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Abstract: Extending from a single production line to multiple production lines, a comprehensive
life performance index is proposed for evaluating the quality of lifetime products. The connection
between the comprehensive lifetime performance index and the individual lifetime performance
index is explored. For products with a lifetime following Burr XII distribution for the ith production
line, the maximum likelihood estimation method and the corresponding asymptotic distribution
for all lifetime performance indices are derived. Checking whether the comprehensive lifetime
performance index has achieved the target value is essentially the same as testing whether each
individual lifetime performance index has reached its corresponding target value. A testing procedure
is proposed for a given significance level using the maximum likelihood estimator as the test statistic,
and the power analysis is presented through graphical representations. For the power analysis,
the impacts of sample size, the number of inspection intervals, the removal probability, the level
of significance, and the number of production lines on the test power are analyzed, and the results
show that there is a monotonic relationship between the test power and the above five impact factors.
To illustrate how to apply the proposed testing procedure, we give one practical example with two
production lines to test whether the comprehensive production process is capable.

Keywords: Burr XII distribution; multiple production lines; progressive type I interval censoring;
maximum likelihood estimator; lifetime performance index; testing procedure

MSC: 62P30

1. Introduction

In this investigation, we explore the durations of components across various produc-
tion lines, with a specific focus on the “larger-the-better” characteristic observed in product
lifetimes. Our approach involves employing the lifetime performance index Cy, as intro-
duced by Montgomery [1], with unilateral tolerance. While many process capability indices
(PCIs) commonly assume a normal distribution for quality characteristics, product lifetimes
often follow distributions such as exponential, gamma, Weibull distributions, or Burr XII
distributions (as referenced in Johnson et al. [2], Anderson et al. [3], Meyer [4], Epstein
and Sobel [5]). In this study, we assume a Burr XII distribution for the product lifetimes.
Given the preference for longer product lifetimes, we adopt the lifetime performance index
recommended by Montgomery [1] as the focal point of this paper.

For products produced in a single production line, Tong et al. [6] developed the
uniformly minimum variance unbiased estimator for the index of C;, and established a
hypothesis testing procedure assuming a one-parameter exponential distribution based
on the complete sample. Nevertheless, practical constraints in real-world situations may
hinder experimenters from observing the lifetimes of all tested items. Factors like time
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limitations, financial and material constraints, and difficulties in the experimental pro-
cess can contribute to incomplete data collection, such as progressive censoring of data.
Please refer to Aggarwala [7], Balakrishnan and Aggarwala [8], Wu et al. [9], Sanjel and
Balakrishnan [10], Lee et al. [11], Hanan et al. [12] for the application of the progressive
censoring data. For the step-stress accelerated life-testing data, Lee et al. [13] conducted
the assessment on the lifetime performance index assuming the exponential distribution.
For the progressive type I interval censored sample and one single production line, Wu
et al. [14] proposed a testing procedure for the lifetime of the product following a Burr
XII distribution. Wu et al. [15] studied the experimental design for this testing procedure
to attain the given test power or to find the minimum total experimental cost for Burr
XII products. Wu and Song [16] investigated the optimal sampling design for the testing
procedure for the lifetime performance index to reach the given test power or to minimize
the total experimental cost for Chen products. All these research studies related to the
inferences on the lifetime performance index are based on the manufacturing process with
one single production line. Since many manufacturing processes encompass multiple
production lines, we introduce a comprehensive lifetime performance index for products
manufactured across multiple production lines, where their lifetimes follow the Burr XII
distributions. This research developed a comprehensive lifetime performance index testing
procedure using the maximum likelihood estimator as the test statistic to assess whether
the comprehensive lifetime performance index reaches the target level for the progressive
type I interval censored sample. Regarding the likelihood-based inferences, Guillermo
et al. [17] found the maximum likelihood estimators for the parameters of the asymmetric
beta-skew alpha-power distribution and derived the Fisher information matrix. Seung and
Gareth [18] examined several different maximum likelihood estimators and their asymp-
totic and finite-sample properties for the dynamic panel data models. They focus on the
analysis of the panel data with a large number (N) of cross-sectional units and a small num-
ber (T) of repeated time series observations for each cross-sectional unit. Phaphan et al. [19]
investigated the maximum likelihood estimation of the weighted mixture generalized
gamma distribution.

Our emphasis is on the scenario of progressive type l interval censoring. The censoring
scheme is delineated as follows: Suppose that a life test is initiated at time O for a total of n
products. Let (1, ..., t;) be the inspection time points, where t;, is the termination time
of the experiment. Therefore, we have m inspection intervals in this life test. At the time
point of ¢;, X; failed units are recorded in the ith time interval (;_1, #;), and then R; number
of products are progressively removed from the rest of the products. Continue the same
process until X, failed units are recorded at the time point of ¢,;, and then all the remaining
products are removed and terminated in this experiment. The sample (Xj, ..., X;;) we
collect is the progressive type I interval censored sample under the censoring scheme of
(R1, ..., Rm).

The remaining sections of this paper are organized as follows: Section 2 introduces
the comprehensive lifetime performance index for products manufactured across multiple
production lines, elucidating the relationship between the conforming rate and individual
lifetime performance index. In Section 3.1, we outline the derivation of the maximum
likelihood estimator and the asymptotic distribution for both comprehensive and indi-
vidual lifetime performance indices, considering a progressive type I interval censored
sample under the assumption of a Burr XII distribution. Section 3.2 proposes the testing
procedure for the comprehensive lifetime performance index, encompassing all individual
lifetime performance indices. This section also examines the impact of various parameter
configurations, particularly the number of production lines, on the test power. Section 3.3
includes a numerical example to illustrate the proposed testing procedure. The conclusive
findings are summarized in Section 4.

The contributions of this work are articulated as follows:
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1.  We extend the research on the inferences of the lifetime performance index for single
production lines to multiple production lines for products with lifetimes following a
Burr XII distribution based on the progressive type I interval censored samples.

2. We introduce the comprehensive lifetime performance index and explore the relation-
ship between the comprehensive lifetime performance index and individual lifetime
performance index.

3. We propose a testing procedure to test if the lifetime performance of the manufacturing
process comprised of multiple production lines has reached the desired target value.

4. We analyze the impact of sample size, the number of inspection intervals, the removal
probability, the level of significance, and the number of production lines on the test
power.

5. We give a numerical example with two production lines to illustrate how to apply
the proposed testing procedure to determine whether the comprehensive production
process is capable.

2. The Conforming Rate and the Comprehensive Lifetime Performance Index

Suppose that there are d production lines producing products with lifetimes following
a Burr XII distribution. Suppose that the lifetime U; of products in the ith production line
has a Burr XII distribution a the probability density function (PDF), cumulative distribution
function (CDF), and hazard function (HF), as follows:

*(k,“l’l
fu(u) = Sikju’i™! (1+u5f) 40,860 k>0, (1)
—k;
Fui(u)zl—(1+u‘sf) L u>0,6>0 k>0 @)
and
fU,-(M) o (Sikiué"*l

hui(”) = (3)

1—Fy(u) — 1+us’
where k; is the scale parameter, and ¢; is the shape parameter, i = 1,...,d. The Burr XII
distribution can exhibit a variety of shapes, including skewed, heavy-tailed, and flexible
distributions, depending on the specific values of the scale parameter and shape parameter.
It is commonly used to model data with long tails and diverse failure rates. The larger-the-
better type lifetime performance index C; proposed by Montgomery [1] is given by

CL = , 4)

where u represents the process mean, o is the process standard deviation, and L is the

specified lower specification limit. Consider the transformation of Y; = log(1 + Uf" ), then
we have the new lifetime Y; following a one-parameter exponential distribution with PDF
and CDF as

fri(y) = kiexp{—kiy}, y > 0,k; >0, (5)

Fy.(y) = 1—exp(=kiy),y > 0,k; > 0. (6)

The mean and standard deviation of the new lifetime of products are obtained as

ui = E(Y;) = kl,-' o = Var(Y;) = kl] If Ly, = log(l + Lfi) is the lower specification

limit for Uj, then the lower specification limit for Y; isgivenby L;. The lifetime performance
index for the ith production line is reduced to

1
Cp =B - & 1 kL @)
g; Fx
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P = P(Y;>L

The lifetime performance index Cy; can accurately assess the lifetime performance
of products since the larger the expected value of Y;, the larger the lifetime performance
index Cy;.

The conforming rate P,; for the ith production line is the probability that the lifetime
of an item of product exceeds the lower specification limit (i.e.,U; > Ly;) and it can be
obtained as

P, = P(Ui>Ly) = P(; > L) = e fibi = ! —o<Cp < 1. (8)

From Equation (8), it can be observed that the conforming rate for the ith production
line is an increasing function of the lifetime performance index Cy;. If the experimenter
desired P,; to be greater than 0.9048, then he can obtain the value of Cy; to exceed 0.9 from
Equation (8).

Suppose that the manufacturing process consists of d independent production lines
for products. The overall conforming rate denoted by P, can be obtained as

d d
,i=1,---,d) = exp{—z kl-Ll-} = exp{ Z CLl.—d},—OO<CLl. <1

i=1 i=1
Denote the comprehensive lifetime performance index as Cr, which is satisfying
d
P =expq ), Cp,—dp = exp{Cr—1},—0 < Cr <1 )
i=1

From Equation (9), we can see that Cr is an increasing function of P, and solve this
equation to yield the relationship between the comprehensive lifetime performance index
and individual lifetime performance index as follows

Cr=Y" CL—(d—1),—c0<Cr<1. (10)

Under the reasonable setup of equal individual lifetime performance indices, as

Cy, = ... = C, = Ci,solve Equation (10) to yield the relationship between C, and Cr
as follows Cod 1

CL = TJFT_, e < Cr <. (1)

Suppose that the desired target value for the comprehensive lifetime performance
index is given by Cr = cp; we can obtain the target value for the individual lifetime
performance index Cy as C; = % for each production line by solving Equation (11).
The corresponding values of C;, for a given value of Cr are listed in Table 1 under d = 2,
3,4, 5, 6. For example, the experimenter wants to have the overall conforming rate as
P, =0.9048, then we have the comprehensive lifetime performance index Ct = 0.90. From
Table 1, we can see that for a given value of Ct = 0.90, we can find the desired target value
for each production line as Cj, = 0.9500, 0.9667, 0.9750, 0.9800, and 0.9833 ford =2, 3, 4, 5, 6.
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Table 1. The corresponding values of C;, for a given value of Cr.
CL

Cr\k 2 3 4 5 6

0.525 0.762500 0.841667 0.881250 0.905000 0.920833
0.550 0.775000 0.850000 0.887500 0.910000 0.925000
0.575 0.787500 0.858333 0.893750 0.915000 0.929167
0.600 0.800000 0.866667 0.900000 0.920000 0.933333
0.625 0.812500 0.875000 0.906250 0.925000 0.937500
0.650 0.825000 0.883333 0.912500 0.930000 0.941667
0.675 0.837500 0.891667 0.918750 0.935000 0.945833
0.700 0.850000 0.900000 0.925000 0.940000 0.950000
0.725 0.862500 0.908333 0.931250 0.945000 0.954167
0.750 0.875000 0.916667 0.937500 0.950000 0.958333
0.775 0.887500 0.925000 0.943750 0.955000 0.962500
0.800 0.900000 0.933333 0.950000 0.960000 0.966667
0.825 0.912500 0.941667 0.956250 0.965000 0.970833
0.850 0.925000 0.950000 0.962500 0.970000 0.975000
0.875 0.937500 0.958333 0.968750 0.975000 0.979167
0.900 0.950000 0.966667 0.975000 0.980000 0.983333
0.925 0.962500 0.975000 0.981250 0.985000 0.987500
0.950 0.975000 0.983333 0.987500 0.990000 0.991667
0.975 0.987500 0.991667 0.993750 0.995000 0.995833
1.000 1.000000 1.000000 1.000000 1.000000 1.000000

3. The Algorithmic Testing Procedure for the Comprehensive Lifetime Performance Index

In this section, we derive the maximum likelihood estimator for the individual lifetime
performance index and the comprehensive lifetime performance index in Section 3.1. Their
asymmetric distributions are also derived. Section 3.2 developed the testing procedure
to test if the comprehensive lifetime performance index attains the specified target level
given by the experimenter. The power analysis and all findings are summarized in this
section. Section 3.3 gives one numerical example to illustrate how to apply our proposed
testing procedure.

3.1. Maximum Likelihood Estimator of the Lifetime Performance Indices

We collect the progressive type I interval censored sample Xj, . .., Xj,, at the obser-
vation time points t1,...,t; for the ith production line. The likelihood function for the
censored sample Xji, ..., Xjy, is

L(k) &I/ 1 (F(t) — E(t-1))" (1= (1))

°<I—Ll( , ki(log(1+tfi)log(1+tfil))>x ( ~ki(log(1+£7 )Ry +log(1-+£7 ) X; ))_ (12)
The log-likelihood function is
1+t‘.5f
—kilog( fsz.)
logL(k) « Y 4 Xylog[1—¢ "0 |~k (log(1 n t;.s")Ri]- +log(1 n tji_l)x,-j) : (13)

Take the derivative of the log-likelihood function in Equation (13) with respect to
parameter k; and set it to zero. We can obtain the log-likelihood equation as
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y 1+t‘.5i
1pi - iog(ﬁ)
p o, log 1+té e !
i— 5 5
%logL(k,’) = Z Xij - — - (log(1+tj’)Rij+log(1+t].‘_1)X,-]-) = 0. (14)
l j=1 —kilog(—4—)
1—e i

Solving Equation (14) numerically, we can find the maximum likelihood estimator of
k; denoted by k;.

From Casella and Berger [20], we need to find Fisher’s information number, defined
as Ij(kj) = —E {dzl‘gé(m] in order to obtain the asymptotic variance of the distribution

of the maximum likelihood estimator. Taking the second derivative of the log-likelihood
function in (13) with respect to parameter k;, then we have

d?logL(k;)
K2
145 145 1445
L\ hilest 5{, ) —k;log( 51‘ ) L\ st é )
j 1+, ; j 1+
—log® [ —— |e T la—e T g [ — e i
1+8! 1+th1
m
= 2 ¢ Xj 7
j =1 1+t]l
—kilog( 5 )
1—e i
(15)
1+t.!
L kjlog( (,{ )
logz( ] )e +t] 1
1+t 1
= Z] =1 Xl] 5{
1+t¢,
_ki]Og( Ji )
1—e 1+t]-_1
It is observed that
j—1
Xij|Xi(j—l)’ ..., Xj1 ~ Binomial [ n — IZ X1, 9ij | (16)
=1
where
- ( 1+t/‘ )
. —kilo :
F(t;) = F(tjy) os( -
qij = =1-e¢ -1 =1, m
1-F(t; )
Hence, we have
j—1
E(Xij\Xi(j—n/ o, X, Rijoa, o /Ril) ==nq; [[ O=p)A—qa), j = 1,...,m 17)
I=1

Using Equation (17), the Fisher’s information becomes
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j—1

1 2
m = (1= q;)log” (1 — q) lo 5 =
Li(k) = —E(Z X 2 - pz log”(1 — ay) T a=pa—an (18)
j =1

=1 Tij iji=1 i

N -1/, A
The asymptotic variance is denoted as V; (ki) =1 (ki). Then we have k; :d>
1 n—o0
NG (0)
In the special case, we consider the case of equal interval lengths as t; —t; 1 = tand

—k; log(ilﬂm )
qij = 1—e 1+((- ,j = 1,---,m. Wealso considered p;=p,j = 1,---,m. The

Equation (14) can be simplified as

log(%)exp{—kﬂog(lf(m'&_)}

m LH(G=DH)T 1+((-DH"

Y| — — (tog (1+(jH)* ) Ryj +1og (14+((f - DH* ) Xj) | =0. (19)
1—exp{ k'log<1 L) )}

+H((-1)1)’

Solving for k; numerically, we can obtain the maximum likelihood estimator for k;
denoted by k;. Furthermore, the asymptotic variance of k; can be expressed as

oy > o 4 -1
V() = 17 (k) = ﬂz;"_ 0yt g —qm] o)

qij

By the invariance property of the maximum likelihood estimator, the maximum
likelihood estimator of Cy; can be found as

C, = 1-kL. (21)

Making use of the Delta method in Casella and Berger [20], we can find that

A d A
CLi — N(CLI'/V(CL,»D/ (22)
n—oo
where V(C1,) = LAV (IA{Z) )
By the invariance property, we can find the maximum likelihood estimator of Cr as

CT = ijléLi - (dﬁl) (23)

Its asymptotic distribution is Cr n%m N(Cr,Y¢_, V(CL,)), where v V(Cp) is
the estimate of the variance of Cr givenby Y/, V(Cy).

3.2. The Algorithmic Testing Procedure for the Comprehensive Lifetime Performance Index

If the experimenter wants to test whether the comprehensive lifetime performance in-
dex exceeds the desired target value cp, the null and alternative hypotheses are setupasHj :
Cr <c¢ovs. H; : Cr > cg. From Equation (11), we can find the corresponding target value
¢y for each individual lifetime performance index as c; = %. To test whether the com-
prehensive lifetime performance index exceeds the desired target value cy is equivalent to
testing the statistical hypothesis of Hy : C;, < ¢ forsomeivs. H,: C;, > ¢y, 1 = 1,---,d,
we use the maximum likelihood estimator of C;, given by Cy, as the test statistic and define
the critical value as CY.. The critical value Cgi is determined by controlling the overall
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error rate to be at most the level of significance o« in the multiple hypothesis testing. The
probability of a type I error (false positive) is

P(CL]. > Cgi’
- P(l —kiL;i > ) |k

1-C9 .
=P Li’ki:ki0/1:1/"'rd
P

IA(
1-c9. L
‘Li17i0 . 7 d -

(Z < - i=1,...,d], duetok,- njoo N(kiOrli 1(ki0))-

CLo=ci= 1,...,d) (1—kL >l ]clLCO: ¢, i = l,...,d)
”

i = ki, i = 1,...,d), wherek;y =

17 (kio)
—c0
d ! L.Li —Rio
=J] & = o,
i=1 17 (ki)

where ®(-) is the cumulative distribution function for the standard normal distribution.
1—C(Bi
——+—kig

Set ® W = ai =4 Then, the probability of a type I error has reached the
I~ (kio

level of significance a. To solve the above equation, the critical value Cg is determined as

C%i =1- (Z -, Ii_1 (kio) + ki0> Li,where Z,  /isthe o percentile for the standard nor-

d (. R
mal distribution. The overall rejection region is determined as R = () {C L; ‘ Cr, > Cg}
i=1 !

such that the level of this test is still «.
The algorithmic testing procedure for Cr is constructed as follows:

Algorithm 1: Testing procedure for the comprehensive lifetime performance index Cr

Step 1: For a known lower specification L;, we collect the progressive type I interval censored
sample X1, ..., Xj, at the observation time points ¢y, ..., t;, with censoring schemes of

R1,..., Ry, from the Burr XII distribution.

Step 2: From Equation (9), determine the desired level cy for a pre-assigned conforming rate P;.
Then, the required level cjj for each production line can be determined from Table 1. Thus, the
testing hypothesis Hy : Cr, < ¢ for some i v.s. Hg: Cr, > co,z =1,---,dissetup.

Step 3: Compute the value of the test statistic C;, = 1 —k;L;.

Step 4: For the level of significance g, find the critical value of

Cgi =1- (Zlia/ Ifl(kio) + k,-o) L; where k;y = 1253 ,a'= a4 and Ifl(k,'o) is defined in

Equation (18).
Step 5: Compare Cp, with C) IfC;, > C} sustained fori = .,d, we can infer that the
comprehensive lifetime performance mdex of the products has reached the required level c.

For this test, the power function k(c;) at the pointof Ct = dCp — (d—1) = ¢ > cp

C1 +d—1
d

orC;, = = cj is derived as follows:
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]’l(Cl) = P(CU >C%j1i = d’CT = 1—kpL;i = 1,"',d),
=P(1-kL;>1- <21 w/ +k10)Ll,z =1, dky = TSk = 50,0 = 1, ,d)
=P ki <kio+ Zya\/ I (ki) i = 1, dlky = 70 ko = 1Lf5,i:1,...,d>
d ~ — 1—c* 1—c* 24
=TI P<k < kio+ Zy—wrJ I Hkio) [kin = Tcl,kio = Ll.CO) (24)
E . kio—ki+Z,_ /T (ki) 1—c* 1—c}
— P i i0 il 1—u i i0 k — 711k' — 0
13 (W Vi) |0 T N0 T
d —kn+Z (ki) 1—ct 1—c;
kio—ki 10/ 0k = 1 kin = 0
Under L =... = Ly = L, the power function is reduced to
d kofk1+Z1,/ I'il(ko) 1*C* ]__ *
he) = T1[@ S = kg =
S -1 L L
i=1 Ii™ (k1)

The powers h(c;) for testing Hy : Cr < 0.8 are tabulated in Tables A1-A9 for d = 2,
3, 4 with « = 0.01, 0.05, 0.1 for ¢; = 0.80, 0.825, 0.85, 0.875, 0.90, 0.925, m = 5,6,7, n = 25,
50, 75 and p = 0.01, 0.05, 0.1 with L = 0.05, T = 0.5. The power values are illustrated
in Figures 1-5, demonstrating various standard scenarios. We have the following six
findings from Tables A1-A9 and Figures 1-5. (1) From Figure 1, the power increases when
d increases under n = 25, m =5, p = 0.05 and « = 0.05. However, the difference is not
significant, especially when c; is getting closer to 1 (the same pattern is observed with
alternative combinations of 1, m, p, and o as well). (2) From Figure 2, the power value is an
increasing function of n for fixed d = 3, « = 0.05, m = 5, and p = 0.05 (the same pattern is
observed with alternative combinations of d, m, p and « as well). (3) From Figure 3, the
power value is a decreasing function of m for fixed d = 3, n =25, p = 0.05, and « = 0.05 (the
same pattern is observed with alternative combinations of d, i, p, and « as well). However,
the difference is not significant. Therefore, the users do not need to increase the number
of inspection intervals in order to yield higher test power. (4) From Figure 4, the power
increases when p increases for fixed d = 3, n =25, m = 5, and « = 0.05 (the same pattern is
observed with alternative combinations of d, n, m, and o as well). (5) From Figure 5, the
power value is an increasing function of « under d = 3, n =25, m =5, and p = 0.05 (the
same pattern is observed with alternative combinations of d, n, m, and p as well). (6) From
Figures 1-5, the power increases when c; increases for any combinations of d, n, m, p, and «.

= SPEN "SR,
.

08
\

06
I

h(c1)

04
cooo
TR
(LR

0.0
I

cl

Figure 1. The power curve ford =2, 3,4, 5 withn =25, m =5, p = 0.05, « = 0.05.
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Figure 2. The power curve for n = 25, 50, 75, 100 with d = 3, « = 0.05, m = 5, p = 0.05.
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Figure 3. The power curve for m =5, 6,7, 8 withd =3, x = 0.05, n = 25, p = 0.05.
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Figure 4. The power curve for p = 0.01, 0.05, 0.1 withd =3, x = 0.05, n =25, m = 5.
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Figure 5. The power curve for o« = 0.01, 0.05, 0.1 withd =3, n =25, m =5, p = 0.05.

3.3. Numerical Example

We consider a manufacturing process comprising two production lines (d = 2). For
the first production line, the data in Lawless [21] is comprised of the failure times of n = 36
electrical appliances. The data of 36 failure times Uy, j=1,...,36,is listed as follows:
0.0011, 0.0035, 0.0049, 0.017, 0.0329, 0.0381, 0.0708, 0.0958, 0.1062, 0.1167, 0.1594, 0.1925,
0.199, 0.2223, 0.2327, 0.24, 0.2451, 0.2471, 0.2551, 0.2565, 0.2568, 0.2702, 0.2761, 0.2831, 0.3034,
0.3034, 0.3059, 0.3112, 0.3214, 0.3478, 0.3504, 0.4329, 0.6367, 0.6976, 0.7846, 1.3403. We use
the G test based on the Gini statistic from Gail and Gastwirth [22] to test if the data fits a
Burr XII distribution or not. The p-value of this test is a function of the shape parameter ¢;.
From Figure 6, we can see that the maximum p-value of 0.9834 > 0.05 occurred when the
value of 61 = 1.37. The large p-value indicates that the data fits the Burr XII distribution very
well. Therefore, the value of 1 is determined as §; = 1.37. For the second production line,
the data in Lai et al. [23] is comprised of the failure times of #n = 20 components. The data of
20 failure times Uy, j=1,...,20,is listed as follows: 0.0481, 0.1196, 0.1438, 0.1797, 0.1811,
0.1831, 0.1885, 0.2104, 0.2133, 0.2144, 0.2282, 0.2322, 0.2334, 0.2341, 0.2428, 0.2447, 0.2511,
0.2593, 0.2715, 0.3218. Using the G test, the p-value of this test is a function of the shape
parameter 6, and it is plotted in Figure 7. From Figure 7, we can see that the maximum
p-value of 0.9183 > 0.05 occurred when the value of J; = 4.62. Likewise, the large p-value
indicates that the data fits the Burr XII distribution very well. Thus, the value of J; is
determined as 6, = 4.62.
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Figure 6. The p-values vs. the values of 6.
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Figure 7. The p-values vs. the values of ;.

Suppose that we want to test Hy: < 0.80. We create the progressive type I interval
censored sample for the failure times of products from two production lines. Let the
termination time be T = 0.25 with the number of inspections m = 5; the equal length of the
inspection interval ¢ = 0.05 and the pre-specified removal percentages of the remaining
survival units given are by (p1, p2, 3, P4, p5) = (0.05, 0.05, 0.05, 0.05, 1.0).

Applying Algorithm 1, the testing procedure is implemented as follows:

Step 1: Given the known lower specification Ly = Ly = 0.005, collect the progressive
type I interval censored sample (X171, X1z, X13, X114, X15) = (6,1,2,3,3) and (Xp1, X,
X3, Xo4, Xo5) = (1,0,2,4,7) for each production line at the pre-set times (ty, ..., f5) =
(005, 01, 015, 02, 025) With censoring schemes Of (Rll/ R12/ ng, R14, R15) = (2, 2, 2, 1, 14)
and (R2l/ Rzz, R23, R24, R25) = (1, 1, 1, 1,2).

Step 2: Under the conforming rate ofP, = 0.818731, therequired level for Cr can be
found to be ¢y = 0.80. Then, the required target level ¢j = @t4=1 — 085421 _ 925 s
determined for each production line. Then, the testing hypothesis Hy : Cy; < ¢ for some i
vs. Hy : Cp, > ¢, i=1,2is set up.

Step 3: Obtain the maximum likelihood estimators ky = 4.7847 and k, = 9.9999 for two
production lines. Compute the values of the test statistics C;, = 1 —4.7847 x 0.005 = 0.9761
and Cp, = 1 —9.9999 x 0.005 = 0.9500 respectively.

Step 4: For the level of significance & = 0.05, we have &' = (0.05)% = 0.2236 and

kig = koo =ko = 1£—2C0 = % = 20 Then, we can compute the critical values C%l =0.9137
and C22 = 0.9210 for two production lines.

Step 5: Since éLl > Cg] and C L, > ng, we can deduce that the individual lifetime
performance indices meet the specified target values, resulting in the comprehensive
lifetime performance index reaching the target level.

4. Conclusions

In diverse manufacturing fields, analyzing the lifetime performance indices is crucial,
especially when a product’s lifespan follows a Burr XII distribution with progressive type I
interval censored samples. Our study extends beyond a single production line to encompass
multiple lines, introducing an overarching lifetime performance index applicable to these
varied production lines. We investigate the interplay between this comprehensive lifetime
performance index and individual lifetime performance indices, delving into deriving maxi-
mum likelihood estimators and asymptotic distributions for both based on progressive type
Iinterval censored samples. We devise a computational algorithm for hypothesis testing at
a specified significance level to assess whether the comprehensive lifetime performance
index meets the target. This involves testing each individual lifetime performance index
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using the maximum likelihood estimator as the test statistic. We scrutinize the impact of
the number of production lines (d), the sample size (1), the number of inspection intervals
(m), removal probability (p), and the significance level (o) on the test power using visual
illustrations, Figures 1-5. All findings reveal that the test power is an increasing function
of n, o, and d when the other parameters are fixed. However, it is a decreasing function
of p or m when the other parameters are fixed. To demonstrate the practical application
of our testing algorithm for the comprehensive lifetime performance index, we provide a
numerical example involving two production lines in the concluding section.

In the future, we will focus on the investigation of an experimental design for the
proposed testing procedure for the comprehensive lifetime performance index in this
research to attain the given test power or to find the minimum total experimental cost
under a specific cost structure. We can also consider other types of censoring schemes other
than the progressive type I interval censoring.
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Appendix A

Table A1. The power h(cy) atd =2, « = 0.01.

c1

m n 4 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0100 0.0329 0.1031 0.2848 0.6159 0.9214
0.05 0.0100 0.0321 0.0986 0.2706 0.5915 0.9072

0.1 0.0100 0.0313 0.0945 0.2572 0.5673 0.8916

50 0.01 0.0100 0.0574 0.2432 0.6376 0.9477 0.9994

0.05 0.0100 0.0556 0.2322 0.6155 0.9379 0.9991

0.1 0.0100 0.0538 0.2217 0.5935 0.9271 0.9987

75 0.01 0.0100 0.0843 0.3942 0.8486 0.9951 1.0000

0.05 0.0100 0.0813 0.3777 0.8317 0.9935 1.0000

0.1 0.0100 0.0784 0.3618 0.8140 0.9914 1.0000

6 25 0.01 0.0100 0.0325 0.1009 0.2777 0.6038 0.9145
0.05 0.0100 0.0315 0.0955 0.2606 0.5734 0.8958

0.1 0.0100 0.0305 0.0906 0.2447 0.5438 0.8750

50 0.01 0.0100 0.0565 0.2377 0.6267 0.9430 0.9993

0.05 0.0100 0.0543 0.2244 0.5991 0.9299 0.9988

0.1 0.0100 0.0522 0.2120 0.5721 0.9153 0.9981

75 0.01 0.0100 0.0828 0.3859 0.8403 0.9944 1.0000

0.05 0.0100 0.0792 0.3658 0.8186 0.9920 1.0000

0.1 0.0100 0.0758 0.3467 0.7959 0.9890 1.0000
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Table A1. Cont.
1

7 25 0.01 0.0100 0.0321 0.0987 0.2708 0.5916 0.9073
0.05 0.0100 0.0309 0.0925 0.2509 0.5556 0.8836

0.1 0.0100 0.0299 0.0869 0.2328 0.5208 0.8572

50 0.01 0.0100 0.0556 0.2322 0.6156 0.9380 0.9991

0.05 0.0100 0.0530 0.2168 0.5829 0.9214 0.9984

0.1 0.0100 0.0506 0.2027 0.5511 0.9025 0.9973

75 0.01 0.0100 0.0813 0.3778 0.8318 0.9935 1.0000

0.05 0.0100 0.0771 0.3542 0.8052 0.9903 1.0000

0.1 0.0100 0.0732 0.3323 0.7774 0.9860 1.0000

Table A2. The power h(cy) atd =2, & = 0.05.
1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0500 0.1344 0.3194 0.6160 0.8921 0.9931
0.05 0.0500 0.1320 0.3104 0.6000 0.8802 0.9912

0.1 0.0500 0.1296 0.3019 0.5841 0.8676 0.9889

50 0.01 0.0500 0.1981 0.5323 0.8804 0.9939 1.0000

0.05 0.0500 0.1936 0.5183 0.8686 0.9923 1.0000

0.1 0.0500 0.1894 0.5046 0.8564 0.9903 1.0000

75 0.01 0.0500 0.2570 0.6892 0.9661 0.9997 1.0000

0.05 0.0500 0.2507 0.6741 0.9606 0.9996 1.0000

0.1 0.0500 0.2446 0.6591 0.9547 0.9994 1.0000

6 25 0.01 0.0500 0.1332 0.3149 0.6080 0.8863 0.9922
0.05 0.0500 0.1302 0.3040 0.5882 0.8709 0.9895

0.1 0.0500 0.1274 0.2937 0.5688 0.8547 0.9862

50 0.01 0.0500 0.1959 0.5253 0.8746 0.9931 1.0000

0.05 0.0500 0.1904 0.5081 0.8595 0.9909 1.0000

0.1 0.0500 0.1853 0.4915 0.8439 0.9881 1.0000

75 0.01 0.0500 0.2538 0.6817 0.9634 0.9996 1.0000

0.05 0.0500 0.2461 0.6629 0.9562 0.9994 1.0000

0.1 0.0500 0.2388 0.6444 0.9482 0.9992 1.0000

7 25 0.01 0.0500 0.1320 0.3105 0.6000 0.8802 0.9912
0.05 0.0500 0.1285 0.2978 0.5765 0.8613 0.9876

0.1 0.0500 0.1253 0.2859 0.5538 0.8414 0.9831

50 0.01 0.0500 0.1937 0.5184 0.8687 0.9923 1.0000

0.05 0.0500 0.1873 0.4981 0.8502 0.9893 1.0000

0.1 0.0500 0.1814 0.4788 0.8311 0.9855 0.9999

75 0.01 0.0500 0.2507 0.6742 0.9607 0.9996 1.0000

0.05 0.0500 0.2417 0.6518 0.9515 0.9993 1.0000

0.1 0.0500 0.2333 0.6299 0.9413 0.9989 1.0000
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Table A3. The power h(c1) atd =2, 2 =0.1.
€1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.1000 0.2370 0.4800 0.7724 0.9580 0.9987
0.05 0.1000 0.2335 0.4700 0.7597 0.9522 0.9983

0.1 0.1000 0.2301 0.4603 0.7469 0.9459 0.9977

50 0.01 0.1000 0.3219 0.6877 0.9460 0.9985 1.0000

0.05 0.1000 0.3162 0.6753 0.9396 0.9980 1.0000

0.1 0.1000 0.3106 0.6630 0.9327 0.9975 1.0000

75 0.01 0.1000 0.3937 0.8141 0.9876 1.0000 1.0000

0.05 0.1000 0.3862 0.8027 0.9852 0.9999 1.0000

0.1 0.1000 0.3789 0.7912 0.9826 0.9999 1.0000

6 25 0.01 0.1000 0.2353 0.4750 0.7661 0.9552 0.9985
0.05 0.1000 0.2310 0.4627 0.7502 0.9476 0.9979

0.1 0.1000 0.2269 0.4509 0.7343 0.9393 0.9970

50 0.01 0.1000 0.3190 0.6815 0.9429 0.9983 1.0000

0.05 0.1000 0.3120 0.6661 0.9345 0.9976 1.0000

0.1 0.1000 0.3053 0.6510 0.9255 0.9968 1.0000

75 0.01 0.1000 0.3900 0.8085 0.9864 0.9999 1.0000

0.05 0.1000 0.3808 0.7941 0.9833 0.9999 1.0000

0.1 0.1000 0.3720 0.7797 0.9797 0.9998 1.0000

7 25 0.01 0.1000 0.2335 0.4700 0.7597 0.9522 0.9983
0.05 0.1000 0.2285 0.4556 0.7407 0.9427 0.9974

0.1 0.1000 0.2238 0.4419 0.7218 0.9322 0.9962

50 0.01 0.1000 0.3162 0.6753 0.9396 0.9980 1.0000

0.05 0.1000 0.3080 0.6570 0.9292 0.9972 1.0000

0.1 0.1000 0.3002 0.6392 0.9180 0.9960 1.0000

75 0.01 0.1000 0.3863 0.8028 0.9852 0.9999 1.0000

0.05 0.1000 0.3755 0.7855 0.9812 0.9999 1.0000

0.1 0.1000 0.3652 0.7682 0.9765 0.9998 1.0000

Table A4. The power h(cy) atd = 3, « = 0.01.
1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0100 0.0366 0.1207 0.3290 0.6682 0.9375
0.05 0.0100 0.0357 0.1154 0.3135 0.6452 0.9264

0.1 0.0100 0.0347 0.1104 0.2987 0.6222 0.9140

50 0.01 0.0100 0.0628 0.2663 0.6624 0.9489 0.9991

0.05 0.0100 0.0607 0.2544 0.6409 0.9398 0.9988

0.1 0.0100 0.0587 0.2430 0.6195 0.9297 0.9982

75 0.01 0.0100 0.0910 0.4145 0.8514 0.9935 1.0000

0.05 0.0100 0.0876 0.3974 0.8351 0.9916 1.0000

0.1 0.0100 0.0844 0.3809 0.8181 0.9892 1.0000
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Table A4. Cont.
1

6 25 0.01 0.0100 0.0361 0.1180 0.3212 0.6567 0.9321
0.05 0.0100 0.0350 0.1117 0.3024 0.6281 0.9173

0.1 0.0100 0.0339 0.1058 0.2848 0.5997 0.9008

50 0.01 0.0100 0.0617 0.2603 0.6516 0.9445 0.9990

0.05 0.0100 0.0592 0.2458 0.6249 0.9324 0.9984

0.1 0.0100 0.0568 0.2323 0.5985 0.9189 0.9975

75 0.01 0.0100 0.0893 0.4059 0.8433 0.9926 1.0000

0.05 0.0100 0.0852 0.3850 0.8225 0.9899 1.0000

0.1 0.0100 0.0814 0.3652 0.8007 0.9864 1.0000

7 25 0.01 0.0100 0.0357 0.1154 0.3135 0.6453 0.9264
0.05 0.0100 0.0343 0.1081 0.2917 0.6112 0.9077

0.1 0.0100 0.0330 0.1015 0.2716 0.5776 0.8865

50 0.01 0.0100 0.0607 0.2544 0.6409 0.9398 0.9988

0.05 0.0100 0.0578 0.2376 0.6091 0.9245 0.9979

0.1 0.0100 0.0551 0.2222 0.5779 0.9072 0.9967

75 0.01 0.0100 0.0876 0.3974 0.8351 0.9916 1.0000

0.05 0.0100 0.0829 0.3731 0.8096 0.9879 1.0000

0.1 0.0100 0.0785 0.3502 0.7829 0.9832 0.9999

Table A5. The power h(cy) atd = 3, « = 0.05.
c1

m n 4 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0500 0.1425 0.3421 0.6430 0.9015 0.9929
0.05 0.0500 0.1398 0.3327 0.6274 0.8908 0.9911

0.1 0.0500 0.1372 0.3235 0.6119 0.8796 0.9890

50 0.01 0.0500 0.2065 0.5458 0.8803 0.9921 1.0000

0.05 0.0500 0.2017 0.5317 0.8689 0.9903 0.9999

0.1 0.0500 0.1971 0.5179 0.8570 0.9881 0.9999

75 0.01 0.0500 0.2647 0.6921 0.9610 0.9994 1.0000

0.05 0.0500 0.2580 0.6771 0.9553 0.9991 1.0000

0.1 0.0500 0.2516 0.6621 0.9489 0.9988 1.0000

6 25 0.01 0.0500 0.1411 0.3374 0.6352 0.8962 0.9921
0.05 0.0500 0.1378 0.3258 0.6159 0.8825 0.9896

0.1 0.0500 0.1347 0.3148 0.5969 0.8680 0.9866

50 0.01 0.0500 0.2041 0.5387 0.8746 0.9912 1.0000

0.05 0.0500 0.1982 0.5214 0.8601 0.9887 0.9999

0.1 0.0500 0.1927 0.5046 0.8449 0.9857 0.9999

75 0.01 0.0500 0.2613 0.6846 0.9582 0.9993 1.0000

0.05 0.0500 0.2532 0.6659 0.9506 0.9989 1.0000

0.1 0.0500 0.2454 0.6475 0.9422 0.9985 1.0000




Mathematics 2024, 12, 584 17 of 20
Table A5. Cont.
a1

7 25 0.01 0.0500 0.1398 0.3327 0.6274 0.8908 0.9911
0.05 0.0500 0.1360 0.3192 0.6045 0.8740 0.9879

0.1 0.0500 0.1324 0.3065 0.5822 0.8561 0.9839

50 0.01 0.0500 0.2017 0.5317 0.8689 0.9903 0.9999

0.05 0.0500 0.1949 0.5113 0.8511 0.9870 0.9999

0.1 0.0500 0.1885 0.4918 0.8326 0.9829 0.9998

75 0.01 0.0500 0.2580 0.6771 0.9553 0.9991 1.0000

0.05 0.0500 0.2485 0.6549 0.9457 0.9987 1.0000

0.1 0.0500 0.2396 0.6331 0.9351 0.9980 1.0000

Table A6. The power h(c1) atd =3, 2 =0.1.
1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.1000 0.2461 0.4980 0.7844 0.9584 0.9983
0.05 0.1000 0.2424 0.4878 0.7723 0.9530 0.9978

0.1 0.1000 0.2387 0.4779 0.7602 0.9471 0.9972

50 0.01 0.1000 0.3293 0.6920 0.9418 0.9976 1.0000

0.05 0.1000 0.3232 0.6796 0.9352 0.9970 1.0000

0.1 0.1000 0.3174 0.6674 0.9283 0.9963 1.0000

75 0.01 0.1000 0.3987 0.8096 0.9838 0.9999 1.0000

0.05 0.1000 0.3909 0.7982 0.9811 0.9998 1.0000

0.1 0.1000 0.3834 0.7867 0.9780 0.9997 1.0000

6 25 0.01 0.1000 0.2442 0.4929 0.7784 0.9557 0.9981
0.05 0.1000 0.2396 0.4804 0.7633 0.9487 0.9974

0.1 0.1000 0.2353 0.4684 0.7481 0.9410 0.9965

50 0.01 0.1000 0.3262 0.6858 0.9385 0.9973 1.0000

0.05 0.1000 0.3189 0.6705 0.9301 0.9965 1.0000

0.1 0.1000 0.3119 0.6555 0.9211 0.9954 1.0000

75 0.01 0.1000 0.3948 0.8039 0.9825 0.9998 1.0000

0.05 0.1000 0.3853 0.7896 0.9788 0.9997 1.0000

0.1 0.1000 0.3761 0.7752 0.9747 0.9996 1.0000

7 25 0.01 0.1000 0.2424 0.4878 0.7723 0.9530 0.9978
0.05 0.1000 0.2370 0.4732 0.7543 0.9442 0.9969

0.1 0.1000 0.2320 0.4592 0.7363 0.9346 0.9957

50 0.01 0.1000 0.3232 0.6797 0.9352 0.9970 1.0000

0.05 0.1000 0.3147 0.6615 0.9248 0.9958 1.0000

0.1 0.1000 0.3065 0.6438 0.9136 0.9943 1.0000

75 0.01 0.1000 0.3909 0.7982 0.9811 0.9998 1.0000

0.05 0.1000 0.3798 0.7810 0.9764 0.9997 1.0000

0.1 0.1000 0.3692 0.7638 0.9711 0.9995 1.0000
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Table A7. The power h(cy) atd =4, « = 0.01.
€1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0100 0.0386 0.1293 0.3482 0.6861 0.9408
0.05 0.0100 0.0375 0.1238 0.3326 0.6645 0.9308

0.1 0.0100 0.0365 0.1185 0.3176 0.6429 0.9198

50 0.01 0.0100 0.0649 0.2729 0.6634 0.9442 0.9987

0.05 0.0100 0.0627 0.2609 0.6426 0.9351 0.9982

0.1 0.0100 0.0606 0.2494 0.6219 0.9251 0.9975

75 0.01 0.0100 0.0929 0.4150 0.8422 0.9911 1.0000

0.05 0.0100 0.0894 0.3981 0.8261 0.9887 1.0000

0.1 0.0100 0.0861 0.3818 0.8092 0.9859 0.9999

6 25 0.01 0.0100 0.0380 0.1265 0.3403 0.6754 0.9359
0.05 0.0100 0.0368 0.1198 0.3214 0.6484 0.9227

0.1 0.0100 0.0356 0.1136 0.3035 0.6216 0.9080

50 0.01 0.0100 0.0638 0.2668 0.6530 0.9398 0.9984

0.05 0.0100 0.0612 0.2523 0.6272 0.9278 0.9977

0.1 0.0100 0.0587 0.2387 0.6016 0.9144 0.9966

75 0.01 0.0100 0.0911 0.4065 0.8342 0.9899 1.0000

0.05 0.0100 0.0869 0.3859 0.8136 0.9867 0.9999

0.1 0.0100 0.0830 0.3663 0.7921 0.9827 0.9999

7 25 0.01 0.0100 0.0375 0.1238 0.3326 0.6646 0.9308
0.05 0.0100 0.0361 0.1161 0.3107 0.6325 0.9142

0.1 0.0100 0.0347 0.1091 0.2902 0.6007 0.8954

50 0.01 0.0100 0.0627 0.2609 0.6427 0.9352 0.9982

0.05 0.0100 0.0597 0.2441 0.6120 0.9200 0.9971

0.1 0.0100 0.0568 0.2285 0.5818 0.9030 0.9956

75 0.01 0.0100 0.0894 0.3981 0.8261 0.9887 1.0000

0.05 0.0100 0.0845 0.3741 0.8009 0.9844 0.9999

0.1 0.0100 0.0801 0.3516 0.7746 0.9789 0.9998

Table A8. The power h(c1) atd =4, « = 0.05.
1

m n 14 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.0500 0.1460 0.3506 0.6502 0.9013 0.9920
0.05 0.0500 0.1432 0.3411 0.6352 0.8912 0.9902

0.1 0.0500 0.1405 0.3320 0.6203 0.8806 0.9881

50 0.01 0.0500 0.2084 0.5445 0.8729 0.9898 0.9999

0.05 0.0500 0.2035 0.5307 0.8616 0.9876 0.9999

0.1 0.0500 0.1989 0.5171 0.8499 0.9852 0.9998

75 0.01 0.0500 0.2645 0.6833 0.9538 0.9989 1.0000

0.05 0.0500 0.2579 0.6685 0.9475 0.9985 1.0000

0.1 0.0500 0.2514 0.6538 0.9408 0.9981 1.0000
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Table A8. Cont.
a1

6 25 0.01 0.0500 0.1446 0.3458 0.6427 0.8963 0.9911
0.05 0.0500 0.1412 0.3343 0.6241 0.8834 0.9886

0.1 0.0500 0.1380 0.3233 0.6058 0.8698 0.9857

50 0.01 0.0500 0.2059 0.5375 0.8673 0.9887 0.9999

0.05 0.0500 0.2001 0.5206 0.8529 0.9858 0.9998

0.1 0.0500 0.1945 0.5042 0.8380 0.9824 0.9998

75 0.01 0.0500 0.2612 0.6759 0.9507 0.9987 1.0000

0.05 0.0500 0.2531 0.6575 0.9426 0.9982 1.0000

0.1 0.0500 0.2454 0.6394 0.9337 0.9975 1.0000

7 25 0.01 0.0500 0.1432 0.3412 0.6352 0.8913 0.9902
0.05 0.0500 0.1393 0.3277 0.6132 0.8754 0.9869

0.1 0.0500 0.1356 0.3151 0.5918 0.8587 0.9830

50 0.01 0.0500 0.2035 0.5307 0.8617 0.9876 0.9999

0.05 0.0500 0.1967 0.5107 0.8441 0.9839 0.9998

0.1 0.0500 0.1903 0.4916 0.8260 0.9793 0.9997

75 0.01 0.0500 0.2579 0.6685 0.9476 0.9985 1.0000

0.05 0.0500 0.2484 0.6467 0.9374 0.9978 1.0000

0.1 0.0500 0.2396 0.6254 0.9262 0.9969 1.0000

Table A9. The power h(c1) atd =4, « = 0.1.
a1

m n 4 0.80 0.825 0.85 0.875 0.90 0.925
5 25 0.01 0.1000 0.2494 0.5028 0.7846 0.9558 0.9978
0.05 0.1000 0.2457 0.4928 0.7730 0.9505 0.9973

0.1 0.1000 0.2420 0.4831 0.7614 0.9448 0.9966

50 0.01 0.1000 0.3295 0.6862 0.9349 0.9965 1.0000

0.05 0.1000 0.3235 0.6741 0.9282 0.9957 1.0000

0.1 0.1000 0.3178 0.6622 0.9210 0.9948 1.0000

75 0.01 0.1000 0.3959 0.7987 0.9792 0.9997 1.0000

0.05 0.1000 0.3882 0.7874 0.9760 0.9996 1.0000

0.1 0.1000 0.3808 0.7759 0.9725 0.9994 1.0000

6 25 0.01 0.1000 0.2475 0.4978 0.7788 0.9532 0.9976
0.05 0.1000 0.2429 0.4856 0.7644 0.9463 0.9968

0.1 0.1000 0.2385 0.4738 0.7499 0.9389 0.9958

50 0.01 0.1000 0.3265 0.6801 0.9316 0.9961 1.0000

0.05 0.1000 0.3192 0.6652 0.9229 0.9950 1.0000

0.1 0.1000 0.3122 0.6506 0.9137 0.9937 1.0000

75 0.01 0.1000 0.3920 0.7931 0.9777 0.9996 1.0000

0.05 0.1000 0.3827 0.7788 0.9735 0.9995 1.0000

0.1 0.1000 0.3737 0.7645 0.9688 0.9993 1.0000
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Table A9. Cont.

a1

7 25 0.01 0.1000 0.2457 0.4928 0.7731 0.9505 0.9973

0.05 0.1000 0.2403 0.4785 0.7558 0.9420 0.9962

0.1 0.1000 0.2352 0.4648 0.7386 0.9327 0.9949

50 0.01 0.1000 0.3236 0.6742 0.9282 0.9957 1.0000

0.05 0.1000 0.3150 0.6565 0.9175 0.9942 1.0000

0.1 0.1000 0.3070 0.6392 0.9062 0.9924 0.9999

75 0.01 0.1000 0.3882 0.7874 0.9760 0.9996 1.0000

0.05 0.1000 0.3773 0.7703 0.9707 0.9994 1.0000

0.1 0.1000 0.3669 0.7533 0.9648 0.9990 1.0000
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