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Abstract: Due to the ongoing global warming on the Earth, permafrost degradation has been exten-
sively taking place, which poses a substantial threat to civil and industrial facilities and infrastructure
elements, as well as to the utilization of natural resources in the Arctic and high-latitude regions. In
order to prevent the negative consequences of permafrost thawing under the foundations of construc-
tions, various geophysical techniques for monitoring permafrost have been proposed and applied
so far: temperature, electrical, seismic and many others. We propose a cross-borehole exploration
system for a high localization of target objects in the cryolithozone. A novel mathematical apparatus
for three-dimensional modeling of transient electromagnetic signals by the vector finite element
method has been developed. The original combination of the latter, the Sumudu integral transform
and artificial neural networks makes it possible to examine spatially heterogeneous objects of the cry-
olithozone with a high contrast of geoelectric parameters, significantly reducing computational costs.
We consider numerical simulation results of the transient electromagnetic monitoring of industrial
facilities located on permafrost. The formation of a talik has been shown to significantly manifest
itself in the measured electromagnetic responses, which enables timely prevention of industrial
disasters and environmental catastrophes.

Keywords: permafrost; TEM monitoring; Sumudu transform; vector finite element method; artificial
neural networks

MSC: 78A25; 86A25; 86-08; 65R10; 78M10; 68T07

1. Introduction

Unceasing global warming and thawing of permafrost on the Earth in response to
climate change have been reported in polar regions and at high elevations since about
1980. Numerical studies show that these processes will continue and are likely to acceler-
ate [1]. Since the Arctic is warming two to four times faster than the worldwide average,
permafrost carbon emissions in a changing Arctic additionally and steadily contribute to
global warming [2]. A fast response of permafrost to the warming climate has also been
documented for northeast Siberia [3].

Degrading permafrost poses a major threat to the sustainable growth of Arctic com-
munities and utilization of natural resources in the region [4]. The extent of infrastructure
damage is substantial, ca. 70% of infrastructure elements being at risk [5]. Permafrost
degradation-related infrastructure costs are expected to reach hundreds of billions of US
dollars by the middle of the 21st century; Russia is assumed to bear the highest burden
of country-specific expenses [6]. Moreover, there is a serious environmental threat owing
to the risk of contamination and mobilization of toxic substances in Arctic permafrost
regions [7].
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In this connection, timely monitoring and decision-making seem to be critical for the
sustainable development and economy of Arctic and high-altitude cold regions. Among the
target monitoring objects are: highways [8,9]; railway lines [10,11]; airport runways [12,13];
engineering constructions at oil [14] and gas [15] fields; thawing zones around production
wells during hydrocarbon extraction [16,17]; oil and gas pipelines [18,19]; fuel storage
tanks [20,21]; bridge foundations [22,23]; pile foundations of buildings [24,25]; power
transmission lines [26,27].

To date, a variety of approaches to monitoring permafrost have been proposed: from
space [28]; by means of interferometric synthetic aperture radar (InSAR) [29]; with un-
manned aerial vehicles [30]; surface deformation monitoring [31]; ground-based [32] and
cross-borehole [33] seismic monitoring [34].

Currently, the most ubiquitous approach towards permafrost monitoring is borehole
temperature time-lapse surveys [35–37]. Next in abundance are geoelectric prospecting
techniques, including their cross-borehole modifications and 3D data inversion: electri-
cal resistivity tomography [38–41] and ground penetrating radar [42–44]. There exist
experimental works that simulate resistivity monitoring of the active permafrost layer in
laboratory conditions [45].

A scientific direction is developing that draws on the use of alternating electromagnetic
field data and their subsequent 2D [46] and 3D [47,48] inversion as applied to cross-borehole
permafrost monitoring.

Integration of geophysical techniques is actively involved to address the monitor-
ing problem: time-lapse electrical resistivity tomography combined with ground tem-
perature [49,50] and with frequency-domain electro-magnetometry measurements [51];
electrical resistivity tomography paired with ground penetrating radar [52].

With regard to permafrost monitoring, rapidly growing is the ground-based transient
electromagnetic (TEM) technique [53,54]. There is successful experience in combining TEM
and frequency sounding data for investigating permafrost and gas hydrates on the Arctic
shelf [55]. At the same time, TEM borehole [56] and cross-borehole [57] varieties appear to
have significant unrevealed potential.

The presented research is devoted to the theoretical development of a cross-borehole
TEM technique for the purposes of permafrost monitoring [58]. Promising numerical
simulation results have been obtained so far for highways [59] and fuel storage tanks [60].
A prototype of the cross-borehole exploration equipment has been created [61], followed
by a series of successful field measurements [62].

The development and evolvement of novel geophysical technologies is conventionally
based on highly efficient means of mathematical modeling of synthetic signals [34]. As part
of the study, we consider an algorithm for three-dimensional modeling of electromagnetic
pulses using the vector finite element method. The original combination of the latter
with the Sumudu integral transform makes it possible to study spatially inhomogeneous
objects with a high contrast of geoelectric parameters [63]. Moreover, to significantly
reduce the computational costs, artificial neural networks toolkit is applied [64], which
is known to be a reliable means of increasing the efficiency of electrical exploration data
interpretation [65–67].

Selected cross-borehole exploration systems provide a means of achieving a high
localization of a thawing area. We give examples of numerically simulated TEM permafrost
monitoring signals beneath industrial facilities.

2. Mathematical Modeling of TEM Signals
2.1. Sumudu Integral Transform

The Sumudu integral transform was proposed in [68] as an alternative to the Laplace
transform. It is defined as follows:

S[ f (t)] =
∫ ∞

0

1
u

exp(− t
u
) f (t)dt = f (u). (1)
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If the original function f has an argument t, then the Sumudu image of this function
has the same notation, but its argument is replaced by u. It should be noted that the
Sumudu image of a real-valued function is also a real-valued function. Thus, in subsequent
calculations, unlike using the Laplace or Fourier transform, there is no need to resort to
complex numbers. In addition, the calculation of electromagnetic signals through the
Fourier transform at late times after turning on the source becomes very expensive due to
the need to integrate rapidly oscillating and weakly decaying integrands [69]. So, when
finding the Sumudu image of a function, computational costs and random access memory
requirements are reduced.

Important properties of the Sumudu transform include preserving the dimension of a
function: measurement units of the function and its image are the same [68]. The Sumudu
transform has the following properties [68]:

S[a f (t) + bg(t)] = a f (u) + bg(u),

S[ f (ct)] = f (cu),

S[a + bt] = a + bu,

where a, b and c are some constants (any real numbers).
In order to avoid ambiguity, further on we use the superscript to denote the number of

the vector element gi, and raising a number to a power is designated as (a)p. The Sumudu
image of a power function has the form:

S[(t)α−1] = Γ(α)(u)α−1, α > 0,

where Γ(α) is the gamma function [70]. Knowing the expansion of an analytic function into
a power series, one can easily obtain a power series representation of its Sumudu image,
and vice versa:

f (t) = ∑∞
n=0 an(t)n,

S[ f (t)] = ∑∞
n=0 n!an(u)n.

Here n! is the factorial of an integer n. The Sumudu transforms for a derivative and
integral are as follows [68]:

S[
d f (t)

dt
] =

f (u)− f (0)
u

,

S[
∫ τ

0
f (τ)dτ] = u f (u).

The convolution of two functions has the Sumudu image [68]:

S[( f ∗ g)(t)] = u f (u)g(u).

The following limit relations apply:

lim
t→∞

f (t) = lim
u→∞

f (u),

lim
t→0

f (t) = lim
u→0

f (u). (2)

We also note that:
S[δ(t)] =

1
u

,

where δ(t) is the delta function.
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By substituting the variable in (1), one can get the relationship between the Sumudu
(S) and Laplace (L) transforms [71,72]:

L[ f (t)] = f (s) =
S[ f (t)](1/s)

s
, (3)

S[ f (t)] = f (u) =
L[ f (t)](1/u)

u
, (4)

where L[ f (t)] = f (s) is the Laplace transform. Therefore, the described technique for
numerically calculating the inverse Sumudu transform can be applied to invert a real-
valued Laplace transform. Also, knowing the interrelation between the two transforms, it
is feasible to acquire the Sumudu image for functions with known Laplace images.

A disadvantage of the Sumudu transform is the lack of an explicit formula for obtaining
its inverse transformation. Without resorting to the Sumudu transform properties and tables
with images for some functions, the transformation can be conducted through solving the
corresponding first-kind Fredholm integral equation. This is an ill-posed problem: when
modeling electromagnetic responses, it requires a special regularizing operator taking
into consideration the specifics of the measured signal [66]. In consequence of the ill-
conditioning of the first-kind Fredholm integral equation, getting the inverse Sumudu
transform by this approach requires a substantially lower error of the corresponding
Sumudu image than the admissible error in the resulting function. When the Sumudu
image is a solution to a boundary-value problem derived with a numerical method, the
achievement of a reasonably small error in the solution may result in tangible computing
efforts. Accordingly, what is needed is to devise a computation technique for the inverse
Sumudu transform, less sensitive to a noise level in the Sumudu image. This would enable
reducing the demands for the allowable error of the Sumudu image and, as a result, could
save computational resources.

An effective tool for tackling this problem is the application of advanced machine
learning technologies, namely artificial neural networks (ANN). The innate characteristics
of ANNs are the capacity for generalizing complex nonlinear dependencies, and resistance
to noise in input data. ANN-based algorithms are being actively employed in multiple
areas, which includes resistivity prospecting [73,74].

2.2. Modeling TEM Signals through Sumudu Transform

Let us consider TEM sounding of the Earth’s interior. The source will be a current
pulse in a transmitter circular loop of radius r. The sounding result is a time sweep of
the electromotive force (EMF) induced in a circular receiver loop of the same radius at a
distance d from the current source: d is the distance between the centers of the transmitter
and receiver loop, with d > 2r. To obtain a mathematical model that describes the sounding
process, we apply Maxwell’s system of equations. As the boundary of the computational
domain Ω, we use the surface ∂Ω. The latter is so far from the transmitter loop that the elec-
tromagnetic field values on it can be assumed to be zero. The source of the electromagnetic
field is a current pulse described by the Heaviside step function χ(t):

J0(t) = J0(1 − χ(t)),

χ(t) =
{

0, t < 0
1, t ≥ 0

,

where J0 is the current density in the transmitter loop. Therefore, the initial electromagnetic
field values are equal to zero.

By utilizing the state equations and assuming the relative dielectric permittivity and
magnetic permeability equal to unity, we exclude the electric and magnetic induction
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vectors from Maxwell’s system of equations. As a result, we formulate the mathemati-
cal model:

rotE(t) = −µ0
∂H(t)

∂t
, (5)

rotH(t) = ε0
∂E(t)

∂t
+ σE(t) + J0(t), (6)

divε0E(t) = ρ(t), (7)

divµ0H(t) = 0, (8)

E(t)|t=0 = 0, (9)

H(t)|t=0 = 0, (10)

E(t)× n|∂Ω = 0, (11)

H(t)× n|∂Ω = 0, (12)

where E(t) is the electric field strength, H(t) is the magnetic field strength, J0(t) is the external
electric current density, σ is the specific electrical conductivity, ε0 is the dielectric permittivity
and µ0 is the magnetic permeability of vacuum, ρ(t) is the external charge density.

Via the Sumudu time transform, we reduce the mathematical model (5)–(12) to
the form:

rotE(u) = −µ0

u
H(u), (13)

rotH(u) =
ε0

u
E(u) + σE(u) + J0(u), (14)

divε0E(u) = ρ(u), (15)

divµ0H(u) = 0, (16)

E(u)× n|∂Ω = 0, (17)

H(u)× n|∂Ω = 0. (18)

Excluding the magnetic field strength from Equations (13)–(18) and assuming ρ(u) = 0,
we obtain the following boundary-value problem in regard to the Sumudu image of the
electric field strength vector:

rot
1

µ0
rotE(u) +

(σ

u
+

ε0

u2

)
E(u) = − 1

u
J0(u), (19)

E(u)× n|∂Ω = 0. (20)

The relevant boundary-value problem in the time domain has the form:

rot
1

µ0
rotE(t) + σ

∂E(t)
∂t

+ ε0
∂2E(t)

∂t2 = −∂J0(t)
∂t

, (21)

E(t)|t=0 = 0, (22)

∂E(t)
∂t

∣∣∣∣
t=0

= 0, (23)

E(t)× n|∂Ω = 0. (24)

We assume the current density in the loop J0(u) to be constant. Then, the right-hand
side of (19) will correspond (up to sign) to the Sumudu image of the δ-function, which is
equivalent to the stepwise switching on of the current at time t = 0. Thus, the solution
to the boundary-value problem (19)–(20) will be the Sumudu image of the fundamental
solution to problem (21)–(24) in time. By means of this solution and the convolution
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operation, one may calculate the electric field strength for an external current pulse with
any time dependence.

Depending on how the electrical conductivity depends on spatial coordinates, there
is an appropriate method for solving the boundary-value problem (19)–(20) in partial
derivatives—for instance, the vector finite element method [75]. Eventually, we find the
Sumudu image of the electric field strength; integrating it along the contour of the receiver
loop, we can acquire the Sumudu image of the EMF induced in this loop. To obtain the EMF
as function of time, it is necessary to carry out the inverse Sumudu transformation. Since the
resulting field E(u) is the fundamental solution, we assume the EMF to differ significantly
from zero only at 0 ≤ t ≤ b. In this case, to perform the inverse Sumudu transformation
with respect to the EMF image, the following integral equation is to be solved:

∼
E(t) =

∫ ∞

0

1
u

exp(− t
u
)
∼
E(u)dt,

where
∼
E(t) is the EMF induced in the receiver loop,

∼
E(u) is its Sumudu image.

2.3. Numerical Inverse Sumudu Transform

Let us draw attention to the first-type Fredholm integral equation:

∫ b

0
K(u, t) f (t)dt = g(u), (25)

where K(u, t) = 1
u exp(− t

u ).
We assume the function g(u) to be represented as a set of its values gi (possibly

distorted by some noise) at points u0, u1, . . ., un belonging to the segment [0, b]:

gi = g(ui), 0 ≤ u0 < u1 < . . . < un ≤ b.

In this case, we replace Equation (25) with the following system of equations:

∫ b

0
K(ui, t) f (t)dt = gi, i = 0, 1, . . ., n. (26)

The function f (t) is approximated with its values f i at points ti = ui:

f i = f (ti), 0 ≤ t0 < t1 < . . . < tn ≤ b.

The integrals in the system of Equation (26) are approximated through the quadrature
formula of the trapezoidal method with nodes ti:

∫ b

0
K(ui, t) f (t)dt = ∑j=n−1

j=0
K(ui, tj+1) f (tj+1) + K(ui, tj) f (tj)

2
(tj+1 − tj), i = 0, 1, . . ., n.

In this manner, from solving the integral Equation (25) we move on to solving a system
of linear algebraic equations by the collocation method based on quadrature formulas [76]:

∑j=n−1
j=0

K(ui, tj+1) f j+1 + K(ui, tj) f j

2
(tj+1 − tj) = gii = 0, 1, . . ., n, (27)

which for brevity is denoted as:
K f = g. (28)

System (27) is ill-conditioned, since it is a discrete analogue of the first-kind integral
Equation (25)—ill-conditioned one [77]. In this case, the vector elements on the right side of
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g may contain some noise of varying intensity. To solve the system (28), we use Tikhonov’s
regularization method [77] and proceed to the following minimization problem:

min
f
∥g − K f ∥2 + α∥R f ∥2, (29)

where α is the regularization parameter, R is the regularizing non-singular matrix. The
solution to problem (29) has the form:

fa = (KTK + αRT R)
−1

KT g.

The specific type of the matrix R depends on the properties of the kernel K(u, t) and on
the right-hand side g(u) of integral Equation (25), and, as a consequence, on the properties
of the proposed solution f (t). This choice often seems to be heuristic. One common type of
the matrix R is the identity matrix. The choice of a specific type of R, in the context of the
transient electromagnetic sounding problem being solved, is discussed below.

In order to select the value of the parameter α, we use the quasi-optimal criterion [77,78],
for which purpose we introduce the function:

ψ(α) =

∥∥∥∥α
d fa

dα

∥∥∥∥2
. (30)

As a quasi-optimal value of α, we choose the smallest of the values α > 0 that ensure
the local minimum ψ(α). According to [77], the following relationship holds:

α
d fa

dα
=

(
KTK + αRT R

)−1
KT(g − K fa) = fa −

(
KTK + αRT R

)−1
KTK fa.

We present this expression as the difference of two vectors:

α
d fa

dα
= fα −

∼
f α, (31)

where
∼
f α =

(
KTK + αRT R

)−1KTK fa.
We introduce the matrix Pα:

Pα =
(

KTK + αRT R
)−1

KT . (32)

Then the difference on the right side of (31) can be represented as follows:

fα −
∼
f α = Pαg − PαK fα = Pα(g − K fα).

Let us give consideration to the simple iteration method with the preconditioning matrix
Pα to solve the system of Equation (28). The first two iterations of the method look like:

fα = Pαg,

f ′α = fα + Pα(g − K fα). (33)

The second term in (33) is a refinement of the approximate solution fα obtained at
the first iteration. Consequently, the difference on the right side of (31) can be interpreted
as an addition to the approximate solution fα in the simple iteration method with the
preconditioning matrix Pα. Based on this and the quasi-optimality criterion, we deduce the
choice of the parameter α to be carried out in such a way that the preconditioning matrix
Pα provides a small correction to the first approximation fα in the simple iteration method;
this correction might be omitted without significantly deteriorating the solution accuracy.
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2.4. Features of Numerical Inverse Sumudu Transform for TEM Signals

As consistent with the initial conditions (22) and (23), at t = 0 the EMF induced in the
receiver loop is equal to zero. With allowance for this and the limiting property (2), we set
the elements of the vectors f and g with index 0 equal to zero, since they correspond to
the values of the EMF at t = 0 and the Sumudu images of the EMF at u = 0. Based on this,
from system (27) we exclude the vector element of unknowns f 0 and the first equation. As
a result, we acquire a modified system:

K(ui, t1)

2
t1 + ∑j=n−1

j=1
K(ui, tj+1) f j+1 + K(ui, tj) f j

2
(tj+1 − tj) = gji = 1, 2, . . ., n. (34)

Further on, by the system of equations K f = g we mean the modified system (34).
As far as the integration region [0, b] contains drastically different-scale t values, the ti and

ui points used to discretize the integral Equation (25) are specified using the following relation:

ti = ui = ti(h)i−1, i = 1, 2, . . .n, (35)

where

h =

(
b
t1

) 1
n−1

.

The t1 and b values are selected depending on the expected properties of the time-
dependent EMF induced in the receiver loop.

As described in [79], the absolute values of the EMF induced in the receiver loop
can differ by more than 6 orders of magnitude over time. Accordingly, different elements
of the fα vector will differ just as much. Therefore, choosing the identity matrix as the
regularizing R does not provide a satisfactory result. This is because the elements of the fα

vector, corresponding to the values of the sought-for function at late times after turning
on the current in the source, do not have a significant effect when calculating the second
term in (29) compared to those associated with the function values at early times. In order
for the second term in (29) to have sufficient sensitivity to all elements of the fα vector, the
diagonal matrix Rq is to be used as the matrix R, the diagonal elements being specified in
the following manner:

[R]i,i = (ti)q, i = 1, 2, . . ., n,

where q is a parameter. An increase in the parameter q leads to a sensitivity growth of the
second term in (29) to the values of the sought-for function at late times. Along with this,
the sensitivity to the function values at early times deteriorates. Determining the value of q
requires keeping the sensitivity balance at all times.

Thus, an approximate inverse transformation for the Sumudu image of the EMF can
be performed through the following expression:

fα,q =
(

KTK + αRT
q Rq

)−1
KT g. (36)

To specify a pair of the parameters α and q, we draw on the idea of choosing the
optimal (in some sense) preconditioning matrix in the simple iteration method. In this case,
the preconditioning matrix will depend on as many as two parameters—α and q:

Pα,q =
(

KTK + αRT
q Rq

)−1
KT .

When inverting the Sumudu image of the EMF, the direct use of the quasi-optimal
criterion for choosing the parameter α also encounters difficulties. They are associated
with various scales of the elements of the vector fα at different times. The elements of the
difference vector (31) are highly different-scale, with the sensitivity of the vector difference
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norm to the late-time elements being extremely low. To overcome this deficiency, we scale
the elements of the difference vector from (31). We define the following function:

φ(α, q) = ∑n
i=1

 f i
α,q −

∼
f

i

α,q

| f i
α,q|+ |

∼
f

i

α,q|


2

,

where
fα,q = Pα,qg,

∼
f α,q = Pα,qK fα,q.

As the optimal pair of the parameters α∗ and q∗ we choose α > 0 and q ≥ 0, which
provide a minimum of the function φ(α, q). We search for an approximate solution to the
minimization problem by completely enumerating the values (αi, qj) from the set where
elements are given as:

(αi, qj) = (α0(p)i, q0 + hj), i = 0, 1, . . ., kα, j = 0, 1, . . ., kq.

Note that the above-proposed technique for the approximate solution to the integral
Equation (25) can be applied for calculating the inverse Laplace transform of a real function.
This function can be either known or obtained through (3) from some Sumudu image. For
the inverse Laplace transform to be performed, the Sumudu kernel K(u, t) = 1

u exp(− t
u )

is to be replaced with the Laplace kernel K(s, t) = exp(− st), and the collocation points
ui—with si according to the formula:

si =
1

un−i+1 , i = 1, 2, . . ., n.

In sum, the inverse Sumudu transformation can be conducted in two ways. The first
one is to utilize the above-proposed method directly to the Sumudu image. The second is
to apply this method to invert the Laplace image obtained using (3). The computational
properties of these two approaches depend on the different spectral properties of the linear
system matrices (34) that approximate the kernels of the Sumudu and Laplace transforms.

2.5. Computational Experiment

The use of the Sumudu transform to model TEM signals is illustrated in the following
example. The modeling area is divided by a horizontal plane into two half-spaces that are
homogeneous in physical properties: the upper half-space is non-conductive air; the lower
half-space is a conductive earth. There are circular transmitter and receiver loops located
on the Earth’s surface. The current is switched off at time t = 0. It can be shown that the
electric field strength obtained under similar conditions is the fundamental solution in time
to problem (21)–(25). Accordingly, its Sumudu image in time satisfies (19) and (20). If the
radii of the loops are sufficiently small compared to the distance between their centers,
then the transmitter loop can be replaced with a vertical magnetic dipole; the EMF in the
receiver coil can be taken to be proportional to the time derivative of the z-component of
the magnetic field strength ∂Hz(t)

∂t at the center of the receiver loop.

For the Laplace image of the function ∂Hz(t)
∂t there exists an analytic expression [79]:

L[
∂Hz(t)

∂t
] =

M
2πµ0σr5 (9s−1 − (9s−1 + 9as−1/2 + 4a2 + a3s1/2)exp(− as1/2)), (37)

where a =
√

µ0σr, σ is the specific electrical conductivity of the lower half-space, µ0 is the
magnetic permeability of vacuum, r is the distance between the centers of the loops, M is
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the magnetic dipole moment. Through the connection between the Laplace and Sumudu
transforms (4), we write the Sumudu image of the function ∂Hz(t)

∂t as follows:

S[
∂Hz(t)

∂t
] =

M
2πµ0σr5u

(9u − (9u + 9au1/2 + 4a2 + a3u−1/2)exp(− au−1/2)). (38)

Having performed the analytic inverse Laplace transformation for (37), we obtain the
analytic expression for ∂Hz(t)

∂t [79]:

∂Hz(t)
∂t

=
−M

2πµ0σr5u
(9erf(θr)− 2rπ−1/2(9 + 6θ2r2 + 4θ4r4)exp(− θ2r2)), (39)

where θ =
√

µ0σ/4/t, erf(t) is the error function:

erf(t) =
2√
π

∫ t

0
exp(− τ2)dτ.

Figure 1 gives the function ∂Hz(t)
∂t and its Sumudu image (38) at r = 100 m, σ = 0.01 S/m.

By the example of ∂Hz(t)
∂t and its Sumudu image, we examine the features of performing the

inverse Sumudu transformation for the TEM sounding problem via a numerical solution of
the first-type integral Equation (25). The function ∂Hz(t)

∂t has characteristic properties for the
EMF induced in the receiver loop (Figure 1). At small times the function does not change
noticeably, but at later times it begins to vary in proportion to t−2.5.
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Let us focus on the capability of the proposed computational method for the inverse
Sumudu transformation of function (38). We define a set of points ti and ui through (35). To
do this, one is to set the values of the parameters n, b and t1. As computational experiments
have shown, a fairly accurate result is acquired if the following heuristic rule is employed
to set the values of b and t1: t1 = 10−6b, where b is the point on the time axis for which the
relation holds:

max
τ

∣∣∣∣∂Hz(τ)

∂τ

∣∣∣∣ = 10−8
∣∣∣∣∂Hz(t)

∂t

∣∣∣∣.
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Finding the value of b requires knowing the function ∂Hz(t)
∂t in advance. An estimate

of this function can be made via the method proposed in the presented research, by setting
the value of the parameter b a priori large. The value of the parameter n is further chosen to
be equal to 100 in all cases. Having the set of points ti and ui, we generate the matrix and
the right-side vector of linear system (34). To solve this system, we resort to Tikhonov’s
regularization method (36). We find the parameters α and q by means of the proposed
modification of the quasi-optimal criterion in the following range:

(α, q) ∈ [1, 105]× [0, 3].

The right-side vector of linear system (28) may be distorted by noise. This may
happen when obtaining the elements of this vector from the solution to problem (19)–(20),
which was found by grid methods (finite difference, finite element, etc.) or some other
approximate methods. To simulate this effect, we modify the elements of the right-side
vector g0 without noise:

gi
δ = gi

0(1 + δ(−1)i), i = 1, 2, . . ., n,

where δ is the assigned relative noise level. The noise level of a particular element of
the right-side vector depends on the value of the element itself. This is because different
elements of the vector have different scales. As a consequence, additive noise will greatly
distort individual elements of the vector with little effect on others.

We introduce the relative error function:

ν(t) =
∣∣∣∣ fδ(t)− f (t)

f (t)

∣∣∣∣,
where f (t) is the exact function, fδ(t) is an approximation of the function f (t).

Now, move on to the influence of the noise level δ in the Sumudu image (38) on
the relative error of inverting the Sumudu image with the proposed method. Figure 2
illustrates the dependence of the relative error ν(t) on time and on noise level for TEM
signals at a distance between the loops of 100 m and the lower half-space conductivity of
0.1 S/m. As previously noted, the proposed method for conducting the inverse Sumudu
transformation, with minor modifications, can be applied to invert a real-valued Laplace
image. Let us use this fact to obtain an approximation of function (39) from the Laplace
image (37). Figure 3 shows the relative errors ν(t) for the noise level δ = 0 and δ = 10−2 in
the Laplace image (37) at a distance between the loops of 100 m and conductivity of the
lower half-space of 0.1 S/m.

As it appears from the figures, the relative error in calculating the inverse Sumudu and
Laplace transformations through the proposed method directly depends on the noise level
in the original image. The lower the noise level, the smaller the error of the reconstructed
function. Moreover, if the noise level is not very high, then more accurate results are
obtained by inverting the Laplace transform. However, at a sufficiently high noise level,
inverting the Laplace transform does not allow achieving a satisfactory result. The high
level of relative error in the reconstructed functions at early times is associated with
oscillations of these functions around the exact value. In order to solve the inverse problem
of TEM sounding, the EMF values are required at later times—at which the level of the
relative error (depending on the noise level) takes acceptable values.

Thus, to calculate the inverse Sumudu transformation by the proposed method at low
noise levels in the Sumudu image, one should use the connection between the images of
the Laplace and Sumudu transforms, obtain the Laplace image and invert it. In contrast, at
sufficiently high noise levels it is necessary to apply the proposed method directly to invert
the Sumudu transform.
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2.6. Neural Network Algorithm Development

A neural network algorithm is created with the help of supervised learning. During the
first stage, we acquire a data set with training examples, each representing a pair “function
f (t)”—“Sumudu image g(u) = S[ f (t)]”. This data set has been generated drawing on
mathematical modeling for characteristic geoelectric situations and sounding systems. The
functions and their images have the form of value vectors at predetermined points ti = ui.

The acquired data pairs are then normalized by multiplying by 1
max(g(u)) . Such a

transformation ensures the exclusion of the sounding system parameters: current strength,
loop radii, number of winding turns, etc.

The training set is extended by data augmentation: extra data are created from existing
ones by way of simple transformations not requiring substantial computational power.
Augmentation increases both data volume and diversity. As far as this technique facilitates
recognizing data patterns, it is effective for reducing overfitting of machine learning mod-
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els [80]. Owing to the linearity property of the Sumudu transform, from two data pairs
(g1, f1), (g2, f2) we can get a third one as their linear combination:

g3 = a·g1 + b·g2,

f3 = a· f 1 + b· f 2,

where a and b are constants. The resulting data have to be scaled in the same manner.
In order for the stability of the algorithm to increase, we add normally distributed

noise to the input data g(u). The root-mean-square deviation of the noise holds proportion
to the signal level and is equal to 5%, which matches with the expected measurement
accuracy of the sounding system.

In TEM exploration, the relative change in the signal appears to be more important
than its absolute value. This is why we turn to training data transformation: it distorts
input and output data spaces for more efficient ANN training. To recapture the required
signal dimension, post-processing is applied to the ANN calculation result.

To control the neural network learning (to deter overfitting), the resulting data set
(pairs “Sumudu image g(u)”—“function f (t)”) is separated into two subsamples: 75%
directly for training (“training data”) and 25% for control (“test data”).

The inverse Sumudu transform algorithm is accomplished on the basis of ANNs—a
class of universally approximating mathematical models [81,82]. In a generic form, an
ANN is an arbitrary function of input arguments and internal parameters fitted during the
learning process:

F(g, W) = { f1(g, W), . . . , fn(g, W)},

where g = {g1, . . . , gn} are the input arguments represented by the Sumudu-image vector
values; W are the internal parameters of the ANN, which are searched while training;
f1, . . . , fn is the set of functions approximating the vector of the inverse Sumudu transform;
n is the number of elements in the input and output vectors.

So, the ANN consisting of a combination of linear and nonlinear operations approxi-
mates the inverse Sumudu transform by converting the Sumudu images of the functions
into their original form. At each training iteration, the neural network result is checked
against the known mathematical modeling result.

The architecture of the developed ANN (Figure 4) is a multilayer perceptron (fully
connected neural network). First, there is an input layer with a vector of 100 elements
(Sumudu image of the function). Also, there are N hidden layers, each with M neurons
accompanied by the nonlinear operation ReLu (“rectified linear unit”). And, finally, the
output layer where the vector is finally formed—the result of the inverse Sumudu transform
(also of 100 elements). The ultimate version of the ANN architecture encompasses 4 hidden
layers of 64 neurons.
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Figure 4. Schematic of the ANN architecture for approximating the inverse Sumudu transform. N is
the number of the hidden ANN layers; M is the number of neurons in the hidden ANN layers.
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The weight coefficients of neurons in the ANN layers are initially set at random
fashion and then fitted in the process of training. In the present case, estimating the
optimal parameters of the ANN is a supervised learning task, which is addressed with
the backpropagation algorithm. The ANN training is fulfilled in mini-batch mode with
the Adam algorithm—a modification of stochastic gradient descent with the adaptive first-
order and second-order momentum estimates [83]. The cost function minimized during
the training is the mean absolute error (MAE). This function, coupled with the technique of
preprocessing data from the training set enables minimizing the relative deviation between
the ANN calculation result and true sounding curves. For the learning efficiency to improve,
we practice a sequential decrease in the nominal step of gradient descent (learning rate)
depending on its iteration number.

The architecture of the ANN is finally selected subsequent to the results of numerical
experiments. The total training time is 40 min (the number of epochs is 2000, Figure 5). The
algorithm is trained via parallel computing on the GPU RTX 2080 graphics accelerator.
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2.7. Neural Network Algorithm: Results and Discusion

After obtaining the optimal values of the weight coefficients, the trained ANN can
be used for the inverse Sumudu transform. The neural network algorithm is tested on an
additional set of data that are not involved in the ANN training (Figure 6).

Near the zero transition point of the signal to be reconstructed (characteristic minimum
in the middle of the time axis), the relative error occasionally increases as opposed to the
other time intervals. This is because the absolute value of the first logarithmic derivative of
the given function seems to exceed those at the other time intervals.

Table 1 gives the results of evaluating the algorithmic performance on the training and
test data.

Table 1. Results of evaluating the algorithmic performance.

Cost Function Result (Training Data) Result (Test Data)

Mean absolute error 1.6·10−3 1.8·10−3

Mean squared error 1.4·10−5 2.0·10−5
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As is seen from the data analyzed, our neural network algorithm allows for the inverse
Sumudu transform with high accuracy, reasonably good for tackling practical issues. It
is significant that when solving first-kind integral equations by traditional methods, the
characteristic error in the resulting solution is found to be significantly higher owing to the
ill-conditioning [77].

Performance assessment for the algorithm concerned is performed on the central
processor CPU Intel i7-8700 (scrutinizing the time needed for the inverse transformation of
one Sumudu image). The computing time of the neural network algorithm averaged over
ten thousand runs is 2.9·10−2 s, whereas that of the numerical algorithm [66] equals to 9.3 s.
The neural network calculations can also be made in batch mode, making possible efficient
parallel computations on multi-processor devices.

To recap, the developed high-performance neural network algorithm exhibits a higher
operation speed (320 times faster than the numerical algorithm) with lower resource
intensity. In view of the attained transform accuracy, the algorithm is to be implemented
into software for modeling TEM signals.

3. Numerical Simulation of TEM Permafrost Monitoring
3.1. Cross-Borehole Measurement System

The measurement system for TEM monitoring of the cryolithozone consists of sets of
electromagnetic field transmitters and receivers mounted on non-conductive housings and
placed in two boreholes (one with transmitters, the other with receivers), Figure 7. The
boreholes are situated at the minimum possible distance (10–100 m) from each other so that,
on one hand, the sensitivity of the measured signals to the target (thawed) object is highest
and, on the other hand, this object is located between the boreholes. Typical borehole
depth—up to 30 m. The signal transmitters and receivers are induction coils (antennas)
oriented along the axes of a rectangular coordinate system. During the monitoring process,
one analyzes the time dependences of the EMF or magnetic field components.
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The distinctive features and advantages of the proposed TEM monitoring system are as
follows. Firstly, the depth of investigation is not inferior to electrical tomography and is sig-
nificantly greater than that of ground penetrating radar. Secondly, there is no need to ground
the current electrodes, which can pose significant difficulties for the electrical tomography
method in the vicinity of industrial facilities. Thirdly, in TEM sounding, measurements occur
over a wide time range, which provides a significant amount of geophysical information
about the Earth’s interior. Fourthly, the proposed system of TEM cross-borehole explo-
ration is stationary, which reduces the cost of observation system deployment before each
subsequent measurement. In addition, in TEM surveys, compared to frequency sounding,
there is no need to apply correction for the direct field. The mentioned practical advantages
predetermine the prospects of TEM sounding with regard to permafrost monitoring.

To analyze the sensitivity of the signals to geoelectric parameters of the earth, we utilize
logarithmic derivatives of the signals. Such derivatives show the relative rate of change in
the signal when some parameter is varied. With their help, the relative error in assessing
the parameter for a given measurement error is estimated in a linear approximation:

δ =
∆ f∣∣∣ df

dp (p0)· p0

∣∣∣ ·100%,

where ∆ f = | f |· f r + f a is the total absolute measurement error; f is the TEM signal; f r and
f a are its relative and absolute errors; p0 is the value of the estimated parameter, e.g., the
depth of the boundary between thawed and frozen rocks.

The values of the relative and absolute measurement errors are the following: f r = 0.02,
f a = 10 nV, at this the product of the moments of the transmitter and receiver coils is
100 A·m4.

To study the dependence of the measured signals on the inter-borehole distance, we
have conducted numerical simulation of the error in tracking the freezing depth of the
upper part of the section (Figure 8). The observation system comprises the electromagnetic
field transmitter and receiver located in two boreholes at a fixed depth of 1.5 m, at a
distance of 10, 30 and 100 m from each other. Color in Figure 8 indicates the calculated
errors in tracing the boundary between thawed and frozen rocks as function of time and
the boundary’s vertical depth for different field components: ZZ, YY, XX and XZ (the letters
indicate the direction of the magnetic moment of the transmitter and receiver coils along
the coordinate axes respectively). The position of the boundary varies from 0 to 2 m.
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Figure 8. Errors in tracking the boundary between thawed and frozen rocks for the ZZ, YY, XX
and XZ field components as function of the freezing depth and measurement time. Transmitter and
receiver depth is fixed at 1.5 m; the depth of the boundary varies from 0 to 2 m.

The dynamic pattern in the error depending on the transmitter-receiver distance has
been established. For instance, at the distance L = 10 m the smallest error is observed
within the entire depth of the section, not exceeding the permissible limit (up to 10%). Near
the transmitter at a depth of about 1.5 m, the error for the YY and ZZ components does
not exceed 1%. The error gradually increases to 100% and higher with the growing inter-
borehole distance and growing recording time. For L = 30 m, the error differs slightly from
the case of L = 10 m; a good result is evidenced for all the measured field components. As L
increases to 100 m, there is a noticeable narrowing of the range of permissible measurement
errors. This being the case, for the ZZ and YY components below the source depth (1.5 m)
the error rises by an order of magnitude; for the XX and XZ components, the range of
adequate error values becomes too narrow for a rigorous analysis of the EMF signals.
Nevertheless, for the components ZZ and YY, even at such a large distance L = 100 m, it is
possible to trace the thawing boundary.

Hence, the scrutinized error varies depending on both the distance between the
transmitter and receiver, and on the field component (ZZ, YY, XX or XZ). The smallest
measurement error is observed when applying the ZZ and YY components, which leads to
the conclusion that it is for these components that the boundary of the thawing layer will
be traced most reliably.

3.2. Simulation Results on Monitoring Real Objects
3.2.1. Railway in Yakutia

A realistic geoelectric model of the railway in Yakutia (Figure 9) includes host per-
mafrost rocks with resistivity ρ0 = 200 ohm·m (lower half-space) and air with resistivity
ρair = 106 ohm·m (upper half-space). On the Earth’s surface there are metal rails of in-
finite length (the optimal length is chosen for calculations) with a height of 0.2 m and a
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width of 0.1 m; the distance between the centers of the rails is 1.5 m; the metal resistivity
ρmet = 0.01 ohm·m. Directly under the rails, there is an open talik formed in the shape of
a rectangular parallelepiped with resistivity ρtal = 50 ohm·m, its height being 5 m and
width 10 m. In the frozen host rocks, the polarization parameters are taken into account;
resistivity in the frequency domain is described by Pelton’s formula [84]:

ρ(ω) = ρ0

(
1 − m

(
1 − 1

1 + (iωτ)c

))
,

where ρ0 is the direct current resistivity, m is the polarizability, c is the exponent, and τ is
the relaxation time. For the simulation we take: ρ0 = 200 ohm·m, m = 0.3, τ = 10−4 s, c = 1.
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Figure 9. Geoelectric model of the railway (gray) in Yakutia with the open talik (coral) within
permafrost (blue) and TEM cross-borehole exploration system (green) T—transmitter, R—receiver.
(a) Sectional view; (b) top view.

The cross-borehole distance is 20 m, the depth of two boreholes is 10 m. The transmit-
ters and receivers are located at equal depths in the two boreholes—from 1 m to 10 m with
0.5 m step. The boreholes are centrally arranged relative to the open talik.

The TEM signals are computed in the reference medium of 200 ohm·m with the rails:
without the talik and with it (Figure 10).
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3.2.2. Underground Gas Transmission Pipeline on the Gyda Peninsula

A realistic geoelectric model of the underground gas transmission pipeline on the
Gyda Peninsula (Figure 11) comprises permafrost rocks with resistivity ρ0 = 500 ohm·m
and air above the Earth’s surface with resistivity ρair = 106 ohm·m. At a depth of up to
1 m below the surface there is a seasonally thawed layer with resistivity ρstl = 50 ohm·m.
Then, there is a two-meter-thick layer of frozen rock (ρ0 = 500 ohm·m), after which lies a
gas pipeline of infinite length (the optimal length is chosen for calculations) with an outer
diameter of 1.02 m and metal wall thickness of 0.032 m; metal resistivity is 0.01 ohm·m.
The resistivity of the gas in the pipeline ρgas = 106 ohm·m. Further in depth, 2 m below the
gas pipeline, there is a closed talik formed in the shape of a rectangular parallelepiped: a
resistivity of 10 ohm·m and dimensions of 2 m × 4 m × 4 m (where 2 m is the height of the
talik). The talik is located symmetrically relative to the axis of the gas pipeline. Parameters
of the Pelton formula for the frozen host rocks with ρ0 = 500 ohm·m: m = 0.5; τ = 2·10−4 s;
c = 1.
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Figure 11. Geoelectric model of the underground gas transmission pipeline (gray) on the Gyda
Peninsula with the seasonally thawed layer (yellow), closed talik (coral) and system of TEM cross-
borehole exploration (green). T—transmitter, R—receiver. (a) Sectional view; (b) top view.

The inter-borehole distance is 15 m, the depth of the borehole is 10 m. The transmitters
and receivers are at equal depths in the two boreholes—from 1 m to 10 m with a step of
0.5 m. The inter-borehole axis passes through the center of the closed talik, perpendicular
to the gas pipeline.

The TEM signals are simulated in the reference earth of 500 ohm·m with the seasonally
thawed layer and the gas pipeline—without and with the talik (Figure 12).

It follows from the analysis of the results of three-dimensional numerical modeling in
realistic geoelectric models of the railway in Yakutia and the underground gas transmission
pipeline on the Gyda Peninsula that there is good sensitivity of the TEM monitoring
signals to the conductive talik at early and middle times of 10−5–5·10−6 s. In potentially
hazardous areas, it is advisable to place the monitoring boreholes at least every 5 m in order
to promptly detect changes in geocryological properties in the vicinity of a target object.
Visual analysis of the TEM signals does not provide an insight into the size and location of
a thawed zone, for which reason data inversion has to be used to determine its parameters.
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4. Conclusions

A novel technique of cross-borehole transient electromagnetic permafrost monitoring
is considered. We have created an original algorithm for fast three-dimensional modeling
of TEM signals, which is based on a combination of the vector finite element method,
the Sumudu integral transform and artificial neural networks. In relation to modeling
electromagnetic fields, this approach has been implemented in world practice for the
first time.

The proposed method for calculating the inverse Sumudu transform, focused on
Sumudu images, is applicable to obtain the time dependence of the electromotive force
induced in the receiver loop in a practically significant time range. This enables using
the Sumudu transform to solve practical problems and makes it a direct alternative to
the Laplace and Fourier transforms. Due to the fact that the Sumudu transform allows
calculations in the field of real numbers only, significant savings in computational resources
are achieved when modeling in complex geometric and physical areas.

A disadvantage of the Sumudu transform is the lack of an explicit formula for obtaining
its inverse transformation, which is why we have examined the capability of applying
an artificial neural network to create an inverse Sumudu transform algorithm for the
problem of transient electromagnetic sounding. Through parallel computing on a graphics
accelerator, an artificial neural network with a multilayer perceptron architecture has been
trained. The high accuracy of inverting Sumudu images of functions in the presence of noise
has been demonstrated, which is challenging when solving first-kind integral equations by
conventional methods due to their poor conditionality. We have established the developed
algorithm to be characterized by a higher performance (on average, more than 300 times)
in comparison with the numerical solution, with a significantly lower resource intensity.

Numerical modeling of the TEM signals and their logarithmic derivatives with respect
to geoelectric model parameters has been carried out. A sensitivity analysis of the signals
to the boundary between frozen and thawed rocks shows that the inter-borehole distance
at which an acceptable signal level is maintained can reach 100 m, the smallest error
in tracking the position of the boundary being observed when using the ZZ and YY
components. The formation of a talik is significantly manifested in the recorded transient
electromagnetic responses, which makes it possible to prevent a potential environmental
threat. At the same time, a visual analysis of changes in TEM signals during the monitoring
process does not provide an idea of the size and location of a thawed zone. Therefore,
to evaluate its parameters numerically, data inversion seems to be necessary. The first
experience in creating such an inversion algorithm has already been gained [85]. In the
future, the algorithm will be elaborated: we are intending to consider a wide range of
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realistic geoelectric models and case studies with permafrost under the foundations of civil
and industrial facilities.
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