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Abstract: Investigating public attitudes towards social media is crucial for opinion mining systems
to gain valuable insights. Stance detection, which aims to discern the attitude expressed in an
opinionated text towards a specific target, is a fundamental task in opinion mining. Conventional
approaches mainly focus on sentence-level classification techniques. Recent research has shown that
the integration of background knowledge can significantly improve stance detection performance.
Despite the significant improvement achieved by knowledge-enhanced methods, applying these tech-
niques in real-world scenarios remains challenging for several reasons. Firstly, existing methods often
require the use of complex attention mechanisms to filter out noise and extract relevant background
knowledge, which involves significant annotation efforts. Secondly, knowledge fusion mechanisms
typically rely on fine-tuning, which can introduce a gap between the pre-training phase of pre-trained
language models (PLMs) and the downstream stance detection tasks, leading to the poor prediction
accuracy of the PLMs. To address these limitations, we propose a novel prompt-based stance detection
method that leverages the knowledge acquired using the chain-of-thought method, which we refer to
as PSDCOT. The proposed approach consists of two stages. The first stage is knowledge extraction,
where instruction questions are constructed to elicit background knowledge from a VLPLM. The
second stage is the multi-prompt learning network (M-PLN) for knowledge fusion, which learns
model performance based on the background knowledge and the prompt learning framework. We
evaluated the performance of PSDCOT on publicly available benchmark datasets to assess its ef-
fectiveness in improving stance detection performance. The results demonstrate that the proposed
method achieves state-of-the-art results in in-domain, cross-target, and zero-shot learning settings.

Keywords: stance detection; prompt-tuning; chain-of-thought

MSC: 68T50

1. Introduction

Stance detection is a fundamental task in natural language processing (NLP), where
the goal is to classify attitudes towards a particular target given opinionated input texts [1].
This task has gained significant attention in recent years due to its importance in various
applications, such as political analysis, social media monitoring, and customer feedback
analysis. In its early stages, research on stance detection was primarily centered on online
debates that adhere to a standardized sentence structure, and where the user’s attitude is
typically straightforwardly expressed [2,3]. However, with the rapid growth of the internet,
social media platforms such as Xhave become more popular, and researchers have started
exploring the mining of social media for stance detection [4,5].
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Conventional methods for stance detection can be viewed as target-based sentence-
level classification tasks, which can be classified into non-pretrained and pretrained lan-
guage models (PLMs). Non-pretrained models employ deep neural networks (DNNs), such
as long short-term memory (LSTM), attention-based models (Att), and graph convolutional
networks (GCN), to build stance classification models. For instance, Du et al. [6] employed
an attention-based approach that leverages target-specific information. Dey et al. [7] em-
ployed two independent LSTMs to sieve non-neutral text and classify attitudes separately.
Sun et al. [8] devised a hierarchical attention mechanism that learned text representation by
utilizing linguistic features. Liang et al. [9] introduced an effective GCN-based approach
that distinguished between target-invariant and target-specific features. Inspired by the re-
cent success of PLMs, fine-tuning techniques have been developed to improve the accuracy
of stance detection [10]. Fine-tuning techniques have been developed to adapt pre-trained
language models (PLMs) to specific tasks. One such technique involves constructing a
stance classification head at the top of the special token denoted as “<cls>” and fine-tuning
the entire model accordingly. In stance detection, the model is exposed to many input
text–stance label pairs during fine-tuning. The <cls> token learns semantic and syntactic
patterns that correlate with different stances. In sum, these methods typically regard stance
detection as a target-oriented sentence-level text classification task. Nevertheless, the effi-
cacy of social media data analysis methods is impeded by the sparsity problem arising from
the concise and informal expressions commonly encountered on these platforms. Such
content typically lacks context, details, or elaboration and often incorporates abbreviations
and slang for which pre-trained language models (PLMs) lack corresponding background
knowledge. Consequently, PLMs struggle to comprehend the semantics conveyed in the
text, leading to erroneous judgments.

Recently, some pioneering studies have been conducted to address the sparsity prob-
lem by utilizing external knowledge to enhance the performance and interpretability of
stance detection. For example, He et al. [11] improved the performance of text classifiers by
introducing target-related Wikipedia documents as content supplements. Diaz et al. [12]
constructed a stance tree by retrieving external knowledge from a knowledge base and
used it as evidence to support stance prediction, thus enhancing the accuracy of stance
detection. Zhang et al. [13] utilize external knowledge from semantic and emotion lexicons
as a bridge to enable knowledge transfer across different targets. Nasiri et al. [14] addressed
the issue of a lack of annotated datasets in Persian pose detection tasks through data
augmentation and transfer learning. Hardalov et al. [15] proposed a novel semi-supervised
approach to address the issue of scarce data in cross-language scenarios. Khiabaniet al. [16]
enhanced stance detection performance in low-shot cross-target scenarios through multi-
modal embeddings derived from both textual and network features of the data. Although
these works have achieved improvements in the performance and interpretability, these
methods still face the following challenges in practical applications: (1) Most existing
methods require the design of complex attention mechanisms to filter out noise and extract
task-related background knowledge. However, such methods require a large number of
annotated samples, which is clearly time-consuming and labor-intensive. In order to ease
the applicability of knowledge-enhanced stance detection, it would be highly desirable to
develop knowledge-acquired algorithms that are less dependent on feature engineering
and with high-quality task-related background knowledge. (2) Most of these knowledge
fusion mechanisms rely on fine-tuning models. However, the fine-tuning approach creates
a gap between the pre-training phase of PLM and downstream stance detection tasks,
resulting in the reduced prediction accuracy of the PLMs.

To tackle the challenges mentioned above, in this paper, we propose a prompt-based
stance detection method by leveraging the knowledge acquired by the chain-of-thought
method (PSDCOT). The proposed model is motivated by two considerations. First, the
advancements in large language models, such as GPT-3.5, etc., have demonstrated their
powerful knowledge generation capabilities, and COT methods can effectively mine knowl-
edge from these models to support prediction with evidence. Second, prompt learning
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methods can improve prediction performance by fitting the downstream task to the up-
stream training process. The proposed PSDCOT consists of two stages. The first stage is
knowledge extraction, where instruction questions are constructed to elicit background
knowledge from a VLPLM. The second stage is the multi-prompt learning network (M-
PLN) for knowledge fusion, which learns model performance based on the background
knowledge and the prompt learning framework. Extensive tests were conducted on pub-
licly available benchmark datasets to evaluate the performance of the proposed PSDCOT
method. The results demonstrate that the proposed method effectively improves stance
detection performance, achieving state-of-the-art results in in-domain, cross-target, and
zero-shot learning settings.

In summary, this paper presents several significant contributions:

• A PSDCOT framework is proposed, which improves prompt-based stance detection
models by incorporating the background knowledge into prediction.

• A M-PLN approach is proposed, which enhances the performance of stance detection
by carefully constructing prompt templates and synthesizing analysis from multiple
perspectives.

• Extensive experiments are carried out on publicly available benchmark datasets, and
the results demonstrate the superiority of the proposed model over state-of-the-art
competitors. The source code of this paper is available at https://github.com/Szu-
Ddj/PSDCOT accessed on 3 January 2024.

The present paper is structured as follows. Section 2 offers an overview of related
research, including traditional and recent methods of stance detection, as well as methods
for prompt tuning. Section 3 outlines the details of our innovative method. Section 4
presents the findings of our experimental analysis. The paper concludes with Section 5,
which summarizes our key findings.

2. Related Work
2.1. Stance Detection

The aim of stance detection is to identify and analyze the perspective of a given text
regarding a particular target [17,18]. (1) In the scenario of an in-target setting, conventional
techniques can be broadly categorized as non-pretrained and pretrained methods. Deep
neural networks, say Att and GCN, are commonly utilized by non-pretrained techniques
for the purpose of training stance classifiers. Att methods focus primarily on target-specific
data as the attention query, and employ an attention mechanism to obtain the stance
polarity [6–8,19]. The GCN methods introduce a graph convolutional network to model the
correlation between the target and the text [20–22]. (2) Various methods have focused on
cross-target stance detection tasks, which can be broadly classified into two categories. The
first category is related to word-level transfer, which makes use of shared words between
two targets as a means to bridge knowledge gaps [23]. The second category addresses
cross-target issues by utilizing concept-level knowledge that is common between two
targets [13,24,25]. (3) Zero-shot stance detection is a particularly challenging scenario,
where a trained stance detection model is required to infer the stance of an unseen target.
In response to this challenge, Allaway and McKeown [26] have developed a large-scale
dataset for stance detection that has been labeled by human annotators. The dataset is
specifically designed for the zero-shot scenario. Moreover, Allaway et al. [27] have utilized
adversarial learning in order to extract target-invariance information and have used a
stance detection dataset that is specific to the target to conduct zero-shot stance detection.
Liu et al. [10] have proposed a graph model that incorporates both intra- and extra-semantic
information, in addition to common sense knowledge based on BERT. This approach is
aimed at enhancing the semantic information obtained. Additionally, Liang et al. [9] have
introduced a robust method for detecting target-specific or target-invariant features to help
acquire transferable stance features.

https://github.com/Szu-Ddj/PSDCOT
https://github.com/Szu-Ddj/PSDCOT
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2.2. Background Knowledge Enhanced Stance

The use of background knowledge to enhance the performance of stance detection
has garnered attention as an effective approach to improving performance [28]. For in-
stance, He et al. [11] introduced target-related background knowledge, such as Wikipedia
knowledge, and proposed a fine-tuning learning method to improve the model’s learning
ability. Similarly, Luo et al. [10] constructed background knowledge as a knowledge graph
and utilized graph neural network methods to develop a stance predictor. Additionally,
Huang et al. [29] introduced the use of #hashtag background knowledge to improve con-
tent learning. Furthermore, Luo et al. [30] incorporated sentiment knowledge to better
learn attitudes.

2.3. Prompt-Tuning Methods

Prompt tuning has gained widespread popularity in diverse natural language pro-
cessing (NLP) domains, for example, text classification [31], natural language understand-
ing [32], and sentiment analysis [33]. The verbalizer plays a critical role in prompt tuning
and significantly impacts its effectiveness [34]. The methods for designing verbalizers
can be categorized into human-designed and automatic verbalizers. Human-designed
verbalizers rely primarily on the personal expertise of the creator and may lack sufficient
coverage [32]. Automatic verbalizers are designed using search methods, but they require
a significant number of training and validation sets to optimize [35]. Previous studies
on prompt-based models have concentrated on stance detection [15,36]. Jiang et al. [36]
presented TAPD, a prompt-tuning framework designed for stance detection. TAPD utilizes
a verbalizer that maps labels to hidden vectors to facilitate label prediction. Likewise,
Hardalov et al. [15] developed a prompt-based approach for cross-lingual stance detection.
Furthermore, Huang et al. [29] proposed the use of SenticNet to construct an atomic ver-
balizer. In conclusion, the prompt learning framework has shown remarkable progress in
detecting stances.

3. Our Methodology

To represent the labeled dataset, we utilize X = {xi, qi}i=1, where x and q, respectively,
denote the input text and the corresponding target. Each (x, q) pair in X is assigned a stance
label y. The objective of stance detection is to infer a stance label for the input sentence in
the context of a given target q.

3.1. Model Overview

As illustrated in Figure 1, our PSDCOT consists of the chain-of-thought module for
knowledge extraction (KE) and a multi-Prompt learning Network (M-PLN) two main
components. Here, KE aims to extract the external knowledge for enhancing stance detec-
tion via COT methods. In M-PLN, we design an attention-based network for background
knowledge integration for stance detection.

3.2. Knowledge Extraction

To elicit background knowledge effectively, we design the chain-of-thought prompt
method. The proposed approach is motivated by the observation that the emerging ca-
pabilities of very large models enable them to generatively generate an understanding as
background knowledge. Therefore, we aim to leverage the background knowledge of a
large model to enhance the performance of stance detection.

Specifically, we propose the step-by-step question-answering strategy to elicit knowl-
edge. Such a method teaches language models to solve the stance detection by providing
a one-shot example. First, we construct the question–answer pair (QAP), and then feed
the constructed question into the VLPLM and acquire the explanation of the reason for
prediction. For example, given the following input: “RT GunnJessica: Because i want young
American women to be able to be proud of the 1st woman president #SemST”, the question for
ChatGPT input is as follows: “What is the attitude of the sentence: “RT GunnJessica: Because i
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want young American women to be able to be proud of the 1st woman president #SemST” to the
target “Hillary Clinton” select from “favor, against or neutral”. For this particular example,
ChatGPT returns a correct result. Second, we further inquire as to why the model predicts
a certain stance polarity. As shown in Table 1, large language models have the capability to
fill in missing information in sentences, such as subjects, and decipher hashtags.

Figure 1. The overall structure of the proposed PSDCOT.

Table 1. Example of ChatGPT Output.

Tweet and Target Background Knowledge

Tweet: KoriWasinger JButtawipo she also voted for the Iraq war
and was responsible for gathering TheDemocrats votes to

support it. Target: Hillary Clinton [Against]

The sentence mentions Clinton’s role in gathering votes from
Democrats to support the war suggests that the speaker believes

Clinton bears responsibility for the decision to go to war and
holds her accountable for it. [Against]

Tweet: You know you’re in a patriarchy when women are the
ones who are blamed for prostitution #whatisjustice #inequality.

Target: Feminist Movement [Favor]

The sentence seems to express a belief that women are unfairly
blamed for engaging in prostitution and suggests that the

society in which this occurs is a patriarchy, which is a system
that favors men and oppresses women. The use of hashtags
such as #whatisjustice and #inequality also suggests that the

speaker is supportive of the feminist movement and its goals of
promoting gender equality. [Favor]

Tweet: Let’s agree that it’s not ok to kill a 7lbs baby in the uterus
DWStweets #DNC #Clinton2016 HillaryforIA #ProCompromise

Target: Legalization of Abortion [Against]

The use of hashtags such as “#DNC” and “#Clinton2016”
suggests a negative sentiment towards the legalization of

abortion, and the mention of it being “not ok to kill a 7lbs baby
in the uterus” may be seen as a criticism of the idea that some

lives are more valuable than others. [Against]

3.3. Multi-Prompt Learning Network (M-PLN)

Preliminary: Prompt-tuning with PLM. Prompt-tuning is a transformative approach
that reframes the stance detection task as a masked language modeling task. Specifically,
prompt-tuning methodology adopts a text template p which is thoughtfully incorporated
into the given text x and the target q. For example, to classify sentence x as being in
favor or against, the prompt-tuning process envelops the sentence x with a predefined
text template to yield a novel text representation xp = “We should support this. The
attitude to the <Target q> is [MASK].” Let M be the pre-trained language model, which
provides the probability of each word v in the vocabulary being filled in [MASK] given
PM([MASK] = v|xp).
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In this context, v represents the defined label word in the verbalizer. To map the
probabilities of these words to the probabilities of the labels, a verbalizer is utilized as a
mapping function f from the defined words in the vocabulary, which form the label word
set V, to the label space Y, i.e., f : V → Y. Formally, the probability P(y|xp) of label y, is
computed as follows:

P(y|xp) = µ(PM([MASK] = v|xp)|v ∈ y). (1)

where µ serves as a crucial component in transforming the probability distribution over
label words to the probability distribution over labels. To illustrate, in the aforementioned
example, prompt tuning can set V1 to represent the words “support” and “agree”, and V2
to represent the word “opposition”. Additionally, µ can be defined as an identity function.
The instance is then categorized under the favor class if the average likelihood of the terms in
V1 exceeds that of the terms in V2. In prompt tuning, the objective of learning is to minimize

l(y|xp) = −logPM([MASK] = v|xp). (2)

Prompt Design. The key to the prompt-based method for stance detection is to con-
struct the appropriate prompt. Previous research has demonstrated that the performance
of different prompts varies significantly, and this issue is further compounded for stance
detection. The expressions and topics exhibit a wide range of diversity among distinct
target groups, thereby rendering the formulation of a universal prompt for the entirety
of these targets infeasible. To account for this heterogeneity, our approach involves the
creation of multiple prompts derived from varied perspectives. Based on prior research,
we have addressed stance detection by considering not only sentiment polarity in text, but
also stance-aware words and target–text relations. Therefore, we design prompt templates
from three perspectives, as shown by T1, T2, and T3, respectively.

T1 = <TEXT>. According to the sentiment expression in the text, the stance polarity
is [MASK].
T2 = <TEXT>. The stance polarity of this text is [MASK].
T3 = <TEXT>. The stance polarity toward the <Target> is [MASK].

We employ three RoBERTa models as our pre-trained language model (PLM). The
[MASK] and [SEP] tokens are sourced directly from the RoBERTa vocabulary. Our prompts
are easily customizable for the pre-training tasks of other PLMs.

Target-aware Verbalizer. In prompt-based fine-tuning, a verbalizer, which is an
injective function f: Y → V, is typically defined to map each label to a single token from the
PLM’s vocabulary. The efficacy of prompt-based methods heavily relies on the design of
the verbalizer, and a straightforward approach of assigning a fixed concrete word to each
label may not result in optimal outcomes. To address this issue, previous studies, such as
that of Schick et al. [32], have suggested mapping each label to a phrase that can better
represent the semantic meaning of the label, e.g., using “in favor of” instead of “favor”.
However, predicting consecutive [mask] tokens poses a new challenge. In an effort to tackle
this problem, Gao et al. [34] proposed generating the verbalized word for each label via a
pruned set of the top-k vocabulary words that are highly probable according to the PLM.
Nonetheless, this approach involves a computationally demanding and time-consuming
brute-force search for each label. Moreover, given the wide array of expressions used across
various targets, we assert that a single phrase or token may be inadequate for capturing
the stance information. To tackle this concern, we utilize a novel solution that involves
the mapping of labels onto continuous vectors, called stance vectors, instead of explicit
words or phrases. These vectors are amenable to be trained during optimization. Our
modality revolves around the generation of three distinct vectors that correspond to the
ones generated by the [MASK] of diverse templates. The stance vectors from T1, T2, and T3
are VT,1, VT,2, and VT,3, respectively. To ensure coherence with token embeddings within the
PLM, the stance vectors have been dimensionally aligned with the size of said embeddings.
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Attention Layer. The attention layer is proposed to integrate background knowledge
with the prompt-based model. Specifically, we utilize three soft stance vectors, VT,1, VT,2,
and VT,3, as three queries to guide the attention in an iterative manner. The hidden state
of the attention mechanism is acquired by feeding the background knowledge into the
independent PLM. Here, the hidden state is denoted as H. By computing the attention
queries and hidden states, the coupling coefficient matrix k can be computed as follows:

k1
T,1 = V1

T,1(H1
T,1)

T

k1
T,2 = V1

T,2(H1
T,2)

T

k1
T,3 = V1

T,3(H1
T,3)

T

(3)

where k{T,1;T,2;T,3} ∈ Rn×n. Then, the query of next iteration V2 can be updated as follows:

V2
T,1 = k1

T,1H1
T,1

V2
T,2 = k1

T,2H1
T,2

V2
T,3 = k1

T,3H1
T,3

(4)

where the dimension of the new query V2 is the same as that of the initial query V1.
Subsequently, the input of the next iteration can be updated by

H2
T,1 = λ LayerNorm(σ(V2

T,1)) + H1
T,1

H2
T,2 = λ LayerNorm(σ(V2

T,2)) + H1
T,1

H2
T,3 = λ LayerNorm(σ(V2

T,3)) + H1
T,1

(5)

where LayerNorm performs the standard layer normalization.
After t iterations, the output hidden state e can be found as follows:

qT,1 = Ht
T,1(so f tmax ∑

i
kt

T,1),

qT,2 = Ht
T,2(so f tmax ∑

i
kt

T,2),

qT,3 = Ht
T,3(so f tmax ∑

i
kt

T,3),

e = avg(qT,1 + qT,2 + qT,3)

(6)

where so f tmax( fi) =
e fi

∑j e f j
, ⊕ is the concatenation operator.

The detailed process is presented in Algorithm 1.

Algorithm 1 PSDCOT

Input: X = {xtrain
i , qtrain

i }Ntrain
i=1 , T1, T2, T3, V

Output: e
1: Utilize 1-shot example COT to teach language models and acquire background knowl-
edge from X.
2: Initialize VT,1, VT,2, VT,3
3: for t in T iterations do
4: Obtain coupling coefficients:kt−1

T,1 , kt−1
T,2 , kt−1

T,3
5: Update queries: Vt

T,1, Vt
T,2, Vt

T,3
6: Update queries: Ht

T,1, Ht
T,1, Ht

T,1
7: end for
8: Obtain the qt

T,1, qt
T,2, qt

T,3
9: Obtain the e
10: return e
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3.4. Stance Classification

We classify the stance expressed in the text by assessing the semantic similarity be-
tween the target-aware stance vectors and the average of the label vector (which is defined
in the verbalizer). To integrate the background knowledge, we concatenate the representa-
tion of background knowledge e with the target-aware stance vectors to enhance the stance
detection performance, which is denoted as follows:

γ = e ⊕ 1
m

m

∑
i=1

V1
T,i (7)

Based on the words provided by the verbalizer, we calculate the probability of selecting
token v as the label word.

δ =
exp (vi · γ)

∑vj∈V exp (vj · γ)
, (8)

where v is the embedding of the token in verbalizer. Then, we sum the words’ probabilities
of each label, which is denoted as ŷ.

Finally, the loss function can be effectively implemented through the utilization of the
standard cross-entropy method:

L = −
N

∑
i=1

C

∑
j=1

yij log ŷij, (9)

Here, N denotes the magnitude of the training set and C denotes the number of stance
classes. Every ground-truth label, yi, pertaining to the i-th individual sample, is represented
in the one-shot format. To optimize the attention layer, the standard method of the gradient
descent algorithm is employed.

4. Experiments
4.1. Experimental Data

This paper presents experimental results on robust benchmark datasets, including
SemEval-2016 Task 6 (SemEval2016) [37], P-stance [38], ISD [29], and VAST [26].

• SemEval-2016. The dataset of SemEval2016 comprises 4870 tweets with diverse
targets, with each tweet being labeled with a label of “favor”, “against”, or “neutral”.
In accordance with the proposed configuration by [24], four targets—Donald Trump
(D), Hillary Clinton (H), Legalization of Abortion (L), and Feminist Movement (F)—are
deemed appropriate for evaluating the efficacy of the stance detection task, and hence
have been chosen for our study. Specifically, for the cross-target setup [9,13,24], we
construct eight cross-target stance detection tasks (D→H, H→D, F→L, L→F), where
the source target is represented by the left side of the arrow, and the destination target
is represented by the right side.

• P-stance. To enhance the data volume for performance evaluation, the P-stance dataset
comprises 21,574 tweets, targeting “Donald Trump (DTp)”, “Joe Biden (JBp)”, and “Bernie
Sanders (BSp)”. For cross-domain setup, we construct six settings: DT→JB, DT→BS,
JB→DT, JB→BS, BS→DT, and BS→JB.

• VAST. The VAST dataset, as presented by Allaway and Mckeown [26], encompasses a
diverse range of targets that span across various themes, such as politics, education,
and public health. The dataset comprises three distinct stance labels, with the label set
being defined as “Pro”, “Neutral”, and “Con”. The training set comprises 4003 sam-
ples, while the dev and test sets consist of 383 and 600 samples, respectively. As per
Liang et al. [9], we evaluate our model’s performance on zero-shot topics.

• ISD. The ISD dataset, proposed by Huang et al. [29], poses a challenge as it consists
of texts without explicit sentiment words. Therefore, for predicting stance polarity, it
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is crucial to comprehend the interplay between the text and contextual knowledge,
including knowledge of the target and hashtags. The target of ISD are “Donald Trump
(DTi)” and “Joe Biden (JBi)”.

4.2. Compared Baseline Methods

In order to assess the efficacy of our proposed model, we conducted a thorough
evaluation and comparison with a range of established baselines. The details of these
baseline models are presented below for reference:

Statistics-based methods:

• BiLSTM [23]. The BiLSTM methodology utilizes a bidirectional Long Short-Term
Memory (LSTM) network to encode the underlying sentence and the corresponding
target independently.

• MemNet [39]. The MemNet architecture embraces a memory network, enhanced with
a multi-hop attention mechanism, to effectively encode textual data.

• AOA [40]. The AOA model employs two Long Short-Term Memory (LSTM) networks
to model the target and context separately, and incorporates an interactive attention
mechanism for modeling their interrelation.

• ASGCN [41]. The ASGCN approach leverages a dependency tree for modeling
dependencies and leverages Graph Convolutional Networks (GCN) to learn compact
and expressive text representations.

• TAN [6]. The TAN model introduces target-specific attention in conjunction with a
Long-Short Term Memory for the task of stance detection.

• TPDG [42]. The TPDG model presents a novel solution for stance detection through
the utilization of a target-adaptive graph convolutional network. The proposed
framework integrates shared features from analogous targets, thereby enhancing the
model’s effectiveness in accurately delineating the stance towards a given target.

• AT-JSS-Lex [43]. The AT-JSS-Lex model suggests a target-adaptive graph convolu-
tional network for the purpose of stance detection. This mechanism draws inspiration
from the practice of utilizing common features from analogous targets.

• TOAD [27]. The TOAD uses adversarial learning to generalize across topics.

Fine-tuning based methods:

• RoBERTa-FT [44]. These methods employ a pretrained BERT or RoBERTa model
for stance detection, with the given context and target converted to the format of
“[CLS] + text + [SEP] + target + [SEP]” to adapt to the training and fine-tuning of
the model.

• PT-HCL [9]. The PT-HCL model presents a novel approach to cross-target and zero-
shot stance detection using contrastive learning. To achieve this, the model leverages a
BERT-based architecture to establish a shared representation space for diverse targets.

Prompt-tuning based methods:

• MPT. MPT has devised a prompt-tuning based PLM for stance detection, which
employs a verbalizer defined by human experts.

• AutoPT [31]. AutoPT introduced an innovative approach for stance detection, which
involves the generation of label words derived from the given data corpus via an
auto-prompt method.

• KPT [35]. KPT introduced external lexicons to define the verbalizer for the prompt
framework.

Knowledge-enhanced methods:

• WS-BERT-Dual [27]. The WS-BERT-Dual introduces target-related wiki knowledge to
enhance stance detection ability.
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4.3. Implementation Details

In our experimental setup, we opted for pre-trained language models utilizing RoBERTa-
large architecture. For training the model, we employed the Adam optimizer while using a
mini-batch size of 32 and a learning rate of 0.0002. To advance the current state-of-the-art,
we detail, in a comprehensive manner, the templates leveraged to stimulate pre-trained
language models throughout this paper.

As per the recommendations of previous works [9,13], we employ the micro-average
F1 score as our primary evaluation metric. Our first step in this process involves calculating
the F1 scores for each of the categories, namely “Favor” and “Against”:

F1 f avor =
2Pf avorR f avor

Pf avor + R f avor

F1against =
2PagainstRagainst

Pagainst + Ragainst

(10)

The F1-score can be computed based on P and R, which, respectively, stand for
precision and recall.

F1avg =
F1 f avor + F1against

2
(11)

Second, because the targets in the dataset are unbalanced, we compute the micro-F1
as another evaluation metric:

F1m =
2TP

2TP + FP + FN
(12)

4.4. Overall Performance
4.4.1. In-Domain Setup

The results of in-domain stance detection using different robust benchmarks are
presented in Tables 2 and 3. Based on the obtained outcomes, several conclusions can be
drawn. (1) The pretrained models exhibit a remarkable enhancement in the performance
of stance detection for most configurations when compared to statistic-based methods.
For instance, RoBERTa-FT demonstrates an average improvement of 10.3% in comparison
with the top-performing statistic-based method (TPDG) on the ISD dataset. This finding
provides further validation on the effectiveness of utilizing pretrained models in stance
detection. (2) Prompt-based PLM methods exhibit consistent improvement in multiple tasks
when compared to fine-tuning PLM. For instance, PSDCOT achieves a 10.35% improvement
in F1avg and 8.15% in F1m on average in ISD datasets, in contrast to RoBERTa-FT. This
result indicates that the utilization of a prompt framework can significantly enhance
the effectiveness of PLMs at tapping into their true capabilities. (3) The utilization of
external knowledge serves as an indispensable factor in the completion of stance detection
assignments in social media. By incorporating external knowledge into the procedure, a
noteworthy enhancement in the performance of stance detection is observed. For example,
after integrating background knowledge of the target, WS-BERT-Dual improves by 2.35% in
F1avg on average of ISD and P-stance datasets compared with RoBERTa-FT. (4) The PSDCOT
method proposed in this paper surpasses all the established baselines across a majority
of the evaluation tasks. Our experimental results demonstrate a notable improvement
of 11.86% in F1avg over the most effective neural network-based model (TPDG), 5.24% in
F1avg, and 4.72% in F1m over the top-performing fine-tuned PLM model (RoBERTa-FT),
and 2.7%in F1avg and 3.28% in F1m over the best-performing prompt-tuning approach
(KPT), when averaging across seven distinct tasks. Furthermore, when compared to the
current state-of-the-art external knowledge augmentation technique (WS-BERT-Dual), the
PSDCOT method also achieves an average improvement of 6.35% in F1avg on both the ISD
and P-stance datasets. The advantage of PSDCOT comes from its two characteristics: (i) We
propose a COT method to extract the background knowledge behind text and targets. This
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knowledge can effectively improve the performance of position detection from the results.
(ii) We propose a multi-prompt learning network, which can effectively fuse background
knowledge with the predictor.

Table 2. Performance comparison on F1avg. The results with † are retrieved from [13]; ‡ are retrieved
from [36]. The ¶ mark refers to a p-value < 0.05. The best scores are in bold. Note that, to evaluate
the stability of the model, following [13], we evaluated the stability of our proposed PSDCOT by
running the method three times and reporting the average score.

No. Embedding Methods SemEval2016 ISD P-Stance
F L H DTi JBi DT JB

1

Statistic.

BiLSTM † 51.6 59.1 55.8 28.6 35.0 69.7 68.6
2 BiCond † 52.9 61.2 56.1 55.2 50.5 70.6 68.4
3 TAN † 55.8 63.7 65.4 50.4 52.5 77.1 77.6
4 AT-JSS-Lex ‡ 61.5 68.4 68.3 - - - -
5 MemNet † 51.1 58.9 52.3 53.5 52.2 76.8 77.2
6 AoA † 55.4 58.3 51.6 55.9 57.6 77.2 77.6
7 ASGCN † 56.2 59.5 62.2 55.1 58.2 76.8 78.2
8 TPDG 67.3 74.7 73.4 64.2 60.0 76.8 78.1

9

PLM

RoBERTa-FT 72.3 67.6 81.5 72.4 72.4 88.1 86.5
10 WS-BERT-Dual - - - 76.4 76.2 88.2 88.0
11 MPT 73.3 71.4 81.3 72.8 72.1 86.0 87.0
12 AutoP 72.8 72.6 81.4 71.2 70.8 86.3 86.4
13 KPT 75.2 74.2 82.6 75.7 74.4 88.4 88.1

14 PSDCOT 75.4 ¶ 73.4 83.9 ¶ 83.3 ¶ 82.2 ¶ 89.7 ¶ 89.6 ¶

Table 3. Performance comparison of stance detection (F1m). The ¶ mark refers to a p-value < 0.05.
The best scores are in bold.

Methods F L H DTi JBi

Statistic.
BiLSTM 60.9 56.49 68.2 43.6 35.4
BiCond 65.3 56.64 67.6 55.3 50.6
CrossNet 71.7 59.95 68.2 43.2 43.7

PLM
RoBERTa-FT 76.6 74.8 77.3 72.8 70.9
MPT 77.1 76.1 76.7 67.2 70.1
KPT 78.1 77.0 80.0 70.2 74.3

PSDCOT 79.3 ¶ 77.3 ¶ 79.4 79.9 ¶ 80.1 ¶

4.4.2. Cross-Target Setup

Obtaining a vast dataset that has been adequately annotated demands a substantial
investment of time and resources. Hence, our proposal is to examine the efficacy of our
approach within a cross-target framework. The objective of the cross-target framework is
to predict the stance of the target destination by leveraging labeled data from the source
target. The results of SenEval-2016 and P-Stance are reported in Tables 4–6. Based on the
results, our proposed method outperforms the other baselines by a significant margin.
Specifically, compared with the previous promising statistical method (TPDG), PSDCOT
achieves an average improvement of 16.15% in F1avg and 17.43% in F1m on average, which
confirms the effectiveness of utilizing a prompt-tuning framework in cross-target setup.
In comparison to fine-tuning based methods (e.g., RoBERTa-FT), PSDCOT achieves an
average improvement of 9.73% in F1avg and 6.6% in F1m. These results further emphasize
the crucial role of using the knowledge-enhanced network in cross-target stance detection.
Furthermore, PSDCOT achieves superior stability compared to KPT and MPT. For instance,
PSDCOT achieves an average improvement of 1.45% in F1avg and 2.78% in F1m over MPT,
0.82% in F1avg, and 0.95% in F1m KPT, respectively, across all four setups from Tables 4 and 5.
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Table 4. Performance comparison of cross-target stance detection (F1avg) on SemEval-2016. The results
with † are retrieved from [13]. The ¶ mark refers to a p-value < 0.05. The best scores are in bold.

Embedding Methdos F→L L→F H→D D→H

Statistic.

BiLSTM † 44.8 41.2 29.8 35.8
BiCond † 45.0 41.6 29.7 35.8
CrossNet † 45.4 43.3 43.1 36.2
VTN 47.3 47.8 47.9 36.4
SEKT † 53.6 51.3 47.7 42.0
TPDG 58.3 54.1 50.4 52.9

PLM
RoBERTa-FT 49.1 55.3 65.9 71.1
MPT 63.4 68.9 68.2 74.0
KPT 65.0 68.5 69.3 74.2

PSDCOT 66.7 ¶ 68.4 70.3 ¶ 74.9 ¶

Table 5. Performance comparison of cross-target stance detection (F1m) on SemEval-2016. The results
with † are retrieved from [13]. The ¶ mark refers to a p-value < 0.05. The best scores are in bold.

Methods F→L L→F H→D D→H

Statistic.

BiLSTM † 35.4 34.6 56.8 44.4
BiCond † 35.6 36.8 58.7 45.8
CrossNet † 43.0 42.9 49.1 47.4
SEKT † 51.0 50.7 44.9 44.4

PLM

TPDG 66.5 57.7 51.6 49.1
RoBERTa-FT † 58.7 61.1 66.5 72.7
MPT † 67.2 68.1 65.4 73.6
KPT † 70.2 69.5 65.1 76.8

PSDCOT 71.9 ¶ 69.8 ¶ 67.9 ¶ 75.8

Table 6. Performance comparison of cross-target stance detection (F1avg) on P-Stance. The ¶ mark
refers to a p-value < 0.05. The best scores are in bold.

Model DT→JB DT→BS JB→DT JB→BS BS→DT BS→JB

BiCond 55.8 51.8 58.2 60.2 51.4 57.7
CrossNet 56.7 50.1 60.4 60.8 53.0 62.6
BERT 58.8 56.3 63.6 67.0 58.8 73.0
WS-BERT-Dual 68.3 64.4 67.7 69.0 63.6 76.8

PSDCOT 80.2 ¶ 75.4 ¶ 83.2 ¶ 77.2 ¶ 78.2 ¶ 80.9 ¶

4.4.3. Zero-Shot Stance Detection

In certain scenarios, the target of a particular text may be absent from the training
dataset; therefore, we compare it against the most advanced competitors in the field. The
results of our experiments are reported in Table 7. Notably, due to the inherent limitations
and challenges of zero-shot stance detection, all methods underperform in comparison to
the in-target and cross-target setups. In particular, methods that focus only on statistics,
without leveraging external background knowledge, perform poorly. On the other hand,
approaches based on fine-tuning, such as PT-HCL, BERT-FT, and RoBERTa-FT, consistently
outperform statistical-based methods. This outcome validates the remarkable benefits of
leveraging knowledge acquired from a vast corpus. Despite the challenging nature of
zero-shot stance detection, our PSDCOT model exhibits considerable potential, surpassing
all benchmark approaches on the VAST dataset. Consequently, our findings imply that
PSDCOT represents a promising strategy for addressing the demanding task of zero-
shot stance detection by effectively incorporating background knowledge and adopting a
prompt-tuning framework.
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Table 7. Performance comparison of zero-shot stance detection. The ¶ mark refers to a p-value < 0.05.
The best scores are in bold.

Model VAST D H F L

1 BiCond 42.8 30.5 32.7 40.6 34.4
2 CrossNet 43.4 35.6 38.3 41.7 38.5
3 SEKT 41.8 42.7 44.1 46.0 45.3
4 TPDG 51.9 47.3 50.9 53.6 46.5
5 TOAD 41.0 49.5 51.2 54.1 46.2

6 BERT 66.1 40.1 49.6 41.9 44.8
7 RoBERTa 69.7 - - - -
8 TGA-NET 66.6 40.7 49.3 46.6 45.2
9 BERT-GCN 68.6 42.3 50.0 44.3 44.2
10 CKE-Net 70.2 - - - -
11 PT-HCL 71.6 50.1 54.5 54.6 50.9

12 COT 68.9 71.6 78.9 68.7 61.5

13 Ours 74.7 ¶ 71.6 79.1 ¶ 69.3 ¶ 64.2 ¶

4.5. Ablation Study

In order to investigate the influence of each individual component in the PSDCOT
method, we conducted an ablation test by removing the proposed component, which is
denoted as “w/o”.

The variants of PSDCOT are as follows:

• w/o P: PSDCOT without the prompt-tuning framework; instead, we use a standard
fine-tuning strategy. Specifically, the stance vector is the hidden state of the <cls> vector.

• w/o COT: We discard the Knowledge Extraction and use commonsense knowledge as
the background knowledge following [11].

• w/o t: We removed the multi-template and only kept the commonly used single-view
T3 template.

The findings of our ablation study are depicted in Figure 2. Our results indicate that
the chain-of-thought (COT) method significantly enhances the performance of our PSDCOT
method. Specifically, we found that the removal of background knowledge acquired by
the COT approach led to a substantial deterioration in performance. This observation
underscores the importance of leveraging external knowledge-enriched models to facilitate
a deeper understanding of the given stance. Furthermore, our study reveals that fine-
tuning leads to a considerable drop in performance when compared to prompt-tuning. This
finding highlights the efficacy of prompt learning in bridging the gap between large model
pre-training and downstream tasks, such as stance detection and its capability to improve
performance. Notably, our analysis exhibited that the best performance was achieved by
combining all the aforementioned factors across all the experiments.

(a) In-domain setup

Figure 2. Cont.
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(b) Cross-target setup

(c) Zero-shot setup

Figure 2. F1avg of the ablation test.

5. Conclusions

In this paper, we propose a novel prompt-based stance detection approach, referred to
as PSDCOT, which utilizes a chain-of-thought method to elicit knowledge and fuses knowl-
edge through a multi-prompt learning network. The experimental results demonstrated
that PSDCOT achieves state-of-the-art performance in in-target, cross-target, and zero-shot
settings. In future work, we plan to elicit and prune knowledge from Large Language
Models (LLMs) to enhance background knowledge accuracy and eliminate irrelevant in-
formation. Furthermore, we may dedicate efforts in constructing virtual text contexts to
alleviate the challenge of social media data sparsity.
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