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Abstract: In the quest for unparalleled reliability and robustness within control systems, significant
attention has been directed toward mitigating actuator faults in diverse applications, from space
vehicles to sophisticated industrial systems. Despite these advances, the prevalent assumption of
homogeneous actuator faults remains a stark simplification, failing to encapsulate the stochastic
and unpredictable nature of real-world operational environments. The problem of finite-time fault-
tolerant control for nonlinear flexible spacecraft systems with actuator faults is addressed in this
paper, utilizing the T-S fuzzy framework. In a departure from conventional approaches, actuator
failures are modeled as random signals following a nonhomogeneous Markov process, thus compre-
hensively addressing the issue of timeliness, which has previously been overlooked in the literature.
To effectively manage the intricacies introduced by these factors, the nonhomogeneous Markov
process is represented as a polytope set. The proposed solution involves the development of a nonho-
mogeneous matrix transformation, accompanied by the introduction of adaptable parameters. This
innovative controller design methodology yields a stability criterion that ensures H∞ performance in
a mean-square sense. To empirically substantiate the effectiveness and advantages of the proposed
approaches, a numerical example featuring a nonlinear spacecraft system is presented.

Keywords: flexible spacecraft; T-S fuzzy model; fault-tolerant control; stochastic actuator fault

MSC: 93-xx

1. Introduction

In recent years, the quest to stabilize flexible spacecraft has intensified, sparked by
their advantages for space missions and evidenced by substantial research (e.g., [1,2]).
These spacecraft exhibit complex dynamics, with a mix of flexible and rigid behaviors, and
the critical system parameters that influence these dynamics are often hard to measure
precisely. This poses significant challenges in control strategy design, affecting system
performance. Fuzzy system models have emerged as a robust solution to handle such
nonlinear complexities, effectively approximating nonlinear functions with minimal error
(e.g., [3,4]). Leveraging the T-S fuzzy model framework, recent studies have developed
advanced control laws that address the dynamic intricacies of nonlinear systems. For
example, the problem of memory-event-triggered fault detection of networked IT2 T-S
fuzzy systems was considered in [5], and the authors in [6] achieve decentralized adaptive
event-triggered H∞ filtering approaches for a class of networked nonlinear interconnected
systems. Moreover, research detailed in [7] applied an event-triggered H∞ control to a
truck-trailer model using T-S fuzzy models, while [8] used advanced Lyapunov methods to
design a controller for a type-2 T-S fuzzy system under external disturbances. These efforts
represent significant strides in the control of complex, flexible spacecraft systems.

Furthermore, it is crucial to highlight the pivotal role that actuators play in control sys-
tems, as their failures can lead to suboptimal performance or even system instability [9,10].
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This is particularly significant in the context of space vehicle applications, where reliability
is of paramount importance. The research delineated in [11] addressed the intricate issue
of adaptive fuzzy control within a finite-time scope for dynamical systems that are not
explicitly modeled, with a particular focus on accommodating actuator faults. Similarly,
the study in [12] presented an advanced actuator fault-tolerant control method employing
adaptive barrier fast terminal sliding mode techniques for space vehicles. These works un-
derscore the profound impact of actuator faults on the efficacy of control systems. Actuator
malfunctions can markedly reduce the operational efficiency of space vehicles, with the
potential for such deficits to escalate to catastrophic outcomes, emphasizing the criticality
of robust fault-tolerant mechanisms in space systems.

Consequently, there has been a growing emphasis on the design of reliable control
systems to mitigate actuator faults, ensuring high reliability and robustness, not only in
the realm of space vehicles but also in industrial systems. Nonetheless, it is essential to
highlight that numerous established dependable control methodologies operate with the
presumption that faults are deterministic in nature [13,14]. In practical scenarios, faults
can be both deterministic and stochastic, arising from factors such as aging or damage to
the control components. To address this complexity, recent research efforts have explored
various strategies to handle actuator faults with stochastic characteristics. As an illustration,
in the paper referenced as [15], scholars investigated the challenge of output feedback H∞
control within the context of nonlinear spatially distributed systems that were impacted by
actuator faults following a Markovian jumping pattern. It is imperative to acknowledge the
pivotal role that the Markov jump process plays in the accurate representation of actuator
faults. This stochastic framework is instrumental in characterizing the unpredictable
nature of such faults, thereby providing a robust foundation for subsequent analyses.
Consequently, an extensive body of scholarly work has been dedicated to studying various
aspects and implications of this phenomenon within the context of control systems [16–19].
To be concrete, a robust state feedback control strategy was formulated for T-S fuzzy
systems affected by sensor multiplicative faults, utilizing the dynamic parallel distributed
compensation technique [20]. In another study [21], actuator failures were modeled as
random variables subject to a Markov process. The primary innovation here was the
proposal of a novel T-S fuzzy controller tailored for spacecraft dealing with stochastic
actuator faults. The authors in [22] attempted to address the challenges posed by actuator
faults by introducing a constraint condition, namely achieving H∞ performance. In a
different approach [23], a novel stabilization approach was utilized to address the challenges
posed by actuator faults. This method featured a novel iterative linearization algorithm
for designing controller gains. Moreover, in the paper by [24], the problem of finite-time
control in a nonlinear flexible spacecraft system affected by stochastic faults was addressed.
However, it is important to note that these random faults were assumed to be homogeneous.
In operational environments, the failure dynamics of actuators are inherently variable,
manifesting time-dependent characteristics influenced by an array of factors including
material degradation, ambient environmental conditions, and the intensity of operational
demands. These variables engender fluctuating failure rates, rendering the supposition of
time-invariant failure mechanisms unsuitable for authentic representation. Consequently,
the premise of homogeneous actuator failures is a simplification that does not accurately
encapsulate the complexities of real-world operational scenarios (see [25,26]). Consequently,
there is a pressing need for research that investigates nonhomogeneous actuator faults
in conjunction with stochastic variables, as this aligns more closely with the practical
challenges encountered in control systems.

Conversely, the conventional H∞ control approach is commonly utilized to examine
the desired behavior of controlled dynamics and explore the asymptotic characteristics
of system trajectories, typically under the assumption of an infinite time interval, as gov-
erned by Lyapunov stability theory. Nonetheless, there exist practical scenarios where the
central focus pertains to the performance of dynamical systems within a specified finite
time duration. As an example, circumstances may emerge where the influence of exter-
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nal disturbances necessitates the assurance that system states remain within permissible
limits throughout this finite time span [27,28]. In such scenarios, the notion of finite-time
boundedness assumes significant importance. Over recent decades, there has been a no-
ticeable surge in interest regarding this concept, substantiated by a substantial body of
research and the corresponding references [29–31]. In these studies, the free-weighting
matrix method has been commonly employed, often necessitating the introduction of slack
matrices. However, it is important to recognize that the adjustability of these introduced
matrices is inherently limited, and there is room for improvement in this regard.

With the above analysis, we delve into the subject of finite-time fuzzy fault-tolerant con-
trol (FTC) for spacecraft system with actuator faults in this paper. What distinguishes our
research from the prior literature, notably [22], is our consideration of actuator faults subject
to a nonhomogeneous Markov distribution, a choice that aligns more closely with real-
world scenarios. Recognizing that closed-loop control systems involve nonhomogeneous
random data, we develop a nonhomogeneous Lyapunov functional that comprehensively
incorporates all available information from the closed-loop system. It is worth noting that
the nonhomogeneous Markov distribution can be simplified to the traditional distribution
by setting the derivative of nonfeasible matrices to zero, thereby adding an extra layer
of versatility to our approach. To augment the adaptability of our control strategy, we
introduce a set of flexible parameters. This innovative controller design approach permits
the independent selection of these parameters, offering a higher degree of freedom and cus-
tomization when compared to existing methods. Importantly, our flexible parameters are
predefined, distinct from the unknown slack matrices encountered in prior works [22,24].
When compared to existing studies such as [22,24], our control approach exhibits superior
practicality and performance.

Notations: The symbols Rn and Rm×n represent, respectively, the vector space of
dimension n and the space of m × n matrices. The norm denoted by ||.|| corresponds to
the Euclidean norm for vectors, and L[0, T) denotes the linear space comprising square
integrable functions defined over the time interval [0, T), where T ≥ 0. For a matrix A,
its transpose is denoted as AT , and its inverse as A−1. The maximum and minimum
eigenvalues of matrix A are symbolized as ψmax and ψmin, respectively. The sum of A and
its transpose is succinctly represented as [A]s or {A}s, and diag{a1, a2, ..., an} denotes an
n-dimensional diagonal matrix. For a vector a = [a1, a2, a3]

T , S(a) represents its skew-
symmetric matrix, and E{.} refers to the mathematical expectation of a random variable.
The symbol

⊗
is employed to denote the Kronecker product for matrices. The symbol ∗

signifies the symmetric term within a matrix. Unless explicitly mentioned, matrices are
assumed to possess compatible dimensions.

2. System Description and Preliminaries

Consider a dynamic model for a flexible spacecraft, taking into account the following
variables and parameters in Table 1.

Table 1. Parameters of flexible spacecraft.

Symbols Description

v Rotation angle about the Euler axis

w1 Pitch angular velocity

w2 Yaw angular velocity

w3 Angular velocity along the axes

Js The system inertia, comprising the rigid body and elastic attachments

δ The coupling matrix

ξ The variable representing the elastic coordinate
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To represent the spacecraft’s rotational state, we introduce quaternion notation. Set
q0 = cos( v

2 ), and define the quaternion vector as q = [q1, q2, q3]
T = Λ sin( v

2 ), with the
constraint that ∑3

i=0 q2
i = 1. The dynamic model that governs the behavior of this spacecraft

system can be represented as follows:

q̇0 =
1
2

qTw(t) (1)

q̇ =
1
2
(q0 I + S(q))w(t) (2)

Jsẇ(t) + δT ξ̈(t) = −S(w(t))(Jsw(t) + δT ξ̇(t)) + u(t) + d(t) (3)

ξ̈(t) + Cs ξ̇(t) + Ksξ(t) = −δẇ(t) (4)

where for i = 1, 2, . . . , ñ, Cs = diag{2ξ1wn1, 2ξ2wn2, . . . , 2ξñwnñ} and Ks as the diagonal
matrix Ks = diag{w2

n1, w2
n2, . . . , w2

nñ}. Here, ξi represents the damping ratio for the ith
mode, wni represents the modal frequency for the ith mode, and ñ represents the total
number of modal frequencies. The control input to the system is denoted as u(t), and d(t)
represents an external disturbance variable.

Remark 1. In Equations (1)–(4), the incorporation of system inertia, encompassing the dynamics
of both the rigid body and its elastic attachments, alongside the incorporation of coupling matrices
and the variables representing elastic coordinates, fosters a holistic and all-encompassing modeling
approach. This comprehensive formulation of the spacecraft’s dynamics lays a robust groundwork
for the rigorous evaluation and validation of the proposed control mechanisms within our study.

As δT ξ̈(t), δT ξ̇(t), and δTẇ(t) are interconnected, a more convenient approach is to
define a consolidated disturbance term as follows:

d̃(t) = d(t) + δT(Cs ξ̇(t) + Ksξ(t))− S(w(t))δT ξ̇(t)

Combining (3) and (4), it yields

(Js − δTδ)ẇ(t) = −S(w(t))Jsw(t) + u(t) + d̃(t) (5)

assuming that
∫ T

0 d̃T(t)d̃(t) ≤ d̃ is satisfied for d̃(t) ∈ L[0, T].
Consider the state vector,

xT = [x1, x2, x3, x4, x5, x6]
T = [xT

w, xT
q ]

T = [w1, w2, w3, q1, q2, q3]
T

both of which are the controlled outputs. By combining Equations (1)–(5), we can deduce
the subsequent dynamic system by employing an “IF-THEN” fuzzy rule.

Rule i: IF {λ1(t) is Mi
1}, {λ2(t) is Mi

2}, ..., {λ f (t) is Mi
f}, THEN{

ẋ(t) = Aix(t) + Biu(t) + Hi d̃(t)
y(t) = Cix(t)

where i = 1, 2, . . . , p, we have λT(t) = [λ1(t), λ2(t), . . . , λn(t)]T , and M1
j (j = 1, 2, . . . , f ) are

T-S fuzzy sets. Within this framework, the system matrices Ai, Bi, and Ci can be expressed
as follows:

Ai =

[
−(Js − δTδ)−1S(χwi)Js 0

1
2

√
1 − ||xqi||2 I − 1

2 S(χwi)

]

Bi =

[
(Js − δTδ)−1

0

]
, Ci = I.
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Hence, the T-S fuzzy system can be delineated as{
ẋ(t) = ∑r

i=1(λ(t)){Aix(t) + Biu(t) + Hi d̃(t)}
y(t) = ∑r

i=1(λ(t))Cix(t)
(6)

where

hi(λ(t)) = φi(λ)/
r

∑
i=1

φi(λ)

φi(λ(t)) =
f

∏
j=1

Mi
j(λj(t))

hi(λ(t)) > 0,
r

∑
i=1

hi(λ(t)) = 1.

The sensor network acquires its signal from the system’s output, with an output feed-
back approach employed for controller design. In practical systems, the output signal, de-
noted as y(t), is routinely sampled at predetermined time points such as t0, t1, . . . , tk, tk+1, . . .
utilizing a sampler. The discretely sampled output signal is subsequently directed to the
sensor network’s input interface. When considering a specific sampling instant tk, it is
imperative to acknowledge that the value of y(tk) remains constant throughout the time
span [tk, tk+1). This signifies that the signal received by the sensors within this interval
(i.e., for t ∈ [tk, tk+1)) is consistently represented by y(tk).

Traditionally, the conventional method for detecting output signals involved deploy-
ing a single sensor mode within the model. In this setup, each measurement output
was individually sampled by dedicated sensor units and then transmitted collectively,
aggregated into a unified packet for storage. However, it is crucial to recognize that this
assumption may not hold in various real-world scenarios. A sensor network typically
comprises a multitude of distributed sensing devices operating in coordination. The mea-
surement outputs available to a particular sensor node, denoted as node i, do not originate
solely from that node itself. Instead, these outputs result from a combination of measure-
ments from node i and those from its neighboring nodes within the network of sensors.
The network of sensors’ topology is defined as follows: The directed graph denoted as
G = (V , E , Θ) characterizes the spatial configuration of sensors. Here, the set V functions
as an indexing set encompassing m sensor nodes, E ⊂ V × V denotes the collection of
edges that establish connections between pairs of sensor nodes, and each edge within G is
represented by an ordered pair (i, j). Furthermore, Θ = (θij) ∈ Rm×m corresponds to the
matrix containing weights associated with the connections in the network. Notably, the
elements of the adjacency matrix are constrained to be positive for edges that exist in the
graph (i.e., θij ≥ 0 if (i, j) ∈ E ). Additionally, for nodes i ∈ V , the matrix Θ has its diagonal
elements θii, which can be calculated as

θii = −
m

∑
l2=1,l2 ̸=l1

θl1l2 . (7)

The ideal control input is

u(t) = −Kz(tk) (8)

the l2th sensor output is zl2(tk) = −∑m
l1=1 θl1l2 y(tk) and ztk = ∑m

l2=1 zl2(tk), where Ll2
represents the output matrix of the l2-th sensor, and θ fulfills the following condition:

θl1l2 ≥ 0, if l1 ̸= l2

θl1l2 = −
m

∑
l2=1,l2 ̸=l1

θl1l2
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In this paper, we consider a scenario where the sampling interval τk is aperiodic
but still bounded. This implies that for all consecutive sampling instances, we have
0 < tk+1 − tk ≜ τk ≤ τM. Let us define a function τ(t) = t− tk to represent the time elapsed
since the last sampling instant tk. This function τ(t) satisfies the conditions 0 ≤ τ(t) ≤ τM
and τ̇(t) = 1 for all time points except at the specific sampling instance t = tk.

Considering nonhomogeneous actuator failure, which can be denoted as

u f (t) = Fr(t)u(t) + Gr(t)v(t) (9)

where the vector u(t) sees (8), v(t) represents a bounded actuator fault. For constant v̄,
v(t) can be represented as

∫ T
0 vT(t)v(t)dt ≤ v̄. Furthermore, we define Fr(t) and Gr(t) as the

fault matrices, where Fr(t) = diag{ fψ(r(t))} for ψ = 1, ..., n. These matrices are associated
with the fault introduced into the system.

Remark 2. It is noted that the control gain K in (8) is a parameter designed to maintain system
performance in the event of actuator faults and needs to be adjusted for potential fault impacts. The
fault matrices Fr in (9) describe how faults alter system dynamics, and the control gain K must be
sufficiently robust to accommodate these changes as described by Fr, ensuring system stability and
performance criteria under various fault conditions. Hence, the design of K must take into account
the characteristics of Fr to achieve effective control.

Considering the timeliness, rt(t ≥ 0) presents the nonhomogenous Markov process
satisfying

Π(t) = [πij(t)], i, j ∈ S = {1, 2, ..., N}

and transition rates are given as follows:

Pr{rt+∆ = j|rt = i} =

{
πij(t)∆ + o(∆), j ̸= i
1 + πii(t)∆ + o(∆), j = i

where πij(t) ≥ 0 and πii(t) = −∑N
j=1,j ̸=i πij(t) ≤ 0.

In this paper, the nonhomogeneous transition rate matrix Π(t) is confined within a
polytope defined by several vertices. This confinement is characterized by the
following expression:

Π(α(t)) =
Z

∑
l=1

αl(t)Π(l) (10)

where Π(l), l = 1, 2, ..., Z are given matrices that represent the vertices of the polytope, and

Z

∑
l=1

αl(t) = 1, αl(t) ≥ 0

where we have α(t) = [α1(t), α2(t), . . . , αZ(t)]
T as a parameter vector. It is important to

note that the rate of change of this vector, denoted as α̇l(t), is presumed to be both bounded
and known. Specifically, α̇l(t) is assumed to adhere to the following condition:

−vl ≤ α̇l(t) ≤ vl , vl ≥ 0, l = 1, 2, ..., Z − 1 (11)

and vl is known. It is worth noting that the condition ∑Z
l=1 αl(t) = 1 leads to the following

implication:
Z−1

∑
l=1

α̇l(t) + α̇Z(t) = 0.
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Consequently, the upper bound on α̇Z(t) can be expressed as:

|α̇Z(t)| ≤
Z−1

∑
l=1

vl .

Remark 3. The characterization of the nonhomogeneous transition rate matrix is considered to
adhere to a polytopic representation. As an illustration, let us assume a nonhomogeneous transition
rate matrix with two dimensions and two vertices, which can be expressed as follows:

Π(t) =
[

π11(t) π12(t)
π21(t) π22(t)

]
, Π(1) =

[
−π

(1)
11 π

(1)
12

π
(1)
21 −π

(1)
22

]
, Π(2) =

[
−π

(2)
11 π

(2)
12

π
(2)
21 −π

(2)
22

]

Hence, the conditions satisfied by π12(t) and π21(t) are as follows:

π12(t) ∈ [min(π(1)
12 , π

(2)
12 ), max(π(1)

12 , π
(2)
12 )]

π21(t) ∈ [min(π(1)
21 , π

(2)
21 ), max(π(1)

21 , π
(2)
21 )]

Let us examine the following transition rates:

π12(t) = 3α1(t) + 4α2(t) (12)

π21(t) = 2α1(t) + 3α2(t) (13)

In this scenario, we define α1(t) and α2(t) as random functions generated using
MATLAB, and they satisfy the constraint α1(t) + α2(t) = 1 with the additional conditions
α1(t) ≥ 0 and α2(t) ≥ 0. Under (12) and (13), π12(t) and π21(t) are depicted in Figure 1. It
is evident that the transition rates exhibit time variation. Furthermore, the vertices of the
transition rate matrix are determined as follows:

Π(1) =

[
−3 3
2 −2

]
, Π(2) =

[
−4 4
3 −3

]
Thus, we have

Π(t) = α1(t)Π(1) + α2(t)Π(2)

To simplify the notation, we define Fr = F(r(t)), frψ = fψ(r(t)), and the same for
Gr with grψ being either 0 or 1. Additionally, in Equation (9), we establish the bounds
0 ≤ f

rψ
≤ frψ ≤ f̄rψ ≤ 1, where f

rψ
and f̄rψ are the lower and upper limits of frψ,

respectively. By introducing the matrices Fr = diag{ f
rψ
}, F̄r = diag{ f̄rψ}, Fr0 = Fr+F̄r

2 ,

and Fr1 = F̄r−Fr
2 , we can express Fr as a combination of Fr0 and Fr1 scaled by ∑r, where

∑r = diag{σr1, σr2, . . . , σrn} with −1 ≤ σrψ ≤ 1.
By incorporating (6) and (9), we introduce the following fuzzy FTC strategy. Under

the sampled-data input, this controller is designed as follows:
Rule i: IF {λ1(tk) is Mi

1}, {λ2(tk) is Mi
2}, ..., {λ f (tk) is Mi

f}, THEN

u f (t) =
p

∑
j=1

hj(λ(tk))

{
FrKrj

m

∑
l1=1

m

∑
l2=1

θl1l2 Ll2 y(tk) + Grv(t)
}

, t ∈ [tk, tk+1) (14)

where Krj (j = 1, 2, ..., m) is the desired controller.
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Figure 1. The responses of π12(t) and π21(t).

Combining (14) and (6), we can derive the following closed-loop system:
ẋ(t) = ∑

p
i=1 ∑

p
j=1 hi(λ(t))hj(λ(tk))[Aix(t) + BiGrv(t) + Hi d̃(t)

+BiFrKrj ∑m
l1=1 ∑m

l2=1 θl1l2 Ll2 Cix(t − τ(t))]
y(t) = ∑

p
i=1 ∑

p
j=1 hi(λ(t))hj(λ(tk))Cix(t)

(15)

Furthermore, by recognizing that

BiFrKrj

m

∑
l1=1

m

∑
l2=1

θl1l2 Ll2 = BiFrKrjITqm(Θ
⊗

Iq)LCix(t − τ(t))

we can rewrite (15) as
ẋ(t) = ∑

p
i=1 ∑

p
j=1 hi(λ(t))hj(λ(tk))[Aix(t)

+BiFrKrjIT
qm(Θ

⊗
Iq)LCix(t − τ(t))

+BiGrv(t) + Hi d̃(t)]
y(t) = ∑

p
i=1 ∑

p
j=1 hi(λ(t))hj(λ(tk))Cix(t)

(16)

where IT
qm = [Iq, Iq, ..., Iq]︸ ︷︷ ︸

m

and L = [L1, L2, ..., Lm]T .

In this paper, our primary aim is to develop a fuzzy fault-tolerant controller with the
goal of satisfying the following performance criteria:

(i) Provided with scalars c1 > 0, c2 > 0, τM > 0, w̄ > 0, T > 0, and a positive
definite matrix R > 0, we can conclude that system (16) exhibits finite-time stability and
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data boundedness (FTSDB) concerning the parameters (c1, c2, τM, w̄, T, H) if the following
conditions hold:

sup
−τM≤s≤0

E [xT(s)Rx(s), ẋT(s)Rẋ(s)] ≤ c1 ⇒ E [xT(t)Rx(t)] < c2, ∀t ∈ [0, T]

(ii) For T > 0 and γ > 0, if the following condition is satisfied, then (16) meets the H∞
performance: ∫ T

0
γ2wT(s)w(s)− yT(s)y(s)ds > 0 (17)

By defining w(s)≜ [vT(s), d̃T(s)]T and imposing the constraint
∫ T

0 wT(s)w(s)ds ≤
v̄ + d̄ ≜ w̄, we devise a methodology that capitalizes on the recorded output from an
individual sensor and its adjacent sensors. This approach yields a novel condition for
maintaining system stability with the added constraint of H∞ performance. Additionally,
we derive a method for designing controller gains to meet these requirements.

3. Main Result

To date, the Lyapunov stability analysis method has been extensively applied in
the design of controllers for systems with delays, owing to its broad range of potential
applications. In line with this approach, the primary findings of this paper have also been
derived. To derive the FTC method, we will introduce two helpful preconditions.

Lemma 1 ([32]). Given constants β > α > 0, R > 0 and variable x : [α, β]×Rn → Rn, one has

(β − α)
∫ β

α
xT(p)Rx(p)dp ≥

∫ β

α
xT(p)dpR

∫ b

a
xT(p)dp

Lemma 2 ([22]). Given P, Q, and R, if there exists ||Q|| ≤ 1, then for ϵ > 0, the following
condition holds:

[PQR]s ≤ ϵ−1PPT + ϵRT R

Theorem 1. Given scalar values ε1, ε2, α > 0, γ > 0, τM > 0, c1 > 0, and H > 0, system (16) is
exponential stability in the mean-square sense and can be characterized as FTSDB concerning the
parameters (c1, c2, τM, w̄, d̂, T, H) and satisfies the H∞ performance criterion if there exist scalar
values c2 > 0, ρ1, Pl

r > 0, Q > 0, R > 0, W > 0, Zij > 0, and matrices U1, U2, such that[
1
2 ([Ω

ls
ij (1)]s + [Ωsl

ij (1)]s) + XijZijXT
ij Yij

∗ −Zij

]
< 0 (18)[

1
2 ([Ω

ls
ij (e

0.5ατM )]s + [Ωsl
ij (e

0.5ατM )]s) + XijZijXT
ij Yij

∗ −Zij

]
< 0 (19)

eαT{c1[µ1 + µ2µ′] + 2(c1µ3 + d̂)µ′′ + γ2w̄} < c2mu0 (20)

where Ωsl
ij (e

0.5ατ(t)) = [φsl ]5×5(1 ≤ i ≤ j ≤ p) and
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µ0 = µmin(
1
ρ2

1
P̃l

r), µ1 = µmax(P̃l
r), µ2 = µmax(Q̃), µ3 = µmax(R̃) (21)

P̃l
r = ρ2

1H− 1
2 Pl

r H− 1
2 , Q̃ = ρ2

1H− 1
2 QH− 1

2 , R̃ = ρ2
1H− 1

2 AiRAi H− 1
2 (22)

µ′ =
eατM − 1

α
, µ′′ =

eατM

α2 − 1
α2 − τM

α2 (23)

φsl
11 = Q − αPl

r −
R

τM
− π2

4τ2
M

W + CT
i Ci + ε1UT

1 Ai + ε1 AT
i U1 (24)

+
N

∑
h=1

πs
rhPl

h +
Z−1

∑
n=1

(±vn)(PZ
r − Pn

r ) (25)

φ12 = Pl
r − ε1UT

1 + ε2 AT
i U2 (26)

φ13 =
R

τM
+ e0.5ατ(t) π2

4τ2
M

W + ε1UT
1 BiFrKrjIT

qm(Θ
⊗

Iq)LCi (27)

φ15 = ε1UT
1 Hi + ε1UT

1 BiGr (28)

φ22 = τMR − ε2UT
2 − ε2U2 + W (29)

φ23 = ε2UT
2 BiFrKrjIT

qm(Θ
⊗

Iq)LCi (30)

φ25 = ε2UT
2 Hi + ε2UT

2 BiGr (31)

φ33 = − 2
τM

R − eατ(t) π2

4τ2
M

W, φ34 =
1

τM
R (32)

φ44 = −eατM Q − 1
τM

R, φ55 = −γ2 In (33)

Xij = [
ε1(Bi + Bj)

T

2
U1,

ε2(Bi + Bj)
T

2
U2, 0]T [I, I, ..., I]︸ ︷︷ ︸

r

(34)

Yij = [0, I, 0][
(Ci + Cj)

2
LT(Θ

⊗
Iq)

TIqmKT
r1FT

r , ...,
(Ci + Cj)

2
LT(Θ

⊗
Iq)

TIqmKT
rpFT

r ] (35)

Proof. Let us formulate the nonhomogeneous Lyapunov functional as follows:

V(t, rt) = V1(t, rt) +V2(t, rt) +V3(t, rt) +V4(t, rt) (36)

where

V1(t, rt) = xT(t)Pr(t)x(t)

V2(t, rt) =
∫ t

t−τM

eα(t−p)xT(p)Qx(p)dp

V3(t, rt) =
∫ t

t−τM

∫ t

β
eα(t−p) ẋT(p)Rẋ(p)dpdβ

V4(t, rt) =
∫ t

tk

d
dp

(e0.5α(t−p)x(p))TW(e0.5α(t−p)x(p))dp

− π2

4τ2
M

∫ t

tk

(e0.5α(t−p)x(p)− e0.5α(t−tk)x(tk))
T

× W(e0.5α(t−p)x(p)− e0.5α(t−tk)x(tk))dp
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Let L be the weak infinitesimal generator. Along the nonhomogenous Markov distri-
bution, we have

LV(t, rt) = lim
∆→0

E{V(xt+∆, t + ∆, rt+∆)S|rt = r} −V(t, r)
∆

, r ∈ S

When calculating LV(t, rt) along the closed-loop system given in (16), we obtain the
following result:

LV1(t, rt) = 2xT(t)Pr(t)ẋ(t) + xT(t)[
N

∑
h=1

πrh(t)Pr(t)]x(t) + xT(t)Ṗr(t)x(t)

LV2(t, rt) = αV2(t, rt) + xT(t)Qx(t)− eατM xT(t − τM)Q(t − τM)

+τM ẋT(t)Rẋ(t)− eατM ẋT(t)Rẋ(t)−
∫ t

t−τM

eα(t−s) ẋT(s)Rẋ(s)ds

+ẋT(t)Wẋ(t)− π2

4τ2
M
[x(t)− e0.5α(t−tk)x(tk)]

TW[x(t)− e0.5α(t−tk)x(tk)].

Building upon Lemma 1, we derive a lower bound for
∫ t

t−τM
ẋT(p)Rẋ(p)dp as follows:

∫ t

t−τM

ẋT(p)Rẋ(p)dp ≥ 1
τM

[x(t)− x(t − τ(t))]T R[x(t)− x(t − τ(t))]

+
1

τM
[x(t − τ(t))− x(t − τM)]T

× R[x(t − τ(t))− x(t − τM)] (37)

For U1, U2 and any free parameters ε1, ε2, one has

2
{

ẋ(t)−
p

∑
i=1

p

∑
i=1

hi(λ(t))hj(λ(tk))[Aix(t)

+BiFrKrjIT
qm(Θ

⊗
Iq)LCix(tk) + BiGrv(t) + Hi d̃(t)]

}
UTζ(t) = 0 (38)

where

U = [ε1U1, ε2U2, 0, 0, 0]T

ζ = [xT(t), ẋT(t), xT(t − τ(t)), xT(t − τM), wT(t)]T

Together with V3(t, rt) and V4(t, rt), it yields

LV(t, rt)− αV(t, rt)− γ2wT(t)w(t) + yT(t)y(t)

= LV(t, rt)− αV(t, rt)− γ2wT(t)w(t) + yT(t)y(t)

− 2ζT(t)U
{

ẋ(t)−
p

∑
i=1

p

∑
j=1

hi(λ(t))hj(λ(tk))

×
[

Aix(t) + BiFrKrjIT
qm(Θ

⊗
Iq)LCix(tk) + BiGrv(t) + Hi d̃(t)

]}
≤

p

∑
i=1

p

∑
j=1

hi(λ(t))hj(λ(tk))ζ
T(t)Ωls

ij ζ(t)
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Let ϵj(λ(t)) = hj(λ(tk))− hj(λ(t)), ∑
p
k=1 ϵ(λ(tk)) = 0. One has

p

∑
i=1

m

∑
i=1

hi(λ(t))
m

∑
j=1

hj(λ(tk))ζ
T(t)Ωijζ(t)

=
p

∑
i=1

m

∑
i=1

hi(λ(t))
m

∑
j=1

hj(λ(tk))ζ
T(t)

[Ωij + Ωji

2
+

p

∑
k=1

ϵk(λ(t))
Ωik + Ωjk

2

]
ζ(t)

p

∑
k=1

ϵk(λ(t))
Ωik + Ωjk

2

=
p

∑
k=1

ϵk(λ(t))

 0 UT
1

Bi+Bj
2 FrKrkIT

qm(Θ
⊗

Iq)L
Ci+Cj

2 0

0 UT
2

Bi+Bj
2 FrKrkIT

qm(Θ
⊗

Iq)L
Ci+Cj

2 0
0 0 0



=

{ UT
1

Bi+Bj
2

UT
2

Bi+Bj
2

0

 [
I I . . . I

]︸ ︷︷ ︸
r

Γ(λ(t))

×


FrKr1IT

qm(Θ
⊗

Iq)L
Ci+Cj

2

FrKr2IT
qm(Θ

⊗
Iq)L

Ci+Cj
2

· · ·
FrKrpIT

qm(Θ
⊗

Iq)L
Ci+Cj

2

[ 0 I 0
]}

≤ XijZijXT
ij + YijZ−1

ij YT
ij ≜ Λij

where Γ(λ(t)) = diag{ϵ1(λ(t)), ϵ2(λ(t)), . . . , ϵp(λ(t))}.
Note that

Pr(t) =
Z

∑
l=1

αl(t)Pl
r , (39)

We have Ṗr(t) = ∑Z
l=1 α̇l(t)Pl

r . Consider that

α̇Z(t) = −
Z−1

∑
l=1

α̇l(t),

Thus, we obtain

Ṗr(t) =
Z

∑
l=1

α̇l(t)Pl
r =

Z−1

∑
n=1

α̇n(t)(Pn
r − PZ

r ). (40)

It is important to note that α̇n(t) (which belongs to the interval [−vn, vn]) can be
considered either as an upper or lower bound. Thus, ∑Z−1

n=1 (±vn)(Pn
r − PZ

r ) ≥ (≤)0 can
lead to the conclusion that Ṗr(t) = ∑Z−1

n=1 α̇n(t)(Pn
r − PZ

r ) ≥ (≤)0.
Due to the presence of the nonhomogeneous terms ψ13 and ψ33, it should be noted

that the inequality in Equation (18) is infinite and nonlinear in nature. Define y(t) = e0.5ατ(t)
.

Since 1 ≤ y(t) ≤ e0.5ατM , if the matrices Ωij(1) and Ωij(e0.5ατM ) satisfy the conditions (18)
and (19), one has

r

∑
i=1

r

∑
j=1

hi(λ(t))hj(λ(tk))ξ
T
[ Z

∑
l=1

α2
l Ωll

ij +
Z−1

∑
l=1

Z

∑
s=l+1

αl(t)αs(t)(Ωls
ij + Ωsl

ij )

]
ξ < 0 (41)
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Considering the inequality yT(t)y(t) ≥ 0, we have

LV(t, rt) < αV(t, rt) + γ2wT(t)w(t)

Considering the interval (t, tk), one has

E [V(t, rt)] < E [V(tk, rt)]eα(t−tk) +
∫ t

tk

γ2wT(p)w(p)dp

< E [V(tk, rt)]eα(t−tk) +
∫ t

tk

eα(t−s)γ2wT(p)w(p)dp.

Moving forward, we will establish an upper bound for V(t0, r0), taking into account
the continuity property limt→t−k

V(t, rt) = V(tk, rtk )

E [V(t, rt)] < E [V(t−k , rt)]eα(t−tk) +
∫ t

tk

eα(t−p)γ2wT(p)w(p)dp

<

{
E [V(tk−1, rt)]eα(t−k −tk−1) +

∫ t−k

tk−1

eα(t−k −p)γ2wT(s)w(s)ds
}

eα(t−tk)

+
∫ t

tk

eα(t−s)γ2wT(s)w(s)ds

= E [V(tk−1, rt)]eα(t−tk−1) +
∫ t

tk−1

eα(t−p)γ2wT(p)w(p)dp

...

< E [V(t0, rt)]eα(t−t0) +
∫ t

t0

eα(t−p)γ2wT(p)w(p)dp

Considering that the initial sampling instant t0 may not coincide with 0, let us address
V(t0, r0) by accounting for the following: When t lies within the interval [−τM, t0], we set
u(t) = 0. Consequently, based on the following condition, we can derive the nonlinear
spacecraft dynamics

ẋ(t) = A(t)x(t) + d̂(t), A(t) =
r

∑
i=1

hi(λ(t))Ai, t ∈ [−τM, t0] (42)

which means

x(t) = e
∫ t

0 A(p)dpx(0) + e
∫ t

0 A(p)dp
∫ t

0
e−

∫ s
0 A(β)dβd̂(p)dp. (43)

Based the norm space, it yields

||x(t)|| = ||e
∫ t

0 A(p)dp|||̇|x(0)||+ ||e
∫ t

0 A(p)dp|||̇|
∫ t

0
e−

∫ p
0 A(β)dβd̂(p)dp||.

It is clear that there are constants ϱ1, ϱ2, and ϱ3 such that

ϱ2 ≥ ||e
∫ t

0 A(p)dp|||̇|
∫ t

0
e−

∫ s
0 A(β)dβd̂(p)dp||, ϱ3 ≥ ||e

∫ t
0 A(p)dp||,

||x(t)|| ≤ ϱ3||x(0)||+ ϱ2 = ϱ1||x(0)||.

For H > 0, one has

xT(t)Hx(t) ≤ ϱ2
1xT(0)Hx(0). (44)
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which can be further deduced as

V(t0, rt0) = xT(t0)Pax(t0) +
∫ t0

t0−τM

eα(t0−p)xT(p)Qx(p)dp

+
∫ t0

t0−τM

∫ t0

β
eα(t0−p) ẋT(p)Rẋ(p)dpdβ

Set t = t0 in (44), and let x0 be known. It is not difficult to see that

V(t0, rt0) ≤ ψ1xT(0)Hx(0) +
∫ t0

t0−τM

eα(t0−p)ψ2xT(0)Hx(0)dp

+
∫ t0

t0−τM

∫ t0

β
eα(t0−p) ẋT(s)Rẋ(s)dpdβ

It is obtained from (42) that

ẋT(p)Rẋ(p) =

[
A(p)x(p) + d̂(p)

]T

R
[

A(p)x(p) + d̂(p)
]

≤ 2[A(p)x(p)]T R[A(p)x(p)] + 2d̂T(p)Rd̂(p)

which can further deduce

V(t0, rt0) ≤ ψ1xT(0)Hx(0) +
∫ t0

t0−τM

eα(t0−s)ψ2xT(0)Hx(0)dp

+2
∫ t0

t0−τM

∫ t0

β
eα(t0−p)

[
xT(p)AT(p)RA(p)x(p)

+d̂T(p) + d̂T(p)Rd̂(p)
]

dpdβ

Let sup−τM≤p≤0[xT(p)Hx(p)] = c1, d̂T(p)Rd̂(p) ≤ d̂. It is easy to see that

V(t0, rt0) ≤ ψ1c1 + ψ2

∫ t0

t0−τM

eα(t0−p)c1dp

+2
∫ t0

t0−τM

∫ t0

β
eα(t0−p)(ψ3c1 + d̂)dpdβ

= c1

[
ψ1 + ψ2

1
α
(eατM − 1)

]
+ 2(c1ψ3 + d̂)

(
1
α2 eατM − 1

α2 − 1
α

τM

)
Due to V(t, rt) ≥ ψ0xT(t)Hx(t), one has

ψ0xT(t)Hx(t) < eαt[V(t0, rt0) + γ2w̄]

< eαT
{

c1[ψ1 + ψ2ψ′] + 2(c1ψ3 + d̂)ψ′′ + γ2w̄
}

< ψ0c2

Since V̇(t, rt)− αV(t, rt)− γ2wT(t)w(t) + yT(t)y(t) < 0, it yields

V(t, rt) < eα(t−t0)V(t0, rt0) + eαt
∫ t

t0

(γ2wT(p)w(p)− yT(p)y(p))dp

Under the initial condition, it yields

V(t+0 , rt+0
) <

∫ t+0

t0

(γ2wT(p)w(p)dp − yT(p)y(p))dp
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From V(t, rt) > 0, it yields

γ2wT(t)w(t)− yT(t)y(t) > 0∫ T

0
(γ2wT(p)w(p)− yT(p)y(p))dp > 0

This completes the proof.

Remark 4. In this research, the inclusion of the term xT(t)Pr(t)x(t) within V1(t, rt) holds pivotal
importance as it facilitates the integration of information pertaining to the nonhomogeneous Markov
process. This augmentation significantly enhances the realism of our findings when compared to
the existing literature. It is noteworthy that the transformation presented in Equation (40) plays
a critical role in effectively managing the derivative of V1(t, rt). Additionally, the introduction
of boundary values denoted as vn serves to transform the non-feasible derivative Ṗr(t) into more
tractable finite values.

It is noted that Theorem 1 is not easy to settle due to the presence of nonlinearity. In
the following, a feasible condition to reach the finite-time controller will be given.

Theorem 2. For any ε1, ε2 and positive constants α, γ, τM, c1, η1, η2, η3, T, any matrix H > 0,
we can establish the existence of positive scalars c2, µ1, µ2, µ3, P̄l

r > 0, Q̄ > 0, R̄ > 0, W̄ > 0,
Zij > 0, and any matrices Krj, Ū, for r ∈ S such that[

Ω̄ls
ij+Ω̄ls

ji+Ω̄sl
ij+Ω̄sl

ji
2 + X̄ijZijX̄T

ij Ȳij

∗ −Zij

]
< 0 (45)

[
−P̄l

r ŪT H
∗ −H

]
< 0 (46)[

P̄l
r − (η1Ū + η1ŪT) I

∗ − µ1
η2

1
H

]
< 0 (47)[

Q̄ − (η2Ū + η2ŪT) I
∗ − µ2

η2
2

H

]
< 0 (48)[

R̄ − (η3Ū + η3ŪT) I
∗ − µ3

η2
3

H

]
< 0 (49)

c1µ1 + c1µ2ψ′ + 2(c1µ3 + d̂)ψ′′ + γ2w̄ < c2e−αT (50)

where ψ′(α) = eατM−1
α , ψ′′(α) = 1

α2 eατM − 1
α2 − 1

α τM, symmetric matrix Ω̄ij = [ϕ̄sl ]5×5

ϕ̄sl
11 = Q̄ − αP̄l

r −
1

τM
R̄ − π2

4τ2
M

W̄ + ε2
1ŪTCT

i CiŪ + ε1 ĀiŪ + ε1ŪT ĀT
i

+
N

∑
b=1

πs
rh P̄l

h +
Z−1

∑
n=1

(±vn)(PZ
r − Pn

r ), ϕ̄12 = P̄l
r − ε1Ū + ε2ŪT ĀT

i

ϕ̄13 =
1

τM
R̄ + e0.5ατ(t) π2

4τ2
M

W̄ + ε1BiFrKrjIT
qm(Θ

⊗
Iq)LCiŪ, ϕ̄15 = Hi + BiGr

ϕ̄22 = τMR̄ − ε2ŪT + W̄, ϕ̄23 = ε2BiFrKrjIT
qm(Θ

⊗
Iq)LCiŪ, ϕ̄25 = ε2Hi + ε2BiGr

ϕ̄33 = − 2
τM

R̄ − eατ(t) π2

4τ2
M

W̄, ϕ̄34 =
1

τM
R̄, ϕ̄44 = −eατM Q̄ − 1

τM
R̄, ϕ̄55 = −γ2 In
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and

Xij =


Bi+Bj

2

ε2
Bi+Bj

2
0

[ I I · · · I
]
, Yij =

 0
I
0




ε1FrKr1IT
qm(Θ

⊗
Iq)L

CT
i +CT

j
2 Ū

ε1FrKr2IT
qm(Θ

⊗
Iq)L

CT
i +CT

j
2 Ū

. . .

ε1FrKrpIT
qm(Θ

⊗
Iq)L

CT
i +CT

j
2 Ū



T

We can conclude that the closed-loop fuzzy system described by (16) exhibits exponen-
tial stability in the mean-square sense and stochastic FTSDB behavior with respect to the pa-
rameters (c1, c2, τM, w̄, d̂, T, H) and simultaneously meets the criteria for H∞ performance.

Proof. To begin, we multiply both sides of inequalities (18) and (19) by

diag{U−T , U−T , · · · , U−T , I(r+1)n}

and its transpose, respectively. Then, we have U1 = ε1U, U2 = ε2U, U−1 = Ū, P̄l
r =

U−T Pl
rU−1, Q̄ = U−TQU−1, R̄ = U−T RU−1, W̄ = U−TWU−1. Using these, we can

establish inequality Equation (45) based on the inequalities Equations (18) and (19). Now,
we will demonstrate that inequalities (46)–(50) imply inequality (20). Let η1 > 0 and µ1 > 0.
It is evident that

(
η1

µ1
H−1 − ŪT)µ1H(

η1

µ1
H−1 − ŪT) ≥ 0, µ1H̄ ≥ η1Ū + η1ŪT −

η2
1

µ1
H−1 (51)

Then, it follows that H̄ < P̄l
r < µ1H based on Schur’s complement theorem and

inequalities (46) and (47). Consequently, we can deduce that I < P̃l
r < µ1 I. Similarly, we

can establish that 0 < Q̃ < µ2 I and 0 < R̃ < µ3 I, which implies that ψ0 > 1, ψ1 < µ1,
ψ2 < µ2, and ψ3 < µ3. In other words, the formula (50) holds. This completes the proof.

In accordance with the conventions and terminology commonly employed in the
academic literature, we shall elucidate the process of determining the parameters for the
controller through the presentation of the Algorithm 1.

Remark 5. In this work, we build upon the traditional use of static slack matrices U1 and U2, inte-
grating them with dynamic variables ε1 and ε2 to establish a pioneering control design methodology.
This dual approach is aimed at achieving two main objectives:

(i) It establishes an adaptive framework that enables precision calibration to match the specific
dynamic traits of the system. This level of adaptability is crucial for advancing the effectiveness of
the controller beyond what is reported in [22,24]. Through meticulous adjustment of ε1 and ε2, we
anticipate significant improvements in system robustness and performance. We propose employing
sophisticated optimization techniques, such as genetic algorithms and the Nelder–CMead simplex
method, to determine the most advantageous parameter configurations, as suggested by [33,34].

(ii) Our methodological proposition is mindful of the computational burden that large-scale
matrix calculations entail. Strategic manipulation of the free matrices U1 and U2 effectively reduces
the matrix dimensionality, thus alleviating computational loads. This aspect is especially beneficial
for real-time applications where computational efficiency is paramount.
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Algorithm 1 Fuzzy fault-tolerant controller solving algorithm [24].

Require: T-S fuzzy system matrix parameters Ai , Bi , (i = 1, 2, ..., p);
nonhomogeneous fault matrix F = {F1, F2, ..., Fp}, G = {G1, G2, ..., Gp};
Sensor network parameters Θ, Li;
FTSDB parameters (α, γ, τM, c1, c2, η1, η2, η3, ϵ, T);

Ensure: Kri;
1: Define matrix variable (Pl

a, Q, R, W, U, D, Zij, zij, Wij, wij, Kri);
2: for a = 1 → 3 do
3: Given stochastic fault matrix Fr = F{r}, Gr = G{r};
4: Let τ(t) → τM;
5: loop;
6: for i = 1 → 3 do
7: for j = i → 3 do

8: Construction matrix Ω̄sl
ij , X̄ij, Ȳj and

[
Ω̄ls

ij+Ω̄ls
ji+Ω̄sl

ij+Ω̄sl
ji

2 Ȳij
∗ −Zij

]
;

9: Establish the constraint Equation (45) of Theorem 2
10: end for
11: end for
12: while τ(t) ↛ 0 do
13: Let τ(t) → 0;
14: goto loop.
15: end while
16: end for
17: Establish the constraints Equations (46)–(50) of Theorem 2;
18: Solve the constraints;
19: Return Kri.

Remark 6. In this study, it is imperative that Ṗr(t) remains finite to establish a set of linear
conditions. In cases where any of these conditions diverge to infinity, the only viable recourse is
to set Ṗr(t) = 0, resulting in the constructed Lyapunov function becoming homogeneous. It is
noteworthy that a homogeneous Markov process represents a distinct case within the framework of
the proposed nonhomogeneous model introduced in this paper. Specifically, when Π(t) = Π, the
nonhomogeneous model effectively reduces to a homogeneous one in existing works [22,24]. In such
scenarios, the findings and results outlined in this paper remain applicable and general.

Remark 7. In this paper, through the T-S fuzzy framework, the nonlinear flexible spacecraft
system is transformed into the T-S fuzzy model represented by Equation (6). A Lyapunov function
tailored for the T-S fuzzy model (6) is then constructed, which addresses the fault-tolerant control
issues inherent in nonlinear flexible spacecraft systems. Consequently, the functional approach
detailed herein can be extended and applied to real-world systems that can be accurately described
by model (6), exemplifying the versatility and broad applicability of the methods developed in this
study to fields such as robotics or autonomous vehicles [35,36].

Remark 8. It should be acknowledged that in addition to the T-S fuzzy model framework, an
array of alternative modeling methodologies can be judiciously utilized to mitigate actuator faults
within nonlinear systems influenced by nonhomogeneous Markov processes. Techniques such as
the backstepping method, neural-network-based control paradigms, and reinforcement learning
algorithms are documented for their efficacy in this domain [37,38]. The intrinsic benefits and
limitations of these methods need to be carefully assessed against the backdrop of the system’s
unique attributes. The choice of a particular modeling technique is contingent upon system-specific
demands, encompassing the extent of nonlinearity, computational resource allocation, and the
requisite robustness and fault tolerance levels within the control architecture. As for empirically
validating the proposed methodology, methods such as hardware-in-the-loop simulations or physical
experiments with spacecraft hardware deserve further work.
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Remark 9. This paper primarily tackles the theoretical challenges associated with fault-tolerant
control mechanisms within aerospace systems through a polytopic set theory approach. While the
theoretical framework laid down provides a robust foundation for addressing system faults, it stops
short of delving into practical applications. Future research will pivot towards translating these
theoretical insights into tangible applications within the aerospace sector. This transition will
necessitate a thorough assessment of the actual capabilities and limitations of spacecraft hardware
and sensors to ensure the developed control strategies are not only theoretically sound but also
practically viable. Subsequent studies will aim to refine the control paradigm to align precisely
with the operational demands and performance benchmarks set by current spacecraft hardware
configurations and sensor technology integrations.

Remark 10. The methodology proposed in this research relies heavily on the precision and timely
response of actuators. In practice, however, this control approach may present compatibility issues
with existing spacecraft systems. Additionally, the harsh space environment, characterized by
radiation, extreme temperature fluctuations, or space debris, could lead to equipment failure or
degraded performance. To mitigate these risks, it is prudent to refer to existing literature [39,40]
for continuous testing and validation, along with the implementation of redundant sensor and
actuator designs, to bolster system reliability and resilience. Such strategies can effectively ensure
that theoretical research is translated into safe and reliable applications in actual space missions.

4. Numerical Example

Consider the flexible spacecraft model (1), sourced from [22]. The primary energy
associated with elastic vibration predominantly resides in low-frequency modes. Con-
sequently, it becomes necessary to account for only the first four elastic modes. The
respective natural frequency vector for these modes is denoted as [wn1, wn2, wn3, wn4] =
[0.7681, 1.1038, 1.8733, 2.5496] rad/s, with corresponding damping ratios [ς1, ς2, ς3, ς4] =
[0.0056, 0.0086, 0.013, 0.025]. Then, Js and δ are specified as

Js =

 350 3 4
3 270 10
4 10 190

(kg m2), δ =


6.45637 1.27814 2.15629
−1.25619 0.91756 −1.67264
1.11687 2.48901 −0.83674
1.23637 −2.6581 −1.12503

(kg1/2 m/s2)

and d(t) is given as

d(t) =

 −0.2 + 0.1cos(0.06t)− 0.1cos(0.8t)
0.2 + 0.2sin(0.6t)− 0.1cos(0.4t)

−0.2 + 0.15sin(0.5t)− 0.1sin(0.8t)


The other condition are the same as Ref. [24], which are omitted here.
Selecting three operating points, defining z(t) = x(t) and setting xT = [xT

w, xT
q ] =

[0, 0, 0, 0, 0, 0], [1, 1, 1, 0.55, 0.55, 0.55], and [−1,−1,−1,−0.55,−0.55,−0.55], the flexible
spacecraft can be constructed as

Rule 1: IF {x1 is M1
1}, {x2 is M1

2}, · · · , {x6 is M1
6}, THEN

ẋ(t) = A1x(t) + B1u(t) + D1w(t), y(t) = C1x(t)

Rule 2: IF {x1 is M2
1}, {x2 is M2

2}, · · · , {x6 is M2
6}, THEN

ẋ(t) = A2x(t) + B2u(t) + D2w(t), y(t) = C2x(t)

Rule 3: IF {x1 is M3
1}, {x2 is M3

2}, · · · , {x6 is M3
6}, THEN

ẋ(t) = A3x(t) + B3u(t) + D3w(t), y(t) = C3x(t)
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The selection of lower and upper membership functions is as follows: when j takes on
values of 1, 2, 3

M1
j =

{
xj + 1,−1 ≤ xj < 0
−xj + 1, 0 ≤ xj ≤ 1

M2
j =

{
−xj,−1 ≤ xj < 0
0, 0 ≤ xj ≤ 1

M3
j =

{
0,−1 ≤ xj < 0
xj, 0 ≤ xj ≤ 1

if j = 4, 5, 6

M1
j =

{
1.818xj + 1,−0.55 ≤ xj < 0
−1.818xj + 1, 0 ≤ xj ≤ 0.55

M2
j =

{
−1.818xj,−0.55 ≤ xj < 0
0, 0 ≤ xj ≤ 0.55

M3
j =

{
0,−0.55 ≤ xj < 0
1.818xj, 0 ≤ xj ≤ 0.55

where hi(λ(t)) = hi(x(t)) = ψi(x)∑r
i ψi(x) and ψi(x(t)) = ∏

η
j=1 M

i
j(xj(t)). The corre-

sponding curves are depicted in Figures 2 and 3.
Considering the previously mentioned three operating points , we can determine the

values of the matrices Ai, Bi, and Ci for i = 1, 2, 3 in the presence of the external disturbance
d(t). These matrices are illustrated in Figure 4. In order to stabilize the flexible spacecraft
system, matrix Θ is provided as follows:

Θ =

 −0.8 0.3 0.5
0.5 −1 0.5
0.7 0.6 −1.3



Figure 2. Membership functions of T-S fuzzy sets Mi
j(xj(t)), j = 1, 2, 3.
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Figure 3. Membership functions of T-S fuzzy sets Mi
j(xj(t)), j = 4, 5, 6.

Figure 4. Simulation results of disturbance.
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The sensor output matrices are given as follows: L1 = 0.8I, L2 = 0.5I, and L3 = 0.9I.
For Fr and Gr, consider the following three cases.

Case I—a normal mode:

F1 = I, G1 = 0

Case II—flawed operational state with partial loss of functionality:

F2 =

 0.7 0 0
0 0.8 0
0 0 0.6

, G2 = 0

Case III—bias faulty mode:

F1 = I, G1 = I

The transition rate matrix for the nonhomogeneous Markov process is as follows:

Π(t) = cos2(t)Π1 + sin2(t)Π2 (52)

where

Π1 =

 −1.7 0.9 0.8
1 −5 4

1.6 1.1 −2.7

, Π2 =

 −5 2 3
0.1 −0.5 0.4
1 1 −2

. (53)

Setting γ = 0.1, ε1 = 1, ε2 = −0.1, and Π(t) = Π1, and focusing solely on Case I,
where Fr = F1 and Gr = G1, we utilize Theorem 2 to determine that the maximum allowable
value for the upper bound of c2 is 6.0114. When considering all three cases under the same
theorem, this upper bound is refined to 5.7741. Notably, this finding surpasses the upper
bound of 5.4 previously established in [24]. From the above analysis, we draw three
key conclusions:

C1: The comparison between 6.0114 and the value reported in [24] (5.4) clearly
demonstrates the superiority in the current study, signifying a notable enhancement in the
system’s performance.

C2: Observing that the upper bound remains at 6.0114 and 5.7741 across different
faults, it is evident that the system’s performance is optimized as fault tolerance is reduced.
Thus, to achieve better system performance, one must tolerate smaller faults, and vice versa.

C3: It is important to highlight that the homogeneous case represents a special instance
of the nonhomogeneous case as given in (52), with the latter being a more encompassing
and general representation.

The three pivotal conclusions drawn highlight that the proposed method not only
exhibits a more generalized framework but also outperforms existing models in terms of
system performance.

Further, based on the condition specified in Equation (53), Theorem 2 provides the
feedback gains as follows:
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K11 =

 −152.2274 29.9847 12.2479 −45.5341 5.7843 2.0314
25.4123 −164.5127 −4.8521 4.2974 −48.2479 0.1147
14.5746 −7.2145 −72.1453 −5.4762 −0.7841 −45.4574


K21 =

 −154.2149 31.0146 17.1142 −56.4046 5.2194 2.5448
26.1417 −162.2747 −5.3147 4.9413 −56.0141 0.7412
14.5172 −8.4547 −77.5314 −5.3118 −0.7468 47.5741


K31 =

 −151.1742 30.1467 18.1024 −59.1042 4.9017 2.9013
26.1417 −162.2747 −5.3147 4.9413 −56.0141 0.9014
12.1435 −8.4471 −76.1147 −6.2471 −0.7785 45.9821


K12 =

 180.5112 90.5017 41.1475 −54.4571 5.8147 2.2347
207.2431 −165.2114 −13.8141 5.0464 −62.0117 2.0013

0.1147 −25.1421 −102.1447 3.2414 −1.2471 −30.9114


K22 =

 175.1271 88.5717 40.7571 −55.0717 4.9717 3.4157
202.4317 −162.0174 −18.1470 54.1654 −60.1074 3.1710

1.0107 −21.2018 −12.4471 4.0114 −2.0070 −19.1010


K23 =

 177.4107 85.0074 47.5077 −50.7047 7.1074 4.1007
240.0311 −120.1277 −14.5701 51.6051 −61.0071 1.7170

1.1074 −20.0114 −14.4712 41.0144 −0.0471 −11.0108


When initializing the system with x(0) = [2,−1.5, 1,−2, 1,−2], we can observe the

state responses of the closed-loop fuzzy system in Figures 5 and 6. These figures serve to
highlight the effectiveness of the control design method, particularly when dealing with a
nonhomogeneous Markovian process.

Figure 5. The state responses of w.



Mathematics 2024, 12, 503 23 of 25

Figure 6. The state responses of q.

5. Conclusions

This paper has considered the formidable challenge of achieving finite-time fault-
tolerant control in nonlinear flexible spacecraft systems that are susceptible to actuator
faults. Our approach is grounded in the T-S fuzzy model methodology, where actuator
failures are modeled as stochastic signals governed by a nonhomogeneous Markov process.
To adeptly handle the complexities introduced by these components, we employ a represen-
tation of the nonhomogeneous Markov process as a polytope set. Our proposed solution
involves the development of a robust nonhomogeneous Lyapunov stability framework,
further enriched by the introduction of adaptable parameters. This innovative controller
design methodology yields a stability criterion that guarantees H∞ performance in a mean-
square sense. To empirically validate the efficacy of our approach, we present a numerical
example featuring a nonlinear spacecraft system. This demonstration underscores the
practical applicability and advantages of our proposed methodology. Future work will
concentrate on extending this research to practical deployments and addressing unknown
or unpredictable faults within the system.
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