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Abstract: Through an interesting physical perspective and a certain contraction of the Ricci curvature
tensor in Finsler geometry, Akbar-Zadeh introduced the concept of scalar curvature for the Finsler
metric. In this paper, we show that the Kropina metric is of isotropic scalar curvature if and only if F
is an Einstein metric according to the navigation data. Moreover, we obtain the three-dimensional
rigidity theorem for an Einstein–Kropina metric.
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1. Introduction

Over the past several years, rapid development in Finsler geometry has been observed.
A significant class of Finsler metrics, referred to as (α, β)-metrics, has gained attention
for its special characteristics. These metrics are expressed in the form F = αϕ(s), where

α := α(x, y) =
√

aij(x)yiyj denotes a Riemannian metric, β := β(y) = bi(x)yi represents
a 1-form on M, and ϕ(s) is a smooth positive function defined on a specific open interval
and s = β

α . In particular, the Finsler metric F = α2

β is called a Kropina metric when

ϕ(s) = 1
s . Kropina metrics were initially innovated by Berwald in relation to a two-

dimensional Finsler space with rectilinear extremal, and later studied by Kropina [1].
Recently, geometers discovered important geometric properties of Kropina metrics, which
have diverse and significant applications [2–8].

Consider an object moving in a metric space, such as Euclidean space, driven by an
interval force and an external force field. The shortest time problem aims to determine
a curve from one point to another in the space, along which it takes the least time for
the object to travel. This is called the Zermelo navigation problem [9]. Later, Randers
spaces were viewed from a new perspective by Shen [10]. He identified these metrics with
the solution of Zermelo’s navigation problem on some Riemannian spaces and described
a Randers metric by a new Riemannian metric h and a vector field W with ∥W∥h < 1.
Based on this, in 2004, Bao, Robles, and Shen [11] established the necessary and sufficient
conditions for a Randers metric to be of constant flag curvature. Additionally, they obtained
the classification of a Randers metric with constant flag curvature using the navigation
method. Kropina metrics can be easily treated as the limit of the navigation problem for
Randers metrics as ∥W∥h → 1 [2,4,12,13]. Zhang and Shen [4] obtained the expression of
Ricci curvature for Kropina metrics and certified that a non-Riemannian Kropina metric,
which has a constant Killing 1-form β, is an Einstein metric in the same way that α is an
Einstein metric. More generally, Xia [5] classified Kropina metrics with weakly isotropic
flag curvature via the navigation data. Based on these results, Yoshikawa and Sabau [6]
obtained the classification theorem for Kropina metrics with constant flag curvature via the
navigation data. Cheng, Li, and Yin [7] characterized conformal vector fields on Kropina
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manifolds by the navigation data, and fully ascertained conformal vector fields on Kropina
manifolds which have weakly isotropic flag curvature.

Ricci curvature in Finsler geometry is the natural generalization of that in Riemannian
geometry. Nevertheless, there is no unified definition of Ricci curvature tensor in Finsler
geometry. Therefore, several different versions of definitions of scalar curvature can be
found in Finsler geometry. Here, we take the notion of scalar curvature introduced by
Akbar-Zadeh [14]. The scalar curvature R of a Finsler metric F is defined as

R := gijRicij,

where Ricij := 1
2 Ricyiyj . Tayebi [15] studied general fourth-root manifolds with isotropic

scalar curvature. Also, he characterized Bryant metrics with isotropic scalar curvature.
Meanwhile, Chen and Xia [16] explored an (α, β)-metric that is conformally flat and of
weakly isotropic scalar curvature. They proved that its scalar curvature must vanish.
Cheng and Gong [17] obtained that a Randers metric with weakly isotropic scalar curvature
must have isotropic S-curvature. They claimed that a conformally flat Randers metric,
which is of weakly isotropic scalar curvature, must be either Minkowskian or Riemannian.
Recently, in Zhu and Song’s manuscript [18], they proved that a Kropina metric is of weakly
isotropic scalar curvature if and only if it is an Einstein metric. Further, they gave a negative
answer to the Yamabe problem on Kropina metrics with isotropic S-curvature.

Moreover, Li and Shen [19] introduced a new notion of Ricci curvature tensor

R̃icij := 1
2 (R m

i mj + R m
j mi).

Sevim, Shen, and Ulgen [20] discussed several Ricci curvature tensors and their relationship
with the Ricci curvature to provide a better understanding of non-Riemannian quantities.
Liu, Zhang, and Zhao [8] obtained expressions of Ricci curvature tensor R̃icij and scalar
curvature R̃ := gijR̃icij of Kropina metrics. And they characterized Kropina metrics with
isotropic scalar curvature R̃.

In this paper, we mainly focus on the scalar curvature introduced by Akbar-Zadeh [14],
study Kropina metrics with isotropic scalar curvature via the navigation data, and obtain
the following results.

Theorem 1. Let F = α2

β be a Kropina metric on M. Then F is of isotropic scalar curvature if and
only if F is an Einstein metric.

Although our conclusion is the special case of Zhu and Song’s [18], the methods of
the proof are different. Here, we use the navigation method, which can simplify the proof
process, instead of divisibility analysis.

The flag curvature in Finsler geometry generalizes the sectional curvature in Rieman-
nian geometry. If the flag curvature K = constant, then a Finsler metric F is said to be of
constant flag curvature. Xia [5] classified Kropina metrics with constant flag curvature in
three dimensions as follows.

Lemma 1 ([5]). (Three-dimensional rigidity.) Let F be a Kropina metric in three dimensions. Then,
F is an Einstein metric if and only if it has non-negative constant flag curvature.

In virtue of Lemma 1 and Theorem 1, we directly obtain the following result.

Theorem 2. (Three-dimensional rigidity). Let F be a Kropina metric in three dimensions. Then, F
is of isotropic scalar curvature if and only if it has a non-negative constant flag curvature.

2. Preliminaries

For the sake of simplicity, we always set the dimension of Kropina metrics as n ≥ 2 in
the following unless otherwise specified.
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Let M be an n(≥ 2)-dimensional smooth manifold. A Finsler structure of M is a
function

F : TM → [0, ∞)

with the following properties:
(1) Regularity: F is smooth on the entire slit tangent bundle TM\{0};
(2) Positive homogeneity: F(x, λy) = λF(x, y), ∀λ > 0;
(3) Strong convexity:

gij(x, y) :=
1
2

∂2F2

∂yi∂yj (x, y) =
1
2

F2
yiyj

is positive-definite at every point of TM\{0}. A smooth manifold M endowed with a
Finsler structure F is called a Finsler manifold, which is denoted by (M, F).

Let (M, F) be a Finsler manifold. The geodesics of a Finsler metric F on M are classified
by the following ODEs:

d2xi

dt2 + 2Gi
(

x,
dx
dt

)
= 0,

where

Gi :=
1
4

gil
[(

F2
)

xjyl
yj − F2

xl

]
,

(
gij) :=

(
gij

)−1. We call the local functions Gi = Gi(x, y) geodesic coefficients (or spray
coefficients).

For x ∈ M and y ∈ Tx M\{0}, Riemann curvature Ry := Ri
k(x, y) ∂

∂xi ⊗ dxk is
defined by

Ri
k := 2

∂Gi

∂xk − yj ∂2Gi

∂xj∂yk + 2Gj ∂2Gi

∂yj∂yk − ∂Gi

∂yj
∂Gj

∂yk .

The Ricci curvature of F is the trace of the Riemann curvature, i.e., Ric := Rk
k.

The Hessian of the Ricci curvature also gives rise to a Ricci curvature tensor

Ricij :=
1
2
(Ric)yiyj .

Then, one can define the notion of scalar curvature

R := gijRicij.

If R = n(n − 1)
(

θ
F + κ

)
, where κ = κ(x) is a scalar function and θ = θi(x)yi is a

1-form on M, then it is said that F has weak isotropic scalar curvature. In particular, when
θ = 0, i.e.,

R = n(n − 1)κ(x),

it is said that F is of isotropic scalar curvature.
Let F = α2

β be a Kropina metric. Its fundamental tensor g = gijdxi ⊗ dxj is given by [4]

gij =
F
β

[
2aij +

3F
β

bibj −
4
β

(
biyj + bjyi

)
+

4yiyj

Fβ

]
,

where yi := aijyj. Moreover,

gij =
β

2F

[
aij − bibj

b2 +
2

b2F

(
biyj + bjyi

)
+ 2

(
1 − 2β

b2F

)
yiyj

Fβ

]
,
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where b := ∥ β ∥α,
(
aij) :=

(
aij

)−1 and bi := aijbj.
Let ∇β = bi|jyidxj denote the covariant derivative of β with respect to α. Set

rij :=
1
2

(
bi|j + bj|i

)
, sij :=

1
2

(
bi|j − bj|i

)
, r00 := rijyiyj, ri := bjrij, r0 := riyi,

ri := aijrj, r := biri, si
0 := aijsjkyk, si := bjsji, s0 := siyi, si := aijsj.

The Ricci curvature of Kropina metrics is presented as follows.

Lemma 2 ([4]). Let F be a Kropina metric on M. Then, the Ricci curvature of F is given by

Ric = αRic + T, (1)

where αRic is the Ricci curvature of α, and

T =
3(n − 1)

b4F2 r2
00 +

n − 1
b2F

r00|0 −
4(n − 1)

b4F
r00r0 +

2(n − 1)
b4F

r00s0 −
1
b4 rr00 +

1
b2 rk

kr00

+
2n
b2 r0ksk

0 +
1
b2 bkr00|k +

1
b4 r2

0 −
1
b2 r0|0 −

2(2n − 3)
b4 r0s0 +

n − 2
b2 s0|0 −

n − 2
b4 s2

0

− 1
b2 r0kskF − 1

b2 rksk
0F − 1

b4 rs0F +
1
b2 rk

ks0F +
n − 1

b2 sk
0skF − sk

0|kF +
1
b2 bks0|kF

− 1
4

sj
ksk

jF2 − 1
2b2 skskF2.

A Kropina metric can also be characterized by a Riemannian metric ᾱ and a 1-form
β̄ with ∥ β̄ ∥ᾱ= 1. Between F = α2

β and a pair (ᾱ, β̄), there exists a one-to-one correspon-
dence with

F =
ᾱ2

2β̄
, (2)

where ᾱ = 2
b α and β̄ = 1

b β (see [5]). We call this pair (ᾱ, β̄) the navigation data of a
Kropina metric.

Note 1 ([4]). Let F be an (α, β)-metric. Then, ∥ β ∥α= 1 if and only if rk + sk = 0.

Note 2 ([4]). For a 1-form β = biyi on M, we say that β is a conformal 1-form with respect to α
if it satisfies bi|j + bj|i = ρaij, where ρ = ρ(x) is a function on M. If ρ = 0, we say that β is a
Killing 1-form. Furthermore, β is said to be a constant Killing 1-form if it is a Killing 1-form and
has constant length, which is equivalent to rij = 0, sk = 0.

Note 3 ([4]). Let F = α2

β be a Kropina metric given by (2) with the navigation data (ᾱ, β̄). Thus, β

is a conformal 1-form with respect to α if and only if β̄ is a Killing 1-form with respect to ᾱ.

3. Scalar Curvature of Kropina Metrics

In this section, we shall present an expression of the scalar curvature of Kropina
metrics. Then, we will obtain the necessary condition for the Kropina metric with isotropic
scalar curvature.

Firstly, using the notion of Ricci curvature tensor and Lemma 2, we can derive the
expression of Ricci curvature tensor for Kropina metrics.
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Proposition 1. Let F = α2

β be a Kropina metric on M. Then, the Ricci curvature tensor of F is
given by

Ricij =
αRicij

+
1
2

F.i.j

[
−6(n − 1)

b4F3 r2
00 −

2(n − 1)
b4F2 r00s0 +

4(n − 1)
b4F2 r00r0 −

n − 1
b2F2 r00|0 +

n − 1
b2 sksk

0

+
1
b2 rk

ks0 −
1
b4 rs0 +

1
b2 bks0|k −

1
b2 rksk

0 −
1
b2 skr0k − sk

0|k −
F
b2 sksk −

F
2

sk
ls

l
k

]
+

1
2

F.iF.j

[
18(n − 1)

b4F4 r2
00 −

8(n − 1)
b4F3 r00r0 +

4(n − 1)
b4F3 r00s0 +

2(n − 1)
b2F3 r00|0

− 1
b2 sksk −

1
2

sk
ls

l
k

]
+

1
2

F.i

[
−24(n − 1)

b4F3 r00r0j +
4(n − 1)

b4F2 r00rj −
2(n − 1)

b4F2 r00sj +
8(n − 1)

b4F2 r0r0j

−4(n − 1)
b4F2 s0r0j −

n − 1
b2F2 r00|j −

2(n − 1)
b2F2 r0j|0 +

1
b2 rk

ksj −
1
b2 rksk

j +
n − 1

b2 sksk
j

− 1
b2 skrkj +

1
b2 bksj|k −

1
b4 rsj − sk

j|k

]
+

1
2

F.j

[
−24(n − 1)

b4F3 r00r0i +
4(n − 1)

b4F2 r00ri −
2(n − 1)

b4F2 r00si +
8(n − 1)

b4F2 r0r0i

−4(n − 1)
b4F2 s0r0i −

n − 1
b2F2 r00|i −

2(n − 1)
b2F2 r0i|0 +

1
b2 rk

ksi −
1
b2 rksk

i +
n − 1

b2 sksk
i

− 1
b2 skrki +

1
b2 bksi|k −

1
b4 rsi − sk

i|k

]
+

6(n − 1)
b4F2 (r00rij + 2r0ir0j)

+
n − 1
b4F

[
b2
(

rij|0 + r0i|j + r0j|i

)
− 4

(
r0rij + rir0j + rjr0i

)
+ 2

(
s0rij + sjr0i + sir0j

)]
+

1
2

[
− 2

b4 rrij +
2
b2 bkrij|k +

n − 2
b2

(
si|j + sj|i

)
+

2
b2 rk

krij −
1
b2

(
ri|j + rj|i

)
−2(2n − 3)

b4

(
risj + rjsi

)
− 2(n − 2)

b4 sisj +
2n
b2

(
sk

irjk + sk
jrik

)
+

2
b4 rirj

]
,

where αRicij denotes the Ricci curvature tensor of α.

Proof. From Lemma 2, one can obtain the proposition by a direct computation.

Using gij to contract the Ricci curvature tensor, we can directly obtain the expression
of the scalar curvature R for Kropina metrics as follows.

Proposition 2. Let F = α2

β be a Kropina metric on M. Then, the scalar curvature of F is given by
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R =− 36(n − 1)
b6F5 r2

00β

+
3(n − 1)

b4F4

[
−(n − 2)r2

00 +
20
b2 r00r0β − 4

b2 r00s0β − 2r00|0β

]
+

1
F3

[
− 2

b2
αRic β +

2(n − 1)(n − 3)
b4 r00r0 −

(n − 1)(n − 3)
b4 r00s0 −

11n − 13
b6 rr00β

− (n − 1)(n − 3)
b2 r00|0 +

3n − 5
b4 rk

kr00β +
2(n − 1)

b4 r0krk
0β − 4(2n − 1)

b4 r0ksk
0β

+
2(n − 2)

b4 bkr00|kβ − 2(11n − 10)
b6 r2

0β +
4(4n − 5)

b6 r0s0β +
2(2n − 1)

b4 r0|0β

+
2(n − 2)

b6 s2
0β − 2(n − 2)

b4 s0|0β

]
+

1
F2

[
αRic +

2
b2 biyj αRicij β +

1
b2 rk

kr00 −
1
b4 rr00 +

2n
b2 r0ksk

0 +
1
b2 bkr00|k +

1
b4 r2

0

− n − 2
b4 s2

0 −
2(2n − 3)

b4 r0s0 −
1
b2 r0|0 +

n − 2
b2 s0|0 −

2(n − 2)
b4 rk

kr0β +
n − 1

b4 rk
ks0β (3)

−2n − 1
b4 rkrk

0β +
3n
b4 rksk

0β − 2n − 3
b4 skrk

0β +
n − 1
2b2 rk

k|0β +
n − 1

b2 rk
0|kβ − 5n − 7

b6 rs0β

+
6(n − 1)

b6 rr0β − n − 2
b4 sksk

0β − n − 2
b4 bkr0|kβ +

n − 2
b4 bks0|kβ − n + 1

2b4 r|0β

]
+

1
F

[
1
2

αR β − 1
2b2 bibj αRicij β +

n + 1
2b2 rk

ks0 −
n + 1
2b2 skr0k −

n + 1
2b2 rks0k −

n + 1
2b4 rs0

+
n + 1
2b2 bks0|k −

n + 1
2

sk
0|k +

n2 − 1
2b2 sksk

0 +
1

2b2 (r
k
k)

2β − 1
b4 rrk

kβ +
n
b2 rl

ksk
l β

+
1

2b2 bkrl
l|kβ +

1
b4 rkrkβ − 1

2b2 rk
|kβ − n − 3

2b4 rkskβ − n − 2
b4 skskβ +

n − 2
2b2 sk

|kβ

]
− n

2

(
1
b2 sksk +

1
2

sk
ls

l
k

)
,

where αR denotes the scalar curvature of α.

This is also calculated by Zhu and Song [18], and there is a detailed calculation process.

Lemma 3. Let F = α2

β be a Kropina metric on M. Assume F is of isotropic scalar curvature. Then,
β is a conformal 1-form with respect to α.

Proof. Assume the Kropina metric F has isotropic scalar curvature. Then, R = n(n− 1)κ(x)
holds for some scalar function κ(x). Plugging (3) into it, we have

α10Γ10 + α8Γ8 + α6Γ6 + α4Γ4 + α2Γ2 + Γ0 = 0, (4)
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where

Γ10 =nb4
[

1
2

sksk +
1
2

b2sk
is

i
k + (n − 1)cb2

]
,

Γ8 =b2
[
−1

2
b4Rβ +

1
2

b2bibj αRicijβ − n + 1
2

b2rk
ks0 +

n + 1
2

b2skr0k +
n + 1

2
b2rksk

0 − rkrkβ

+
n + 1

2
rs0 −

n + 1
2

b2bks0|k +
n + 1

2
b4sk

0|k −
n2 − 1

2
b2sksk

0 −
1
2

b2(rk
k)

2β + rrk
kβ

−nb2ri
ksk

iβ − 1
2

b2bkri
i|kβ +

n − 3
2

rkskβ +
1
2

b2rk
|kβ + (n − 2)skskβ − n − 2

2
b2sk

|kβ

]
β,

Γ6 =
[
−b6 αRic − 2b4biyj αRicijβ − b4rk

kr00 + b2rr00 − 2nb4r0ksk
0 − b4bkr00|k − b2r2

0

+ (n − 2)b2s2
0 + 2(2n − 3)b2r0s0 + b4r0|0 − (n − 2)b4s0|0 + 2(n − 2)b2rk

kr0β

− (n − 1)b2rk
ks0β − (n − 1)

2
b4rk

k|0β + (2n − 1)b2rkrk
0β + (2n − 3)b2skrk

0β

− (n − 1)b4rk
0|kβ − 3nb2rksk

0β − 6(n − 1)rr0β + (5n − 7)rs0β + (n − 2)b2sksk
0β

+(n − 2)b2bkr0|kβ − (n − 2)b2bks0|kβ +
(n + 1)

2
b2r|0β

]
β2,

Γ4 =
[
2b4 αRic β − 2(n − 1)(n − 3)b2r00r0 + (n − 1)(n − 3)b2r00s0 + (11n − 13)rr00β

+ (n − 1)(n − 3)b4r00|0 − (3n − 5)b2rk
kr00β − 2(n − 1)b2r0krk

0β − 2(2n − 1)b2r0|0β

− 2(n − 2)s2
0β − 2(n − 2)b2bkr00|kβ + 2(11n − 10)r2

0β − 4(4n − 5)r0s0β

+4(2n − 1)b2r0ksk
0β + 2(n − 2)b2s0|0β

]
β3,

Γ2 =3(n − 1)
[
(n − 2)b2r2

00 − 20r00r0β + 4r00s0β + 2b2r00|0β
]

β4,

Γ0 =36(n − 1)r2
00β6.

By (4), Γ0 can be divided by α2. Hence, r00 = f (x)α2 holds for some scalar function
f = f (x). It means that β is a conformal 1-form with respect to α. This completes the proof
of Lemma 3.

4. Isotropic Scalar Curvature via the Navigation Data

In this section, we study Kropina metrics by the navigation data. We obtain an
equivalent characterization for a Kropina metric with isotropic scalar curvature.

Let F and F̄ be two Finsler metrics on M. If

F̄(x, y) = eσ(x)F(x, y)

holds for some smooth function σ(x) on M, then F and F̄ are said to be locally conformally
related. And we call the smooth function σ(x) the conformal factor.

For conformally related Finsler metrics, Bácsó and Cheng [21] gave some transforma-
tion conclusions. Here are some related results.

Proposition 3. Let F̄ = 2F be two Finsler metrics on M. Then
(1) ḡij = 4gij, ḡij = 1

4 gij, Ḡi = Gi, Ric = Ric, Ricij = Ricij and R̄ = 1
4 R;

(2) F is an Einstein metric in the same way that F̄ is also an Einstein metric;
(3) F is of isotropic scalar curvature if and only if F̄ is of isotropic scalar curvature.
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Lemma 4 ([12]). Let F be an (α, β)-metric on M. Assume that α is an Einstein metric and β is a
conformal 1-form with respect to α, i.e., αRic = gα2, r00 = f α2 for some scalar functions g = g(x)
and f = f (x). Then the following hold:{

sk
0|k = (n − 1) f0 + gβ,

0 = (n − 1)bk fk + gb2 + sk
|k + sk

jsj
k,

where fk := ∂ f
∂xk and f0 := fkyk.

To prove the main theorem, we shall express the Kropina metric F = α2

β using the

navigation data (ᾱ, β̄) as Formula (2). Let F̄ = ᾱ2

β̄
. Then, F̄ = 2F.

Theorem 3. Let F̄ = ᾱ2

β̄
be a Kropina metric on M. Assume (ᾱ, β̄) is the navigation data of the

Kropina metric F = α2

β . Then, F̄ is of isotropic scalar curvature if and only if ᾱ is an Einstein metric
and β̄ is a constant Killing 1-form with respect to ᾱ.

Proof. Necessity. Assume F̄ = ᾱ2

β̄
has isotropic scalar curvature. Then, R̄ = n(n − 1)κ̄(x)

holds for some scalar function κ̄(x). By Proposition 3, F = 1
2 F̄ must be also of isotropic

scalar curvature. Thus, β is a conformal 1-form with respect to α by Lemma 3. Furthermore,
based on Note 1, Note 2, and Note 3, β̄ is a constant Killing 1-form, namely, r̄00 = 0 and
s̄k = 0. Substituting r00 = 0, sk = 0 into (3), we obtain

R̄ =− β̄4

2ᾱ6
ᾱRic +

β̄2

4ᾱ4

(
ᾱRic + 2b̄i ȳj ᾱRicij β̄

)
+

β̄

8ᾱ2

[
ᾱRβ̄ − b̄i b̄j ᾱRicij β̄ − (n + 1)s̄k

0∥k

]
− n

16
s̄k

i s̄i
k, (5)

where “ ∥ ” denotes the covariant derivative with respect to the Levi-Civita connection of ᾱ.
Multiplying both sides of (5) by 8ᾱ6 yields

0 =n
[

1
2

s̄k
i s̄i

k + 8(n − 1)κ̄
]

ᾱ6 −
[

ᾱRβ̄ − bibj ᾱRicij β̄ − (n + 1)s̄k
0∥k

]
β̄ᾱ4

− 2
(

ᾱRic + 2biyj ᾱRicij β̄
)

β̄2ᾱ2 + 4 ᾱRicβ̄4. (6)

The above equation shows that ᾱ2 can divide ᾱRic. Thus, there exists a scalar function
ḡ(x) such that

ᾱRic = ḡ(x)ᾱ2,

which means that ᾱ is an Einstein metric. Thus, ᾱRicij = ḡāij and ᾱR = nḡ. Since ᾱRic = gᾱ2

and r̄00 = 0 hold, we have s̄k
0∥k = ḡβ̄ and s̄k

j s̄
j
k = −ḡ by Lemma 4. Substituting all of these

into (6) yields

0 = n
[
−1

2
ḡ + 8(n − 1)κ̄

]
ᾱ4.

It implies that κ̄ = ḡ
16(n−1) .

Sufficiency. Suppose that r̄00 = 0, s̄k = 0 and ᾱRic = ḡᾱ2 hold. Then we have s̄k
0∥k = ḡβ̄

and s̄k
j s̄

j
k = −ḡ by Lemma 4. Plugging them into (3) yields R̄ = 1

16 nḡ, which means that F̄
is of isotropic scalar curvature. It completes the proof of Theorem 3.

The following lemma is necessary for the proof of the main theorem.
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Lemma 5 ([4]). Let F = α2

β be a non-Riemannian Kropina metric with constant Killing 1-form
β on M. Then, F is an Einstein metric if and only if α is also an Einstein metric. In this case,
σ = 1

4 λb2 ≥ 0, where σ = σ(x) and λ = λ(x) are Einstein scalars of F and α, respectively.
Moreover, F is Ricci-constant when n ≥ 3.

Now we are in the position to give a proof of Theorem 1.

Proof of Theorem 1. Let F = α2

β be a Kropina metric on a manifold M given by (2) with
the navigation data (ᾱ, β̄). We claim that F̄ is of isotropic scalar curvature if and only if F̄ is
an Einstein metric. Let (ᾱ, β̄) be the navigation data of the Kropina metric F = α2

β . Suppose

F̄ = ᾱ2

β̄
is of isotropic scalar curvature. Then, we have that ᾱ is an Einstein metric and β̄ is a

constant Killing 1-form by Theorem 3. Hence, F̄ is an Einstein metric, as stated in Lemma 5.
Conversely, if a Finsler metric F̄ is an Einstein metric, then F̄ is of isotropic scalar curvature
by the definition of scalar curvature.

Since F = 1
2 F̄, we conclude that F is of isotropic scalar curvature in the same way that

F is an Einstein metric by Proposition 3. This completes the proof of Theorem 1.

Let (M, F) be a Finsler manifold. Express the volume form of F by dVF = σ(x)dx1 . . . dxn.
For a non-zero vector y ∈ Tp M, the S-curvature S(y) is defined by

S(x, y) :=
∂Gi

∂yi (x, y)− yi ∂ ln σ(x)
∂xi .

And the non-Riemannian quantity χ-curvature on the tangent bundle TM is defined by

χi := S·i;mym − S;i,

where “ ; ” and “ . ” denote the horizontal and vertical covariant derivatives with respect
to the Chern connection, respectively. Further, H-curvature can be expressed by

Hij :=
1
4
(χi·j + χj·i).

The notion of projective Ricci curvature PRic is given by

PRic := Ric +
n − 1
n + 1

S;mym +
n − 1

(n + 1)2 S2.

Lemma 6 ([5]). For a Kropina metric F on M, the following are equivalent: (1) F has isotropic
S-curvature; (2) S-curvature vanishes; and (3) β is a conformal 1-form with respect to α.

Proposition 4. Let F be a Kropina metric on M. If F is of isotropic scalar curvature, then (1)
S-curvature vanishes; (2) χ-curvature vanishes; (3) H-curvature vanishes; and (4) PRic = Ric.

Proof. Assume a Kropina metric F = α2

β is of isotropic scalar curvature. We have that β is a
conformal 1-form with respect to α by Lemma 3. Thus, S = 0 by Lemma 6. By definitions
of χ-curvature, H-curvature, and projective Ricci curvature, we have χ = 0, H = 0, and
PRic = Ric. This completes the proof.

5. Conclusions

In this paper, we discuss Kropina metrics with isotropic scalar curvature R. We present
expressions of Ricci curvature tensor Ricij and scalar curvature of Kropina metrics. Using
the navigation method, we conclude that Kropina metrics are of isotropic scalar curvature
if and only if they are Einstein metrics in Theorem 1.
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