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Abstract: Contaminated air is unhealthy for people to breathe and live in. To maintain the sustain-
ability of clean air, air pollution must be analyzed and controlled, especially after unhealthy events.
To do so, the characteristics of unhealthy events, namely intensity, duration, and severity are studied
using multivariate modeling. In this study, the vine copula approach is selected to study the charac-
teristics data. Vine copula is chosen here because it is more potent than the standard multivariate
distributions, and multivariate copulas, especially in modeling the tails related to extreme events.
Here, all nine different vine copulas are analyzed and compared based on model fitting and the
comparison of models. In model fitting, the best model obtained is Rv123-Joint-MLE, a model with a
root nodes sequence of 123, and optimized using the joint maximum likelihood. The components
for the best model are the Tawn type 1 and Rotated Tawn type 1 180 degrees representing the pair
copulas of (intensity, duration), and (intensity, severity), respectively, with the Survival Gumbel for
the conditional pair copula of (duration, severity; intensity). Based on the best model, the tri-variate
dependence structure of the intensity, duration, and severity relationship is positively correlated,
skewed, and follows an asymmetric distribution. This indicates that the characteristic’s, including
intensity, duration, and severity, tend to increase together. Using comparison tests, the best model is
significantly different from others, whereas only two models are quite similar. This shows that the
best model is well-fitted, compared to most models. Overall, this paper highlights the capability of
vine copula in modeling the asymmetric dependence structure of air pollution characteristics, where
the obtained model has a better potential to become a tool to assess the risks of extreme events in
future work.

Keywords: air pollution; joint distribution; multivariate modelling; asymmetric copula; vine copula
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1. Introduction

Maintaining clean air is an important task to sustain the health of people and nature.
However, human activities such as urbanization, transportation, industrialization, open
burning, and forest fires contribute to degrade air quality [1]. Many serious diseases such
as obstructive pulmonary diseases, lung cancer, and cardiovascular diseases are associated
with air pollution [2–5]. People with severe heart and lung complications tend to suffer at
most when exposed to air pollutants, especially fine particles [6]. A recent survey showed
that air pollutants can also aggravate psychological dilemmas, trigger financial downturns,
and create social issues [7]. These highlight the importance of monitoring and managing
the risks of unhealthy air pollution emergencies. For monitoring, the composite index of
pollutants (carbon monoxide CO, ozone O3, nitrogen dioxide NO2, sulfur dioxide SO2,
and fine particles with a size less than 10 microns PM10) is used and is usually called
an air pollution index (API) [8,9]. In Malaysia, API values exceeding 100 within certain
periods are considered unhealthy events. Such events are also associated with haze [10].
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Therefore, above the 100 level, if the API value keeps increasing, air pollution will become
more intense.

In assessing air pollution in Peninsular Malaysia, the Pareto distribution has been
used to investigate API data from eight main cities with Klang being identified as the most
exposed city [11]. The lognormal, exponential, Gamma, and Weibull distributions were also
examined to model the API data and its sub-indexes in Kuala Lumpur, and it was reported
that the Gamma distribution is the best distribution for most data [12]. Sub-indexes of API
during unhealthy events were also investigated using the generalized Pareto distribution
to conclude that PM10 and O3 are the most severe pollutants [13]. Besides local sources,
the concentration of PM10 and O3 are also related to regional tropical factors, such as the
influence of biomass burning and ultraviolet radiation from sunlight [14]. Based on this, the
call for reducing PM10 volume is emphasized since it is the main contributor to unhealthy
air pollution in Klang [15,16]. In [17], gaseous pollutants, particularly O3, are also urged to
be reduced since gaseous pollutants are more harmful to respiratory and natural mortalities
compared to particles.

It was also reported that a significant reduction in the concentration of air pollutants
(PM10, PM2.5, NO2, and CO) occurred during the COVID-19 movement control order in
Malaysia, and this reduction is believed to be due to a decrease in the use of vehicles on
the roads [18]. In [19], three different methods, called conventional models, API structure
models, and descriptive status models, were applied to analyze the API data and showed
that these methods have their individual advantages and that the mixture approach is a
better way to simulate the API data. The mixed approach is better because the conventional
fitted models are capable of distinguishing API status (healthy or unhealthy), the API
structure models are superior to modeling the API data, and the API descriptive status
models are useful to determine the return level for unhealthy events.

In addition, the stochastic dependence of API data in Klang was also investigated using
a discrete-time Markov chain model and concluded that the occurrence of unhealthy events
is relatively small, but that these events are quite troubling [20]. In [21], the Hierarchical-
Generalized Pareto model is applied to API data from different locations to provide a
precise estimation of the return levels for each location. Moreover, the mixed peak-over-
threshold-block-maxima (POT-BM) approach was used to investigate the unhealthy events
and showed that this approach has an excellent tradeoff between bias and variance in
modeling the extreme events [22].

Furthermore, flexible multivariate modeling via the copula approach was also used to
examine the dynamic dependence structure between PM10 and other air pollutants [23].
Using a multifractal technique on API in Klang, Masseran [24] showed that hourly API
data contains the most information on air pollution and that the data reduction process
is affected by the data duration. Moreover, survey data obtained from the cross-sectional
survey is used to study Malaysians’ awareness of air pollution and its related impacts on
human health, where the surveys pointed out the need to increase the awareness of air
pollution among Malaysian [25,26]. A recent survey on air pollution and its health impacts
in Malaysia is also discussed in [27]. Based on the monthly air pollution hospitalization
dataset in Klang Valley, Malaysia, artificial intelligence techniques are also used to predict
the trends of cardiorespiratory hospitalization due to air pollution [28].

Besides API, air pollutants time series, survey data, and air pollution hospitalization
dataset, characteristics of unhealthy events such as severity, intensity, and duration are also
explored to understand the behaviors of air pollution. For instance, the intensity–duration–
frequency approach has been applied to describe the relationship between intensity with
duration and also return period, where findings warned that intensity in Klang moves in the
same direction as duration and return period [29,30]. Focusing on modeling the duration
distribution, the Lognormal distribution is showed to provide a better fit than Exponential,
Gamma, and Weibull distributions [31]. Furthermore, by using the power-law model,
prolonged air pollution with a duration of more than 33 h is believed to be the threshold for
events with power-law behaviors, indicating the risks of unhealthy events [32]. In addition,
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the generalized extreme-value (GEV) model has also been used to study severity data
and found that the severity in Klang tends to increase together with the length of return
periods [33].

On the other hand, the dependence relationship between severity and duration in
Klang was also analyzed using bivariate copula models for planning and risk mitigation
purposes [34]. As a continuation of [34], an additional study has been done to include
intensity in the analysis together with severity and duration, then various bivariate cop-
ula models were applied to examine the bivariate dependence structures for three pairs,
which are (duration, intensity), (severity, intensity), and (duration, severity) [35]. The
latter showed that the dependence structures for the pairs were skewed and asymmetric.
However, the tri-variate relationship of the duration–intensity–severity is yet to be explored.
In this study, we analyze the tri-variate dependence structure of the intensity, duration, and
severity using a vine copula approach. Vine copula is proposed here because it provides a
more reliable, realistic, flexible, and tractable model compared to the standard multivariate
distributions, and multivariate copulas, especially in modeling the tail behaviors related to
extremely unhealthy events [36–38]. Therefore, this analysis can provide a new perspective
to the existing information on air pollution data through the relationship between intensity,
duration, and severity.

This paper is organized as follows: Section 2 introduces the vine copula approach,
Section 3 describes the sample data, Section 4 discusses the proposed method, Section 5
provides results and discussions, and finally, Section 6 concludes this paper and provides a
suggestion for future work.

2. Vine Copula

Vine copula is an enhanced copula approach, where the bivariate copulas and bivariate
conditional copulas are used as building blocks to obtain a more flexible and tractable
multivariate model for a joint distribution [36–38]. Furthermore, vine copula is more potent
than the standard multivariate distributions and multivariate copulas, especially in modeling
the asymmetric distributions and the tail behaviors related to extreme events [36,39,40].

In multivariate modeling, Sklar’s theorem stated that a joint distribution F is equal to
a copula distribution C, such that

F(x1, x2, · · · , xd) = C(F1(x1), F2(x2), · · · , Fd(xd)), (1)

where x1, x2, · · · , xd are random variables and F1, F2, · · · , Fd are marginal distributions [41,42].
For simplicity, F1(x1), F2(x2), · · · , Fd(xd) are also denoted by u1, u2, · · · , ud and called as
copula variables. Since the random variables Ui = Fi(Xi), i = 1, 2, · · · , d, are uniformly
distributed on the closed unit interval [0, 1], then a copula distribution C(u1, u2, · · · , ud) is
a multivariate distribution function on the d-dimensional hypercube [0, 1]d.

The joint distribution F in Equation (1) is absolutely continuous if the copula C is
absolutely continuous; that is, C has a density function and the marginal distributions
F1, · · · , Fd are continuous [36]. For this case, the obtained copula distribution C is unique
and the corresponding copula density c can be obtained using partial derivative as follows

c(u1, u2, · · · , ud) =
∂d

∂u1∂u2 · · · ∂ud
C(u1, u2, · · · , ud). (2)

In the literature, there are many copula distributions that have been developed, espe-
cially for the bivariate copula C(u1, u2) [43]. Some examples are Clayton, Franks, and Joe
copulas. Functions for these copulas can be defined, respectively, as follows

C(u1, u2; θ) =
(

u−θ
1 + u−θ

2 − 1
)− 1

θ , (3)
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C(u1, u2; θ) = −1
θ

ln

[
1 +

(
e−θu1 − 1

)(
e−θu2 − 1

)
e−θ − 1

]
(4)

C(u1, u2; θ) = 1 −
[
(1 − u1)

θ + (1 − u2)
θ − (1 − u1)

θ(1 − u2)
θ
] 1

θ , (5)

where θ is an independent variable to the copulas [38,44].
From a bivariate distribution copula C(u1, u2), some important dependence measures,

including Kendall’s τ correlation, upper tail dependence λupper, and lower tail dependence
λlower coefficients also can be obtained. Kendall’s τ correlation coefficient measures the
central dependency, upper tail dependence λupper coefficient computes the probability of
the joint occurrence of extremely large values, and lower tail dependence λlower coefficient
calculates the probability of the joint occurrence of extremely small values [36]. In addition,
these coefficients can describe whether a bivariate copula has a skewed and asymmetric
distribution. The formulas for these three coefficients can be obtained, respectively, as

τ = 4
1∫

0

1∫
0

C(u1, u2)dC(u1, u2)− 1, (6)

λupper = lim
t→1−

1 − 2t + C(t, t)
1 − t

, (7)

and

λlower = lim
t→0+

C(t, t)
t

. (8)

In the vine copula approach, bivariate copulas are also known as pair copulas. By
using the pair copula decompositions and constructions proses, a d-dimensional copula
density c can be transformed into a vine copula, as a product of d(d − 1)/2 components,
including pair and conditional pair copulas [45]. However, the obtained vine copula is not
unique. For example, in the case of d = 3, there are 3 vine copulas that exist with different
compositions. By using a representation from the graph theory called a tree (an undirected,
connected and acyclic graph), a vine copula can be illustrated as a trees sequence (also
called a vine trees sequence) [46].

A vine trees sequence Σ = (T1, · · · , Td−1) on d data is a sequence of trees Tm = (Nm, Em),
m = 1, 2, · · · , d − 1, if

1. Each tree Tm = (Nm, Em) is a connected, i.e., for all nodes a, b ∈ Nm, m = 1, 2, · · · ,
d − 1, there exits a path n1, n2, · · · , nk ⊂ Nm with a = n1, b = nk.

2. T1 is a tree with node set N1 = {1, 2, · · · , d} and edge set E1.
3. For m ≥ 2, Tm is a tree with node set Nm = Em−1 and edge set Em.
4. (Proximity condition) Whenever two nodes in Tm+1 are joined by an edge, the corre-

sponding edges in Tm must share a common node, i.e., for m = 2, 3, · · · , d − 1 and
{a, b} ∈ Em it must hold that |a ∩ b| = 1 [38].

In a vine trees sequence, each edge e can be denoted by (je, ke) for T1 and (je, ke; De)
for Tm, where m = 2, 3, · · · , d − 1. The difference between those two notations is an edge
for Tm, where m = 2, 3, · · · , d − 1 is determined by two shared edges in the previous tree
Tm−1. For m = 2, 3, · · · , d − 1, let there is one node that shared two edges in the previ-
ous tree Tm−1 are denoted as a = (ja, ka; Da) and b = (jb, kb; Db) and the corresponding
sets containing all indices of the two shared edges are denoted as Va = {ja, ka, Da} and
Vb = {jb, kb, Db}, respectively. Then, in the next tree Tm, those the two shared edges
become two nodes a and b, which connected by a new edge e = (je, ke; De), where
je = min{l : l ∈ (Va ∪ Vb)\De} and ke = max{l : l ∈ (Va ∪ Vb)\De} and De = Va ∩ Vb.
Here, De and {je, ke} are sets of indices, which are called the conditioning and conditioned
sets of the new edge e, respectively [38].

For example, in Figure 1, in the T1, has a node (denoted by the index 2) that shared
two edges a = (1, 2) and b = (2, 3), with Va = {1, 2} and Vb = {2, 3}. Then, in the T1,
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those two shared edges become two nodes a and b, and they are connected by a new edge
e = (1, 3; 2), where je = 1 and ke = 3 and De = {2}. In this case, {2} and {1, 3} are the
conditioning and conditioned sets of the new edge e = (1, 3; 2), respectively.
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Generally, a vine copula (also known as a regular vine copula) is a multivariate
modeling made up of a combination of pair copulas and pair conditional copulas to model
the dependence structure of d−dimensional copula data U = (U1, U2, · · · , Ud) and its
components can be visualized using a vine trees sequence.

For a regular vine copula, its general density can be written as

c(u) =
d−1

∏
m=1

∏
e∈Em

cje ,ke ;De

(
Cje |De

(
uje

∣∣uDe

)
, Cke |De(uke

∣∣uDe); uDe

)
, (9)

where uDe = (ul)l∈De
is a subvector of u = (u1, u2, · · · , ud) ∈ [0, 1]d, Cje |De is the conditional

distribution of Uje
∣∣UDe = uDe , and cje ,ke ;De is the copula density corresponding to the two

variables Cje |De and Cke |De , conditional on UDe = uDe .
In Equation (9), each pair copula density cje ,ke ;De depends on the conditioning vector

uDe . In practice, to reduce the complexity, a simplifying assumption is made, which lead
to the conditioning vector uDe being ignored. By applying this assumption, our model is
now called a simplified regular vine copula. In our study, a simplified regular vine copula
is applied to study air pollution through the lens of the unhealthy events’ characteristics.
Therefore, density for a simplified regular vine copula is

c(u) =
d−1

∏
m=1

∏
e∈Em

cje ,ke ;De

(
Cje |De

(
uje

∣∣uDe

)
, Cke |De(uke

∣∣uDe)
)

, (10)

Furthermore, the conditional distribution copula Cje |De in Equation (10) can be defined
in terms of conditional distributions of pair copulas in the previous tree. Let le ∈ De is an
index and D′

e = De\le, such that Cje ,le ;D′
e

is a pair copula in the previous tree. Then, we
obtain the conditional distribution copula Cje |De as

Cje |De

(
uje

∣∣uDe

)
= hje |le ;D′

e

(
Cje |D′

e

(
uje |uD′

e

)
|Cle|D′

e

(
ule| |uD′

e

))
, (11)
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where the h-function is

hje |le ;D′
e

(
uje |ule

)
=

∂Cje ,le ;D′
e

(
uje , ule |uD′

e

)
∂ule

. (12)

In addition, the conditional distributions Cje |D′
e

(
uje |uD′

e

)
and Cle|D′

e

(
ule| |uD′

e

)
in

Equation (11) can also be obtained in the same manner using the h-function, as concep-
tualized by Equation (12). Therefore, there is a recursion process in a simplified regular
vine copula, as a tree is always related to its previous existing trees. In this recursion, the
conditioning set De is always reduced by one index and the conditional distribution Cje |De
is determined by the pair copula densities in the previous trees [47].

For example, if a simplified regular vine copula has a vine trees sequence as depictured
in Figure 1, then its density (a particular case of Equation (10)) is formulated as

c(u1, u2, u3) = c1,3:2

(
C1|2(u1|u2), C3|2(u3|u2)

)
× c2,3(u2, u3)× c1,2(u1, u2). (13)

By using the h-function, the two conditional distributions C1|2(u1|u2) and C3|2(u3|u2)
in Equation (13) can be obtained, respectively, as

C1|2(u1|u2) = h1|2(u1|u2) =
∂C12(u1, u2)

∂u2
, (14)

and

C3|2(u3|u2) = h3|2(u3|u2) =
∂C23(u2, u3)

∂u2
. (15)

A simplified regular vine copula can also display a particular pattern in its vine trees
sequence and has a special name assigned to it. Notably, there are two subclasses of
simplified regular vine copula, namely simplified canonical vine copula and drawable
simplified vine copula. A simplified regular vine copula is classified as a simplified
canonical vine copula, if for each tree Tm, m = 1, · · · , d − 1, there is a node n ∈ Nm called as
a root node such that |{e ∈ Em|n ∈ e}| = d − m is satisfied. On the other hand, a simplified
regular vine copula is identified as a simplified drawable vine copula, if for each node
n ∈ Nm, we have |{e ∈ Em|n ∈ e}| ≤ 2 [48].

Therefore, in a simplified canonical vine copula, a node with the maximal degree
serves as the root node. While each node in a simplified drawable vine copula has degree 1
or 2, it depends on its position in tree Tm, m = 1, · · · , d − 1 [49]. Back to Figure 1, based on
its vine trees sequence, we can classify that its simplified regular vine copula is a simplified
canonical vine copula, where its root nodes sequence is 213 (2 is a root node for T1, and
1 or 3 is a root node for T2). However, this simplified regular vine copula in Figure 1 can
also be identified as a drawable simplified vine copula with a node order 123, since its
nodes connected in the way of 1-2-3. For the interested readers, books such as [37,38,41]
are encouraged to gain a deeper understanding on the vine copula approach.

3. Sample Data

Similar to most studies mentioned in the introduction, this paper also focuses on
Klang as a study area. The reason behind this is that Klang has been recognized as the
most polluted city in Malaysia, mainly caused by industrialization [11]. In addition, Klang
is also one of the largest cities that is heavily populated, making unhealthy events in this
region very alarming and prone to undesirable consequences caused by air pollution.

For this study, API hourly data in Klang from January 1997 until August 2020 was
gathered from the Department of Environment (DOE). After that, for each unhealthy
event that happened when the API value continuously exceeds 100 at a certain period, its
characteristics such as intensity, duration, and severity were computed and all of them
were collected as sample data. Figure 2 illustrates the API hourly data used in this study.
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Figure 2. API time series with a threshold at level 100 that indicate unhealthy events.

Let API data is a set API = {xt}, where xt is an API value at hourly time t ∈
{1, 2, · · · , T}. Also, let Pj = {t|xt > 100} ⊂ {1, 2, · · · , T} is the j−th non-overlapping
unhealthy event. Then, for each Pj, where j = 1, 2, · · · , N, the j−th intensity, duration,
and severity can be, respectively, computed as

ij = max
t∈Pj

{xt}
(
The maximum API value within period Pj

)
, (16)

dj =
∣∣Pj

∣∣ (The cardinality of Pj
)
, (17)

and
sj = ∑t∈Pj

xt
(
Summation of all API values within period Pj

)
. (18)

Figure 3 demonstrates how to determine the intensities, durations, and severities for
the first three unhealthy events that are pointed out by the red regions.

Descriptive statistics for intensity, duration, and severity are mentioned in Table 1. All
the characteristics (intensity, duration, and severity) are seen to have a similar statistical
property. Mean, median, minimum, and maximum values show that most data are not at
the intermediate value. Furthermore, the standard deviation also indicates a significant
deviation from the mean. Meanwhile, skewness and kurtosis measures point out that
the data are highly skewed and that most of the data are accumulated in the tails of the
distribution instead of around the mean.

Table 1. Descriptive statistics for intensity, duration, and severity.

Variable Mean Median Min. Value Max. Value Std. Deviation Skewness Kurtosis

Intensity 125.11 112 101 543 44.77 5.61 44.97
Duration 16.74 2 1 224 31.91 3.24 15.73
Severity 2241.76 231.27 101 36677 4948.3 3.92 20.92
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4. Method

Let the three considered characteristics, intensity, duration, and severity, be, respec-
tively, denoted by three sets X1 =

{
x1,j

∣∣j ∈ I
}

, X2 =
{

x2,j
∣∣j ∈ I

}
, and X3 =

{
x3,j

∣∣j ∈ I
}

,
where I = {1, 2, · · · , N} is a indexing set. To transform these original data into copula
data, the probability integral transformation (PIT) is used. By using the PIT, copula data
uk,j = F̂k

(
xk,j

)
is obtained, for k = 1, 2, 3 and j = 1, 2, · · · , N, where F̂k is an empirical

distribution function defined as

F̂k

(
xk,j

)
=

1
N + 1

N

∑
j=1

1{x≤xk,j}, for all x ∈ Xk, (19)

where xk,j is the variable for k-th variable and j-th element of the variable. As a result, copula
data such as U1 =

{
u1,j

∣∣j ∈ I
}

, U2 =
{

u2,j
∣∣j ∈ I

}
, and U3 =

{
u3,j

∣∣j ∈ I
}

are obtained for
intensity, duration, and severity, respectively.

For preliminary analysis of the copula data, visualizations such as marginal histograms,
pair plots, empirical contour plots, and an empirical dependence measure such as Kendall’s
τ correlation coefficient are used. This analysis is vital to get early insights regarding the
marginal and pairwise dependency behaviors of the copula data.

In this study, three possible vine trees sequence for the 3-dimensional case are con-
sidered. Figure 1 in Section 2 illustrates the first vine trees sequence. The other two vine
trees sequences are presented in Figure 4. For the first vine trees sequence in the first row
of Figure 4, the density for its simplified regular vine copula is

c(u1, u2, u3) = c1,2:3

(
C1|3(u1|u3), C2|3(u2|u3)

)
× c1,3(u1, u3)× c2,3(u2, u3). (20)
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Based on its vine trees sequence, this simplified regular vine copula also can be
classified as a simplified canonical vine copula with a root nodes sequence 312 and a
simplified drawable vine copula with node order 132.

For the case of vine trees sequence at the second row, the density for its simplified
regular vine copula is

c(u1, u2, u3) = c2,3:1

(
C2|1(u2|u1), C3|1(u3|u1)

)
× c1,2(u1, u2)× c1,3(u1, u3). (21)

By looking at its vine trees sequence, the latter simplified regular vine copula also can
be identified as a simplified canonical vine copula with a root nodes sequence 123 and a
simplified drawable vine copula with node order 213.

For the sake of simplicity in mentioning these vine copulas, by using the identity
related to canonical vine copula, which is the root nodes sequence, the three simplified
vine copulas mentioned in Equations (13), (20) and (21) are called Rv213, Rv312, and
Rv123, respectively.

For every simplified vine copula (Rv213, Rv312, and Rv123), the appropriate copula
model must be assigned to each component, including the pair copulas and a conditional
pair copula. The determination process for finding an appropriate copula model for those
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components can be done independently. For that, the maximum likelihood estimation
(MLE) and the Akaike information criteria (AIC) are applied to optimize the copula model’s
parameters and to determine the most well-fitted pair copula (or conditional pair copula),
respectively. Here, various parametric pair copula models are tested, all of which are listed
in Table 2. For conditional pair copula, h-functions that are similar to Equations (14) and (15)
are first applied to obtain the relevant copula variables before the considered parametric
pair copula models are tested.

Table 2. List of the tested parametric pair (or bivariate) copula models.

Number Copula Short Name Copula Long Name Parameter Number

1 N Gaussian 1
2 t t 2
3 C Clayton 1
4 G Gumbel 1
5 F Frank 1
6 J Joe 1
7 BB1 BB1 2
8 BB6 BB6 2
9 BB7 BB7 2
10 BB8 BB8 2
11 SC Survival Clayton 1
12 SG Survival Gumbel 1
13 SJ Survival Joe 1
14 SBB1 Survival BB1 2
15 SBB6 Survival BB6 2
16 SBB7 Survival BB7 2
17 SBB8 Survival BB8 2
18 Tawn Tawn type 1 2
19 Tawn 180 180◦-rotated Tawn type 1 2
20 Tawn 2 Tawn type 2 2
21 Tawn 2 180 180◦-rotated Tawn type 2 2

Let two variables ua,j and ub,j such that a, b ∈ {1, 2, 3} and j = 1, 2, · · · , N, the above-
mentioned MLE is determined by using the following formula

MLE = max
θ∈Θ

{ℓ(θ; u)}, (22)

such that

ℓ(θ; u) =
N

∏
j=1

ca,b

(
ua,j, ub,j; θa,b

)
, (23)

where θ is the parameter of the possible set Θ. Whilst the abovementioned AIC is computed
as follows

AIC = −2
N

∑
j=1

ln
(

ca,b

(
ua,j, ub,j; θa,b

))
+ 2k, (24)

where k is the total number for the pair copula model’s parameters. Here, function BiCopS-
elect in R-package VineCopula is used for computation involving the selection of the best
pair copulas and conditional pair copula [50].

Alternative to the MLE as defined in Equation (22), the inversion of Kendall’s τ corre-
lation coefficient (Itau) can also be used to optimize the pair copulas and the conditional
pair copula. By using the Itau, parameters θ are estimated using θ = C−1(τ̂), where C−1

is the inverse function of the used pair copula model and τ̂ is the empirical coefficient of
Kendall’s τ correlation Correlation. However, the MLE is preferable compared to the Itau
because it is more potent when the parameters in a model are few (e.g., one or two) and
applicable to all pair copula models, as listed in Table 2.
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Nevertheless, in this study, after all its components are determined, in the parametric
setting, each simplified regular vine copula (Rv213, Rv312, and Rv123) is optimized us-
ing three methods, namely the sequential inversion of Kendall’s τ correlation coefficient
(Seq-Itau), the sequential MLE (Seq-MLE), and the joint MLE (Joint-MLE). The first two
optimizers share the same sequential strategy to estimate the parameters for a simplified
vine copula.

For the sequential strategy, we can take an example of Rv213, where the parameters
θ1,2, θ2,3, and θ1,3;2 that correspond to pair copulas c1,2, c2,3, and conditional pair copula c1,3;2,
respectively. can be sequentially optimized using the MLE or the Itau method. Following
the vine trees sequence, parameters θ1,2 and θ2,3 are firstly optimized using the MLE or the
Itau method. After that, the h-function is used to obtain copula variables related to the
conditional pair copula c1,3;2. Sequentially, the MLE or the Itau method is used once again
to optimize the last parameter θ1,3;2. In this study, a function RVineSeqEst in R- package
VineCopula is applied to fit the pair copulas and a conditional pair copula.

Staying with the same example of Rv213, Joint-MLE optimizes the parameter set
θ = {θ1,2, θ2,3, θ1,3;2} by maximizing the joint likelihood for the triviate simplified regular
vine copula Rv213, as defined below

ℓ(θ; u) =
N
∏
j=1

c1,3,2

(
C1|2

(
uj,1, uj,2; θ1,2

)
, C3|2

(
uj,3, uj,2; θ2,3

)
; θ1,3;2

)
×c2,3

(
uj,2, uj,3; θ2,3

)
c1,2

(
uj,1, uj,2; θ1,2

)
.

(25)

For this study, the Joint-MLE approach is performed using the function RVineMLE in
R-package VineCopula [48,51].

Therefore, for each simplified regular vine copula (Rv213, Rv312, and Rv123), which
is optimized using Seq-Itau, Seq-MLE, or Joint-MLE, the log-likelihood, AIC, and BIC are
used for model comparison purposes to determine the best model. Here, the best model is
regarded as the model with the highest log-likelihood and the lowest AIC and BIC. In this
study, the log-likelihood, AIC, and BIC are computed using R-package VineCopula through
the functions RVineLogLik, RVineAIC, RVineBIC, respectively [50]. Furthermore, the Vuong
tests are also applied to compare the fitting similarity of the models [52]. For these tests, if
two models have a test statistical score with a significant p-value at 0.05 level ( p ≤ 0.05),
then these two compared models are very similar in their model fitting. Here, the test
statistic score and p-value of the Vuong tests are obtained from the function RVineVuongTest
of R-package VineCopula [50].

Lastly, the Kendall’s τ correlation, upper tail dependence λupper, and lower tail de-
pendence λlower coefficients are also computed for the best model. Normally, the d-variate
Kendall’s τ correlation coefficient of a multivariate copula C is defined by [53]

τ =
2d

2d−1 − 1

∫
[0,1]d

CdC − 1
2d (26)

For Equation (26), the value of Kendall’s τ correlation coefficient is given by τ ∈[
− 1

2d−1−1
, 1
]
, where d is the dimension of a multivariate copula C. In addition, the d-

variate upper tail dependence λupper, and lower tail dependence λlower coefficients are,
respectively, defined by

λupper = lim
t→1−1

C(1 − t)
1 − C(t)

(27)

and

λlower = lim
t→0+

C(t)
1 − C(1 − t)

(28)

where t = (t, t, · · · , t), 1 − t = (1− t, 1− t, · · · , 1− t) and Ĉ is the survival copula of a
multivariate copula C [54]. For every d-multivariate copula C, we have λupper, λlower ∈ [0, 1].
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However, due to simplicity and ease of computing, in this study, the used formulas
for Kendall’s τ correlation, upper tail dependence λupper and lower tail dependence λlower

coefficients, respectively, are

τ =
1(
d
2

)∑r ̸=s τr,s (29)

λupper =
1(
d
2

)∑r ̸=s λ
upper
r,s , (30)

and
λlower =

1(
d
2

)∑r ̸=s λlower
r,s (31)

where τr,s, λ
upper
r,s , λlower

r,s are the Kendall’s τ correlation coefficient of pair copula or con-
ditional pair copula for variables Ur, Us, as defined in Equations (6)–(8), respectively [55].
Kendall’s τ correlation coefficient will lie down in the range [−1, 1], since every τr,s ∈ [−1, 1].
For the upper tail dependence λupper and lower tail dependence λlower coefficients, they
are in the range [0, 1] since the probabilities λ

upper
r,s , λlower

r,s ∈ [0, 1].
For a vine copula model, these coefficients of Equations (29)–(31) can be used to

measure the central dependency, the probability of the joint occurrence of extremely large
values, and the probability of the joint occurrence of extremely small values for the best
model. The last two coefficients are also used to determine whether the best model is
asymmetric or not. Furthermore, to aid our analysis on its dependencies, the tractable
property of the vine copula model is also used, where the figures of its pair copulas are
observed to provide useful and clearer insights into our vine copula model.

5. Result

In this study, simplified vine copula models are applied to examine the characteristics
of unhealthy events, namely intensity, duration, and severity. Prior to the modeling, data
in the original scale is transformed into new data in the copula scale by using the PIT
approach, as mentioned in the first paragraph of Section 4. Marginal histograms for the
original data (in the first column) and copula data (in the second column) are presented
in Figure 5. The latter data follow a uniform pattern as compared to the previous data,
resulting from the PIT transformation. This implies that the dependence structure is now
independent of marginal effects.

From there, a preliminary analysis is done using the obtained copula data. The results
of this analysis, consisting of marginal histograms, pair plots, Kendall’s τ correlation
coefficients, and empirical contour plots are provided in Figure 6. Behaviors on marginal
histograms at the diagonal of Figure 6 have been discussed in the above paragraph. In
Figure 6, focusing on the pair plots and Kendall’s τ correlation coefficients (located above
the diagonal), all the pairs show positive relationships. The stronger correlation of 0.89 is
indicated by the relationship between severity and duration. This follows by the pair of
variables, between intensity and severity (0.55), and the duo of variables, between intensity
and duration (0.39). A higher correlation indicates that the pair has a more similar rank
between two variables, such as increases in air pollution severity being more likely to
happen because of a prolonged unhealthy event. Besides that, normalized contour plots
also indicate a similar pattern, where all pairs are in a non-elliptical shape, indicating that
an elliptical distribution is not favorable here.
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Consequently, all three simplified regular vine copulas (Rv213, Rv312, and Rv123)
are considered to model a tri-variate dependence structure for the severity, intensity, and
duration relationship. In doing that, components for each considered simplified regular
vine copula, such as the pair copulas and a conditional pair copula, need to be determined.
In this study, the pair copulas and a conditional pair copula are modeled using various
parametric bivariate copula models, listed in Table 2. At this point, the MLE, the AIC, and
h-function are used to fit the model, to choose the appropriate model, and to obtain pseudo
copula data for the conditional pair copula prior to the modeling, respectively. Tables 3–5
present the result of modeling the pair copulas and a conditional copula for simplified
regular vine copulas Rv213, Rv312, and Rv123, accordingly.

Table 3. The appropriate models for pair copulas and conditional pair copula of a simplified regular
vine copula Rv213.

Tree Copula Pair Term The Best Model Par Par2 Tau Ltd Utd

1 Pair copula (Int, Dur) c,1:2 Tawn type 1 2.62 0.42 0.32 0.00 0.39
1 Pair copula (Dur, Sev) c2,3 Joe 11.81 - 0.85 0.00 0.94
2 Conditional pair copula (Int, Sev; Dur) c1,3:2 Rotated BB8 270 degrees −6.00 −0.73 −0.55 0.00 0.00

Table 4. The appropriate models for pair copulas and conditional pair copula of a simplified regular
vine copula Rv312.

Tree Copula Pair Term The Best Model Par Par2 Tau Ltd Utd

1 Pair copula (Int, Sev) c,1:3 Rotated Tawn type 1 180 degrees 4.70 0.58 0.49 0.56 0.00
1 Pair copula (Dur, Sev) c2,3 Joe 11.81 - 0.85 0.00 0.94
2 Conditional pair copula (Int, Dur; Sev) c1,2:3 Rotated BB8 270 degrees −5.68 −0.80 −0.58 0.00 0.00

Table 5. The appropriate models for pair copulas and conditional pair copula of a simplified regular
vine copula Rv123.

Tree Copula Pair Term The Best Model Par Par2 Tau Ltd Utd

1 Pair copula (Int, Dur) c,1:2 Tawn type 1 2.62 0.42 0.32 0.00 0.39
1 Pair copula (Int, Sev) c1,3 Rotated Tawn type 1 180 degrees 4.70 0.58 0.49 0.56 0.00
2 Conditional pair copula (Dur, Sev; Int) c2,3:1 Survival Gumbel 3.09 - 0.68 0.75 0.00

For example, in Table 3, there are two pseudo copula data that are required before the
conditional pair copula modeling. These pseudo copula data C1|2(u1|u2) and C3|2(u3|u2)
can be obtained using the h-function such that

C1|2(u1|u2) = h1|2(u1|u2) =
∂

∂u2
C12(u1, u2), (32)

and
C3|2(u3|u2) = h3|2(u3|u2) =

∂

∂u2
C32(u3, u2). (33)

After that, by using the pseudo copula data C1|2(u1|u2) and C3|2(u3|u2), the MLE, and
the AIC, the most well-fitted conditional pair copula model is determined. Consequently,
Kendall’s τ correlation, upper tail dependence λupper, and lower tail dependence λlower

coefficients of the conditional pair copula (as mentioned in the third row of Table 3) can
be computed using Equations (6)–(8), respectively. The same procedure is also applied
to compute Kendall’s τ correlation, upper tail dependence λupper, and lower tail depen-
dence λlower coefficients of the conditional pair copula, as mentioned in the third row of
Tables 4, 5 and 7.

Based on Tables 3–5, for pair copulas, the well-fitted models for describing the de-
pendence structure of the pairs of (intensity, severity), (duration, severity), and (intensity,
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duration) are the Tawn type 1, Rotated Tawn type 1 180 degrees, and Joe, respectively. This
result is aligned with the outcome of [35]. The density and contour plots of these copulas
are illustrated accordingly in Figure 7.
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In Figure 7 (similar to Figures 8 and 10), the variables Z1 and Z2 in the contour
plots of the fitted conditional pair have a marginally normalized scale, where
Zi = Φ−1(Ui) = Φ−1(Fi(Xi)) for i = 1, 2 with density g(z1, z2) = c(Φ(z1), Φ(z2))ϕ(z1)ϕ(z2).
Here, X1 and X2 are original variables, while U1 and U2 are copula variables, such that
Ui = Fi(Xi). Furthermore, c(·, ·) is a copula density, and Φ(·) and ϕ(·) are the distribution
and density functions of a N(0, 1) variable.
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In addition, for the conditional cases, the conditional pairs of (intensity, severity; dura-
tion), (intensity, duration; severity) are better modeled by the Rotated BB8 270 degrees, while
(duration, severity; intensity) is most appropriately modeled by the Survival Gumbel. For
these conditional pair copulas, Figure 8 displays their density and contour plots, respectively.

Furthermore, for the conditional cases, there exist two cases where the obtained
Kendall’s τ correlation coefficients are negative. These cases are the conditional pairs of
(intensity, severity; duration) and (intensity, duration; severity) with Kendall’s τ correlation
coefficient of −0.55 and −0.58, as reported in Tables 3 and 4, respectively. For (duration,
severity; intensity), Kendall’s τ correlation coefficient is positive (0.68), see Table 5. To
interpret this value, for (intensity, severity; duration), the negative value (−0.55) shows
that, conditional on the duration, the intensity and severity have inverse correlation,
see Figure 8a. This indicates that while the intensity increases, the severity decreases,
conditional on the duration. This interpretation is also held for (intensity, duration; severity).
For a positive value like in (duration, severity; intensity), the duration and severity move
in the same direction, conditional on the intensity. Therefore, conditional on the intensity, a
positive correlation (0.68) indicates that duration and severity tend to increase (or decrease)
together, see Figure 8c.

Focusing on Figures 7 and 8, despite pair and conditional pair copulas, the most well-
fitted copula models imply skewed distributions, except for the Rotated BB8 270 degrees in
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modeling the conditional pair copula models of (intensity, severity; duration) and (intensity,
duration; severity). A skewed distribution is a distribution with one tail being longer
than the other. This also leads to an asymmetrical distribution, the opposite shape to the
familiar symmetric normal distribution with its bell-shaped curve. This aspect can be
recognized based on their upper tail dependence, and lower tail dependence coefficients,
where most of the models have different values between those two coefficients. For the
Rotated BB8 270 degrees, both its coefficients (upper tail and lower tail dependences) are
zero for the conditional pair copula models of (intensity, severity; duration) and (intensity,
duration; severity), which indicates the possibility of a symmetry distribution. However,
based on the first two rows in Figure 8, the observation on the density and contour plots
show that the Rotated BB8 270 degrees for the conditional pair copula models of (intensity,
severity; duration) and (intensity, duration; severity) are only approximate to the symmetry
distribution because their tails (on the left and right) do not fully have the same dependence
structure, although they look quite similar.

In addition, (lower and upper) tail dependencies are also dependent measures for the
(small and large) extremes of a conditional pair copula model. For instance, let us take a
conditional pair copula model of (intensity, severity; duration). If its (lower and upper) tail
dependencies are zero, this also indicates that (small and large) extreme events such as air
pollution with (small and large) extreme intensity and severity, conditional on the duration,
are unlikely to happen. The same interpretation is also applicable to describe improbable
extreme events like air pollution with (small and large) extreme intensity and duration,
conditional on the severity.

Consequently, the obtained models for pair and conditional pair copulas are applied
accordingly as component structures to three different vine trees sequences, as depictured
in Figures 1 and 4, to construct simplified regular vine copulas Rv213, Rv312, and Rv123,
respectively. Then, these simplified regular vine copulas are optimized using three different
approaches, namely Seq-Itau, Seq-MLE, or Joint-MLE. For simplicity, the nine different
simplified vine copula models tested in this study are named as Rv213-Seq-Itau, Rv213-
Seq-MLE, Rv213-Joint-MLE, Rv312-Seq-Itau, Rv312- Seq-MLE, Rv312-Joint-MLE, Rv123-
Seq-Itau, Rv123-Seq-MLE, Rv123-Joint-MLE. In this study, these simplified regular vine
copula models are combined in terms of model fitting, where the best model is concluded
to have the highest log-likelihood estimate and the lowest AIC and BIC scores. Table 6
presents the obtained results of the loglikelihood, AIC, and BIC for all nine simplified
regular vine copulas.

Table 6. The obtained results of the loglikelihood, AIC, and BIC for all nine simplified regular
vine copulas.

Models Log-Likelihood AIC BIC

Rv213-Seq-Itau 461.26 −912.53 −893.99
Rv213-Seq-MLE 482.13 −954.27 −935.73

Rv213-Joint-MLE 496.95 −983.90 −965.36
Rv312-Seq-Itau 605.20 −1200.40 −1181.87

Rv312- Seq-MLE, 635.31 −1260.61 −1242.08
Rv312-Joint-MLE 662.92 −1315.84 −1297.30
Rv123-Seq-Itau 391.29 −772.57 −754.04

Rv123- Seq-MLE 434.99 −859.99 −841.45
Rv123-Joint-MLE 672.22 −1334.44 −1315.90

Based on Table 6, by observing the values of the loglikelihood, AIC, and BIC, the best
method to optimize a simplified vine copula model is Joint-MLE, followed by Seq-Itau, and
Seq-MLE. Despite the dissimilarity of the simplified vine copula models, as compared to
other optimizers, Joint-MLE provides the highest log-likelihood estimate and the lowest
AIC and BIC scores. Overall, as bolded in Table 6, Rv123-Joint-MLE is identified as the best
simplified regular vine copula to model the tri-variate dependence structure of intensity,
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duration, and severity. This identification is also based on the highest log-likelihood (672.22)
and the lowest AIC (−1334.44) and BIC (−1315.90) scores achieved by this model. The vine
trees sequence for the best model Rv123-Joint-MLE is illustrated in Figure 9.

1 
 

 Figure 9. The vine trees sequence for the best model Rv123-Joint-MLE.

Furthermore, the details regarding the component structures, consisting of the pair
copulas and a conditional pair copula of the best model Rv123-Joint-MLE, are also provided
in Table 7. Additionally, the density and contour plots for these pairs and the conditional
pair copulas of the best model Rv123-Joint-MLE are also displayed in Figure 10. From
Figure 10, all the component structures illustrate skewness in their density curves. This
skewness is also demonstrated by the dissimilarity between the coefficients of the upper
tail and lower tail dependencies, as shown in the first and second last columns of Table 7. In
addition, by comparing Tables 5 and 7, it is worth noting that that the optimizer Joint-MLE
(Table 7) indeed provides different optimized parameters, as compared to the optimizer
Seq-MLE (Table 5). Therefore, parameters obtained from the optimizer Joint-MLE are better
for fitting the component structures of a simplified regular vine copula model.

Table 7. The appropriate models for pair copulas and conditional pair copula of the best model
Rv123-Joint-MLE.

Tree Copula Pair Term The Best Model Par Par2 Tau Ltd Utd

1 Pair copula (Int, Dur) c,1:2 Tawn type 1 1.34 0.99 0.25 0.92 0.00
1 Pair copula (Int, Sev) c1,3 Rotated Tawn type 1 180 degrees 2.70 0.55 0.40 0.48 0.00
2 Conditional pair copula (Dur, Sev; Int) c2,3:1 Survival Gumbel 9.43 - 0.89 0.00 0.32

Furthermore, by using Equations (29)–(31), Kendall’s τ correlation Correlation, upper
tail dependence λupper, and lower tail dependence λlower coefficients for the best model
Rv123-Joint-MLE are 0.51, 0.47, and 0.11, respectively. For unhealthy events, Kendall’s
τ correlation coefficient for the best model Rv123-Joint-MLE indicates that the intensity,
duration, and severity have a positive monotonous relation among them (0.51), implying the
existence of chance that these three characteristics (intensity, duration, and severity) increase
together. Moreover, based on the dissimilarity in the upper tail dependence λupper (0.47),
and lower tail dependence λlower (0.11) coefficients for the best model Rv123-Joint-MLE,
this model also demonstrates that the dependence structure of the severity, intensity, and
duration relationship is skewed and follows asymmetric distribution patterns. In addition,
as illustrated in Figure 10, the components of the best model Rv123-Joint-MLE are dissimilar
at their tail parts and these facts also support the finding that the dependence structure
of the severity, intensity, and duration relationship is skewed and follows asymmetric
distribution patterns.
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On the other hand, a comparison study based on the Vuong tests is also used to
investigate significant evidence to distinguish the best model Rv123-Joint-MLE from other
models. Results obtained from comparing Rv123-Joint-MLE with other models are reported
in Table 8. By using the Vuong tests at the 5% level, this comparison study shows that
the best model Rv123-Joint-MLE is significantly different from others, whereas some are
quite similar. The Vuong tests indicate that there is significant evidence that the best
model Rv123-Joint-MLE is different from Rv213-Seq-Itau, Rv213-Seq-MLE, Rv213-Joint-
MLE, Rv312-Seq-Itau models, which indicates that the best model is superior to them.
Alternatively, there is no significant evidence to show that the best model Rv123-Joint-
MLE is dissimilar with Rv312-Seq-MLE and Rv312-Joint-MLE, which signifies that the
probability of a closely similar dependence structure among these three latter models.
Therefore, using the three latter models may result in similar insight into air pollution data,
especially to the tri-variate dependence structure of the three characteristics studied here,
namely intensity, duration, and severity.
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Table 8. Results from the Vuong tests comparing the best model Rv123-Joint-MLE with other models.

Comparison Stat p-Value Stat-AIC p-Value Stat-BIC p-Value

Rv213-Seq-Itau −6.18 0.00 −6.18 0.00 −6.18 0.00
Rv213-Seq-MLE −6.93 0.00 −6.93 0.00 −6.93 0.00

Rv213-Joint-MLE −6.38 0.00 −6.38 0.00 −6.38 0.00
Rv312-Seq-Itau −2.23 0.03 −2.23 0.03 −2.23 0.03

Rv312- Seq-MLE −1.57 0.12 −1.57 0.12 −1.57 0.12
Rv312-Joint-MLE −0.44 0.66 −0.44 0.66 −0.44 0.66
Rv123-Seq-Itau −7.15 0.00 −7.15 0.00 −7.15 0.00

Rv123- Seq-MLE −8.83 0.00 −8.83 0.00 −8.83 0.00

6. Conclusions

Focusing on the unhealthy events, this study applied the vine copula approach to
model the tri-variate dependence structure of three air pollution characteristics, namely
intensity, duration, and severity. The vine copula approach is a more reliable, realistic,
flexible, and tractable model than the standard multivariate distributions, and multivariate
copulas, especially in modeling the tail behaviors related to extreme events. Klang was
chosen as the study area because its exposure rate is higher than other major cities in
Malaysia. In this study, three vine copulas with different vine trees sequence, namely
Rv213, Rv312, and Rv123 were analyzed and compared based on their model fitting and a
comparison of the models.

In modeling each vine copula, the MLE and AIC were first applied to identify the best
parametric bivariate model for all the vine copula components, including the pair copulas
and a conditional pair copula. The h-function was also applied to obtain pseudo copula data
before searching for the best associated parametric bivariate model. After that, each vine
copula model was optimized using three different optimizers, namely Seq-Itau, Seq-MLE,
and Joint-MLE. As a result, there were nine methods examined, called Rv213-Seq-Itau,
Rv213-Seq-MLE, Rv213-Joint-MLE, Rv312-Seq-Itau, Rv312- Seq-MLE, Rv312-Joint-MLE,
Rv123-Seq-Itau, Rv123- Seq-MLE, Rv123-Joint-MLE.

For model fitting, the log-likelihood estimate, and AIC and BIC scores were used to
compare those models and determine the best model. Here, the best model was identified
by the highest log-likelihood and the lowest AIC and BIC scores. Furthermore, the Vuong
tests at the 5% level were applied to compare the best model with other models, in terms of
fitting similarity between the two compared models.

This study showed that the best model was Rv123-Joint-MLE, a model with a root
nodes sequence of 123 and optimized using the Joint-MLE. For its components, the Tawn
type 1 and Rotated Tawn type 1 180 degrees were selected for modeling pair copulas of
(intensity, duration) and (intensity, severity), respectively. For the conditional pair copula
(duration, severity; intensity) was modeled by the Survival Gumbel. All these components
were skewed and not distributed symmetrically. Furthermore, the best model Rv123-
Joint-MLE demonstrated that the dependence structure of severity, intensity, and duration
relationship was positively correlated, skewed and followed an asymmetric distribution.
For the comparison study, the best model was found to be significantly different from the
others, whereas some were quite similar.

The practical use of the proposed model Rv123-Joint-MLE is to be used as a tool
to measure the risks of extreme events. To do this, a simulation of the proposed model
Rv123-Joint-MLE can be applied to obtain the stimulated copula variables. After that,
by using the discrete inverse sampling approach, the stimulated copula variables are
transformed into the original variables. Empirically, some probability measures related to
extreme events can be computed. These measures include the conditional probability of
extreme events, the joint return period of extreme events, and the conditional return period
measures for extreme events. Information obtained from these measures can be leveraged
by policymakers or regulators to assess the risk of extreme air pollution events and take the
necessary action to possibly avoid the worse effects of such events and sustain clear air for
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public well-being. Overall, this paper highlights the capability of vine copula in modeling
the asymmetric dependence structure of air pollution characteristics (intensity, duration,
and severity) and its potential to be used as a tool to measure risks of extreme events in
future work.
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