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Abstract: This paper focuses on addressing the issue of absolute stability for uncertain Lur’e systems
with time-varying delay using a delay-segmentation approach. The approach involves decomposing
the delay interval into two distinct subintervals of unequal lengths. This allows for the introduction
of a delay-segmentation-based augmented Lyapunov–Krasovskii functional that ensures piecewise
continuity at the partition points. By selecting two sets of Lyapunov matrices for the time-varying
delay in each interval, the obtained results are less conservative, providing a more accurate assessment
of absolute stability. Finally, a numerical example is given to demonstrate the superiority of the
delay-segmentation approach.
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1. Introduction

A Lur’e system is a type of nonlinear system in which the nonlinear component
satisfies specific sector constraints. Since their introduction in the 20th century, Lur’e
systems and their absolute stability have garnered significant research interest. Numerous
scholars have conducted in-depth studies on various aspects of Lur’e systems [1–9]. On the
other hand, time delay is a prevalent phenomenon that arises during the implementation
process of actual systems [10–12]. The presence of time delay can significantly impact
a system’s performance and efficiency during normal operation, potentially leading to
performance deterioration or even system collapse [13–18]. Therefore, it is crucial to
determine the range of time delay within which a system’s stability can be ensured [19–25].
To address this issue, numerous studies have been conducted on the problem of the delay-
dependent absolute stability of Lur’e systems, resulting in a variety of notable stability
criteria [26–28].

As is widely recognized, the most common approaches to analyzing the absolute
stability of Lur’e systems with constant delays are the so-called frequency-domain and
time-domain approaches [29]. The interconnection between these two approaches was
established by the Kalman–Yakubovich–Popov (KYP) lemma, which has greatly contributed
to the development of relevant research [30]. Using the KYP lemma, it has been shown that
the classical circle criterion and a linear matrix inequality can be transformed equivalently.
For the robust stability of uncertain Lur’e systems with time-varying delay, the Lyapunov
approach is considered one of the most effective methods. This approach involves using
the Lyapunov method to establish stability criteria, typically in the form of sufficient
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conditions. One way to measure the conservativeness of these criteria is based on the
Maximum Allowable Delay Bound (MADB) [31].

The construction of an appropriate Lyapunov functional plays a crucial role in obtain-
ing stability criteria with reduced conservativeness. Substantial efforts have been dedicated
to developing Lyapunov functionals aimed at mitigating the conservativeness of derived
stability conditions. These Lyapunov functionals can be broadly classified into two cate-
gories: state-augmentation-based Lyapunov functionals and delay-decomposition-based
Lyapunov functionals. In a recent work by Han et al. [27], a discretized Lyapunov func-
tional was constructed, leading to the derivation of delay-dependent absolute stability
conditions. Another notable contribution by Gou et al. [32] introduced a novel Lyapunov
functional based on the delay-segmentation approach. This approach significantly re-
duces the conservativeness of the stability criterion for linear systems with constant delay.
Building upon this foundation, the delay-segmentation approach was further extended to
systems with time-varying delay in order to enhance delay-dependent stability; see [31]
and the references therein. In another related study, Wang et al. [28] proposed a novel
complete delay-segmentation Lyapunov functional by decomposing the delay in all integral
terms. However, it is worth noting that in the constructed Lyapunov functional [28], only
the integral terms were decomposed, while the term xT(t)Px(t) remained independent of
the delay interval. Consequently, it is necessary to investigate how to decompose the term
xT(t)Px(t) and assess whether the conservativeness of the proposed results can be further
reduced by decomposing xT(t)Px(t) based on the delay interval.

Motivated by the aforementioned considerations, this paper focuses on investigating
the robust absolute stability of uncertain Lur’e systems with time-varying delay using a
delay-segmentation approach. The approach involves introducing a segmentation point,
denoted as hα, within the delay interval [0, h]. Thus, the original interval is divided into
two distinct sub-intervals, namely [0, hα] and [hα, h]. To analyze the stability, two separate
Lyapunov functionals are constructed for each of these sub-intervals. By employing differ-
ent pairs of Lyapunov matrices for the delay on each sub-interval, the conservatism of the
resulting condition is significantly reduced. This approach offers enhanced effectiveness
and merits in addressing robust absolute stability. The validity and advantages of the pro-
posed methodology are confirmed through a numerical example, which serves to illustrate
its practical applicability.

Notation: In this paper, Rn, Rn×m, and Sn
+ denote the n-dimensional Euclidean space,

the set of n × m real matrices, and the set of n × n symmetric positive definite matrices,
respectively. N represents the set of positive integers, and the superscripts ‘T’ and ‘−1’
stand for transpose and the inverse of a matrix, respectively. The symbol diag{· · · } denotes
the block-diagonal matrix. 0 and I represent zero matrices and identity matrices with
appropriate dimensions, respectively. The notation ∗ represents the symmetric term in a
symmetric matrix, and the notation Sym{Ω} = Ω + ΩT .

2. Problem Statement and Preliminaries

Let us consider the following time-varying delay Lur’e system:
ẋ(t) =Âx(t) + Âhx(t − ht) + B̂ω̂(t)

p(t) =L̂1x(t) + L̂2x(t − ht)

ω̂(t) =− Υ(t, p(t))

x(t) =ϕ(t), t ∈ [−h̄, 0]

(1)

where x(t) ∈ Rn, p(t) ∈ Rp, and ω̂(t) ∈ Rp are used to represent the Lur’e system state
and output and input vectors, respectively. Constant matrices Â, Âh, B̂, L̂1, and L̂2 are given.
ϕ(t) defined in [−h, 0] is the initial condition. For brevity, the time-varying delay h(t) is
denoted by ht and satisfies
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0 < ht < h̄ (2)

|ḣt| ≤ τ̄ (3)

where h̄ and τ̄ are constants. The nonlinear function Υ(t, p(t)) ∈ Rp, Lipschitz in p(t), is
continuous in t and belongs to the sector [K1, K2]. Note that real matrices K1 and K2 are
given, and we denote K21 = K2 −K1. Υ(t, p(t)) globally satisfies

[K1 p(t)− Υ(t, p(t))]T[K2 p(t)− Υ(t, p(t))] ≤ 0 (4)

and ∀t ≥ 0, Υ(t, 0) = 0.

Remark 1. By using the loop transformation [33], the absolute stability of Lur’e System (1) in the
sector [K1, K2] is equivalent to that of the following system in the sector [0, K21]:

ẋ(t) =(Â − B̂K1 L̂1)x(t) + (Âh − B̂K1 L̂2)x(t − ht) + B̂ω̂(t)

p(t) =L̂1x(t) + L̂2x(t − ht)

ω̂(t) =− Υ(t, p(t))

(5)

Prior to presenting our main results, we will introduce the definition of absolute
stability and two essential lemmas that play a crucial role in the proof process.

Definition 1 ([27]). The systems described by (1) are said to be absolutely stable within the sector
[K1, K2] if it demonstrates global uniform asymptotic stability for any nonlinear function Υ(t, p(t))
that satisfies Condition (4).

Lemma 1 ([34]). Consider a continuous differentiable function x: [δ1, δ2] → Rn. If there exist any
matrices N and Z > 0 with appropriate dimensions, the following condition is true:

−
∫ δ2

δ1

ẋT(ϑ)Zẋ(ϑ)dϑ ≤ Sym{NM}+ (δ2 − δ1)NZ̃−1NT (6)

where

M =[xT(δ2)− xT(δ1) xT(δ2) + xT(δ1)−
2

δ2 − δ1

∫ δ2

δ1

xT(ϑ)dϑ]T

Z̃ =diag{Z, 3Z}.

Lemma 2 ([35]). For a given scalar ε > 0 and matrices X, Y, Z(t) with appropriate dimensions
and ZT(t)Z(t) ≤ I, the following inequality is satisfied:

XZ(t)Y + (XZ(t)Y)T ≤ ε−1XXT + εYTY. (7)

3. Main Results

In this section, we will present two stability criteria. To facilitate clarity and brevity in
our presentation, we need the following notation:

hα = αh̄ (α ∈ [0, 1]), hβ = (1 − α)h̄, h̄t = h̄ − ht, hd = 1 − ḣt,

ĥd = hα − ht, h̄d = ht − hα, Ā = Â − B̂K1 L̂1, Āh = Âh − B̂K1 L̂2,

ν0(t) = [xT(t) xT(t − ht) xT(t − hα) xT(t − h̄)]T,

ν1(t) =
∫ t

t−ht
x(ϑ)dϑ, ν2(t) =

∫ t

t−hα

x(ϑ)dϑ, ν3(t) =
∫ t−ht

t−h̄
x(ϑ)dϑ,
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ν4(t) =
∫ t−ht

t−hα

x(ϑ)dϑ, ν5(t) =
∫ t−hα

t−ht
x(ϑ)dϑ, ν6(t) =

∫ t−hα

t−h̄
x(ϑ)dϑ,

η1(t) = [νT
0 (t) νT

1 (t) νT
3 (t) νT

2 (t) νT
6 (t)]

T, η2(t, s) = [xT(s) ẋT(s) νT
0 (t)]

T,

ξ1(t) = [νT
0 (t) ẋT(t) ẋT(t − ht) ẋT(t − hα) ẋT(t − h̄)]T,

ξ2(t) = [
1
ht

νT
1 (t)

1
ĥd

νT
4 (t)

1
hβ

νT
6 (t) νT

1 (t) νT
3 (t) νT

2 (t) ω̂T(t)]T,

ξ3(t) = [
1
hα

νT
2 (t)

1
h̄d

νT
5 (t)

1
ht

νT
3 (t) νT

1 (t) νT
3 (t) νT

6 (t) ω̂T(t)]T,

ξe(t) = [ξT
1 (t) ξT

2 (t)]
T, ξ f (t) = [ξT

1 (t) ξT
3 (t)]

T,

ci = [0n×(i−1)n In 0n×(14−i)n 0n×p], i = 1, 2, · · · , 14, c15 = [0p×14n Ip].

Next, an improved absolute stability criterion is derived via a delay-segmentation approach.

Theorem 1. For given scalars h̄ > 0 and τ̄ ∈ [0, 1), Lur’e System (5) is absolutely stable on condition
that there exist matrices Pi ∈ S8n

+ , Qi ∈ S6n
+ , Z̄i ∈ Sn

+, i ∈ {1, 2, 3}, R1, R2 ∈ S6n
+ , Y1, Y2 ∈

Sn
+, N̆j ∈ R(14n+p)×2n, S1j, S2j ∈ R(14n+p)×n, j ∈ {1, 2, · · · , 6}, U1, U2, U3, U4 ∈ Rn and two

scalars ε1, ε2 > 0 such that, for ht ∈ [0, h̄], ḣt ∈ [−τ̄, τ̄],ℵ(0, ḣt)
√

h̄dN̆2

√
hβN̆3

∗ −Ž2 0
∗ ∗ −Ž3

 < 0 (8)

ℵ(hα, ḣt)
√

htN̆1

√
hβN̆3

∗ −Ž1(ḣt) 0
∗ ∗ −Ž3

 < 0 (9)

ℵ̄(hα, ḣt)
√

h̄tN̆6
√

hαN̆4
∗ −Ž3 0
∗ ∗ −Ž4(ḣt)

 < 0 (10)

ℵ̄(h̄, ḣt)
√

h̄dN̆5
√

hαN̆4
∗ −Ž5(ḣt) 0
∗ ∗ −Ž4(ḣt)

 < 0 (11)

Y1 + hdZ̄1 + ḣtZ̄3 > 0 (12)

Y1 + Z̄1 − ḣtZ̄2 + ḣtZ̄3 > 0 (13)

where

ℵ(ht, ḣt) = Sym{ΠT
1 (htP1 + ĥdP2 + hβP3)Π2 + ΠT

7 R1Π10 + ΠT
8 R2Π10 + ΠT

9 Q1Π10

+ ΠT
11Q3Π10 + ΠT

12Π13 + N̆1M̆1 + N̆2M̆2 + N̆3M̆3 + (S11 + ḣtS21)(htc9 − c12)

+ (S12 + ḣtS22)(ĥdc10 + hβc11 − c13) + (S13 + ḣtS23)(htc9 + ĥdc10 − c14)

− ε1(cT
15c15 + cT

15K21 L̂1c1 + cT
15K21 L̂2c2)}+ ḣtΠT

1 (P1 − P2)Π1

+ ΠT
3 (R1 + Q1)Π3 + ΠT

4 (R2 − R1)Π4 − ΠT
5 (R2 + Q3)Π5

+ hdΠT
6 (Q3 − Q1)Π6 + cT

5 (hαY1 + hβY2 + htZ̄1 + h̄tZ̄3)c5,
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ℵ̄(ht, ḣt) = Sym{Π̄T
1 (hαP1 + h̄dP2 + h̄tP3)Π̄2 + Π̄T

7 R1Π̄10 + Π̄T
8 R2Π̄10 + Π̄T

7 Q1Π̄10

+ Π̄T
9 Q2Π̄10 + Π̄T

11Q3Π̄10 + Π̄T
12Π13 + N̆4M̆4 + N̆5M̆5 + N̆6M̆6

+ (S14 + ḣtS24)(h̄tc11 − c13) + (S15 + ḣtS25)(hαc9 + h̄dc10 − c12)

+ (S16 + ḣtS26)(h̄dc10 + h̄tc11 − c14)− ε2(cT
15c15 + cT

15K21 L̂1c1 + cT
15K21 L̂2c2)}

+ ḣtΠ̄T
1 (P2 − P3)Π̄1 + Π̄T

3 R1Π̄3 + Π̄T
4 (R2 − R1)Π̄4 − Π̄T

5 (R2 + Q3)Π̄5

+ Π̄T
3 Q1Π̄3 + Π̄T

4 (Q2 − Q1)Π̄4 + hdΠ̄T
6 (Q3 − Q2)Π̄6

+ cT
5 (hαY1 + hβY2 + hαZ̄1 + h̄dZ̄2 + h̄tZ̄3)c5

with

Π1 =
[
cT

1 cT
2 cT

3 cT
4 cT

12 cT
13 cT

14 hβcT
11
]T

Π2 =
[
cT

5 hdcT
6 cT

7 cT
8 cT

1 − hdcT
2 hdcT

2 − cT
4 cT

1 − cT
3 cT

3 − cT
4
]T

Π3 =
[
cT

1 cT
5 cT

1 cT
2 cT

3 cT
4
]T

Π4 =
[
cT

3 cT
7 cT

1 cT
2 cT

3 cT
4
]T

Π5 =
[
cT

4 cT
8 cT

1 cT
2 cT

3 cT
4
]T

Π6 =
[
cT

2 cT
6 cT

1 cT
2 cT

3 cT
4
]T

Π7 =
[
cT

14 cT
1 − cT

3 hαcT
1 hαcT

2 hαcT
3 hαcT

4
]T

Π8 =
[
hβcT

11 cT
3 − cT

4 hβcT
1 hβcT

2 hβcT
3 hβcT

4
]T

Π9 =
[
htcT

9 cT
1 − cT

2 htcT
1 htcT

2 htcT
3 htcT

4
]T

Π10 =
[
0 0 cT

5 hdcT
6 cT

7 cT
8
]T

Π11 =
[
cT

13 cT
2 − cT

4 h̄tcT
1 h̄tcT

2 h̄tcT
3 h̄tcT

4
]T

Π12 =
[
cT

1 U1 + cT
5 U2

]T

Π13 =
[
cT

1 ĀT + cT
2 ĀT

h + cT
15B̂T − cT

5
]T

Π̄1 =
[
cT

1 cT
2 cT

3 cT
4 cT

12 cT
13 hαcT

9 cT
14
]T

Π̄2 =
[
cT

5 hdcT
6 cT

7 cT
8 cT

1 − hdcT
2 hdcT

2 − cT
4 cT

1 − cT
3 cT

3 − cT
4
]T

Π̄3 =
[
cT

1 cT
5 cT

1 cT
2 cT

3 cT
4
]T

Π̄4 =
[
cT

3 cT
7 cT

1 cT
2 cT

3 cT
4
]T

Π̄5 =
[
cT

4 cT
8 cT

1 cT
2 cT

3 cT
4
]T

Π̄6 =
[
cT

2 cT
6 cT

1 cT
2 cT

3 cT
4
]T

Π̄7 =
[
hαcT

9 cT
1 − cT

3 hαcT
1 hαcT

2 hαcT
3 hαcT

4
]T

Π̄8 =
[
cT

14 cT
3 − cT

4 hβcT
1 hβcT

2 hβcT
3 hβcT

4
]T

Π̄9 =
[
h̄dcT

10 cT
3 − cT

2 h̄dcT
1 h̄dcT

2 h̄dcT
3 h̄dcT

4
]T

Π̄10 =
[
0 0 cT

5 hdcT
6 cT

7 cT
8
]T

Π̄11 =
[
cT

13 cT
2 − cT

4 h̄tcT
1 h̄tcT

2 h̄tcT
3 h̄tcT

4
]T

Π̄12 =
[
cT

1 U3 + cT
5 U4

]T

M̆1 =
[
cT

1 − cT
2 cT

1 + cT
2 − 2cT

9
]T

M̆2 =
[
cT

2 − cT
3 cT

2 + cT
3 − 2cT

10
]T

M̆3 =
[
cT

3 − cT
4 cT

3 + cT
4 − 2cT

11
]T

M̆4 =
[
cT

1 − cT
3 cT

1 + cT
3 − 2cT

9
]T

M̆5 =
[
cT

3 − cT
2 cT

3 + cT
2 − 2cT

10
]T

M̆6 =
[
cT

2 − cT
4 cT

2 + cT
4 − 2cT

11
]T

Ž1(ḣt) = diag(Y1 + hdZ̄1 + ḣtZ̄3, 3(Y1 + hdZ̄1 + ḣtZ̄3))

Ž2 = diag(Y1 + Z̄3, 3(Y1 + Z̄3))

Ž3 = diag(Y2 + Z̄3, 3(Y2 + Z̄3))
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Ž4(ḣt) = diag(Y1 + Z̄1 − ḣtZ̄2 + ḣtZ̄3, 3(Y1 + Z̄1 − ḣtZ̄2 + ḣtZ̄3))

Ž5(ḣt) = diag(Y2 + hdZ̄2 + ḣtZ̄3, 3(Y2 + hdZ̄2 + ḣtZ̄3)).

Proof. Firstly, we decompose the time delay interval [0, h̄] into two unequal sub-intervals
[0, hα] and [hα, h̄]. For ht ∈ [0, hα], we construct a Lyapunov functional as follows:

Va(t) =
3

∑
i=1

Vi(t) (14)

with

V1(t) =htη
T
1 (t)P1η1(t) + ĥdηT

1 (t)P2η1(t) + hβηT
1 (t)P3η1(t),

V2(t) =
∫ t

t−ht
ηT

2 (t, ϑ)Q1η2(t, ϑ)dϑ +
∫ t−ht

t−h̄
ηT

2 (t, ϑ)Q3η2(t, ϑ)dϑ,

V3(t) =
∫ 0

−ht

∫ t

t+ϑ
ẋT(θ)Z̄1 ẋ(θ)dθdϑ +

∫ −ht

−h̄

∫ t

t+ϑ
ẋT(θ)Z̄3 ẋ(θ)dθdϑ.

For ht ∈ [hα, h̄], we construct another Lyapunov functional as follows:

Vb(t) =
3

∑
j=1

V̄j(t) (15)

with

V̄1(t) =hαηT
1 (t)P1η1(t) + h̄dηT

1 (t)P2η1(t) + h̄tη
T
1 (t)P3η1(t),

V̄2(t) =
∫ t

t−hα

ηT
2 (t, ϑ)Q1η2(t, ϑ)dϑ +

∫ t−hα

t−ht
ηT

2 (t, ϑ)Q2η2(t, ϑ)dϑ

+
∫ t−ht

t−h̄
ηT

2 (t, ϑ)Q3η2(t, ϑ)dϑ,

V̄3(t) =
∫ 0

−hα

∫ t

t+ϑ
ẋT(θ)Z̄1 ẋ(θ)dθdϑ +

∫ −hα

−ht

∫ t

t+ϑ
ẋT(θ)Z̄2 ẋ(θ)dθdϑ

+
∫ −ht

−h̄

∫ t

t+ϑ
ẋT(θ)Z̄3 ẋ(θ)dθdϑ.

Then, the following Lyapunov functional candidate is chosen for System (5):

VΣ(t) =

{
Vc(t) + Va(t) , ht ∈ [0, hα],

Vc(t) + Vb(t), ht ∈ [hα, h̄],
(16)

where

Vc(t) =
∫ t

t−hα

ηT
2 (t, ϑ)R1η2(t, ϑ)dϑ +

∫ t−hα

t−h̄
ηT

2 (t, ϑ)R2η2(t, ϑ)dϑ

+
∫ 0

−hα

∫ t

t+ϑ
ẋT(θ)Y1 ẋ(θ)dθdϑ +

∫ −hα

−h̄

∫ t

t+ϑ
ẋT(θ)Y2 ẋ(θ)dθdϑ

with R1, R2 ∈ S6n
+ and Y1, Y2 ∈ Sn

+.
First, consider the case of ht ∈ [0, hα]. Taking the derivative of the functionals Vc(t)

and Va(t) along the trajectories of Lur’e System (5) yields
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V̇c(t) =ηT
2 (t, t)R1η2(t, t) + ηT

2 (t, t − hα)(R2 − R1)η2(t, t − hα)

− ηT
2 (t, t − h̄)R2η2(t, t − h̄) + ẋT(t)(hαY1 + hβY2)ẋ(t) + Ĵ1 + Ĵ2

+ 2
∫ t

t−hα

ηT
2 (t, ϑ)R1

∂η2(t, ϑ)

∂t
dϑ + 2

∫ t−hα

t−h̄
ηT

2 (t, ϑ)R2
∂η2(t, ϑ)

∂t
dϑ, (17)

V̇1(t) =ḣtη
T
1 (t)(P1 − P2)η1(t) + 2htη

T
1 (t)P1η̇1(t) + 2ĥdηT

1 (t)P2η̇1(t)

+ 2hβηT
1 (t)P3η̇1(t), (18)

V̇2(t) =ηT
2 (t, t)Q1η2(t, t) + hdηT

2 (t, t − ht)(Q3 − Q1)η2(t, t − ht)

− ηT
2 (t, t − h̄)Q3η2(t, t − h̄) + 2

∫ t

t−ht
ηT

2 (t, ϑ)Q1
∂η2(t, ϑ)

∂t
dϑ

+ 2
∫ t−ht

t−h̄
ηT

2 (t, ϑ)Q3
∂η2(t, ϑ)

∂t
dϑ, (19)

V̇3(t) =ẋT(t)(htZ̄1 + h̄tZ̄3)ẋ(t) + Ĵ3 + Ĵ4 + Ĵ5 (20)

with

Ĵ1 =−
∫ t

t−hα

ẋT(ϑ)Y1 ẋ(ϑ)dϑ

Ĵ2 =−
∫ t−hα

t−h̄
ẋT(ϑ)Y2 ẋ(ϑ)dϑ

Ĵ3 =− hd

∫ t

t−ht
ẋT(ϑ)Z̄1 ẋ(ϑ)dϑ

Ĵ4 =− ḣt

∫ t

t−ht
ẋT(ϑ)Z̄3 ẋ(ϑ)dϑ

Ĵ5 =−
∫ t−ht

t−h̄
ẋT(ϑ)Z̄3 ẋ(ϑ)dϑ

It follows from (12) and Lemma 1 that

5

∑
i=1

Ĵi =−
∫ t

t−ht
ẋT(ϑ)(Y1 + hdZ̄1 + ḣtZ̄3)ẋ(ϑ)dϑ

−
∫ t−ht

t−hα

ẋT(ϑ)(Y1 + Z̄3)ẋ(ϑ)dϑ

−
∫ t−hα

t−h̄
ẋT(ϑ)(Y2 + Z̄3)ẋ(ϑ)dϑ

≤ξT
e (t)[Sym{

3

∑
l=1

N̆l M̆l}+ Ω1(ht)]ξe(t) (21)

where

Ω1(ht) =htN̆1Ž−1
1 (ḣt)N̆T

1 + ĥdN̆2Ž−1
2 N̆T

2 + hβN̆3Ž−1
3 N̆T

3 . (22)

For matrices U1 and U2 with appropriate dimensions, the following condition holds:

0 =2[xT(t)U1 + ẋT(t)U2][Āx(t) + Āhx(t − ht) + Bω̂(t)− ẋ(t)]

=2ξT
e (t)Π

T
12Π13ξe(t). (23)

For ε1 > 0, it follows from (4) that
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0 ≤− 2ε1(ω̂
T(t)ω̂(t) + ω̂T(t)K21[L̂1x(t) + L̂2x(t − ht)])

=− 2ε1ξT
e (t)[c

T
15c15 + cT

15K21 L̂1c1 + cT
15K21 L̂2c2]ξe(t). (24)

In addition, for any matrices Sij ∈ R(14n+p)×n, i ∈ {1, 2}, j ∈ {1, 2, 3}, it follows from
the definition of ξe(t) that the following zero equations are true:

2ξe(t)[S11 + ḣtS21][htc9 − c12]ξe(t) = 0, (25)

2ξe(t)[S12 + ḣtS22][ĥdc10 + hβc11 − c13]ξe(t) = 0, (26)

2ξe(t)[S13 + ḣtS23][htc9 + ĥdc10 − c14]ξe(t) = 0. (27)

To sum up, we then obtain

V̇c(t) + V̇a(t) ≤ ξT
e (t)

(
ℵ(ht, ḣt) + Ω1(ht)

)
ξe(t) (28)

with ℵ(ht, ḣt) being defined in Theorem 1.
On condition that linear matrix inequalities (8) and (9) are satisfied,

V̇c(t) + V̇a(t) < −ϵ1∥x(t)∥2 for a sufficiently small scalar ϵ1 > 0.
For the case of ht ∈ [hα, h̄], applying a familiar computational approach, we obtain

V̇c(t) + V̇b(t) ≤ ξT
f (t)

(
ℵ̄(ht, ḣt) + Ω2(ht)

)
ξ f (t) (29)

with ℵ̄(ht, ḣt) being defined in Theorem 1, and

Ω2(ht) =hdN̆4Ž−1
4 (ḣt)N̆T

4 + h̄dN̆5Ž−1
5 (ḣt)N̆T

5 + h̄tN̆6Ž−1
3 N̆T

6 . (30)

If the linear matrix inequalities (10) and (11) are satisfied, then it follows that V̇c(t) +
V̇b(t) < −ϵ2∥x(t)∥2 for a sufficiently small scalar ϵ2 > 0. To summarize, there exists a scalar
ϵm = min{ϵ1, ϵ2} such that V̇Σ(t) < −ϵm∥x(t)∥2 for ht ∈ [0, h]. Thus, Lur’e System (5) with
time-varying delay satisfying (2) and (3) is absolutely stable. This completes the proof.

Remark 2. In [28], the time delay is uniformly divided into m segments, where m is the number
of segments. By contrast, the time delay is non-uniformly divided into two segments by setting
the segmentation point parameter α. Note that at ht = hα, the Lyapunov functionals Va(t) and
Vb(t) become equal, resulting in the continuity of the overall Lyapunov functional VΣ(t) over time.
By utilizing two distinct pairs of Lyapunov matrices for the intervals ht ∈ [0, hα] and ht ∈ [hα, h̄],
relaxed conditions can be derived, which leads to less conservative results compared with some
existing methods.

Remark 3. In previous works [36,37], the interval [−h̄, 0] of the integral term in the derivative
of the Lyapunov functional was usually separated into [−h̄,−ht] and [−ht, 0]. By contrast, in
this paper, the interval is separated into [−h̄,−hα], [−hα,−ht] and [−ht, 0] for ht ∈ [0, hα], or
[−h̄,−ht] [−ht,−hα] and [−hα, 0] for ht ∈ [hα, h̄].

Remark 4. There are a series of sub-vectors ν1(t), ν2(t), ν3(t), ν4(t), ν5(t), ν6(t),
1
ht

ν1(t), 1
hα

ν2(t), 1
h̄t

ν3(t), 1
ĥd

ν4(t), 1
h̄d

ν5(t), and 1
hβ

ν6(t) contained in ξe(t) and ξ f (t) in this
paper. Inspired by [34,38,39], six zero-equalities (25)–(27) with delay-derivative-dependent free
matrices are given to consider the connections between ν1(t) and 1

ht
ν1(t), ν2(t) and 1

hα
ν2(t), ν3(t)

and 1
h̄t

ν3(t), ν4(t) and 1
ĥd

ν4(t), ν5(t) and 1
h̄d

ν5(t), and ν6(t) and 1
hβ

ν6(t), respectively. This paper
uses this approach to avoid the appearance of a quadratic term related to ht and considers more
information about the derivative of the time-varying delay.
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Remark 5. To simplify the calculation process, only first-order integral terms are considered in
the assessment of the integral inequality. By adding the second-order terms 1

ht

∫ t
t−ht

∫ t
ϑ x(θ)dθdϑ,

1
hα−ht

∫ t−ht
t−hα

∫ t−ht
ϑ x(θ)dθdϑ, 1

h̄−hα

∫ t−hα

t−h

∫ t−hα

ϑ x(θ)dθdϑ, 1
(hα−ht)2

∫ t−ht
t−hα

∫ t−ht
ϑ x(θ)dθdϑ,

1
h2

t

∫ t
t−ht

∫ t
ϑ x(θ)dθdϑ, and 1

(h̄−hα)2

∫ t−hα

t−h

∫ t−hα

ϑ x(θ)dθdϑ to ξe(t) and using the second-order

integral inequality to bound the integral terms in the derivative of the Lyapunov functional, less
conservative stability conditions are expected.

Due to the complex and uncertain nature of actual systems, we extend Theorem 1 to
the following Lur’e system with time-varying parameter uncertainty:

ẋ(t) =(Â + ∆Â(t))x(t) + (Âh + ∆Âh(t))x(t − ht) + B̂ω̂(t)

p(t) =L̂1x(t) + L̂2x(t − ht)

ω̂(t) =− Υ(t, p(t))

x(t) =ϕ(t), t ∈ [−h̄, 0]

(31)

where the uncertainties are represented in the form

[∆Â(t) ∆Âh(t)] = XZ(t)[Ya Yb] (32)

Here, X, Ya and Yb are given matrices, and Z(t) is an unknown time-varying matrix
satisfying

ZT(t)Z(t) ≤ I, ∀t. (33)

For the uncertain Lur’e system in (31), replacing Â + XZ(t)Ya and Âh + XZ(t)Yb,
respectively, with Â and Âh, and using Lemma 2 and the Schur complement [40], the
following condition is derived to ensure its absolute stability.

Theorem 2. For given scalars h̄ > 0 and τ̄ ∈ [0, 1), System (31) is robustly stable on condition
that there exist matrices Pi ∈ S8n

+ , Qi ∈ S6n
+ , Z̄i ∈ Sn

+, i ∈ {1, 2, 3}, R1, R2 ∈ S6n
+ , Y1, Y2 ∈

Sn
+, N̆j ∈ R(14n+p)×2n, S1j, S2j ∈ R(14n+p)×n, j ∈ {1, 2, · · · , 6}, U1, U2, U3, U4 ∈ Rn, and

scalars ε1, ε2, σ1, σ2 > 0 such that, for ht ∈ [0, h̄], ḣt ∈ [−τ̄, τ̄],
ℵ(0, ḣt) + σ1χT

2 χ2

√
ĥdN̆2

√
hβN̆3 χT

1

∗ −Ž2 0 0
∗ ∗ −Ž3 0
∗ ∗ ∗ −σ1 I

 < 0 (34)


ℵ(hα, ḣt) + σ1χT

2 χ2
√

htN̆1

√
hβN̆3 χT

1

∗ −Ž1(ḣt) 0 0
∗ ∗ −Ž3 0
∗ ∗ ∗ −σ1 I

 < 0 (35)


ℵ̄(hα, ḣt) + σ2χT

2 χ2
√

h̄tN̆6
√

hαN̆4 χT
3

∗ −Ž3 0 0
∗ ∗ −Ž4(ḣt) 0
∗ ∗ ∗ −σ2 I

 < 0 (36)


ℵ̄(h̄, ḣt) + σ2χT

2 χ2
√

h̄dN̆5
√

hαN̆4 χT
3

∗ −Ž5(ḣt) 0 0
∗ ∗ −Ž4(ḣt) 0
∗ ∗ ∗ −σ2 I

 < 0 (37)

where

χ1 = [cT
1 U1X + cT

5 U2X]T
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χ2 = [cT
1 YT

a + cT
2 Yb]

T

χ3 = [cT
1 U3X + cT

5 U4X]T

and ℵ(ht, ḣt), ℵ̄(ht, ḣt) are defined in Theorem 1.

4. Specific Example Analysis

In this section, a numerical example is presented to illustrate the improvement and
superiority of the proposed criteria.

Consider System (31) with

Â =

[
−2 0
0 −0.9

]
, Âh =

[
−1 0
−1 −1

]
,

B̂ =

[
−0.2
−0.3

]
, L̂1 =

[
0.3 0.1

]
, L̂2 =

[
0.1 0.2

]
,

K1 = 0.2, K2 = 0.5, X =

[
0.1 0
0 0.1

]
,

Ya =

[
1 0
0 1

]
, Yb =

[
1 0
0 1

]
To verify the effectiveness of the delay-segmentation approach, the MADBs of time de-

lay calculated by Theorem 2 and the approach proposed in [7,28,36,37,41] are summarized
in Table 1. It is observed in Table 1 that, when α = 0 and α = 1, i.e., hα = 0 and hα = h̄,
which means that the delay interval was not decomposed, the MADBs were still higher than
those in the existing literature. It is also noted that the obtained MADBs increased as α grew.
It is shown that uniformly dividing the time delay intervals in [28] is not optimal. However,
the optimal value of α is uncertain and may be related to specific numerical examples.
Even when the time delay was evenly divided into three segments in [28], the obtained
MADBs were still lower than that obtained in this paper. The superiority of the proposed
delay-segmentation-based augmented Lyapunov–Krasovskii functional approach was thus
demonstrated.

Table 1. MADB for different τ̄ values.

τ̄ 0.3 0.6 0.9

[7] 2.0787 1.4195 0.9228
[41] 2.2262 1.7409 1.4682

[28] (m = 2) 2.4660 1.8787 1.7190
[28] (m = 3) 2.5164 1.9147 1.7923

[36] 2.6873 2.2021 1.9897
[37] 2.9358 2.4721 2.2356

Theorem 2 (α = 0.00) 3.0236 2.5522 2.2949
Theorem 2 (α = 0.25) 3.0912 2.5875 2.3205
Theorem 2 (α = 0.50) 3.1102 2.6069 2.3503
Theorem 2 (α = 0.75) 3.1185 2.6466 2.4079
Theorem 2 (α = 0.90) 3.1429 2.6886 2.4353
Theorem 2 (α = 1.0) 3.0236 2.5522 2.2949

5. Conclusions

This paper addressed the issue of the absolute stability of uncertain Lur’e systems with
time-varying delay. A novel approach was proposed, which utilizes a delay-segmentation-
based augmented Lyapunov–Krasovskii functional. The functional was designed to be
piecewise continuous at the segmentation point. By employing this functional, improved
absolute stability conditions were derived by utilizing a generalized free-matrix-based
integral inequality to evaluate the integral terms in the functional derivatives. Finally, a nu-
merical example was presented to demonstrate the effectiveness of our delay-segmentation
approach. It was observed from the numerical example that the obtained MADBs are
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dependent on the segment point parameter α. How to optimize the parameter α needs
to be further investigated. Increasing the number of segments can further reduce conser-
vatism, but optimizing the segment points is a more challenging task. In addition, the
computational complexity will increase sharply with the increase in segments.
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