
Citation: Palestini, A.; Recchi, S.

Qualitative Properties of the Solutions

to the Lane–Emden Equation in the

Cylindrical Setup. Mathematics 2024,

12, 542. https://doi.org/10.3390/

math12040542

Academic Editor: Dongfang Li

Received: 26 December 2023

Revised: 2 February 2024

Accepted: 4 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Qualitative Properties of the Solutions to the Lane–Emden
Equation in the Cylindrical Setup
Arsen Palestini 1,*,† and Simone Recchi 2,†

1 Dipartimento di Metodi e Modelli per l’Economia il Territorio e la Finanza MEMOTEF, Sapienza University
of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy

2 Independent Researcher, Urbangasse 6/3/41, 1170 Wien, Austria; recchisimo@outlook.com
* Correspondence: arsen.palestini@uniroma1.it
† These authors contributed equally to this work.

Abstract: We analyze the Lane–Emden equations in the cylindrical framework. Although the
explicit forms of the solutions (which are also called polytropes) are not known, we identify some
of their qualitative properties. In particular, possible critical points and zeros of the polytropes
are investigated and discussed, leading to possible improvements in the approximation methods
which are currently employed. The cases when the critical parameter is odd and even are separately
analyzed. Furthermore, we propose a technique to evaluate the distance between a pair of polytropes
in small intervals.
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1. Introduction

One of the most fascinating open problems in Applied Mathematics is the Lane–Emden
equation, together with its variation, the Emden–Fowler equation, which was initially pro-
posed in 1870 by Jonathan Homer Lane [1] and subsequently extended by Robert Emden [2]
in 1907, who aimed to model the dynamic behaviour of a non-rotating fluid subject to
internal pressure and self-gravity. In order to briefly introduce the physical setting, the
Lane–Emden equation originates from the combination of Poisson’s equation and a generic
polytropic equation of state, P = KNργ, where P and ρ, respectively, are the pressure and
the density of a fluid, KN is a positive constant, and γ = 1 + 1

N is the ratio of specific heats
(see [3,4] for more details). After some simple manipulations, the Lane–Emden equation is

derived as having θ(x) =
(

ρ(x)
ρc

)1/N
, where ρc is the central density.

The Lane–Emden equation has encountered wide success, especially in the 1930s, both
in physics, where Sir Ralph Howard Fowler [5,6] found and generalized further results
and gave birth to the Emden–Fowler equation, and in astrophysics, where Chandrasekhar
established the related spherical solutions in [7], the first edition of which was published
in 1939 and then subsequently reprinted in 1967. Furthermore, Chandrasekhar and Fermi
applied the Lane–Emden equation to isothermal filaments [8], some years later.

Successively, many contributions have been published on the equation, its several
modified versions, and its applications. Christodoulou and Kazanas [9] derived exact
asymmetric solutions of the Lane–Emden equation under rotation. A major result had
already been provided by Jeremiah Paul Ostriker [10] in 1964; he was able to determine
the solutions to the equation in closed form for cylindrical polytropes for the parameters
N = 0 (i.e., liquid cylinders), N = 1, and N = ∞ (i.e., cylinders with an isothermal perfect
gas). In the astrophysics literature, a solution to the Lane–Emden equation is often called a
polytrope. We will also use this denomination throughout this paper. For those who are
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willing to develop an extensive knowledge of polytropes, the main textbook on this subject
was published by Horedt [11] in 2004.

The present study focuses on Lane–Emden equations in the cylindrical setup. The
reason for this focus is that quite recent astronomical observations, particularly the ones
obtained by the Herschel space observatory (see [12]), show that star-forming regions occur
preferentially in long thin cylindrical filaments of gas. The radial density distribution within
the filaments can be well approximated with the solutions of appropriate Lane–Emden
equations, but the specific profiles differ considerably from the expected profile for the
isothermal case mentioned above. There seems to also be clear evidence that the polytropic
index, N, can change within a single filament. Theoretical studies show that this behaviour
could be due to temperature gradients within a filament (see [3]). Moreover, star-forming
regions are highly dynamic, and, hence, the properties of star-forming filaments change
over time. These arguments show, on the one hand, the relevance of analytical solutions
for the Lane–Emden equations, and, on the other hand, show that differences between
analytical solutions with different values of N are important tools to obtain insights about
real-world phenomena. We would like to outline, however, that a detailed comparison with
astrophysical observations is out of the scope of this work. We wish here to lay down purely
mathematical ideas, which will be further developed in follow-up papers (see Section 6).

In recent years, the Lane–Emden equation has been widely studied in several versions,
although it can be solved in closed form in only a few cases. An approach based on
operational calculus, initially introduced by Adomian [13], was outlined by Bengochea et al.
in some recent works [14–16]. In particular, in [14], a procedure is derived which is based
on a linear operator acting on the set of all formal series, which turns out to be helpful
in solving several kinds of differential equations with variable coefficients, fractional
differential equations, and difference equations as well. Such an approach is adopted
in [15], to determine an algebraic solution to a specific version of the Lane–Emden equation.
More recently, a numerical approximation algorithm was proposed by [17]. Furthermore,
some novel computational strategies were implemented by [18,19].

Our approach is substantially different from the ones adopted in the above-mentioned
literature. Firstly, we focus only on the cylindrical setup, which can be identified by the use
of the following class of equations for each integer N ∈ Z:

θ′′(x) +
θ′(x)

x
+ θN(x) = 0

Actually, we might also extend this analysis to N ∈ R, although the most intuitive
application of Lane–Emden theory is to integer numbers. We are trying to establish a
number of qualitative properties of the related solutions, in order to better visualize their
behaviour. In our analysis, what emerges about these solutions is a slight difference
between the cases where N is odd and where N is even. To the best of our knowledge, no
previous study has ever captured such a qualitative distinction. The most recent studies,
such as [17–19], rely on well-structured numerical methods for approximation or on novel
techniques that are implemented in wider classes of problems (see [14–16,20]). We stress
that our attempt is somewhat more specific, because a deep qualitative analysis may lead
to new ideas to refine the search for the closed form solutions that are still unknown.

The following is a basic summary of the present work.

• We reconstruct the extended derivations of the basic Lane–Emden equations in the
basic scenarios;

• We outline the current state of the art, including explicit solutions, solution methods,
and cases in which the Lane–Emden equation is still unsolved;

• We identify a sequence of qualitative properties of the solutions in the cylindrical
scenario. In particular, two distinct analyses are carried out, depending on whether
the critical exponent, M, is either odd or even;

• Finally, we expose a relation which may be helpful in evaluating the distance between
a pair of solutions in a small interval.
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The remainder of this paper is structured as follows. In Section 2, we introduce the
Lane–Emden differential equation, together with some of its variations, and in Section 3
we present an overview of some known solutions, emphasizing the cases where N = 0
and N = 1. Our main analytical results are collected in Section 4, where some qualitative
properties are stated and demonstrated. In Section 5, the results are summarized and
discussed. Finally, our concluding remarks and some ideas regarding future developments
can be read in Section 6.

2. The Standard Lane–Emden Equation

Firstly, we introduce the Lane–Emden equation in its well-known form, as follows:

θ′′(x) + k
θ′(x)

x
+ θN(x) = 0, (1)

Based on the value of k, either we have the following cylindrical setting, if k = 1:

θ′′(x) +
θ′(x)

x
+ θN(x) = 0, (2)

or we have the following spherical setting, if k = 2:

θ′′(x) + 2
θ′(x)

x
+ θN(x) = 0. (3)

2.1. Initial Conditions and an Analysis of the Singularity

The standard boundary conditions that form a Cauchy problem with a Lane–Emden
equation are the specifications of the values of θ and θ′ at 0, i.e., θ(0) = 1 and θ′(0) = 0.
Namely, the value of θ at 0 is due to its definition, whereas the vanishing of its derivative
at 0 indicates the absence of gravity in the cylinder’s axis (see [10,21] for more explanation
on the related physical motivations).

It is worthwhile to discuss the singularity topic, because the initial conditions of the
Lane–Emden problem are typically taken to be x = 0. In (1), there seems to be a singularity
at 0; hence, a specific strategy is necessary to overcome such a critical characteristic of the
equation. Namely, (1) can be also written as follows:

θ′′(x) + θN(x)
k

= − θ′(x)
x

.

Since the initial condition of the related Cauchy problem is θ′(0) = 0, meaning that we
are analysing the problem in the neighbourhood of 0, we can note that an indeterminate
form appears in the right-hand side of the above expression. By applying De L’Hospital’s
Theorem (as we will also do when carrying out the qualitative analysis in Section 4),
we deduce that the limit is finite, i.e.,

lim
x−→0

(
− θ′(x)

x

)
= − lim

x−→0
θ′′(x).

A further result is established as well; taking the limits for x and tending to 0 on both

sides also provides the value of the second order derivative at 0, i.e., θ′′(0) = − 1
k + 1

,

which can be easily verified based on the form of the known exact solutions in Section 3.
Additionally, the results that we will expose in Section 4 will clarify that such a singularity
always disappears when computing the limits at x = 0, and that, consequently, the analysis
of the Lane–Emden equation does not suffer from this critical aspect.

2.2. Modified Versions of the Lane–Emden Equation

Some researchers extend the form of (1) to establish the definitions of other classes of
Lane–Emden equations. For example, in [22], (1) is referred to as a Lane–Emden equation
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of the first kind (see [20]), whereas the Lane–Emden equation of the second kind has the
following formulation:

θ′′(x) + k
θ′(x)

x
+ eθ(x) = 0. (4)

Moreover, in [20], a further version is mentioned, originating from a change of variable
in (4), whose form is

θ′′(x) + k
θ′(x)

x
+ e−θ(x) = 0

and whose initial conditions are replaced with θ(0) = θ′(0) = 0, which turns out to be the
profile of isothermal cylinders (see [10] for the derivation of the hydrostatic problem).

A whole class of Lane–Emden problems can be established by employing the most
general form, as follows:

θ′′(x) + k
θ′(x)

x
+ f (θ(x)) = 0, (5)

where f (·) is a sufficiently regular function of θ(x).
It is also interesting to remark that (5) can be reformulated as an integro-differential

equation. By multiplying the left hand side by xk, we have

xkθ′′(x) + kxk−1θ′(x) + xk f (θ(x)) = 0,

which is equivalent to the equation(
xkθ′(x)

)′
= −xk f (θ(x)),

which can be integrated on both sides, entailing

θ′(x) = − 1
xk

∫ x

0
tk f (θ(t))dt, (6)

where the initial condition turns out to be

lim
x−→0

1
xk

∫ x

0
tk f (θ(t))dt = 0,

which holds if and only if
lim
x→0

x f (θ(x)) = 0,

by De L’Hospital’s Theorem.
Form (6) is commonly used for numerical approximations of the solutions (see, for

example, [22]). Perhaps the most relevant modification of the Lane–Emden equation is the
Emden–Fowler equation, as follows (see Chandrasekhar [7] or Fowler’s contributions [5,6]):

d
dx

(
xρ dy

dx

)
+ xαyτ(x) = 0, x ≥ 0, (7)

where ρ, α ∈ R, τ ∈ R+. Many papers contain a number of results for (7); a survey
outlining the results found up to 1975 is discussed in [23], whereas subsequent relevant
papers include [24–26], as well as many others.

Such equations can be transformed into the following modified form:

y′′(x)− h(x)yτ(x) = 0, x ≥ 0, (8)

where h(x) is a continuous and non-negative function.
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3. Exact Solutions

In the literature, the known solutions to (2) in closed forms are only available for
N = 0, N = 1, and N = ∞. In particular, since our main interest lies in the solution of the
Lane–Emden equations for specific values of N (see Section 4), the case of N = ∞ must,
necessarily, be neglected. Physically, as we mentioned in the introduction, the case N = ∞
does not fit astrophysical observations of star-forming filaments.

We will proceed to briefly outlining the related polytropes and solution procedures
for N = 0 and N = 1.

3.1. Polytropes for N = 0

The easiest case occurs when N = 0, and we can trivially solve this via the separation
of the variables (this case is far from reality, in that N = 1

γ−1 . Despite this, we will outline
the polytropes for completeness). In fact, in this case, a generalization of (3) and (2) can be
solved as well.

Proposition 1. All generalized Lane–Emden equations of the following kind:
1
xk

d
dx

(
xk dθ

dx

)
+ θN(x) = 0

θ(0) = 1
θ′(0) = 0

(9)

can be solved for all k ≥ 0 when N = 0, and the solution is the following family of parabolas:

θ∗k (x) = 1 − x2

2(k + 1)
. (10)

Proof. When N = 0, (9) amounts to:

d
dx

(
xk dθ

dx

)
= −xk.

Then, after integrating both sides, we have:

xk dθ

dx
= − xk+1

k + 1
+ C0 ⇐⇒ · · · ⇐⇒ θ(x) = − x2

2(k + 1)
+

C0

(−k + 1)xk−1 + C1

Then, applying the boundary conditions yields C0 = 0 and C1 = 1, leading to the

following family of parabolas, indexed by k: θ∗k (x) = 1 − x2

2(k + 1)
.

The respective polytropes for (2) and (3) are as follows:

θ∗1 (x) = 1 − x2

4
, θ∗2 (x) = 1 − x2

6
.

3.2. Polytropes for N = 1

When N = 1, the polytrope of (3) is known as well. Expanding Equation (3) yields
the following:

1
x2

(
2xθ′(x) + x2θ′′(x)

)
+ θ(x) = 0 ⇐⇒ θ′′(x) +

2
x

θ′(x) + θ(x) = 0. (11)



Mathematics 2024, 12, 542 6 of 11

On the other hand, expanding the form (2) yields the following:

1
x
(
θ′(x) + xθ′′(x)

)
+ θ(x) = 0 ⇐⇒ θ′′(x) +

1
x

θ′(x) + θ(x) = 0. (12)

In order to solve these, we assume a power series solution of the following kind (where
a0 = 1 because θ(0) = 1):

θ(x) = 1 +
∞

∑
j=1

ajxj. (13)

Plugging (13) into (11) leads to

∞

∑
j=2

(j − 1)jajxj−2 + 2
∞

∑
j=1

jajxj−2 + 1 +
∞

∑
j=1

ajxj = 0 ⇐⇒

⇐⇒ 2a1

x
+ 2a2 + 4a2 + 1 +

∞

∑
j=3

[((j − 1)j + 2j)aj + aj−2]xj−2 = 0,

whose coefficients are supposed to verify

a1 = 0, a2 = −1
6

, aj = −
aj−2

j(j + 1)
;

hence, the polytrope is as follows:

θ∗(x) = 1 +
∞

∑
j=1

(−1)jx2j

(2j + 1)!
=

sin x
x

. (14)

An analogous procedure can be carried out to solve (12). Plugging (13) into (12) yields

∞

∑
j=2

(j − 1)jajxj−2 +
∞

∑
j=1

jajxj−2 + 1 +
∞

∑
j=1

ajxj = 0 ⇐⇒

⇐⇒ a1

x
+ 2a2 + 2a2 + 1 +

∞

∑
j=3

[((j − 1)j + j)aj + aj−2]xj−2 = 0,

whose coefficients are

a1 = 0, a2 = −1
4

, aj = −
aj−2

j2
,

leading to the following polytrope:

θ∗(x) = 1 +
∞

∑
j=1

(−1)jx2j

((2j)!!)2 . (15)

The next proposition intends to generalize the above findings, as in Proposition 1.

Proposition 2. All generalized Lane–Emden equations of the following kind:
1
xk

d
dx

(
xk dθ

dx

)
+ θN(x) = 0

θ(0) = 1
θ′(0) = 0
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can be solved for all k ≥ 0 when N = 1, and the solution is the following family of power series:

θ∗k (x) = 1 +
∞

∑
j=1

(−1)jx2j

(2j)!!(2j − 1 + k)!!
. (16)

Proof. Expanding the equation leads to the following:

θ′′(x) +
k
x

θ′(x) + θ(x) = 0. (17)

Employing the above method, we obtain the following:

ka1

x
+ 2a2 + 2ka2 + 1 +

∞

∑
j=3

[((j − 1)j + kj)aj + aj−2]xj−2 = 0.

By exploiting the above relation, all the coefficients can be calculated explicitly.
For example, the three terms not containing x yield 2a2 + 2ka2 + 1 = 0 imply that
a2 = −1/(2(k + 1)). Considering all the terms in the identity, we can also obtain a
recurrence relation to generate all coefficients for j ≥ 3, as follows:

a1 = 0, a2 = − 1
2 + 2k

, aj = −
aj−2

j(j + k − 1)
,

Consequently, the polytrope is (16).

4. Analytical Properties in the Cylindrical Scenario

In this Section, we will establish some qualitative properties of the solutions to (2). We
begin from some elementary analytical results, and then proceed to provide some insights
regarding the graph of the involved functions. From now on, we will indicate, with θ∗M(x),
the solution to the cylindrical Lane–Emden equation for N = M.

Proposition 3. For all M ≥ 0, we have that (θ∗M)′′(0) = −1
2

.

Proof. It is elementary to collect the terms in (2) as follows:

(θ∗M)′′(x) +
(θ∗M)′(x)

x
+ (θ∗M)M(x) = 0 ⇐⇒

(
(θ∗M)′(x)x

)′
x

= −(θ∗M)M(x).

Now we call FM(x) = (θ∗M)′(x)x, whose derivatives, respectively, are as follows:

F′
M(x) = (θ∗M)′′(x)x + (θ∗M)′(x), F′′

M(x) = (θ∗M)′′′(x)x + 2(θ∗M)′′(x).

Since F′
M(0) = (θ∗M)′(0) = 0, and by the initial condition θ∗M(0) = 1, we can deduce

the following:

lim
x−→0

F′
M(x)

x
= −1

However, the above limit is equal to F′′
M(0) by De L’Hospital’s Theorem, hence the

following:
F′′

M(0) = 2(θ∗M)′′(0) = −1,

which implies that (θ∗M)′′(0) = −1
2

.

It is simple to check that the same procedure illustrated in Proposition 3 can be
extended to calculate the higher order derivatives of the solution at zero. Although we will
not be further developing this argument in this paper, the implementation of this method
might provide an approximation series of the solution in a neighbourhood of the origin.
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As an illustrative example of the method, we can check the value of the third derivative
at 0.

Since F′′(x) = x(θ∗M)′′′(x) + 2(θ∗M)′′(x), differentiating the right-hand side as well
yields the following:

x(θ∗M)′′′(x) + 2(θ∗M)′′(x) = −(θ∗M)M(x)− Mx(θ∗M)M−1(x)(θ∗M)′(x)

which can be reformulated as follows:

(θ∗M)′′′(x) = −
2(θ∗M)′′(x) + (θ∗M)M(x)

x
− M(θ∗M)M−1(x)(θ∗M)′(x).

Subsequently, evaluating both sides at 0 entails the following:

(θ∗M)′′′(0) = lim
x−→0

(
−

2(θ∗M)′′(x) + (θ∗M)M(x)
x

− M(θ∗M)M−1(x)(θ∗M)′(x)

)

Then, by De L’Hospital’s Theorem, we obtain (θ∗M)′′′(0) = −2(θ∗M)′′′(0), implying
that (θ∗M)′′′(0) = 0.

Furthermore, Proposition 3 establishes that all M, θ∗M(x) is concave in a neighbourhood
of 0. As a matter of fact, the solution that we explicitly know for M = 0 is a parabola, with
decreasing and concave behaviour for x > 0. As is well-known, if the function admits no
inflection points for x > 0, this is a sufficient condition to guarantee the existence of a zero
x∗M. When M = 0, x∗0 = 2.

The following results intend to establish some further qualitative properties of θ∗M(x),
which are verified for all M ≥ 1.

Proposition 4. If θ∗M(x) admits at least a positive zero for M ≥ 1, and xM is the smallest zero of
θ∗M(x), then one of the following conditions holds:

1. θ∗M(xM) = (θ∗M)′(xM) = (θ∗M)′′(xM) = · · · = (θ∗M)(k)(xM) = 0 for all k ∈ Z+;
2. The function θ∗M(x) admits at least one inflection point F(xF, yF), such that 0 < xF < xM.

Proof. If we call FM(x) = (θ∗M)′(x)x, it is easy to note that F′
M(xM) = 0 by construction.

Since F′
M(xM) = (θ∗M)′′(xM)xM + (θ∗M)′(xM) = 0, two cases may occur. In the first case,

both the first and second derivatives of θ∗M(x) vanish at xM, but this, necessarily, implies
that all the derivatives of any order vanish at xM, which is the least interesting scenario

for qualitative analysis. In the second case, we have that xM = −
(θ∗M)′(xM)

(θ∗M)′′(xM)
θ∗M(xM),

which can only hold if the second order derivative changed its sign in the interval (0, xM),
meaning that the graph has an inflection point at xF < xM.

Now, we will provide further insights on the behaviour of the solution by separating
two circumstances, specifically where M is odd and where M is even, because some relevant
differences occur. The role of possible inflection points, zeros, and stationary points will be
analysed in detail.

4.1. Qualitative Behaviour if M Is Odd

The presence of a stationary point, i.e., either a maximum or a minimum point when
M is odd, is an interesting issue. If we suppose that θ∗M(x) admits one stationary point, x∗,
such that (θ∗M)′(x∗) = 0, in the main equation we would have the following:

(θ∗M)′′(x∗) = −(θ∗M)M(x∗).

If θ∗M(x∗) > 0, this point can only be a local maximum, by the negativity of the
second order derivative. Vice versa, if θ∗M(x∗) < 0, it is a local minimum, and clearly
xF < xM < x∗.
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The above considerations establish that, if M is odd, (θ∗M)(x) can only have a maxi-
mum point by having both positive coordinates. On the other hand, any local minimum
has a negative image; hence, there is always at least one inflection point and a zero between
each maximum and minimum point.

4.2. Qualitative Behaviour if M Is Even

If M is even, i.e., a positive integer greater than or equal to 2, the results are slightly
different, with respect to the previous case. Suppose that x∗ > 0 is the first stationary point
for θ∗M(x). If θ∗M(x∗) > 0, the negativity of the second order derivative implies that such a
point is a local maximum, but this holds true even if θ∗M(x∗) < 0. A stationary point can
only be a maximum point; therefore, there can only be one maximum point, after which
the solution decreases asymptotically. No oscillating behaviour is feasible in this case,
unlike in the easiest case we have seen, where M = 0 and the polytrope is monotonically
decreasing. There may be some changes in the convexity/concavity form of the graph,
but the behaviour is unambiguously decreasing.

4.3. Evaluation of the Difference between the Two Solutions

If we call θ∗M and θ∗P the solutions for any M, P ∈ Z+, where M ̸= P, we posit that
k = 1; i.e., we are in the cylindrical setup. With (1), we have the following:

(θ∗M)′′(x) +
(θ∗M)′(x)

x
+ (θ∗M)M(x) = 0

(θ∗P)
′′(x) +

(θ∗P)
′(x)

x
+ (θ∗P)

P(x) = 0

⇐⇒

⇐⇒



(
(θ∗M)′(x)x

)′
x

= −(θ∗M)M(x)

((θ∗P)
′(x)x)′

x
= −(θ∗P)

P(x)

.

Now, if we call FM(x) = (θ∗M)′(x)x and FP(x) = (θ∗P)
′(x)x, we obtain the following

dynamic system: 
F′

M(x) = −x(θ∗M)M(x)

F′
P(x) = −x(θ∗P)

P(x)

which is endowed with the initial conditions FM(0) = 0 and FP(0) = 0. By subtracting the
left-hand sides, we obtain the following:

(FM(x)− FP(x))′ = x
[
(θ∗P)

P(x)− (θ∗M)M(x)
]

from which we then obtain, after integrating both sides, the following:

FM(x)− FP(x) =
∫ x

0
t
[
(θ∗P)

P(t)− (θ∗M)M(t)
]
dt,

i.e.,

(θ∗M(x)− θ∗P(x))′ =

∫ x
0 t
[
(θ∗P)

P(t)− (θ∗M)M(t)
]
dt

x
;

then, by integrating both sides again, we obtain the following:

θ∗M(x)− θ∗P(x) =
∫ x

0

[∫ t
0 s
[
(θ∗P)

P(s)− (θ∗M)M(s)
]
ds

t

]
dt. (18)
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In (18), the difference between solutions is on the left-hand side, whereas the difference
between their powers is in the double integral on the right-hand side. This relation can be
employed to identify an approximation method for the polytropes, with the help of the
above considerations on the qualitative behaviour of the solutions.

5. Summary of the Main Results

In this paper, we identified some properties of the solutions of the Lane–Emden
equation (i.e., the polytropes) in a cylindrical framework, especially taking into account the
critical points and their possible positions in the graph of the functions. The qualitative
properties that we exposed may be helpful in either constructing possible new explicit forms
for the polytropes or implementing methods for approximation. Moreover, the results
obtained in this paper (in particular in Section 4) can help shed light on the properties of
important astrophysical objects, such as filamentary star-forming regions.

Such results can potentially be extended and improved. Eventually, important follow-
up work will be devoted to an accurate study of the relevance of our mathematical analysis
and the results of the study of star-forming filaments. In particular, our method for
approximating solutions with different polytropic indices, as in Equation (18), can be used
to study the temporal evolution of the density profile of filaments in specific regions. Since
star formation changes the thermal properties of a filament, this, in turn, leads to temporal
variations of the polytropic index, which can be described by our solutions if we can
identify P and M in (18) as values of N at different moments in time.

Finally, some new elements for a better understanding of the behaviour of the solutions
may emerge from the comparison between polytropes, which can also be viewed as a double
integral and can, therefore, be numerically approximated by traditional methods.

6. Concluding Remarks and Discussion

The findings in the present work can be further extended in several different ways.
A future development of the present work may concern the realization and computational
optimization of a suitable algorithm to constructively approximate the real solutions in
their explicit forms.

Moreover, we will also use existing numerical schemes, in follow-up papers, to ap-
proximate the solution of the Lane–Emden equations in relevant cases. One simple method
that can be employed is a Runge–Kutta scheme (see [4]), but we will also employ modern
techniques based in higher order Haar wavelet methods, tailored to the Lane–Emden
equations [18,19].

Another possible extension of this work might specifically be focused on Emden–
Fowler equations of several kinds. In this respect, some studies may be carried out in future
that are based on the recent methodology introduced by Rufai and Ramos for third-order
Emden–Fowler equations [25] in 2023.

More generally, the qualitative analysis of the Emden–Fowler equations’ solutions is a
complex and stimulating issue.
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