζ) =


1∫

ζ

1
ρ(t)dt +

β2

β1ρ(1)
, t ≤ ζ,

1∫
ζ

1
ρ(t)dt −

t∫
ζ

1
ρ(t)dt +

β2

β1ρ(1)
, ζ ≤ t.

(7)

3. Chebyshev Collocation Method (CCM)

This section includes the derivation of the CCM to approximate integral Equations (3)
and (6).

Definition 1. Shifted Chebyshev polynomials (SCPs) are defined on [0, 1] by introducing a new
variable (s = 2t − 1) as 

τ0(t) = 1,
τ1(t) = 2t − 1,
τn(t) = 2(2t − 1)τn−1(t)− τn−2(t).

(8)

We can approximate a function ( f (t) ∈ L2[0, 1]) by shifted Chebyshev polynomials
(SCPs) as

f (t) =
∞

∑
r=0

cr τr(t). (9)

For the purpose of numerical calculations, we take into account the initial (n + 1)
terms of the aforementioned expansion, and it becomes

f (t) ≈
n

∑
r=0

cr τr(t) = AT τ(t), (10)

where A and τ(t) are column vectors, as follows:

A = [c0, c1, · · · , cn]
T , τ(t) = [τ0(t), τ1(t), · · · , τn(t)]T . (11)
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3.1. Dirichlet–Robin Boundary Conditions

To apply the current approach, we consider Equation (3) as

w(t) = β4 +
(β3 − β1β4)

β1h(1) + β2h′(1)
h(t) +

1∫
0

κ(t, ζ) σ(ζ) ϕ(ζ, w(ζ), ρ(ζ)w′(ζ))dζ, t ∈ (0, 1).

We take

z(t) = ϕ

(
t, w(t), ρ(t)w′(t)

)
. (12)

We approximate w(t), w′(t) and z(t) by using Equation (10),

w(t) ≈
n

∑
r=0

crτr(t), (13)

w′(t) ≈
n

∑
r=0

crτ′
r(t), (14)

z(t) ≈
n

∑
r=0

drτr(t). (15)

By substituting Equations (12), (13), and (15) into (3), we obtain

n

∑
r=0

crτr(t) = β4 +
(β3 − β1β4)

β1h(1) + β2h′(1)
h(t) +

n

∑
r=0

dr

1∫
0

κ(t, ζ) σ(ζ) τr(ζ)dζ. (16)

It can be expressed as

n

∑
r=0

crτr(t) = β4 +
(β3 − β1β4)

β1h(1) + β2h′(1)
h(t) +

n

∑
r=0

drKr(t), (17)

where

Kr(t) =
1∫

0

κ(t, ζ) σ(ζ) τr(ζ)dζ, r = 0, 1, · · · , n. (18)

We differentiate Equation (17) with respect to t as

n

∑
r=0

cr τ′
r(t) =

(β3 − β1β4)

β1h(1) + β2h′(1)
h′(t) +

n

∑
r=0

dr K′
r(t), (19)

where

K′
r(t) =

d
dt

( 1∫
0

κ(t, ζ) σ(ζ) τr(ζ) dζ

)
, r = 0, 1, · · · , n. (20)

Then, by plugging Equations (13)–(15) into (12), we obtain

n

∑
r=0

drτr(t) = ϕ

(
t,

n

∑
r=0

crτr(t), ρ(t)
n

∑
r=0

crτ′
r(t)

)
. (21)
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By substituting Equations (17) and (19) into (21) and inserting the collocation points
(ts =

1
2

{
cos

(
(2s+1)π

2n

)
+ 1

}
, where s = 0, 1, · · · , n) into Equation (21), we have

n

∑
r=0

drτr(ts)− ϕ

(
ts, β4 +

(β3 − β1β4)

β1h(1) + β2h′(1)
h(ts) +

n

∑
r=0

drKr(ts),

ρ(ts)
(β3 − β1β4)

β1h(1) + β2h′(1)
h′(ts) +

n

∑
r=0

dr K′
r(ts)

)
= 0, s = 0, 1, · · · , n, (22)

where d0, d1, · · · , dn are unknowns.
In order to obtain the approximate solution of Equation (3), we substitute the un-

known coefficients in Equations (17) and (19), which are obtained by applying the iteration
approach to Equation (22).

Note that a desired accuracy (ϵ) of Newton’s method can be obtained by using the
stopping criteria (∥τ[s+1] − τ[s]∥ < ϵ).

3.2. Neumann–Robin Boundary Conditions

Consider Equation (6) as

w(t) =
β3

β1
+

1∫
0

κ(t, ζ) σ(ζ) ϕ(ζ, w(ζ), ρ(ζ)w′(ζ))dζ, t ∈ (0, 1). (23)

Using similar steps as in the previous subsection, we input the expressions from
Equations (13) and (14) into (23), yielding

n

∑
r=0

crτr(t) =
β3

β1
+

n

∑
r=0

dr

1∫
0

κ(t, ζ) σ(ζ) τr(ζ)dζ, (24)

which can be represented as

n

∑
r=0

crτr(t) =
β3

β1
+

n

∑
r=0

drKr(t) (25)

and

n

∑
r=0

crτ′
r(t) =

n

∑
r=0

drK′
r(t). (26)

Then, by plugging Equations (25) and (26) into (21) and inserting the collocation points
(ts =

1
2

{
cos

(
(2s+1)π

2n

)
+ 1

}
, s = 0, 1, · · · , n), we obtain

n

∑
r=0

drτr(ts)− ϕ

(
ts,

β3

β1
+

n

∑
r=0

drKr(ts), ρ(ts)
n

∑
r=0

dr K′
r(ts)

)
= 0, s = 0, 1, · · · , n. (27)

In order to obtain the approximate solutions of Equation (23), we substitute the
unknown coefficients (d0, d1, · · · , dn) into Equations (25) and (26), which are obtained by
applying Newton’s method [35] to Equation (27).

4. Algorithm of the Methodology

The procedure for determining unknown coefficients in the CCM method is outlined
by the following algorithm:

1. Input the degree of the Chebyshev polynomials, i.e., n.
2. Approximate w(t) and ϕ(t, w(t), ρ(t)w′(t)) via Equation (13).
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3. Input the collocation points (ts =
1
2

{
cos

(
(2s+1)π

2n

)
+ 1

}
, s = 0, 1, · · · , n).

4. Obtain a nonlinear equation in unknowns, i.e., d0, d1, · · · , dn.
5. Via Newton’s method, the numerical solution is obtained.

5. Error Analysis

Let the norm of the Banach space (X = C[0, 1] ∩ C1(0, 1]) be defined as

∥w∥ = max{∥w∥0, ∥w∥1}, w ∈ X, (28)

where

∥w∥0 = max
t∈[0,1]

|w(t)|, (29)

∥w∥1 = max
t∈[0,1]

|ρ(t) w′(t)|. (30)

Theorem 1. Let the sequence {τn( f )} converge uniformly to f (t) ∈ C[0, 1], where
τn( f ) = ∑n

r=0 crτr(t) is the Chebyshev approximation function. Then, for a given ϵ > 0, there
exists a number (n) such that

∥τn( f )− f ∥ < ϵ.

Proof of Theorem 1. The proof is provided in [36].

Theorem 2. Consider a bounded function ( f ) in [0, 1] and that its second derivative exists. Then,
the error bound can be derived as

∥τn( f )− f ∥ ≤ ∥ f ′′∥
2n

max
t∈[0,1]

(t(1 − t)) =
∥ f ′′∥

8n
, (31)

which exhibits the rate of convergence (1/n) for Chebyshev’s approximation function [37], provided
f ′′(t) ̸= 0.

Proof of Theorem 2. The proof is provided in [38].

Theorem 3. Consider a Banach space (X) with the norm as defined in Equation (28). Let wn(t) and
w(t) represent the approximate and exact solutions of the integral Equation (3), respectively. Fur-
thermore, the nonlinear function ϕ(t, w(t), ρw′(t)) also satisfies the Lipschitz condition, as follows:

|ϕ(t, w, ρw′)− ϕ(t, wn, ρw′
n)| ≤ l1|w − wn|+ l2|ρ(w′ − w′

n)|, (32)

where l1 and l2 are the Lipschitz constants. Then, for the CCM, the estimated error bound is
determined as

∥w − wn∥ ≤ vlm
4n

, (33)

where l = max(l1, l2), m = max(m1, m2), v = ∥w′′∥,

m1 = max
t∈[0,1]

∣∣∣∣∫ 1

0
κ(t, ζ) σ(ζ)

∣∣∣∣dζ ≤ ∞, (34)

m2 = max
t∈[0,1]

∣∣∣∣∫ 1

0
ρ(t)κt(t, ζ) σ(ζ)

∣∣∣∣dζ ≤ ∞. (35)
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Proof of Theorem 3. Consider

∥w − wn∥0 = max
t∈[0,1]

∣∣∣∣ 1∫
0

κ(t, ζ) σ(ζ)

(
ϕ(ζ, w(ζ), w′(ζ))− ϕ(ζ, wn(ζ), ρ(ζ) w′

n(ζ))

)
dζ

∣∣∣∣
= max

ζ∈[0,1]

∣∣ϕ(ζ, w(ζ), ρ(ζ)w′(ζ))− ϕ(ζ, wn(ζ), ρ(ζ)w′
n(ζ))

∣∣
× max

t∈[0,1]

∣∣∣∣∫ 1

0
κ(t, ζ) σ(ζ)dζ

∣∣∣∣.
Using Equations (32) and (34), we obtain

∥w − wn∥0 ≤ m1 max
ζ∈[0,1]

l1|(w(ζ)− wn(ζ))|+ l2|ρ(ζ)(w′(ζ)− w′
n(ζ))|

≤ 2lm1 max
(
∥w − wn∥0, ∥w − wn∥1

)
= 2lm1∥w − wn∥. (36)

Similarly, we consider

∥w − wn∥1 = max
t∈[0,1]

∣∣∣∣ 1∫
0

ρ(ζ)κt(t, ζ) σ(ζ)

(
ϕ(ζ, w(ζ), w′(ζ))− ϕ(ζ, wn(ζ), ρ(ζ) w′

n(ζ))

)
dζ

∣∣∣∣
= max

ζ∈[0,1]

∣∣ϕ(ζ, w(ζ), ρ(ζ)w′(ζ))− ϕ(ζ, wn(ζ), ρ(ζ)w′
n(ζ))

∣∣
× max

t∈[0,1]

∣∣∣∣∫ 1

0
ρ(t)κt(t, ζ) σ(ζ)dζ

∣∣∣∣.
Using Equations (32) and (35), we have

∥w − wn∥1 ≤ m2 max
ζ∈[0,1]

l1|(w(ζ)− wn(ζ))|+ l2|ρ(ζ)(w′(ζ)− w′
n(ζ))|

≤ 2lm2 max
(
∥w − wn∥0, ∥w − wn∥1

)
= 2lm2∥w − wn∥. (37)

From Equations (36) and (37), we have

∥w − wn∥ = max
(
∥w − wn∥0, ∥w − wn∥1

)
≤ max

(
2lm1∥w − wn∥0, 2lm2∥w − wn∥1

)
≤ 2lm∥w − wn∥
= 2lm max

ζ∈[0,1]
∥w − wn∥. (38)

Utilizing the CCM, we obtain the approximate solution (τn(w(t))) of Equations (3)
and (6). We replace wn(ζ) with the Chebyshev solution (τn

(
w(ζ)

)
), Equation (38) reduces

to

∥w − wn∥ ≤ 2lm max
ζ∈[0,1]

∥w(ζ)− τn(w(ζ))∥

≤ 2lm∥w − τn(w)∥. (39)
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Replacing f with w and t with ζ in Equation yields (31)

∥τn(w)− w∥ ≤ ∥w′′∥
2n

max
ζ∈[0,1]

(ζ(1 − ζ)) =
∥w′′∥

8n
. (40)

If v = ∥w′′∥, then Equation (40) becomes

∥τn(w)− w∥ ≤ v
8n

. (41)

Inputting Equation (41) into Equation (39), we obtain

∥w − wn∥ ≤ 2lm(
v

8n
)

=
vlm
4n

. (42)

6. Numerical Illustration

We utilized MATLAB (R2015a) to determine maximum absolute errors using both
L∞ and L2 norms for various examples to assess the accuracy of the current approach.
Subsequently, we compared these results with those obtained using the BCM in the different
tables and also graphically compared residual errors. We define L∞ and L2 norm errors
as follows:

L∞ = max
t∈[0,1]

|w(t)− wn(t)|,

and

L2 =

( m

∑
j=1

|w(tj)− wn(tj)|2
)1/2

,

where wn(t) and w(t) represent the approximate and exact solutions, respectively.
Furthermore, the residual error is defined as:

rn(t) = |
(
ρ(t)w′

n(t)
)′ − σ(t) ϕ(t, wn(t), ρ(t)w′

n(t))|,

Rn(t) = |
(
ρ(t)w′

n(t)
)′ − σ(t) ϕ(t, wn(t), ρ(t)w′

n(t))|,

where rn(t) and Rn(t) are obtained by using the CCM and the BCM, respectively.

Example 1. 
(
tbw′)′ = tb+q−2

(
qtw′ + q(b + q − 1)w

)
, t ∈ (0, 1),

w(0) = 1, w(1) = e.
(43)

The equivalent integral form is

w(t) = 1 +
e − 1

(1 − b)2 t1−b +

1∫
0

κ(t, ζ) ζb+q−2
(

qζ w′ + q(b + q − 1)w(ζ)

)
dζ,
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where

κ(t, ζ) =


t1−b

1 − b
(
1 − ζ1−b), t ≤ ζ,

ζ1−b

1 − b
(
1 − t1−b), ζ ≤ t.

The exact solution of differential Equation (43) is w(t) = etq
.

We present a comparison of errors using the L∞ norm of the CCM with the BCM for
q = 1 and q = 2.5 in Tables 1 and 2, respectively, and a comparison of errors using the
L2 norm of the CCM with the BCM for q = 1 and q = 2.5 in Tables 3 and 4, respectively,
for Example 1. We note that achieving the desired level of accuracy is more effectively
accomplished with the CCM compared to the BCM. Furthermore, Figure 1 illustrates a
comparison of residual errors between the current technique and the BCM, revealing that
the residual errors of the CCM are significantly lower than those of the BCM.

Table 1. Comparison of errors using the L∞ norm for q = 1 in Equation (43).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

4 9.41 × 10−6 3.38 × 10−5 1.10 × 10−5 3.99 × 10−5 1.27 × 10−5 5.04 × 10−5

5 2.93 × 10−7 1.66 × 10−6 3.26 × 10−7 2.08 × 10−6 3.59 × 10−7 2.58 × 10−6

6 6.35 × 10−9 1.66 × 10−6 6.69 × 10−9 9.25 × 10−8 7.00 × 10−9 1.13 × 10−7

7 1.88 × 10−10 3.02 × 10−9 2.01 × 10−10 3.68 × 10−9 2.13 × 10−10 4.48 × 10−9

8 3.90 × 10−12 1.07 × 10−10 4.04 × 10−12 1.30 × 10−10 4.13 × 10−12 1.57 × 10−10

9 1.17 × 10−13 3.50 × 10−12 1.27 × 10−13 4.24 × 10−12 1.36 × 10−13 5.11 × 10−12

10 2.25 × 10−15 1.04 × 10−13 2.40 × 10−15 1.25 × 10−13 2.53 × 10−15 1.51 × 10−13

11 2.99 × 10−16 − 3.26 × 10−16 − 3.41 × 10−16 −

Table 2. Comparison of errors using the L∞ norm for q = 2.5 in Equation (43).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

4 1.44 × 10−3 2.10 × 10−3 1.49 × 10−3 2.17 × 10−3 1.54 × 10−3 2.23 × 10−3

5 1.73 × 10−4 3.88 × 10−4 1.78 × 10−4 3.99 × 10−4 1.83 × 10−4 4.10 × 10−4

6 2.90 × 10−5 6.91 × 10−5 2.97 × 10−5 7.13 × 10−5 3.04 × 10−5 7.34 × 10−5

7 4.02 × 10−6 1.25 × 10−5 4.09 × 10−6 1.28 × 10−5 4.15 × 10−6 1.32 × 10−5

8 6.82 × 10−7 2.20 × 10−6 6.95 × 10−7 2.27 × 10−6 7.08 × 10−7 2.34 × 10−6

9 6.17 × 10−8 3.61 × 10−7 6.22 × 10−8 3.70 × 10−7 6.26 × 10−8 3.79 × 10−7

10 2.00 × 10−8 7.16 × 10−8 2.08 × 10−8 7.94 × 10−8 2.16 × 10−8 9.53 × 10−8

11 2.21 × 10−9 − 2.39 × 10−9 − 2.58 × 10−9 −

Table 3. Comparison of errors using the L2 norm for q = 1 in Equation (43).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

3 3.35 × 10−4 1.23 × 10−3 3.87 × 10−4 1.42 × 10−3 4.42 × 10−4 1.63 × 10−3

4 1.20 × 10−5 6.46 × 10−5 1.35 × 10−5 7.40 × 10−5 1.50 × 10−5 8.42 × 10−5

5 3.72 × 10−7 3.22 × 10−6 4.05 × 10−7 3.66 × 10−6 4.37 × 10−7 4.14 × 10−6

6 1.01 × 10−8 3.22 × 10−6 1.07 × 10−8 1.55 × 10−7 1.13 × 10−8 1.74 × 10−7

7 2.39 × 10−10 5.52 × 10−9 2.53 × 10−10 6.21 × 10−9 2.65 × 10−10 6.94 × 10−9

8 5.96 × 10−12 1.93 × 10−10 6.34 × 10−12 2.16 × 10−10 6.70 × 10−12 2.41 × 10−10

9 1.48 × 10−13 6.43 × 10−12 1.53 × 10−13 7.17 × 10−12 1.62 × 10−13 7.97 × 10−12

10 3.24 × 10−15 1.90 × 10−13 3.38 × 10−15 2.11 × 10−13 3.53 × 10−15 2.34 × 10−13

11 5.38 × 10−16 − 5.52 × 10−16 − 5.89 × 10−16 −
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Table 4. Comparison of errors using the L2 norm for q = 2.5 in Equation (43).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

3 1.53 × 10−2 2.02 × 10−2 1.67 × 10−2 2.18 × 10−2 1.85 × 10−2 2.37 × 10−2

4 2.25 × 10−3 2.70 × 10−3 2.35 × 10−3 2.84 × 10−3 2.45 × 10−3 2.99 × 10−3

5 3.01 × 10−4 5.27 × 10−4 3.10 × 10−4 5.72 × 10−4 3.19 × 10−4 6.29 × 10−4

6 4.62 × 10−5 8.16 × 10−5 4.75 × 10−5 8.60 × 10−5 4.87 × 10−5 9.06 × 10−5

7 6.23 × 10−6 1.78 × 10−5 6.36 × 10−6 1.93 × 10−5 6.49 × 10−6 2.13 × 10−5

8 1.08 × 10−6 2.78 × 10−6 1.10 × 10−6 2.93 × 10−6 1.13 × 10−6 3.10 × 10−6

9 1.07 × 10−7 5.18 × 10−7 1.07 × 10−7 5.52 × 10−7 1.08 × 10−7 5.93 × 10−7

10 3.87 × 10−8 1.20 × 10−7 4.01 × 10−8 1.33 × 10−7 4.16 × 10−8 1.48 × 10−7

11 5.64 × 10−9 − 6.09 × 10−9 − 6.56 × 10−9 −
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Figure 1. Comparison of residual errors obtained by the CCM and the previously established BCM
for Example 1.

Example 2. 
(
tbw′)′ = tb−l

(
− tw′ew − bew

)
, t ∈ (0, 1],

w(0) = ln
( 1

2
)
, w(1) = ln

( 1
3
)
.

(44)

Its equivalent integral form is

w(t) = ln
(1

2
)
+

(
ln

( 1
3
)
− ln

( 1
2
))

(1 − b)2 t1−b +

1∫
0

κ(t, ζ) ζb−l
(
− ζ w′(ζ)ew(ζ) − bew(ζ)

)
dζ,

where

κ(t, ζ) =


t1−b

1 − b
(
1 − ζ1−b), t ≤ ζ,

ζ1−b

1 − b
(
1 − t1−b), ζ ≤ t.

The exact solution of differential Equation (44) is

w(t) = ln
(

1
t + 2

)
.
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We present a comparison of errors of the CCM with those of the BCM for q = 1 using
the L∞ and L2 norms in Tables 5 and 6, respectively for Example 2. We note that achieving the
desired level of accuracy is more effectively accomplished with the CCM compared to the BCM.
Furthermore, Figure 2 illustrates a comparison of residual errors between the current technique
and the BCM, revealing that the residual errors of the CCM are significantly lower than those of
the BCM.

t
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Figure 2. Comparison of residual errors obtained by the CCM and the BCM for Example 2.

Table 5. Comparison of errors using the L∞ norm for q = 1 in Equation (44).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

4 2.45 × 10−6 7.82 × 10−6 3.03 × 10−6 1.06 × 10−5 3.82 × 10−6 1.52 × 10−5

5 1.89 × 10−7 1.03 × 10−6 2.21 × 10−7 1.38 × 10−6 2.67 × 10−7 1.94 × 10−6

6 1.10 × 10−8 1.34 × 10−7 1.28 × 10−8 1.77 × 10−7 1.58 × 10−8 2.43 × 10−7

7 1.06 × 10−9 1.76 × 10−8 1.20 × 10−9 2.31 × 10−7 1.37 × 10−9 3.17 × 10−8

8 7.94 × 10−11 2.30 × 10−9 8.79 × 10−11 3.00 × 10−9 1.09 × 10−10 4.07 × 10−9

9 1.04 × 10−11 3.06 × 10−10 1.19 × 10−11 3.99 × 10−10 1.37 × 10−11 5.42 × 10−10

10 8.66 × 10−13 4.05 × 10−11 9.66 × 10−13 5.27 × 10−11 1.10 × 10−12 7.14 × 10−11

11 5.61 × 10−14 − 6.07 × 10−14 − 6.68 × 10−14 −

Table 6. Comparison of errors using the L2 norm for q = 1 in Equation (44).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

3 3.90 × 10−5 1.25 × 10−4 4.86 × 10−5 1.62 × 10−4 6.22 × 10−5 2.17 × 10−4

4 2.97 × 10−6 1.42 × 10−5 3.58 × 10−6 1.82 × 10−5 4.43 × 10−6 2.40 × 10−5

5 2.26 × 10−7 1.79 × 10−6 2.61 × 10−7 2.27 × 10−6 3.12 × 10−7 2.98 × 10−6

6 1.73 × 10−8 2.21 × 10−7 1.97 × 10−8 2.78 × 10−7 2.34 × 10−8 3.62 × 10−7

7 1.30 × 10−9 2.92 × 10−8 1.49 × 10−9 3.66 × 10−8 1.78 × 10−9 4.75 × 10−8

8 1.21 × 10−10 3.76 × 10−9 1.38 × 10−10 4.67 × 10−9 1.64 × 10−10 6.04 × 10−9

9 1.25 × 10−11 5.09 × 10−10 1.39 × 10−11 6.33 × 10−10 1.59 × 10−11 8.17 × 10−10

10 1.12 × 10−12 6.71 × 10−11 1.23 × 10−12 8.31 × 10−11 1.42 × 10−12 1.07 × 10−10

11 7.93 × 10−14 − 9.37 × 10−14 − 1.17 × 10−13 −

Example 3. 
(
tbw′)′ = −tb+q−2

(
qtw′ew + q(b + q − 1)ew

)
, t ∈ (0, 1],

w(0) = ln
( 1

4
)
, w(1) = ln

( 1
5
)
.

(45)
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Its integral form is

w(t) = ln
(1

4
)
+

(
ln

( 1
5
)
− ln

( 1
4
))

(1 − b)2 t1−b

+

1∫
0

κ(t, ζ) ζb+q−2
(

qζ w′(ζ)ew(ζ) + q(b + q − 1)ew(ζ)

)
dζ,

where

κ(t, ζ) =


t1−b

1 − b
(
1 − ζ1−b), t ≤ ζ,

ζ1−b

1 − b
(
1 − t1−b), ζ ≤ t.

The exact solution of differential Equation (45) is

w(t) = ln
(

1
4 + tq

)
.

We present a comparison of errors using the L∞ and L2 norms of the CCM with those
of the BCM for q = 1 for Example 3 in Tables 7 and 8, respectively. We clearly observe that
achieving the desired level of accuracy is more effectively accomplished with the CCM
compared to the BCM. Furthermore, Figure 3 illustrates a comparison of residual errors
between the current technique and the BCM, revealing that the residual errors of the CCM
are significantly lower than those of the BCM.

Table 7. Comparison of errors using the L∞ norm for q = 1 in Equation (45).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

4 7.08 × 10−8 2.37 × 10−7 8.62 × 10−8 3.13 × 10−7 1.06 × 10−7 4.38 × 10−7

5 2.98 × 10−9 1.69 × 10−8 3.45 × 10−9 2.25 × 10−8 4.08 × 10−9 3.09 × 10−8

6 9.62 × 10−11 1.21 × 10−9 1.09 × 10−10 1.58 × 10−9 1.31 × 10−10 2.13 × 10−9

7 5.33 × 10−12 8.82 × 10−11 5.94 × 10−12 1.14 × 10−10 6.69 × 10−12 1.53 × 10−10

8 2.18 × 10−13 6.35 × 10−12 2.27 × 10−13 8.17 × 10−12 2.88 × 10−13 1.09 × 10−11

9 1.50 × 10−14 4.66 × 10−13 1.97 × 10−14 6.00 × 10−13 4.47 × 10−14 8.00 × 10−13

10 1.78 × 10−15 3.41 × 10−14 1.41 × 10−14 4.38 × 10−14 2.48 × 10−15 5.81 × 10−14

Table 8. Comparison of errors using the L2 norm for q = 1 in Equation (45).

b = 0.25 b = 0.5 b = 0.75

n CCM BCM CCM BCM CCM BCM

3 2.07 × 10−6 7.01 × 10−6 2.53 × 10−6 5.75 × 10−4 3.15 × 10−6 1.16 × 10−5

4 8.67 × 10−8 4.34 × 10−7 1.02 × 10−7 5.44 × 10−7 1.24 × 10−7 7.00 × 10−7

5 3.65 × 10−9 3.01 × 10−8 4.16 × 10−9 3.74 × 10−8 4.84 × 10−9 4.80 × 10−8

6 1.56 × 10−10 2.04 × 10−9 1.75 × 10−10 2.52 × 10−9 2.02 × 10−10 3.19 × 10−9

7 6.55 × 10−12 1.49 × 10−10 7.35 × 10−12 1.83 × 10−10 8.52 × 10−12 2.32 × 10−10

8 3.35 × 10−13 1.05 × 10−11 3.77 × 10−13 1.29 × 10−11 4.35 × 10−13 1.62 × 10−11

9 1.91 × 10−14 7.90 × 10−13 2.09 × 10−14 9.65 × 10−13 2.34 × 10−14 1.21 × 10−12

10 1.07 × 10−15 5.75 × 10−14 1.17 × 10−15 7.00 × 10−14 1.33 × 10−15 8.78 × 10−14
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Figure 3. Comparison of residual errors obtained by the CCM and the BCM for Example 3.

Example 4. 
(
tbw′)′ = tb+q−2

(
tw′ + (b + q − 1)w

)
, t ∈ (0, 1], q > 0,

limt→0+ r(t)w′(t) = 0, w(1) = e.
(46)

The equivalent integral form is

w(t) = e +
1∫

0

κ(t, ζ) ζb+q−2
(

ζ w′(ζ) + (b + q − 1)w(ζ)

)
dζ,

where

κ(t, ζ) =


1

1 − b
(
1 − ζ1−b), t ≤ ζ,

1
1 − b

(
1 − t1−b), ζ ≤ t.

The exact solution of differential Equation (46) is w(t) = etq
.

We present a comparison of errors using the L∞ and L2 norms of the CCM with those
of the BCM for q = 1 and b = 2 for Example 4 in Table 9. We clearly observe that achieving
the desired level of accuracy is more effectively accomplished with the CCM compared
to the BCM. Furthermore, Figure 4 illustrates a comparison of residual errors between
the current technique and the BCM, revealing that the residual errors of the CCM are
significantly lower than those of the BCM.

Table 9. Comparison of errors using the L∞ and L2 norm for q = 1 and b = 2 in Equation (46).

L∞ L2

n CCM BCM CCM BCM

3 1.87 × 10−4 3.96 × 10−3 3.55 × 10−4 6.63 × 10−3

4 6.95 × 10−6 7.11 × 10−4 1.22 × 10−5 1.34 × 10−3

5 2.51 × 10−7 5.20 × 10−4 3.82 × 10−7 8.82 × 10−4

6 6.62 × 10−9 1.71 × 10−4 1.09 × 10−8 3.13 × 10−4

7 1.85 × 10−10 1.38 × 10−4 2.98 × 10−10 2.56 × 10−4

8 5.25 × 10−12 6.20 × 10−5 7.68 × 10−12 1.15 × 10−4

9 9.90 × 10−14 4.84 × 10−5 1.71 × 10−13 1.02 × 10−4

10 1.42 × 10−15 2.79 × 10−5 2.97 × 10−15 5.33 × 10−5
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Figure 4. Comparison of residual errors obtained by the CCM and the BCM for Example 4.

Example 5. Consider a numerical problem without exact solution
(
t2w′)′ = t2 0.76129w

w + 0.03119
, t ∈ (0, 1),

w′(0) = 0, 5w(1) + w′(1) = 5.
(47)

Its equivalent form is

w(t) =
β3

β1
+

1∫
0

κ(t, ζ) ζ2
(

0.76129 w(ζ)

w(ζ) + 0.03119

)
dζ, t ∈ (0, 1),

where

κ(t, ζ) =

{ (
1 − 1

ζ

)
− 1

5 , t ≤ ζ,(
1 − 1

t
)
− 1

5 , ζ ≤ t

and b = 2, β1 = 5, β2 = 1, β3 = 5.

We compare the absolute difference of estimated solutions (E45 = ∥w4 − w5∥) of the
CCM with the BCM in Table 10. It can be seen from the table that fewer errors in numerical
solutions are obtained by the present method than the BCM [39].

Table 10. Comparison of the numerical results of Equation (47).

CCM BCM [39]

t w4 w5 E45 w4 w5 E45

0.1 0.82970609 0.82970609 8.53 × 10−10 0.82970610 0.82970609 5.21 × 10−9

0.2 0.83337473 0.83337473 6.07 × 10−10 0.83337474 0.83337473 6.83 × 10−9

0.3 0.83948991 0.83948991 3.37 × 10−10 0.83948992 0.83948991 4.07 × 10−9

0.4 0.84805278 0.84805278 1.22 × 10−10 0.84805279 0.84805278 4.58 × 10−10

0.5 0.85906492 0.85906492 1.06 × 10−10 0.85906493 0.85906493 1.09 × 10−9

0.6 0.87252832 0.87252831 7.50 × 10−11 0.87252832 0.87252832 4.46 × 10−10

0.7 0.88844530 0.88844530 6.95 × 10−11 0.88844531 0.88844531 4.49 × 10−10

0.8 0.90681854 0.90681854 2.15 × 10−11 0.90681855 0.90681855 2.70 × 10−10

0.9 0.92765098 0.92765098 1.82 × 10−11 0.92765099 0.92765099 2.35 × 10−9

1.0 0.95094579 0.95094579 1.28 × 10−11 0.95094580 0.95094580 2.90 × 10−9

7. Conclusions

We employed an efficient technique to approximate the numerical solution of Emden–
Fowler-type SBVPs with derivative dependence. This approach utilizes the collocation
technique based on Chebyshev polynomials, considering the equivalent Fredholm integral
form. The major advantage of the current technique is its ability to reach the requisite level
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of accuracy compared to previously established methods, such as the BCM [34]. Under
quite general conditions, an error analysis was established to asses the accuracy of the
current technique. To validate this accuracy, we considered various numerical examples
to compute the maximum absolute errors using the L∞ and L2 norms. These results were
then compared with those of the existing BCM method [34], demonstrating that the current
approach is superior. Moreover, a graphical comparison of residual errors between the
CCM and the BCM illustrates that the residual errors of the CCM are significantly lower
than those of the BCM. Overall, the current method (CCM) renders a promising and
accurate solution of these types of mathematical problems. The proposed techniques can be
extended to solve systems of higher-order singular differential equations with a set of local
and nonlocal boundary conditions. Additionally, the presented collocation techniques can
be applied to gain insights into nonlinear singular pantograph delay differential models
arising in various natural and physical phenomena. Furthermore, the current approach can
be applied to solve Fredholm–Volterra- type integro-differential equations and fractional
Lane–Emden–Fowler-type equations.
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