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Abstract: Variable (feature) selection plays an important role in data analysis and mathematical
modeling. This paper aims to address the significant lack of formal evaluation benchmarks for feature
selection algorithms (FSAs). To evaluate FSAs effectively, controlled environments are required, and
the use of synthetic datasets offers significant advantages. We introduce a set of ten synthetically
generated datasets with known relevance, redundancy, and irrelevance of features, derived from
various mathematical, logical, and geometric sources. Additionally, eight FSAs are evaluated on
these datasets based on their relevance and novelty. The paper first introduces the datasets and then
provides a comprehensive experimental analysis of the performance of the selected FSAs on these
datasets including testing the FSAs’ resilience on two types of induced data noise. The analysis has
guided the grouping of the generated datasets into four groups of data complexity. Lastly, we provide
public access to the generated datasets to facilitate bench-marking of new feature selection algorithms
in the field via our Github repository. The contributions of this paper aim to foster the development
of novel feature selection algorithms and advance their study.

Keywords: variable selection; data analysis; synthetic datasets; synthetic data generation; feature
selection algorithms

MSC: 62F07; 68U11; 62-11

1. Introduction

With the consistent growth in the importance of machine learning and big data analysis,
feature selection stands to be one of the most relevant techniques in the field. Extending
into many disciplines, we now witness the use of feature selection in medical applications,
cybersecurity, DNA micro-array data, and many more areas [1–3]. Machine learning models
can significantly benefit from the accurate selection of feature subsets to increase the speed
of learning and also to generalize the results. Feature selection can considerably simplify
a dataset, such that the training models using the dataset can be “faster” and can reduce
overfitting. A Feature Selection Algorithm (FSA) can be described as the computational
solution that produces a subset of features such that this reduced subset can produce
comparable results in prediction accuracy compared to the full set of features. The general
form of an FSA is a solution that algorithmically moves through the set of features until a
“best” subset is achieved [4].

The existence of irrelevant and/or redundant features motivates the need for a feature
selection process. An irrelevant feature is defined as a feature that does not contribute to
the prediction of the target variable. On the other hand, a redundant feature is defined as a
feature that is correlated with another relevant feature, meaning that it can contribute to
the prediction of a target variable whilst not improving the discriminatory ability of the
general set of features. FSAs are generally designed for the purpose of removing irrelevant
and redundant features from the selected feature subset.
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In real-life datasets, knowledge of the full extent of the relevance of the features in
predicting the target variable is absent; hence, obtaining an optimal subset of features is
nearly impossible. The most common ways to evaluate FSAs in such scenarios would be to
employ the feature subsets in a learning algorithm and measure the resultant prediction
accuracy [5]. However, this can prove to be disadvantageous, since the outcome would be
sensitive to the learning algorithm itself along with the feature subset(s) [5].

Consequently, the production of controlled data environments for the purpose of
evaluating FSAs has become necessary for the development of novel and robust FSAs. One
way of standardizing this is through the use of synthetic datasets. The performance of FSAs
depends on the extent of the relevance and irrelevance within the dataset; so, to produce
an artificially controlled environment in which the relevance is known can be of significant
advantage in their performance evaluation. This can be more conclusive for researchers
given that the optimal solutions are known and thus do not rely on external evaluations to
determine their performance. Moreover, researchers can easily indicate which algorithms
are more accurate based on the number of relevant features selected [6]. In addition, the use
of synthetic datasets provides a standardized platform for FSAs with different underlying
architectures to be compared in a model agnostic manner. The existing literature in the
field lacks a systematic evaluation of FSAs based on common benchmark datasets with
controlled experimental conditions.

This paper presents a set of 10 synthetic datasets generated in a way that specifies the
relevant, redundant, and irrelevant features for the purpose of standardizing and giving an
unbiased evaluation of an FSA’s performance. The proposed datasets are also organized
in ascending complexity to determine the level of performance for any algorithm. In
total, 10 datasets are created, drawing inspiration from various natural and algorithmic
sources including mathematical models, computational logic, and geometric shapes. These
standardized datasets are chosen due to their generalizability compared to the more chaos-
driven real-life datasets. Within this framework, we propose the use of synthetic data over
real-world data. If an FSA is not able to perform desirably within a synthetic environment,
then it is unlikely to perform adequately in real-world conditions. Furthermore, we evaluate
the performance of eight popular FSAs to demonstrate the benchmarking capacity of the
proposed synthetic datasets. These feature selection algorithms were chosen based on their
relevance within the industry and their novelty in the field.

The datasets were generated using Python. The code to access and modify the pro-
posed synthetic datasets is available on our GitHub repository (https://github.com/ro140
6/SynthSelect, accessed on 24 January 2024). Researchers are encouraged to download and
manipulate the relevance of features as required for the testing of their own FSAs. The goal
of this paper is primarily to facilitate the development and evaluation of novel feature
selection algorithms and further study existing algorithms. The contributions of this paper
are summarized below:

• Introduce a universal set of synthetic datasets for the evaluation of different types of
feature selection algorithms within a controlled unbiased environment with known
optimal solutions.

• Conduct a comprehensive evaluation of popular feature selection algorithms using
the aforementioned synthetic datasets to benchmark their performance, allowing us to
gauge their performance on real-world datasets.

• Provide public access on GitHub to the proposed synthetic datasets to facilitate com-
mon benchmarking of both novel and existing FSAs.

This paper is organized as follows: in Section 2, we present the related works and a
literature review. In Section 3, we describe the generation of the ten synthetic datasets and
discuss their characteristics and inspirations. In Section 4, we describe the methodology
used for the evaluation of the performance of eight selected FSAs. In Section 5, we present
and analyze the results of Section 4. In Section 6, we provide a synopsis for using our
generated synthetic datasets to test and evaluate an FSA of interest. Finally, conclusions
and some insights into future work are presented in Section 7.

https://github.com/ro1406/SynthSelect
https://github.com/ro1406/SynthSelect
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2. Literature Review

Synthetic datasets were popularized by Friedman et al. in the early 1990s, where
continuous valued features were developed for the purposes of regression modeling in high-
dimensional data [7,8]. Friedman’s 1991 paper continues to be widely cited in the feature
selection literature because it addresses the complex feature selection problem through
an application of synthetically generated data. In 2020, synthetically generated adaptive
regression splines were used to develop a solution for feature selection in Engineering
Process Control (EPC) [9]. Although specifically used in the context of recurrent neural
networks, the importance of synthetic data can be seen in the development of reliable
feature selection techniques.

In [10], Yamada et al. highlighted the relevance of using synthetic data for the de-
velopment of novel feature selection techniques. The authors discussed the challenge of
feature selection when considering nonlinear functions and proposed a solution using
stochastic gates. This approach outperforms prior regression analysis methods (such as the
LASSO method—for variable selection) and also is more generalizable towards nonlinear
models. Examples of applications of these nonlinear models were discussed including
neural networks, in which the proposed approach was able to record higher levels of
sparsity. The stochastic gate algorithm was subsequently tested on both real-life and syn-
thetically generated data to further validate its performance. The general use of synthetic
datasets appears to be for the purposes of validating feature selection algorithms, which is
similarly presented in [11] for the production of a feature selection framework in datasets
with missing data. Ref. [12] explained that the lack of available real data is a challenge
faced when considering unsupervised learning in waveform data and suggested the use of
synthetically generated datasets to produce real data applications.

Other applications of synthetic data for unsupervised feature selection have been
proven effective in the literature, as in the case of [13]. The authors presented two novel
unsupervised FSAs, experimentally tested using synthetic data. The authors recommended
the study of the impact of the noisy features within the data as an area of further work.
Synthetic data have also been used for evaluating dynamic feature selection algorithms [14],
the process of dynamically manipulating the feature subsets based on the learning al-
gorithm used [15]. Unsupervised feature selection has been growing in relevance, as it
removes the need for class labels in producing feature subsets. Synthetic datasets have also
been used for comparatively studying causality-based feature selection algorithms [16].

Most recently, synthetic datasets were presented as a valuable benchmarking technique
for the evaluation of feature selection algorithms [17]. That paper presented six discrete
synthetically generated datasets that drew inspiration from digital logic circuits. In par-
ticular, the generated datasets include an OR-AND circuit, an AND-OR circuit, an Adder,
a 16-segment LED display, a comparator, and finally, a parallel resistor circuit (PRC). These
datasets were then used for the purposes of testing some popular feature selection algo-
rithms. Similar work with discrete-valued synthetic datasets was presented in [18], where
the authors produced a Boolean dataset based on the XOR function. The CorrAL dataset
was proposed in that paper containing six Boolean features x1, x2, . . . , x6, with the target
variable being determined by the Boolean function (x1 ∧ x2)∨ (x3 ∧ x4). Features x1, . . . , x4
were the relevant features, x5 was irrelevant and finally, x6 was redundant (correlated with
the target variable). CorrAL was later extended to 100 features, allowing researchers to
consider higher-dimensional data than the original synthetically generated dataset [19].

In [20], the authors developed synthetic data that mimic microarray data. This was
based on an earlier study conducted on hybrid evolutionary approaches to feature selection,
namely, memetic algorithms that combine wrapper and filter feature evaluation metrics [21].
Initially, the authors presented a feature ranking method based on a memetic framework
that improved the efficiency and accuracy of non-memetic algorithm frameworks [22].

Another well-known synthetic dataset is the LED dataset, developed in 1984 by
Breiman et al. [23]. This is a classification problem with 10 possible classes, described
by seven binary attributes (0 indicating that a LED strip is off and 1 indicating that the
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LED strip is on). Two versions of this dataset were presented in the literature, one with 17
irrelevant features and another with 92 irrelevant features—both containing 50 samples.
Different levels of noise were also incorporated into the dataset, with 2, 6, 10, 15, and 20%
noise, allowing the evaluation of FSAs’ tolerance to the extent of noise in the dataset. These
synthetic datasets were then used to test different feature selection algorithms, as indicated
in [24]. A similar discrete synthetic dataset is the Madelon dataset [25], where relevant
features are on the vertices of a five-dimensional hypercube. The authors included 5 redun-
dant features and 480 irrelevant features randomly generated from Gaussian distribution.
In [1], the authors tested ensemble feature selection for microarray data by creating five
synthetic datasets. It was demonstrated empirically that the feature selection algorithms
tested were able to find the (labeled) relevant features, which helped in the evaluation of
the stability of these proposed feature selection methods.

Synthetic datasets with continuous variables have also been presented in the literature.
In [26], the authors presented a framework for global redundancy minimization and
subsequently tested this framework on synthetically generated data. The dataset contained
a total of 400 samples across 100 features, with each sample being broken up into 10 groups
of highly correlated values. These points were randomly assigned using the Gaussian
distribution. This dataset, along with other existing datasets, was used as the testing
framework for the algorithms proposed. Synthetic data have also been used in applications
such as medical imaging, where Generative Adversarial Networks (GANs) are employed
to produce image-based synthetic data [27]. However, the limitations of synthetic data
must also be noted, as they often pose restrictions when it comes to the various challenges
encountered in the feature selection process [17,28,29].

More specifically, it is important to acknowledge the fact that synthetic data often
come with a lack of “realism”, meaning that the data generated are not as chaotic as
what could be expected in the real world. Many real-world applications come with a
tolerance for outliers and randomness, which cannot be accurately modeled with synthetic
data [29]. Furthermore, synthetic datasets are often generated due to the lack of available
real-world data, which poses an obstacle in itself. In many cases, the limited nature of
the available data restricts researchers from being able to model (and thus synthesize)
the data accurately. This can potentially lead to synthetically generated data that are less
nuanced than their real-world counterparts. However, this is more often the case for
high-dimensional information-dense applications, such as financial data [30,31].

Feature selection methods are categorized into three distinct types: filter methods,
wrapper methods, and embedded methods. Filter methods are considered a prepro-
cessing step to determine the best subset of features without employing any learning
algorithms [32]. Although filter methods are computationally less expensive than wrapper
methods, they come with a slight deficiency in that they do not employ a predetermined
algorithm for the training of the data [33]. In wrapper methods, a subset is first generated,
and a learning learning algorithm is applied to the selected subset so that the metrics
pertaining to the performance of this specific subset are recorded. The subsets are algo-
rithmically exhausted until an optimal solution is found. Embedded methods, on the
other hand, combine the qualities of both filter and wrapper methods [34]. Embedded
feature selection techniques have risen in popularity due to their improved accuracy and
performance. They combine filters and classifiers and havee the advantages of different
feature selection methods to produce the optimal selection on a given dataset.

Despite a wide variety of algorithms for feature selection, there is no agreed “best”
algorithm, as FSAs are generally purpose-built for a specific application [24]. By this, we
are referring to the fact that different FSAs work well on different data, depending on their
size, type, and general application. In this paper, we introduce a collection of synthetic
datasets that can be used to test the performance of different FSAs in a more standardized
evaluation process.
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3. Synthetic Datasets

In this section, we explain the generation of our proposed datasets. We discuss each
of the ten datasets in terms of its inspiration and method of generation. Other details
including the type of data, size, number of relevant, redundant, and irrelevant features are
further discussed. Additionally, the complexity of each of the datasets is assessed to give
a more complete picture regarding the type of data being generated. This will allow for
further analysis of the performance of each feature selection algorithm and the difficulty it
may encounter in finding relevant features.

3.1. Datasets

As mentioned above, we present here ten different datasets ranging from a simple
dataset specified by a single straight line equation to datasets defined by complex geometric
shapes and patterns. To generate our datasets, we used k probability distributions to
generate k relevant features. We then generated redundant features by applying various
linear transformations of the relevant features. Finally, we added irrelevant features
randomly generated from an arbitrarily chosen distribution.

3.1.1. Straight Line Dataset (y = X)

The straight line dataset is our simplest dataset that used the simple equation y = X to
create its classes. The dataset consists of two relevant features, F1 and F2, generated using
two normal distributions, N(1, 5) and N(2, 3). These features were then used to generate 20
redundant features, which were combined with 100 additional irrelevant features. In total,
the dataset consists of 200 instances and is split using the equation F2 > F1 (Figure 1).

15 10 5 0 5 10 15
F1

15

10

5

0

5

10

15

F2

Target
False
True

Figure 1. Plot numerical order. displaying the y = X dataset.

3.1.2. Trigonometric Dataset

The trigonometric dataset is a numeric dataset based on the sine function. It consists
of two relevant, five redundant, and fifty irrelevant features, as well as 200 instances of
data. We generated the relevant features, F1 and F2, using normal distributions with N(2,
2) and N(−2, 1), respectively. We then divided the data points into two classes using the
inequality F2 > 5 sin(F1) (Figure 2).



Mathematics 2024, 12, 570 6 of 29

4 2 0 2 4 6 8
F1
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Target
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Figure 2. Plot displaying the trigonometric dataset.

3.1.3. Hypersphere Dataset

The hypersphere dataset is a numeric dataset based on spheres. It consists of 3 relevant,
20 redundant, and 100 irrelevant features, for 400 instances of data. We generated F1 and
F3 using exponential distributions with λ1 = 10 and λ3 = 5, respectively, and F2 using
a gamma distribution with α = 10 and β = 5. We then divided the data points into two
classes using the inequality 302 > F12 + F22 + F32 (Figure 3).

Target
Outside Sphere/False
Inside Sphere/True

Figure 3. Plot displaying the hypersphere dataset.
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3.1.4. Cone Dataset

The cone dataset, similar to the hypersphere, is inspired by geometry. We used three rel-
evant features, F1, F2, and F3, generated using three normal distributions, N(5, 9), N(0, 25),
and N(10, 25). We then combined them with 20 redundant features and 100 irrelevant
features. The classes were assigned using the equation: F12 + F22 < F32 (Figure 4).

Figure 4. Plot displaying the cone dataset.

3.1.5. Double Spiral Dataset

The double spiral dataset consists of data points found along one of two spirals drawn
in three-dimensional space. The dataset consists of three relevant features used to generate
30 redundant features. Then, 120 irrelevant features were added to the dataset. Each of the
three relevant features was generated using the following equations for each class, based
on a continuous variable F3 (Figure 5):

Equation for Class 1:

0 ≤ F3 ≤ 2π F1 = F3 · cos(6 · F3) F2 = F3 · sin(6 · F3).

Equation for Class 2:

0 ≤ F3 ≤ 2π F1 = F3 · cos
(

6
(

F3 +
π

2

))
F2 = F3 · sin

(
6
(

F3 +
π

2

))
.

3.1.6. Five-Class Multi-Cut Dataset

The multi-cut dataset is a numeric dataset with each data point belonging to one of
five classes (Figure 6). It consists of 6 relevant, 20 redundant, and 100 irrelevant features for
500 instances of data points. We generated F1 and F2 using N(10, 5) and N(−10, 5), respec-
tively; F3 and F4 using γ-distributions with (α, β) = (10, .4) and (α, β) = (15, .5), respectively;
and F5 and F6 using exponential distributions with λ = 7 and λ = 20, respectively. Based
on the generated samples, we defined the following split equation in order to define the
five classes of the target variable:
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Class =



1 : −65 ≤ f < −45 ∪−35 ≤ f < −30
2 : −40 ≤ f < −35 ∪ 0 ≤ f < 5
3 : −30 ≤ f < −20 ∪−45 ≤ f < −40
4 : −20 ≤ f < −10
5 : −10 ≤ f < 0

, (1)

where f is an arbitrarily selected linear combination of the relevant features given by:

f = F1 − 2F2 + 5F3 − 4F4 + 8F5 − 7F6.

3.1.7. Ten-Class Multi-Cut Dataset

This dataset is an extension of the five-class dataset with double the number of
possible classes. It consists of 6 relevant, 20 redundant, and 100 irrelevant features for
500 instances of data. We generated F1 and F2 using N(10, 5) and N(−10, 5), F3 and F4 using
γ-distributions with (α, β) = (10, .4) and (α, β) = (15, .5), and F5 and F6 using exponential
distributions with λ = 10 and λ = 20. Similar to the five-class dataset, we defined the
following equation to define the ten classes of the target variable (Figure 7):

Class =



1 : −65 ≤ f < −60 ∪−45 ≤ f < −40
2 : −60 ≤ f < −55 ∪−10 ≤ f < −5
3 : −55 ≤ f < −50 ∪−5 ≤ f < 0
4 : −50 ≤ f < −45 ∪ 0 ≤ f < 5
5 : −40 ≤ f < −35 ∪ 5 ≤ f < 10
6 : −35 ≤ f < −30
7 : −30 ≤ f < −25
8 : −25 ≤ f < −20
9 : −20 ≤ f < −15
10 : −15 ≤ f < −10

, (2)

where f = F1 − 2F2 + 5F3 − 4F4 + 8F5 − 7F6.

Figure 5. Plot displaying the double spiral dataset.
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Figure 6. Plot displaying the five-class multi-cut dataset.

Figure 7. Plot displaying the ten-class multi-cut dataset.

3.1.8. Yin–Yang Dataset

The image of the Chinese philosophical concept of Yin-Yang, depicted in Figure 8,
inspired this dataset. To generate a dataset, we converted the pixels in an image of the
Yin–Yang symbols into over a hundred thousand data points; the coordinates of each pixel
are the relevant features, and the color defines the class of the binary target variable. As a
result, we had two relevant features and added ten redundant and fifty irrelevant features.
We scaled down the dataset to 600 instances.
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Figure 8. Plot displaying the Yin–Yang dataset.

3.1.9. 4D AND

The four-dimensional AND dataset is one that uses categorical data as its relevant
features. We used four binary features, F1 to F4, to generate eight redundant features using
the NOT function. We then added 100 irrelevant features into the dataset. The relevant
features were then used to split the dataset using the simple equation: F1 · F2 + F3 · F4
(Figure 9).

Figure 9. Plot displaying the 4D AND dataset.

3.1.10. 5D XOR

The five-dimensional XOR dataset is very similar to the AND dataset. We used five
binary features, ×1 to ×5, to generate ten redundant features using the NOT function. We
then added 100 irrelevant features. We had a total of 100 instances, and the dataset was
split using the XOR function as follows: F1 ⊕ F2 ⊕ F3 ⊕ F4 ⊕ F5 (Figure 10).
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Figure 10. Plot displaying the 5D XOR dataset.

Table 1 provides a summary of our generated datasets.

Table 1. Summary of datasets.

Dataset Relevant Features Redundant Features Irrelevant Features Instances Discrete Target Variable Equation

Straight line 2 20 100 200 F2 < F1

4D AND 4 8 100 100 F1 · F2 + F3 · F4

5D XOR 5 10 100 100 F1 ⊕ F2 ⊕ F3 ⊕ F4 ⊕ F5

Hypersphere 3 20 100 400 302 > F12 + F22 + F32

Cone 3 20 100 400 F12 + F22 < F32

Trigonometric 2 5 50 200 F2 > 5 sin(F1)

Double spiral 3 30 120 200
Class 1: 0 ≤ F3 ≤ 2π F1 = F3 · cos(6 · F3) F2 = F3 · sin(6 · F3)

Class 2: 0 ≤ F3 ≤ 2π F1 = F3 · cos
(
6
(

F3 + π
2
))

F2 = F3 · sin
(
6
(

F3 + π
2
))

Yin–Yang 2 10 50 600 -

Five multi-cut 6 20 100 500 Equation (1)
Ten multi-cut 6 20 100 500 Equation (2)

4. Methodology

In this study, we selected an array of FSAs and tested their performance on our
synthetically generated datasets. Our tests involved running the algorithms on our datasets
and tasking them to provide a number of features equal to the number of originally
generated relevant features and then twice that number. Each time, we used the number of
correct features selected as the performance metric. We defined a correct feature as either
a relevant feature or a redundant feature of a relevant feature that had not been selected
yet. If an algorithm selected two redundant features that were generated from the same
relevant feature, then it counted as only one correct feature being selected.

Despite a wide variety of algorithms for feature selection, there is no agreed “best”
algorithm, as FSAs are generally purpose-built for a specific application [24]. By this, we are
referring to the fact that different FSAs work well on different data, depending on their size,
type, and general application. One of the most popular feature selection algorithms that is
well-tested within the field is Minimum Redundancy Maximum Relevance (mRMR) [35].
mRMR selects features based on calculations of which features correlate most with the
target (relevance)—and which features correlate least with each other (redundancy) [36].
Both of these optimization criteria are used to develop the feature selection information.
Other feature selection algorithms include decision tree entropy-based feature selection [37],
Sequential Forward Selection (SFS) [38], and Sequential Backward Selection (SBS) [39].

4.1. Feature Selection Algorithm Testing

For this work, we used the following list of FSAs:

• Entropy—an algorithm that tries to maximize the information gained by selecting a
certain feature with entropy as the measure of impurity [40].

• Gini Index (Gini)—similar to Entropy, this algorithm aims to maximize the information
gain when selecting features but uses the Gini Index as its measure of impurity [41].
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• Mutual Information (MI)—this algorithm uses the concept of mutual information,
which measures the reduction in uncertainty for the target variable given the selection
of a certain feature [41].

• Sequential Backward Selection (SBS)—this algorithm sequentially removes features
until there is significant increase in the misclassification of a supporting classifier. We
used a Support Vector Machine with an rbf kernel for our experiments [42].

• Sequential Forward Selection (SFS)—this algorithm is similar to SBS; however, it is the
sequential adding of features until there is no significant decrease in the misclassifca-
tion of a supporting classifier. We use a Support Vector Machine with an rbf kernel for
our experiments [42].

• Symmetrical Uncertainty (SU)—uses the interaction of a feature with other features to
determine which features are best [43].

• Minimum Redundancy Maximum Relevance (mRMR)—this algorithm is a minimal-
optimal feature selection algorithm that sequentially selects the feature with maximum
relevance to the target variable but also has the minimum redundancy when compared
to the previously selected features [44].

• Genetic Feature Selection Algorithm (GFA)—a genetic algorithm inspired by the
concepts of evolution and natural selection used from the sklearn-genetic library [45].

In the next section, the selected FASs are ranked and evaluated on their ability to iden-
tify the correct features in the generated datsets and also on their robustness or resilience
to noise.

4.2. Complexity

When developing testing benchmarks for feature selection algorithms, an understand-
ing of how difficult or complex the datasets used are is crucial. While designing and
generating our synthetic datasets, we developed an understanding of how hard it would
be for a feature selection algorithm to accurately pick out the relevant features. By using
this information, we can measure the sophistication of feature selection algorithms based
on how well they perform on datasets with different levels of complexity.

There is limited literature on a commonly agreed “difficulty” or “complexity” of
synthetically generated datasets. Only a few papers such as [46,47] have attempted to
define the complexity of a dataset. However, neither are regarded as the standard to
measure complexity in the field. Hence, we propose groupings of complexity based merely
on empirical results. To do so, we tested eight different FSAs on all the datasets and kept a
record of the percentage of correct features identified across all datasets, where a correct
feature is defined in the next Section 4. We used the distribution of the average percentage
of identified correct features as the basis for grouping the datasets in terms of difficulty. A
statistical test was applied to validate the groupings, where we expected datasets in each
group to have a similar performance across the different FSAs.

4.3. Noise Resilience

Noise is a common feature of most datasets. As a result, research has been conducted
into the handling of noise in all kinds of datasets and applications [48–50]. In this work,
we explored the robustness of Feature Selection Algorithms through two kinds of noise:
asymmetric label noise and irrelevant feature addition. Asymmetric label noise was created
by selecting a random fraction of data points in the dataset and swapping their labels to
the other class using fixed rules. For example, a point selected from the ith class would be
converted to the (i + 1)th class in that dataset. Meanwhile, in our following experiments,
we removed the irrelevant features from the dataset and then replaced these features while
tracking the change in the FSA performance. Other methods of adding noise exist in the
literature, like the addition of Gaussian noise to the data samples. We decided to limit
ourselves to two methods of noise addition as it seemed sufficient for the scope of this
work. Below is the summary of our noise addition methods:
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1. Class Changing: Randomly change the target variable classes to different classes for a
subset of data.

2. Reducing the number of irrelevant features: Randomly dropping a subset of irrele-
vant variables from the generated data, i.e., reducing the level of noise in the dataset.

For each of the two noise addition methods, we varied the size of the subset of the data
to which noise was added by varying a percentage of the classes of the instances (or number
of irrelevant features, respectively), between 0% and 50%. As the level of noise moves from
0% to 50% for class changing, the level of noise increases. Furthermore, the level of noise
increases, as the percentage of the removed irrelevant features decreases from 50% to 0%.

5. Results

In this section, we present the results of the evaluation of the performance of the
selected FSAs on our generated datasets. We begin first by counting the number of correct
features identified by each algorithm for each dataset. We use the results to group the
datasets in terms of complexity and examine the performance of each FSA across the
different complexity groups. Further evaluation of the FSA performance was conducted by
adding the two kinds of noise to the datasets, and we examine the percentage of correct
features identified as the level of noise increases.

5.1. Number of Correct Features Identified Per Dataset

We examine the number of correct features identified per dataset when selecting the
number of features as the actual number of relevant features (as in Table 1) and twice the
actual number of relevant features. Since a full length discussion of each FSA’s results on
each of the datasets would be too long and derail us from the main purpose of the paper,
we have included the entire discussion in Appendix A.

In the first round of experiments, we see that the SBS and SFS were the top performing
FSAs on average. The SBS was able to identify all the relevant features for six out of
ten of our datasets, and the SFS was able to do the same for five. Similar results were
achieved when the FSAs were tasked with finding twice the number of relevant features.
On the other hand, we see that the GFA and Gini performed the worst, with each only once
finding all the relevant features of a dataset when tasked with finding twice the number
of relevant features. The average fraction of correct features selected by each algorithm is
summarized in Table 2. This average is calculated using the results reported in Appendix A
for each dataset.

Table 2. Average and standard deviation of the FSA performance across datasets, for feature subset
size equal to the number of relevant features and twice the number of relevant features from the
datasets. Green represents cases where over 66% of the correct features were chosen, and red
represents cases where under 33% of correct features were chosen.

Feature Selection
Algorithms

Avg Fraction
of Features
(±std div)

Avg Fraction
of 2×# of Features

(±std div)

Entropy 0.57 ± 0.38 0.69 ± 0.38
GFA 0.3 ± 0.25 0.46 ± 0.33
Gini 0.33 ± 0.19 0.44 ± 0.3
MI 0.4 ± 0.26 0.47 ± 0.31

mRMR 0.48 ± 0.35 0.58 ± 0.38
SBS 0.68 ± 0.45 0.73 ± 0.38
SFS 0.67 ± 0.42 0.7 ± 0.41
SU 0.35 ± 0.31 0.51 ± 0.39

When it comes to the datasets, we see that the FSAs often did well on the Straight line,
Yin–Yang, and 4D AND datasets. At the same time, most of the FSAs failed to identify even
one of the relevant features in the 5D XOR and the Double spiral datasets with the exception
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of the MI algorithm, which was able to identify one correct feature in the Double spiral
dataset when selecting the feature subset size equal to the number of relevant features and
twice the number of relevant features. Furthermore, the Entropy algorithm was able to find
one of the relevant features when tasked with finding twice the number of relevant features
in the 5D XOR dataset. The average performance of all the FSAs is given in Table 3 for each
of the datasets.

Table 3. Average and standard deviation of the FSA performance per dataset, for feature subset size
equal to the number of relevant features and twice the number of relevant features from the datasets.
Green represents cases where over 66% of the correct features were chosen, and red represents cases
where under 33% of correct features were chosen.

Dataset
Avg Fraction
of Features
(±std div)

Avg Fraction
of 2×# of Features

(±std div)

Straight line 0.75 ± 0.25 0.88 ± 0.22
4D AND 0.69 ± 0.35 0.84 ± 0.17
Yin–Yang 0.69 ± 0.35 0.69 ± 0.35

Trigonometric 0.63 ± 0.22 0.81 ± 0.24
Hypersphere 0.58 ± 0.28 0.71 ± 0.26

Cone 0.58 ± 0.28 0.67 ± 0.29
Ten-class Multi-cut 0.44 ± 0.22 0.54 ± 0.16
Five-class Multi-cut 0.33 ± 0.08 0.48 ± 0.18

Double spiral 0.04 ± 0.11 0.08 ± 0.14
5D XOR 0.00 ± 0.00 0.03 ± 0.07

5.2. Groupings of the Generated Datasets

As discussed in Section 4.2 above, we used the empirical results to construct groupings
of the datasets. As observed in Figure 11, we see that the 4D AND and Straight line datasets
had the best performance, while the 5D XOR and Double spiral datasets showed the worst
performance. Figure 11 also suggests that the Yin–Yang dataset can be placed in the top
level group; however, based on Figure 12 we see that the Yin–Yang dataset can be placed in
a higher level of complexity when selecting twice the number of relevant features.

Average Fraction of Relevant Features Found

Figure 11. The bar chart shows the average performance of the feature selection algorithms per
dataset. Bars sharing the same color are in the same complexity grouping.
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Figure 12. The bar chart shows the average performance of the feature selection algorithms per
dataset when looking for 2× # of relevant features. Bars sharing the same color are in the same
complexity grouping.

Using both set of results, we conducted a series of Kruskal–Wallis tests to compare
the set of results for each dataset. We conducted the test comparing the average frac-
tion of correct features identified per dataset in each possible grouping of neighbors in
Figure 11. We concluded the final groups when the Kruskal–Wallis test within the group
showed no statistical difference but the test between the consecutive groups showed a
statistically significant difference. These tests show that the four most complex datasets
are actually statistically significantly different. As a result, we decided to use these four
complexity groups:

1. Group 1—Low Complexity: Straight line (y = x), 4D AND;
2. Group 2—Medium Complexity: Yin–Yang, Trigonometric, Hypersphere, Cone;
3. Group 3—High Complexity: Ten-class multi-cut, Five-class multi-cut;
4. Group 4—Very High Complexity: Double spiral, 5D XOR.

In the next section, we evaluate the noise resilience of the eight FSAs considering the
complexity groupings identified above.

5.3. Noise Resilience of the FSAs

Now that we have tested several FSAs on the proposed datasets and provided a
comprehensive ranking of the datasets in terms of the FSAs’ performance, we now examine
the resilience of different FSAs to noisy data. We explore the two methods of adding noise
to the datasets described in Section 4.3 in order to to examine the stability and resilience to
noise of the FSA.

Note: Some of the figures in this section have overlapping lines . As a way to combat
that, we added small lines around the markers on the graph to indicate what other markers
(of the same color) are hidden behind this line. A combination of the visible markers and
these lines should be able to give any reader a complete understanding of our results.

5.3.1. Class-Wise Noise

• Group 1—Low Complexity

Figure 13 depicts the average percentage of correct features identified across the
complexity group 1 datasets for varying ratios of induced class flip noise when selecting a
feature subset of a size equal to the number of relevant features (a) and twice the number
of relevant features (b).
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(a) (b)
Figure 13. Class flip noise results for all feature selection algorithms across the group 1 datasets.
(a) Class flip noise results selecting the actual number of relevant features; (b) class flip noise results
selecting twice the actual number of relevant features.

Most FSAs experienced a sharp decline in performance when 30% or more of the
classes were changed as shown in Figure 13a. Most FSAs had a stable performance when
less than 20% of the classes were changed, indicating a limited robustness to mislabelled
data for the easy datasets. A similar trend is observed when twice the number of features
were chosen as shown in Figure 13b, but a few algorithms performed slightly better on
average, such as the SBS, Symmetric uncertainty, mRMR, and Entropy. We also notice that
in general most algorithms performed the same or slightly better when selecting twice the
number of relevant features.

• Group 2—Medium Complexity

Figure 14 shows the average percentage of correct features identified across the com-
plexity group 2 datasets.

FSAs in this group have a much more stable performance and resilience to mislabelled
data, as illustrated in Figure 14a,b. In particular, almost all the FSAs obtained a stable
performance with up to 20% of the classes changed, as shown in Figure 14a, with SU
achieving a stable performance even with over half the classes changed. However, this
performance was relatively poor. In contrast, SBS maintained a relatively stable and highly
accurate performance regardless of the number of features it was asked to select. In general,
we observe an obvious trend in which most of the FSAs performed better when allowed to
select a larger subset of features, as shown in Figure 14b.

(a) (b)
Figure 14. Class flip noise results for all feature selection algorithms across group 2 datasets. (a) Class
flip noise results selecting the actual number of relevant features; (b) class flip noise results selecting
twice the actual number of relevant features.

• Group 3—High Complexity

Figure 15 shows the average percentage of correct features identified across complexity
group 3 datasets.
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(a) (b)
Figure 15. Class flip noise results for all feature selection algorithms across group 3 datasets. (a) Class
flip noise results selecting the actual number of relevant features; (b) class flip noise results selecting
twice the actual number of relevant features.

As shown in both Figure 15a,b above, almost every FSA consistently performed the
same regardless of the level of noise. Similar to group 2, Figure 15b shows a higher average
performance than Figure 15a. As expected, none of the algorithms performed with over
75% accuracy, since this is the hard group of datasets. However, most algorithms were
very stable but were unable to achieve over 50% accuracy when tasked with selecting
fewer features. This indeed emphasizes the importance of determining the number of
features to be selected, especially for a considerable level of data complexity. As seen in
Figure 15b, only five FSAs were able to achieve 50% accuracy or higher. Moreover, a notable
observation is that the GFA and MI failed harshly in this category identifying less than 30%
of the features correctly on average. Hence, the GFA and MI are unsuitable to use for a
dataset with complex decision boundaries.

• Group 4—Very High Complexity

Figure 16 shows the average percentage of correct features identified across complexity
group 4 datasets.

As shown in Figure 16a,b, almost every FSA consistently performed very poorly,
with most FSAs consistently not finding any features, as shown in Figure 16a. The MI,
Entropy, and SBS managed to identify some of the relevant features but still eventually
failed even at very low noise levels. The SBS ultimately performed the best when selecting
a higher number of features (as in Figure 16b) but still achieved a maximum of below 40%
accuracy. However, due to the erratic behavior of these FSAs and most of them identifying
little to no correct features at 0% noise levels, we can conclude that any improvements seen
here are merely coincidental or due to the random noise. Hence, the final group with the
highest difficulty led to most FSAs failing completely when any mislabelled data were
presented.

(a) (b)
Figure 16. Class flip noise results for all feature selection algorithms across group 4 datasets. (a) Class
flip noise results selecting the actual number of relevant features; (b) class flip noise results selecting
twice the actual number of relevant features.
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Tables 4 and 5 below exhibit the average performance of each FSA across all noise
levels and all datasets in each complexity group. The two tables provide the average and
standard deviation values for the number of correct features identified when the size of the
selected feature subset is equal to the number of relevant features (Table 4) and twice the
relevant features (Table 5).

Table 4. The average and standard deviation of the correct number of features identified across all
noise levels by each FSA for selecting 1× the number of relevant features. Green represents cases
where over 66% of the correct features were chosen, and red represents cases where under 33% of
correct features were chosen.

FSA Group 1 Group 2 Group 3 Group 4 All Datasets

SU 0.53 ± 0.15 0.3 ± 0.0 0.42 ± 0.0 0.0 ± 0.0 0.37 ± 0.02
MI 0.39 ± 0.23 0.33 ± 0.07 0.25 ± 0.0 0.08 ± 0.09 0.28 ± 0.06

Gini 0.36 ± 0.15 0.35 ± 0.11 0.33 ± 0.0 0.0 ± 0.0 0.31 ± 0.06
GFA 0.33 ± 0.14 0.43 ± 0.11 0.18 ± 0.07 0.02 ± 0.05 0.24 ± 0.03
SBS 0.67 ± 0.29 0.87 ± 0.14 0.42 ± 0.0 0.02 ± 0.05 0.54 ± 0.09

mRMR 0.5 ± 0.35 0.45 ± 0.13 0.44 ± 0.04 0.0 ± 0.0 0.39 ± 0.11
SFS 0.42 ± 0.23 0.77 ± 0.25 0.51 ± 0.03 0.0 ± 0.0 0.49 ± 0.13

Entropy 0.44 ± 0.43 0.45 ± 0.27 0.42 ± 0.0 0.02 ± 0.05 0.39 ± 0.15

Table 5. The average and standard deviation of the correct number of features identified across all
noise levels by each FSA for selecting 2× the number of relevant features.Green represents cases
where over 66% of the correct features were chosen, and red represents cases where under 33% of
correct features were chosen.

FSA Group 1 Group 2 Group 3 Group 4 All Datasets

SU 0.64 ± 0.18 0.6 ± 0.0 0.58 ± 0.0 0.0 ± 0.0 0.52 ± 0.03
MI 0.42 ± 0.21 0.38 ± 0.11 0.32 ± 0.03 0.08 ± 0.09 0.34 ± 0.06

Gini 0.44 ± 0.21 0.43 ± 0.07 0.5 ± 0.0 0.0 ± 0.0 0.41 ± 0.07
GFA 0.53 ± 0.22 0.58 ± 0.11 0.19 ± 0.06 0.06 ± 0.06 0.33 ± 0.08
SBS 0.67 ± 0.29 0.92 ± 0.09 0.53 ± 0.04 0.12 ± 0.14 0.62 ± 0.09

mRMR 0.69 ± 0.31 0.47 ± 0.12 0.67 ± 0.0 0.0 ± 0.0 0.50 ± 0.10
SFS 0.44 ± 0.23 0.8 ± 0.19 0.68 ± 0.06 0.02 ± 0.05 0.56 ± 0.10

Entropy 0.56 ± 0.39 0.55 ± 0.3 0.56 ± 0.06 0.04 ± 0.06 0.50 ± 0.15

A well-performing FSA is has a high average and low standard deviation indicating
high accuracy and high stability. As expected, all the algorithms performed better or
equally well when selecting a higher number of features, as the performance of the FSAs
in each group shown in Table 5 was better than their performance shown in Table 4.
Furthermore, as the data complexity level increases, the FSAs suffer from reduced accuracy
with increased stability.

From the above analysis, we can identify the best performing algorithm for each data
complexity group:

• Group 1—Low Complexity: SBS;
• Group 2—Medium Complexity: SBS;
• Group 3—High Complexity: SFS;
• Group 4—Very High Complexity: MI.

It is worth noting that group 4 has MI as the most accurate algorithm; however, it is
also the most unstable algorithm in Table 4. Moreover, the SBS may seem like the most
accurate algorithm when selecting more features, as shown in Table 5; however, it has an
extremely large standard deviation, making it very unstable.
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All Datasets

A further examination of the trends across all the datasets presented in Figure A1a,b
(Appendix A) and the last column in Tables 4 and 5 above reveals the following main
takeaways:

• There is no significant degradation in the performance of the FSAs when up to 20%
of the class labels are changed. This observation holds true when selecting both the
actual number of relevant features and twice the number of relevant features. This
suggests that the additional features found were often not relevant when there were
mislabelled data.

• While the overall accuracy of the FSAs across all datasets increases when twice the
number of relevant features are selected (Tables 4 and 5), their overall stability, mea-
sured by the standard deviation, remains nearly the same for a higher number of
selected features.

5.3.2. Irrelevant Feature Noise

• Group 1—Low Complexity

Figure 17 depicts the average percentage of correct features identified for the datasets
in complexity group 1 for varying ratios of removed irrelevant features when selecting the
actual number of relevant features (a) and twice the number of relevant features (b).

(a) (b)
Figure 17. Noise results for irrelevant features across group 1 datasets. (a) Irrelevant feature noise
results selecting the actual number of relevant features; (b) irrelevant feature noise results selecting
twice the actual number of relevant features.

Most FSAs are easily able to consistently find all the relevant features, as shown in
Figure 17a,b. This is demonstrated by the straight line at 100% of the correct features found
in both figures for some FSAs. However, there are a few FSAs that performed poorly, such
as the Gini, GFA, and MI that identified less than 50% of the correct features. Generally
speaking, most algorithms continued to maintain their performance, while others improved
their accuracy when selecting a higher number of features, as shown in Figure 17b.

• Group 2—Medium Complexity

Figure 18 depicts the average percentage of correct features identified for the datasets
in complexity group 2 for varying ratios of removed irrelevant features when selecting the
actual number of relevant features (a) and twice the number of relevant features (b).

As seen in Figure 17, the FSAs have a consistent performance with group 2 datasets
too. There are slight differences in performance between the group 1 datasets and the
group 2 datasets. This is expected to a certain extent since most popular FSAs are generally
robust to the number of irrelevant features in the dataset. Further, Figure 18 exhibits a
clear improved performance of all FSAs when twice the number of relevant features are
identified.



Mathematics 2024, 12, 570 20 of 29

(a) (b)
Figure 18. Noise results for Irrelevant features across group 2 datasets. (a) Irrelevant feature noise
results selecting the actual number of relevant features; (b) irrelevant feature noise results selecting
twice the actual number of relevant features.

• Group 3—High Complexity

The results for the group 3 datasets are displayed in Figure 19.

(a) (b)
Figure 19. Noise results for irrelevant features across group 3 datasets. (a) Irrelevant feature noise
results selecting the actual number of relevant features; (b) irrelevant feature noise results selecting
twice the actual number of relevant features.

On average, many FSAs continued to maintain consistent performance showing a
great level of resilience to additional irrelevant features, even for harder datasets. However,
this performance is less than that seen for the datasets in groups 1 and 2. Hence, even
though the graphs in Figure 19a,b show some consistent performances, the average number
of features identified have dropped significantly in comparison to easier groups.

• Group 4—Very High Complexity

Figure 20 shows the average percentage of correct features identified for the very high
complex datasets.

Figure 20a,b show the poor performance most FSAs have on the datasets in group
4, with the majority of them consistently achieving an accuracy of 0% or near. The best
FSAs—MI and SBS—also fail to exceed 35% accuracy and have a relatively erratic behavior,
which is very unusual compared to their performance for the datasets in groups 1, 2, and 3.
This further illustrates how these datasets in group 4 make it difficult for FSAs to identify
the correct features. In addition, none of the FSAs is able to achieve a major improvement
when selecting a higher number of features.

We can easily summarize the trends seen across each group in Tables 6 and 7.
As expected, all algorithms perform better or equally well when selecting a larger

number of features. The performance of the FSAs in each group shown in Table 7 is
generally better than their performance shown in Table 6. As illustrated in Section 5.3.1,
a desired FSA is the the one with high average and low standard deviations, which
indicate high accuracy and high stability. Similar to the trend observed in Tables 4 and 5,
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the more complex a dataset is, the less accurate the FSAs are in identifying the correct
features. Furthermore, Tables 6 and 7 show that the majority of the FSAs suffered from
high standard deviations relative to the average performance in the group 4 datasets. These
FSAs are not of much use in this case.

(a) (b)
Figure 20. Class flip noise results for irrelevant features across group 4 datasets. (a) Irrelevant feature
noise results selecting the actual number of relevant features; (b) irrelevant feature noise results
selecting twice the actual number of relevant features.

Table 6. The average and standard deviation of the correct number of features identified across all
noise levels by each FSA for the number of relevant features. Green represents cases where over 66%
of the correct features were chosen, and red represents cases where under 33% of correct features
were chosen.

FSA Group 1 Group 2 Group 3 Group 4 All Datasets

SU 0.67 ± 0.0 0.33 ± 0.05 0.47 ± 0.08 0.0 ± 0.0 0.42 ± 0.04
MI 0.47 ± 0.22 0.4 ± 0.0 0.25 ± 0.0 0.23 ± 0.11 0.36 ± 0.04

Gini 0.5 ± 0.0 0.4 ± 0.0 0.4 ± 0.03 0.0 ± 0.0 0.38 ± 0.01
GFA 0.5 ± 0.1 0.62 ± 0.13 0.22 ± 0.06 0.08 ± 0.09 0.35 ± 0.05
SBS 1.0 ± 0.0 1.0 ± 0.0 0.42 ± 0.0 0.1 ± 0.11 0.66 ± 0.02

mRMR 0.92 ± 0.08 0.6 ± 0.0 0.42 ± 0.0 0.0 ± 0.0 0.51 ± 0.01
SFS 0.67 ± 0.0 1.0 ± 0.0 0.61 ± 0.04 0.02 ± 0.05 0.65 ± 0.02

Entropy 1.0 ± 0.0 0.75 ± 0.08 0.42 ± 0.0 0.0 ± 0.0 0.57 ± 0.02

Table 7. The average and standard deviation of the correct number of features identified across all
noise levels by each FSA for 2× the number of relevant features. Green represents cases where over
66% of the correct features were chosen, and red represents cases where under 33% of correct features
were chosen.

FSA Group 1 Group 2 Group 3 Group 4 All Datasets

SU 0.67 ± 0.0 0.6 ± 0.0 0.61 ± 0.04 0.0 ± 0.0 0.54 ± 0.01
MI 0.61 ± 0.12 0.5 ± 0.0 0.33 ± 0.0 0.29 ± 0.12 0.45 ± 0.03

Gini 0.5 ± 0.0 0.5 ± 0.0 0.51 ± 0.03 0.0 ± 0.0 0.45 ± 0.01
GFA 0.69 ± 0.11 0.72 ± 0.07 0.35 ± 0.13 0.1 ± 0.05 0.45 ± 0.04
SBS 1.0 ± 0.0 1.0 ± 0.0 0.57 ± 0.03 0.21 ± 0.09 0.74 ± 0.03

mRMR 1.0 ± 0.0 0.62 ± 0.04 0.67 ± 0.0 0.0 ± 0.0 0.62 ± 0.01
SFS 0.67 ± 0.0 1.0 ± 0.0 0.81 ± 0.04 0.04 ± 0.06 0.72 ± 0.02

Entropy 1.0 ± 0.0 0.88 ± 0.04 0.51 ± 0.03 0.08 ± 0.06 0.66 ± 0.03

Based on the resilience of FSAs to irrelevant features-related noise, we can conclude
the best performing algorithm for each difficulty group:

• Group 1—Low Complexity: SBS;
• Group 2—Medium Complexity: SBS and SFS;
• Group 3—High Complexity: SFS;
• Group 4—Very High Complexity: MI.
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It is worth noting that the stability of several FSAs was unaffected by the number of
features selected, showing that the algorithms are extremely stable in regard to the number
of irrelevant features being used, as expected of an FSA.

All Datasets

A further examination of the trends across all datasets presented in Figure A2a,b
(Appendix A) and the last column in Tables 6 and 7 above reveals that, on average, most
FSAs were relatively stable when dealing with noise based on the number of irrelevant
features as would be expected. Most FSAs show consistent performance across every noise
level but with a higher overall performance when selecting a larger number of features.

5.3.3. Discussion

Comparing the overall performance of Figures A1 and A2, we see that on average,
FSAs are able to identify fewer relevant features when the noise is based on the class
being mislabelled than when the noise relates to the number of irrelevant features in
the datasets. This is numerically seen where the highest percentage of correct features
found across all datasets when altering the target variable is 60–70% depending on the
number of selected features, while the lowest percentage of correct features found is
10–20%. However, the highest percentage of correct features found when the noise is based
on irrelevant features is 70–80% and the lowest percentage is 20–40%. This illustrates how
the irrelevant features did not affect the performance of the FSAs as much as the class
changing, as expected. This can be graphically seen since Figure A2 has more straight
lines showing consistent performance across different levels of noise, but there is a lack of
horizontal lines in Figure A1.

This is expected since most FSAs are built to deal with a varying number of irrelevant
features to begin with and, hence, are more resilient to that kind of noise. On the other
hand, most FSAs are highly reliant on the distribution of the data with respect to the target
variable, which is what changes when we add noise through changing the classes. This
shows that most FSAs are not resilient to mislabelled data but highly resilient to additional
irrelevant features.

The analysis conducted in this section is an example of how one can evaluate their
own feature selection algorithm using the provided datasets. Following the analysis
in this work, users of the feature selection process can draw valuable insights into the
performance, points of failure, resilience to noise, and stability of the FSAs of interests.
In addition to providing details about a particular FSA, this can allow a standardized form
of FSA comparison that can be used to benchmark an FSA against other popular or newly
developed FSAs.

Our aim of this analysis is to have it serve as a stepping stone to more a comprehensive
but standardized analysis and comparison of FSAs. Further guidance on how the reader
can use the datasets for their own analysis is provided in the following section.

6. How to Use Our Datasets

In this section, we give a concise and easy-to-follow guide on how to test new FSAs
not included in this paper. All the datasets presented in this paper are available at our
Github repository (https://github.com/ro1406/SynthSelect, accessed on 24 January 2024),
with some helper functions to load them, as well as to adjust the number of redundant
and irrelevant features for both numeric and categorical datasets. The latter mentioned
functions can be used to conduct independent testing and allow developers to create their
own datasets. However, we recommend using the datasets presented here to allow for
standardized bench-marking of FSAs in the community.

6.1. Basic Test

These are the steps to test the basic performance of an FSA algorithm. Repeating
the following steps multiple times is recommended to account for the variation in FSA

https://github.com/ro1406/SynthSelect


Mathematics 2024, 12, 570 23 of 29

performance. The results across datasets can also be aggregated within complexity levels
for better comparison to the previously tested algorithms.

1. Run the selected FSA on each dataset within a group, setting it so that the FSA must
return features equal to the number of relevant features for each dataset.

2. The score of any FSA would be the precentage of relevant/non-repeated redundant
features correctly selected.

• It is important to note that FSAs might break and report the first n columns. It is
a good idea to shuffle the arrangement of the columns during testing.

3. Repeat with the FSA set to return a number of features equal to double the number of
relevant features for each dataset.

6.2. Stability Test

After testing the basic performance of an FSA, one can test how stable the algorithm is.
To do this, one can follow the following steps:

1. Begin by selecting either the Class flip or Irrelevant feature noise. Code is provided in
this Github (https://github.com/ro1406/SynthSelect, accessed on 24 January 2024).

2. For each level of noise, move through the same steps listed in Section 6.1 using the
newly formed dataset.

3. Report the score across all noise levels and groups to have a suitable metric to compare
to previously tested FSAs.

7. Conclusions

In this paper, we have presented the synthetic generation of ten separate datasets
that were tested using eight feature selection algorithms. These generated datasets were
designed specifically for the purposes of re-usability by researchers and for the evaluation
of relevant feature selection algorithms. By conducting the experiments shown in this
work, we have confirmed the promise of using synthetic datasets for determining the
performance of FSAs. By allowing researchers to experiment with the specific details of
datasets, such as the number of relevant, irrelevant, or redundant features, target variables,
and beyond, we are able to grasp a stronger sense of any FSA’s performance. Additionally,
the existence of such synthetic data and their generation allows for the development of
novel feature selection techniques and algoithms. The datasets generated are provided
to readers through our GitHub repository, as explained in Section 6. Researchers are
encouraged to adjust the datasets according to their specific criteria. For future work,
we recommend researchers continue working with the generation of datasets other than
numerical, such as categorical and ordinal data. More specifically, we recommend the
generation of synthetic data pertaining to time series and regression problems. This allows
for further testing and evaluation of feature selection algorithms for a broader scope in
the field.
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Appendix A

Table A1. 4D AND.

Algorithm Real_Feat 2 × Real_Feat

Entropy 4 4
GFA 0 3
Gini 2 3
MI 4 4

mRMR 4 4
SBS 4 4
SFS 2 2
SU 2 3

The majority of the FSAs found the four correct features for the 4D AND dataset,
with the other FSAs finding two and three features, respectively. This shows that it is
relatively easy to identify the important features in this dataset. However, the genetic
feature selection algorithm was unable to find any correct features initially but found three
out of the five correct features when made to choose its top eight features. This can be
explained due to the stochastic nature of feature selection algorithms. Since genetic feature
selection algorithms rely on random initialization, it is possible that we do not obtain the
relevant features in some cases. However, increasing the top features to twice its initial
implementation increases the likelihood of finding them.

Table A2. 5D XOR.

Algorithm Real_Feat 2 × Real_Feat

Entropy 0 1
GFA 0 0
Gini 0 0
MI 0 0

mRMR 0 0
SBS 0 0
SFS 0 0
SU 0 0

A similar trend can be seen for the Straight line dataset where all FSAs except for
Mutual Information were able to find both correct features regardless of the number of
features chosen. Mutual Information, however, was only able to find one correct feature
even when the number of selected features was four.

Table A3. y = X.

Algorithm Real_Feat 2 × Real_Feat

Entropy 2 2
GFA 1 2
Gini 1 1
MI 1 1

mRMR 2 2
SBS 2 2
SFS 2 2
SU 2 2

However, a drastically different trend can be seen for the nonlinearly separable cate-
gorical XOR dataset, where none of the FSAs were able to find even a single correct feature
out of the five possible correct features. Only Entropy was able to find a single correct
feature when asked to select the top 10 features. Since none of the FSAs found even a single
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correct feature, they found the irrelevant features to be more useful in determining the
final class.

Table A4. Cone.

Algorithm Real_Feat 2 × Real_Feat

Entropy 2 2
GFA 2 2
Gini 1 1
MI 1 1

mRMR 1 1
SBS 3 3
SFS 3 3
SU 1 3

In terms of the Cone dataset, only the SFS and SBS found all three correct features
each time, and the SU identified only one correct feature at first but then found all three
when asked to pick the top six features. Entropy also consistently found two out of three
features. However, the other three algorithms only found one feature each time despite the
decision boundary not being very complicated.

Table A5. Double spiral.

Algorithm Real_Feat 2 × Real_Feat

Entropy 0 0
GFA 0 0
Gini 0 0
MI 1 1

mRMR 0 0
SBS 0 1
SFS 0 0
SU 0 0

Lastly, only the MI was consistently able to identify only one of the three correct
features in the Double spiral dataset, with none of the other FSAs identifying even one
of the correct features. The SBS, however, did manage to find one correct feature when
selecting the top six features.

Table A6. Hypersphere.

Algorithm Real_Feat 2 × Real_Feat

Entropy 2 3
GFA 1 2
Gini 1 1
MI 1 1

mRMR 2 2
SBS 3 3
SFS 3 3
SU 1 2

A similar trend holds true for the Hypersphere dataset where the SBS and SFS find all
the correct features consistently; the SU only finds one initially and eventually finds two
correct features. However, this time only the Gini and MI were unable to find the majority
of the correct features even when selecting the top six features for the dataset. Together,
the Cone and Hypersphere datasets indicate how the Gini and MI fail to perform well on
curved surface decision boundaries in higher dimensions.



Mathematics 2024, 12, 570 26 of 29

Table A7. Trigonometric.

Algorithm Real_Feat 2 × Real_Feat

Entropy 1 2
GFA 1 1
Gini 1 2
MI 1 2

mRMR 1 1
SBS 2 2
SFS 2 2
SU 1 1

Moreover, the Trigonometric dataset has all FSAs finding at least one out of the two
correct features, with the SBS and SFS performing the best consistently and the Entropy,
Gini, and MI finding the correct features when selecting the top four features.

Table A8. Five-class multi-cut.

Algorithm Real_Feat 2 × Real_Feat

Entropy 2 3
GFA 2 1
Gini 2 3
MI 2 2

mRMR 2 4
SBS 1 2
SFS 2 4
SU 3 4

The five-class multi-cut dataset has six correct features, which none of the algorithms
found. The most correct features found was four, by the mRMR, SFS, and SU, all when
choosing the top 12 features only. This shows how difficult this dataset is for feature
selection algorithms when the data in the same class are disjoint. Most FSAs found two of
six features easily but failed to make any major progress toward finding all six.

Table A9. Ten-class multi-cut.

Algorithm Real_Feat 2 × Real_Feat

Entropy 3 3
GFA 1 2
Gini 2 3
MI 1 2

mRMR 3 4
SBS 4 4
SFS 5 5
SU 2 3

The Ten-class multi-cut dataset also has no FSA that could find all six features; how-
ever, the SFS came the closest, finding five of the six correct features consistently. SBS also
performed well and much better than the in the Five-class multi-cut dataset consistently
finding four out of six correct features. In fact, every FSA except for the SU performed
better on the Ten-class multi-cut dataset than the Five-class multi-cut dataset. This is an
interesting finding that needs to be explored.
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Table A10. Yin–Yang.

Algorithm Real_Feat 2 × Real_Feat

Entropy 2 2
GFA 1 1
Gini 1 1
MI 1 1

mRMR 2 2
SBS 2 2
SFS 2 2
SU 0 0

The majority of the FSAs identified both of the correct features consistently, while the
Gini and MI only found one out of the two correct features even when picking the top four
features. However, the SU was consistently the poorest performer being unable to identify
any of the correct features.

Below are the results of the noise testing of each FSA across all datasets.
Figure A1 contains the trends for the FSAs’ performances across all datasets for the

various noise levels with class-wise noise.

(a) (b)
Figure A1. Class flip noise results for all feature selection algorithms across all datasets. (a) Class
flip noise results selecting the actual number of relevant features; (b) class flip noise results selecting
twice the actual number of relevant features.

Figure A2 contains the trends for the FSAs’ performances across all datasets for the
various noise levels with irrelevant feature-based noise.

(a) (b)
Figure A2. Noise results for irrelevant features across all datasets. (a) Irrelevant feature noise results
selecting the actual number of relevant features; (b) irrelevant feature noise results selecting twice the
actual number of relevant features.

References
1. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. An ensemble of filters and classifiers for microarray data classifica-

tion. Pattern Recognit. 2012, 45, 531–539. [CrossRef]
2. Shilaskar, S.; Ghatol, A. Feature selection for medical diagnosis: Evaluation for cardiovascular diseases. Expert Syst. Appl. 2013,

40, 4146–4153. [CrossRef]

http://doi.org/10.1016/j.patcog.2011.06.006
http://dx.doi.org/10.1016/j.eswa.2013.01.032


Mathematics 2024, 12, 570 28 of 29

3. Feng, Y.; Akiyama, H.; Lu, L.; Sakurai, K. Feature Selection for Machine Learning-Based Early Detection of Distributed Cyber
Attacks. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 173–180. [CrossRef]

4. Sulieman, H.; Alzaatreh, A. A Supervised Feature Selection Approach Based on Global Sensitivity. Arch. Data Sci. Ser. (Online
First) 2018, 5, 3.

5. Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine
Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [CrossRef]

6. Mitra, R.; Varam, D.; Ali, E.; Sulieman, H.; Kamalov, F. Development of Synthetic Data Benchmarks for Evaluating Feature
Selection Algorithms. In Proceedings of the 2022 2nd International Seminar on Machine Learning, Optimization, and Data
Science (ISMODE), Virtual, 22–23 December 2022; pp. 47–52. [CrossRef]

7. Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [CrossRef]
8. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
9. Kao, L.J.; Chiu, C.C. Application of integrated recurrent neural network with multivariate adaptive regression splines on

SPC-EPC process. J. Manuf. Syst. 2020, 57, 109–118. [CrossRef]
10. Yamada, Y.; Lindenbaum, O.; Negahban, S.; Kluger, Y. Deep supervised feature selection using Stochastic Gates. arXiv 2018,

arXiv:1810.04247.
11. Yu, K.; Yang, Y.; Ding, W. Causal Feature Selection with Missing Data. ACM Trans. Knowl. Discov. Data 2022, 16, 1–24. [CrossRef]
12. Alkhalifah, T.; Wang, H.; Ovcharenko, O. MLReal: Bridging the gap between training on synthetic data and real data applications

in machine learning. arXiv 2021, arXiv:2109.05294. [CrossRef]
13. Panday, D.; Cordeiro de Amorim, R.; Lane, P. Feature weighting as a tool for unsupervised feature selection. Inf. Process. Lett.

2018, 129, 44–52. [CrossRef]
14. Kaya, S.K.; Navarro-Arribas, G.; Torra, V. Dynamic Features Spaces and Machine Learning: Open Problems and Synthetic Data

Sets. In Integrated Uncertainty in Knowledge Modelling and Decision Making; Huynh, V.N., Entani, T., Jeenanunta, C., Inuiguchi, M.,
Yenradee, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 125–136.

15. Rughetti, D.; Sanzo, P.D.; Ciciani, B.; Quaglia, F. Dynamic Feature Selection for Machine-Learning Based Concurrency Regulation
in STM. In Proceedings of the 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, Torino, Italy, 12–14 February 2014; pp. 68–75. [CrossRef]

16. Yu, K.; Guo, X.; Liu, L.; Li, J.; Wang, H.; Ling, Z.; Wu, X. Causality-based Feature Selection: Methods and Evaluations. arXiv 2019,
arXiv:1911.07147.

17. Kamalov, F.; Sulieman, H.; Cherukuri, A.K. Synthetic Data for Feature Selection. arXiv 2022, arXiv:2211.03035 [CrossRef]
18. John, G.H.; Kohavi, R.; Pfleger, K. Irrelevant Features and the Subset Selection Problem. In Machine Learning Proceedings 1994;

Cohen, W.W., Hirsh, H., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1994; pp. 121–129. [CrossRef]
19. Kim, G.; Kim, Y.; Lim, H.; Kim, H. An MLP-based feature subset selection for HIV-1 protease cleavage site analysis. Artif. Intell.

Med. 2010, 48, 83–89. [CrossRef] [PubMed]
20. Zhu, Z.; Ong, Y.S.; Zurada, J.M. Identification of Full and Partial Class Relevant Genes. IEEE/ACM Trans. Comput. Biol. Bioinform.

2010, 7, 263–277. [CrossRef] [PubMed]
21. Liu, X.Y.; Liang, Y.; Wang, S.; Yang, Z.Y.; Ye, H.S. A Hybrid Genetic Algorithm with Wrapper-Embedded Approaches for Feature

Selection. IEEE Access 2018, 6, 22863–22874. [CrossRef]
22. Zhu, Z.; Ong, Y.S.; Dash, M. Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework. IEEE Trans. Syst. Man

Cybern. Part B (Cybern.) 2007, 37, 70–76. [CrossRef] [PubMed]
23. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth International Group: Belmont,

CA, USA, 1984.
24. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf.

Syst. 2012, 34, 483–519. [CrossRef]
25. Guyon, I.; Li, J.; Mader, T.; Pletscher, P.A.; Schneider, G.; Uhr, M. Competitive baseline methods set new standards for the NIPS

2003 feature selection benchmark. Pattern Recognit. Lett. 2007, 28, 1438–1444. [CrossRef]
26. Wang, D.; Nie, F.; Huang, H. Feature Selection via Global Redundancy Minimization. IEEE Trans. Knowl. Data Eng. 2015,

27, 2743–2755. [CrossRef]
27. Figueira, A.; Vaz, B. Survey on Synthetic Data Generation, Evaluation Methods and GANs. Mathematics 2022, 10, 2733. [CrossRef]
28. Varol, G.; Romero, J.; Martin, X.; Mahmood, N.; Black, M.J.; Laptev, I.; Schmid, C. Learning from Synthetic Humans. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

29. Ward, C.M.; Harguess, J.; Hilton, C. Ship Classification from Overhead Imagery using Synthetic Data and Domain Adaptation.
In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–5.

30. Assefa, S.A.; Dervovic, D.; Mahfouz, M.; Tillman, R.E.; Reddy, P.; Veloso, M. Generating Synthetic Data in Finance: Opportunities,
Challenges and Pitfalls. In Proceedings of the First ACM International Conference on AI in Finance, New York, NY, USA, 15–16
October 2021. [CrossRef]

http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00040
http://dx.doi.org/10.3389/fbinf.2022.927312
http://dx.doi.org/10.1109/ISMODE56940.2022.10180928
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.jmsy.2020.07.020
http://dx.doi.org/10.1145/3488055
http://dx.doi.org/10.48550/ARXIV.2109.05294
http://dx.doi.org/10.1016/j.ipl.2017.09.005
http://dx.doi.org/10.1109/PDP.2014.24
http://dx.doi.org/10.48550/ARXIV.2211.03035
http://dx.doi.org/10.1016/B978-1-55860-335-6.50023-4
http://dx.doi.org/10.1016/j.artmed.2009.07.010
http://www.ncbi.nlm.nih.gov/pubmed/19945261
http://dx.doi.org/10.1109/TCBB.2008.105
http://www.ncbi.nlm.nih.gov/pubmed/20431146
http://dx.doi.org/10.1109/ACCESS.2018.2818682
http://dx.doi.org/10.1109/TSMCB.2006.883267
http://www.ncbi.nlm.nih.gov/pubmed/17278560
http://dx.doi.org/10.1007/s10115-012-0487-8
http://dx.doi.org/10.1016/j.patrec.2007.02.014
http://dx.doi.org/10.1109/TKDE.2015.2426703
http://dx.doi.org/10.3390/math10152733
http://dx.doi.org/10.1109/cvpr.2017.492
http://dx.doi.org/10.1145/3383455.3422554


Mathematics 2024, 12, 570 29 of 29

31. Bonnéry, D.; Feng, Y.; Henneberger, A.K.; Johnson, T.L.; Lachowicz, M.; Rose, B.A.; Shaw, T.; Stapleton, L.M.; Woolley, M.E.; Zheng,
Y. The Promise and Limitations of Synthetic Data as a Strategy to Expand Access to State-Level Multi-Agency Longitudinal Data.
J. Res. Educ. Eff. 2019, 12, 616–647. [CrossRef]

32. Chen, G.; Chen, J. A novel wrapper method for feature selection and its applications. Neurocomputing 2015, 159, 219–226.
[CrossRef]

33. Sánchez-Maroño, N.; Alonso-Betanzos, A.; Tombilla-Sanromán, M. Filter Methods for Feature Selection—A Comparative Study.
In Proceedings of the Intelligent Data Engineering and Automated Learning—IDEAL 2007, Birmingham, UK, 16–19 December
2007; Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 178–187.

34. Xiao, Z.; Dellandrea, E.; Dou, W.; Chen, L. ESFS: A new embedded feature selection method based on SFS. In Ecole Centrale Lyon;
Université de Lyon; LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de
Lyon; Research Report; Tsinghua University: Bejing, China, 2008.

35. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef] [PubMed]

36. Jo, I.; Lee, S.; Oh, S. Improved Measures of Redundancy and Relevance for mRMR Feature Selection. Computers 2019, 8, 42.
[CrossRef]

37. Azad, M.; Chikalov, I.; Hussain, S.; Moshkov, M. Entropy-Based Greedy Algorithm for Decision Trees Using Hypotheses. Entropy
2021, 23, 808. [CrossRef] [PubMed]

38. Ververidis, D.; Kotropoulos, C. Sequential forward feature selection with low computational cost. In Proceedings of the 2005 13th
European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4.

39. Reeves, S.; Zhe, Z. Sequential algorithms for observation selection. IEEE Trans. Signal Process. 1999, 47, 123–132. [CrossRef]
40. Coifman, R.; Wickerhauser, M. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718.

[CrossRef]
41. Shang, W.; Huang, H.; Zhu, H.; Lin, Y.; Qu, Y.; Wang, Z. A novel feature selection algorithm for text categorization. Expert Syst.

Appl. 2007, 33, 1–5. [CrossRef]
42. Ferri, F.; Pudil, P.; Hatef, M.; Kittler, J. Comparative study of techniques for large-scale feature selection Pattern Recognition in

Practice IV. In Machine Intelligence and Pattern Recognition; Gelsema, E.S., Kanal, L.S., Eds.; Elsevier: Amsterdam, The Netherlands,
1994; Volume 16, pp. 403–413. [CrossRef]

43. Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21 August 2003; pp. 856–863.

44. Ding, C.; Peng, H. Minimum Redundancy Feature Selection From Microarray Gene Expression Data. In Proceedings of the 2003
IEEE Bioinformatics Conference, CSB2003, Stanford, CA, USA, 11–14 August 2003; Volume 3, pp. 523–528. [CrossRef]

45. Leardi, R.; Boggia, R.; Terrile, M. Genetic algorithms as a strategy for feature selection. J. Chemom. 1992, 6, 267–281. [CrossRef]
46. Anwar, N.; Jones, G.; Ganesh, S. Measurement of Data Complexity for Classification Problems with Unbalanced Data. Stat. Anal.

Data Min. 2014, 7, 194–211. [CrossRef]
47. Li, L.; Abu-Mostafa, Y.S. Data Complexity in Machine Learning; California Institute of Technology: Pasadena, CA, USA, 2006.
48. Blanchard, G.; Flaska, M.; Handy, G.; Pozzi, S.; Scott, C. Classification with Asymmetric Label Noise: Consistency and Maximal

Denoising. arXiv 2016, arXiv:1303.1208. [CrossRef]
49. Xi, M.; Li, J.; He, Z.; Yu, M.; Qin, F. NRN-RSSEG: A Deep Neural Network Model for Combating Label Noise in Semantic

Segmentation of Remote Sensing Images. Remote Sens. 2022, 15, 108. [CrossRef]
50. Scott, C.; Blanchard, G.; Handy, G. Classification with Asymmetric Label Noise: Consistency and Maximal Denoising. In

Proceedings of the 26th Annual Conference on Learning Theory, Princeton, NJ, USA, 12–14 June 2013; Volume 30, pp. 489–511.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/19345747.2019.1631421
http://dx.doi.org/10.1016/j.neucom.2015.01.070
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://dx.doi.org/10.3390/computers8020042
http://dx.doi.org/10.3390/e23070808
http://www.ncbi.nlm.nih.gov/pubmed/34201971
http://dx.doi.org/10.1109/78.738245
http://dx.doi.org/10.1109/18.119732
http://dx.doi.org/10.1016/j.eswa.2006.04.001
http://dx.doi.org/10.1016/B978-0-444-81892-8.50040-7
http://dx.doi.org/10.1109/CSB.2003.1227396
http://dx.doi.org/10.1002/cem.1180060506
http://dx.doi.org/10.1002/sam.11228
http://dx.doi.org/10.1214/16-EJS1193
http://dx.doi.org/10.3390/rs15010108

	Introduction
	Literature Review
	Synthetic Datasets
	Datasets
	Straight Line Dataset (y = X)
	Trigonometric Dataset
	Hypersphere Dataset
	Cone Dataset
	Double Spiral Dataset
	Five-Class Multi-Cut Dataset
	Ten-Class Multi-Cut Dataset
	Yin–Yang Dataset
	4D AND
	5D XOR


	Methodology
	Feature Selection Algorithm Testing
	Complexity
	Noise Resilience

	Results
	Number of Correct Features Identified Per Dataset
	Groupings of the Generated Datasets
	Noise Resilience of the FSAs
	Class-Wise Noise
	Irrelevant Feature Noise
	Discussion


	How to Use Our Datasets
	Basic Test
	Stability Test

	Conclusions
	Appendix A
	References

