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Abstract: The prediction of future disease development based on past diagnosis records has gained
significant attention due to the growing health awareness among individuals. Recent deep learning-
based methods have successfully predicted disease development by establishing relationships for
each diagnosis record and extracting features from a patient’s past diagnoses in chronological order.
However, most of these models have ignored the connections between identified diseases and low-risk
diseases, leading to bottlenecks and limitations. In addition, the extraction of temporal characteristics
is also hindered by the problem of global feature forgetting. To address these issues, we propose a
global context-aware net using disease relationship reasoning and attention-based feature fusion,
abbreviated as DRR. Our model incorporates a disease relationship reasoning module that enhances
the model’s attention to the relationship between confirmed diseases and low-risk diseases, thereby
alleviating the current model’s bottlenecks. Moreover, we have established a global graph-based
feature fusion module that integrates global graph-based features with temporal features, mitigating
the issue of global feature forgetting. Extensive experiments were conducted on two publicly available
datasets, and the experiments show that our method achieves advanced performance.

Keywords: disease prediction; disease relationship reasoning; graph-based feature

MSC: 68T07

1. Introduction

The growing interest in using artificial intelligence (AI) [1] to improve healthcare
delivery and patient outcomes through electronic health records (EHRs) reflects a shift
towards leveraging technology in medicine, especially in predicting patient health out-
comes. A vital component of this progression is the extraction and utilization of patient
characteristics from longitudinal EHRs [2,3]. The more detailed the patient data available,
the more sophisticated and effective the resulting medical Al systems can be. In recent
years, there has been a significant surge in the adoption of Electronic Health Record (EHR)
systems globally, leading to the accumulation of substantial amounts of electronic patient
data. These data include both structured components, such as disease and medication
codes, and unstructured elements, such as clinical narratives and progress notes.

Given that EHRs consist of both structured and unstructured data, the application of
deep learning techniques is an excellent approach. Deep learning can effectively process
and interpret the varied and complex layers of data in EHRs. This ability allows for the
extraction of a wide range of information, which can be used to predict the likelihood of a
patient developing certain medical conditions, anticipate reactions to specific medications,
and forecast future health conditions. The use of deep learning for disease prediction
in the context of EHRs represents a forward-thinking strategy in leveraging the rich,
multifaceted data available in these records. In this realm, disease prediction models using
deep learning are primarily categorized into three types: models based on the Transformer
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architecture [4-6], time-series models based on recurrent neural networks (RNNs) [7,8], and
models based on convolutional neural networks (CNNs) [9] and graph-based [10-13]. One
of the main keys behind these models for disease prediction tasks is to mine information
from patients’ previous diagnostic data at each diagnosis and utilize it to forecast patients’
future disease progression. How models learn disease features, especially the contextual
relationships between diseases, remains a challenge to this day.

Recently, Lu et al. proposed GCL [10] and Chet [11], which employed graph-based

methods to establish relationships between diseases and achieved success in health event
prediction tasks. However their methods also face certain bottlenecks:

The clinical observation that if a patient has had disease A for a prolonged length of
time, the probability of the patient developing disease B in the future significantly
increases is the primary motivation for employing a graphical approach to establish
connections between diseases. Therefore, it is reasonable to draw graphical corre-
lations between diseases with current diagnoses and diseases with high risk. Deep
learning models can be used to understand the relationships between high-risk dis-
eases and presently identified diseases, aligning with clinical practice and potentially
assisting in disease prediction. However, this clinical experience frequently neglects
the potential for future diagnoses of low-risk disorders [14]. While using high-risk
diseases to forecast future diseases can improve model performance, ignoring low-risk
ones will create a bottleneck in the model. As illustrated in Figure 1, previous methods
have focused on the relationship between high-risk diseases and diagnosed diseases;
ours looks at not only the relationship between high-risk diseases and diagnosed
diseases but also the relationship between low-risk diseases and diagnosed diseases.
RNN s are frequently used to extract temporal information from a patient’s histori-
cal diagnostic records after correlations between currently diagnosed diseases and
high-risk or low-risk diseases have been shown graphically. This approach aligns with
clinical experience, as it involves predicting disease progression based on a patient’s
prior medical history. However, when dealing with long-term sequences, RNN algo-
rithms encounter the issue of forgetting. Depending on the co-occurrence connections
between diseases, it is possible to overlook global information and consider certain
diseases as low-risk when they seem to have improved. However, these diseases often
have a significant likelihood of recurrence, which will create a bottleneck in the model.

Ours

rd

Diagnosed

High-risk

Low-risk previous methOd

Figure 1. Difference between the previous methods such as GCL [10], Chet [11], and our method
DRR. GCL and Chet have only focused on the relationship between high-risk diseases and diagnosed

diseases, DRR focuses also on the relationship between low-risk diseases and diagnosed diseases.
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We propose two modules to address these problems: the disease relationship reasoning
module and the global graph-based feature fusion module. We offer a module for disease
relationship reasoning to address the first bottleneck. The aim is to disrupt the co-occurrence
associations among specific diseases to increase the number of samples in the training
set where low-risk diseases transition to confirmed diseases. This compels the model to
focus on the connections between diagnosed diseases and low-risk diseases. Additionally,
we introduce a module for global graph-based feature fusion and denoising to tackle the
second challenge. This module extracts subgraph-based features for high-risk diseases,
presently diagnosed diseases, and their relationships with high-risk diseases at prior time
points at various time points. A global subgraph is created by denoising and combining
subgraphs from multiple time points. The issue of forgetting global features is solved by
the global subgraph-based features, which complement the global characteristics that RNN
algorithms overlook.

We conducted experiments with our method on two public datasets. For the health
event prediction task, DRR achieved state-of-the-art results, demonstrating improvements
of 2.06% and 2.95% over the previous best results on the two datasets, respectively. In
summary, the main contributions of this paper are summarized as follows:

¢ We propose the DRR model, which reconstructs the relationships between diagnosed
diseases, high-risk diseases, and low-risk diseases, breaking the model bottleneck
caused by existing models’ over-reliance on diagnosed and high-risk diseases.

* In our approach, we mitigate the global feature forgetting issue in disease prediction
tasks of the GRU method by de-fusing the features of high-risk diseases at different
time nodes with the features of diagnosed diseases.

*  DRR was tested on two public datasets, Medical Information Mart for Intensive Care
III (MIMIC-II) [15] and Medical Information Mart for Intensive Care IV (MIMIC-
IV) [16], and achieved state-of-the-art results, thereby confirming the effectiveness of
our method.

2. Related Work
2.1. RNN-Type in Health Event Prediction

Health event prediction is a fundamental aspect of the field of medical informatics,
encompassing the prediction of individual medical conditions, diseases, or health-related
events. Researchers have made significant strides in this field over the years through
various data sources and methodologies. EHR is widely used in studies to forecast health
events. Researchers use machine learning and deep learning techniques to mine patient
demographics, medical histories, diagnostic records, and other EHR data for insightful
information. These models are designed to predict diseases, adverse events, or treatment
outcomes based on patients’ historical data. Dipole [8] incorporated three attention mecha-
nisms into the recurrent neural network (RNN) to model connections between different
patient visits. Choi et al. proposed RETAIN [7], an improved RNN model that com-
bines clinical interpretability with high accuracy. DRR constructs relationships between
diagnosed diseases and high-risk or low-risk diseases in a patient’s single visit using a
graph-based method. Subsequently, it utilizes RNN-like methods to extract temporal fea-
tures from a patient’s entire visit history records. While methods exist that leverage CNN
features to address the limitations of RNN-based approaches, they fundamentally differ
from DRR.

2.2. Graph Method in Health Event Prediction

Graph-based methods have attracted significant attention and demonstrated remark-
able success in the field of health event prediction. These approaches represent relationships
among medical entities, such as diseases, symptoms, and drugs, as nodes and edges within
a graph structure. This enables the extraction of more intricate features and enhances
prediction capabilities [17]. In recent times, substantial efforts have been directed towards
two primary objectives: establishing relationships within graphs [18,19] and improving the
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efficiency of graph neural networks. Notably, GRAM [13] was the pioneering work that
successfully integrated graph-based approaches into disease prediction tasks. G-BERT [12]
is another notable example, which constructs disease relationships using graphs and subse-
quently leverages BERT [20] to process these constructed disease relationships. Moreover,
CGL [10] delves deep into the exploration of patient—disease interactions and the utilization
of medical domain knowledge. In contrast, the Chet method [11] constructs relationships
between diseases using graphs and utilizes RNN-like techniques for the extraction of tempo-
ral features. This is achieved by incorporating transformation functions that learn patterns
in disease progression, ultimately enabling predictions of future disease development.
DRR, during the construction of the graph, intentionally disrupts certain co-occurrence
relationships to sharpen the model’s attention on connections between diagnosed diseases
and low-risk diseases, thus effectively tackling the bottleneck challenges encountered in
the aforementioned graph-based methods.

2.3. NLP Method in Health Event Prediction

Recently, researchers have recognized natural language processing (NLP) as a crucial
technology for healthcare event prediction. NLP techniques learn from extensive amounts
of human text data in a self-supervised manner and have demonstrated significant success
when fine-tuned for specific tasks within EHR [5,6]. Nevertheless, such models often
demand substantial computational resources. In contrast, DRR, with its modest model
parameter size of just 2.3 million, can be deployed at the edge for efficient processing.

3. Method
In this section, we present the details of our proposed method DRR. An overview of
DRR is shown in Figure 2.
)
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Figure 2. An overview of the proposed DRR model. The model utilizes all HERs to construct a
global graph, with nodes symbolizing diseases diagnosed in patients and edges reflecting disease
co-occurrence frequencies. In global graph, the node corresponding to the disease diagnosed in
patient 7 at time ¢ is termed the “diagnosed disease node”. Nodes linked to this are “high-risk nodes”,
while those connected to high-risk but not to the diagnosed disease node are “low-risk nodes”. The
model extracts three types of subgraph encodings for each patient at time T using GCN for feature
extraction. An attention mechanism rebuilds relationships between the diagnosed disease at time T
low-risk diseases, high-risk diseases at time T, and high-risk diseases at time T — 1. These features
are then processed through a GRU to extract temporal features. Finally, the model integrates these
temporal, high-risk, and diagnosed disease features to predict patient disease diagnosis at time T +- 1.

3.1. Problem Formulation

EHR contains the medical records of patients for each visit to the hospital. During
each medical encounter, patients are diagnosed with one or more diseases, which are
represented by a series of medical codes. These confirmed diseases are assigned specific
codes predefined by modern medical systems such as ICD-9-CM or ICD-10. For instance,
“left heart failure, diabetes mellitus” is assigned the code 428.1, 250 in ICD-9-CM. We use the
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set U = {uq,up,...,uy} to represent the confirmed diseases, where d is the code number.
For each patient p € P, a set of vectors m' = {my,,my,, ..., my,} is used to represent the
diagnosed diseases during the t-th visit, where m;, € {0,1}, and mj, = 1 indicates that the
patient was diagnosed with disease u; during the t-th visit,and t = 1,2,...,T,i € [1,4|,
where T is the visit number of p. For patient p, all of their diagnostic records can be
represented as E, = {m',m?,...,m"}. The EHR dataset is defined as D = {Ep|p € P}.

Health event prediction involves using an EHR dataset D, given a patient p’s entire
history of confirmed medical records Ej, to predict all potential health events m'™! that p
may encounter during their next hospital visit.

Common disease prediction involves the identification of prevalent chronic conditions
such as palpitations, hypertension, diabetes, etc. By analyzing a patient’s historical con-
firmed medical records E,, it aims to predict whether the patient will be diagnosed with a
specific disease u; in the future, mzi+1 €{0,1}.

3.2. Global Graph Definition

We constructed the global graph G using the method proposed by Chet. In G, each
node represents a disease u; from set U. The edges < u;, u; > in G represent the frequency
of diseases u; and u; co-occurring. It is important to note that the values of < u;, u; > and
< uj,u; > are different because, based on clinical experience, the presence of disease u;
may lead to the presence of disease u;, but the reverse is not necessarily true. We used an

adjacency matrix A € R¥*? to represent the global graph G :

0 if i=j or —fi— <3,
Aij = ijlﬂj ’ (1)
% otherwise.
A = {c]- | dﬁf > 5}. @)
Yim1fij

Ajj represents the edges < u;, u; > in the global graph G. f;; is the frequency of disease
u; appearing in the samples when disease u; is present. We have set a threshold 6, to filter
out diseases that have low-frequency occurrences when disease u; is present while retaining
diseases with high-frequency occurrences A;, g; represents the sum of frequencies of all
other high-frequency occurring diseases when disease u; is present, q; = che A fij-

3.3. Disease Relationship Reasoning Module

In this section, we introduce the disease relationship reasoning module in DRR. From
the diseases identified in patients at time ¢, it is possible to deduce high-risk diseases based
on clinical experience. In addition, the illnesses that people may be diagnosed with at time
t + 1 frequently develop from the high-risk illnesses noted at time ¢. However, the low-risk
illnesses discovered at time f may also be the source of the illnesses detected at time ¢ + 1.
If the majority of the training samples at time ¢ + 1 are derived from high-risk diseases
identified at time ¢, the model may not allocate sufficient attention to the relationship
between low-risk diseases at time ¢ and the diagnosed diseases at time t + 1. To tackle
this issue, we employed a masking strategy to conceal certain diseases identified at time ¢,
effectively categorizing some high-risk diseases as low-risk diseases. This method increases
the number of instances where low-risk diseases progress into diagnosed diseases, as
defined in Equations (3) and (4):

mask; = {0 Y oo<a <1, 3)

mt = m' @ mask. 4)
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We have set a threshold value a. For a patient u at a certain time ¢ and all confirmed
disease sequences m' for any disease j, there is a probability 1 — « that m; transitions from

confirmed to unconfirmed, and a probability of « to remain unchanged, m! represents the
confirmed sequence that has undergone random masking.

E! represents the disease confirmed in patient i at time £. We need to predict Ef“ based
on E!. If patient j is diagnosed with a disease similar to that of patient i and also develops
some diseases that patient i does not have, then we consider these newly developed diseases
as high-risk diseases H! that patient i may be diagnosed with at time  + 1. It is important
to note that some diseases may not have appeared in patient i’s previous visits or in the
list of high-risk diseases that may be confirmed, but they appear in the ¢ + 1 diagnosis. We
refer to such diseases as low-risk diseases L. This assumption is also based on complex
clinical experience.

1 mt=1,m =0,A; #0 -
H = joo T b, mb € mt 5
! {0 otherwise e )
L' = -m!t N —H' (6)

We provided the calculation method for hight-risk diseases H! for a patient at time ¢
from Equation (5). A patient’s high-risk diseases at time t are represented as
H' = {H}, Hj,...,H}}. Low-risk L' = {L!,L%,... L]} are determined using Equation (6).

In order to transform the multi-hot column vectors of ni;, H;, and L; into vectors
suitable for deep learning model training, we conducted a self-encoding on them in the
context of the global graph G. The details are as follows:

Lt, = (L'®em), H,, = (H ©em), mtyy, = (mt ®em), )
Fl, = 0(Wiu(A @ mt ey + mtem + HL,) + bi), (8)

Fl, =9(Wy(A® H:, + H., +mten) + by), 9)

Fl = 9(WL(A® Lew + Lem) + br). (10)

where em denotes a set of randomly generated vectors between 0 and 1, and Ffm HL}
denotes the feature encoding learned through the global graph G at time £. Wy 11} and

by m,1) are weight and bias matrices, and 9 refers to the LeakyReLU [21] activation function.

3.4. Global Graph-Based Feature Fusion Module

This section introduces the proposed global graph-based feature extraction module.
To improve future disease prediction accuracy, we extract information from the patient’s
previous diagnostic records. The patient’s historical diagnostic features are divided into
two categories: local subgraph-based features extracted using our global graph-based
feature and fusion module from the patient’s subsequent diagnoses, and temporal features
extracted using a GRU [22] module from sequential information. To extract global graph-
based characteristics representing the patient’s disease progression, we aggregate all feature
subgraphs from different time points into a unified representation. These global graph
attributes will provide essential decision support for identifying potential future illnesses
of the patient. The denoising module seeks to combine these feature subgraphs since local
feature subgraphs from various time points may contain information that overlaps. This
enhances the accuracy of predictions by allowing the global graph-based feature data to
complement the temporal features produced by the GRU.

FLrpyp, hiddeny = GRU(FL,, Fl,, Fl, hidden; 1) (11)

g, = Counld(F.)) (12)
¢4 = Counld(Fl)) (13)
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gh 1 = Counld(FL 1) (14)
t (ot—1\T
5= softmax(w)gh (15)
a
output = softmax(SW) (16)

The confirmed diseases at time ¢, high-risk diseases, and the high-risk diseases at time
t — 1 are constructed into a local feature subgraph. The Covnld is used to denoise the local
feature subgraph, followed by the Atten module to establish the relationship between high-
risk diseases at time t — 1, confirmed diseases, and high-risk diseases at time t. The method
for establishing the relationship between low-risk diseases and diagnosed diseases is the
same as mentioned above. Here, a represents the attention size, g,tn denotes the features
of the confirmed subgraph at time ¢, g, ! signifies the features of the high-risk disease
subgraph at time ¢ — 1, ¢!, embodies the features of the high-risk disease subgraph at time
t, and FL ,,; represents the temporal features extracted using the GRU module at time ¢.
Specifically, g, is utilized as Q, g/, ! as K, and g%, as V to derive the local feature subgraph F
through the application of the Atten module. The global graph-based features are denoted
as Fg = {F}, F2,...,FL}, and the temporal features as Fgay = {FL a1 F2ayr-- - Fhau}-
After concatenating these vectors, they are fused using Atten to combine the temporal
features and global graph-based features. Finally, the fused features are passed through a
classification module to obtain the disease diagnosis prediction results at time T + 1.

4. Experiments
4.1. Experimental Setups

We use three common tasks to predict health events:

e Disease prediction. This task involves predicting all possible diagnosed diseases for a
patient at time T + 1 based on the patient’s previous T instances of confirmed disease
records. It is a multi-label classification.

e  Heart failure prediction. This task involves predicting whether a patient will be
diagnosed with heart failure at time T + 1 based on the patient’s previous T instances
of confirmed disease records. It is a binary classification.

e Common disease prediction. We have collected data on some common diseases
diagnosed in the MIMIC-1V dataset, including hypertension, diabetes, and others.
This task involves predicting whether a patient will be diagnosed with these common
diseases at time T + 1 based on the patient’s previous T instances of confirmed disease
records. It is a binary classification.

The above three tasks all use sigmoid as the activation function for the classifier and
employ binary cross-entropy loss as the loss function.

Evaluation metrics. The evaluation metrics for the health events prediction are
weighted F; score (w-F;) [23] and top k recall (R@k) [24]. w-F, is a performance metric
for evaluating medical codes, calculated as the weighted sum of F; scores. This metric is
commonly employed to assess the performance of machine learning models in the medical
field. R@k is a metric used to evaluate the performance of predictive models. It assesses the
model’s performance by calculating the average ratio of correctly predicted medical codes
in the top k predictions for each visit or scenario, compared to the total number of correct
medical codes. This metric helps evaluate the model’s ability to prioritize and predict the
most relevant medical codes.

Datasets. We used MIMIC-III [15] and MIMIC-1V [16] to validate the predictive power
of DRR. MIMIC-III contains 7493 patients with multiple visits (T > 2) from 2001 to 2012,
while MIMIC-IV includes 85,155 patients with multiple visits from 2008 to 2019. There is a
temporal overlap between the two datasets, and we randomly selected 7493 patients from
MIMIC-III and 10,000 patients from MIMIC-IV for the years 2013 to 2019.

We divided both the two datasets into training, validation, and test sets based on
patient records randomly. In the case of MIMIC-III, this involved 6000/493/1000 patients,
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while MIMIC-IV included 8000/1000/1000 patients. We used the last visits as labels and
considered the rest as features. The global combination graph G was constructed based on
feature visits within the training set.

For the common disease prediction task, we identified common diseases among
patients in the MIMIC-IV training set. If a patient is diagnosed with a common disease
during their last visit, we assign a label of 1; otherwise, the label is set to 0. The heart failure
prediction task followed a similar method.

Baseline methods. To compare DRR with the state-of-the-art models, we selected the
following methods as baselines:

*  RNN/Attention-based model:RETAIN [7], Dipole [8], Timeline [23], and HiTANet [25].
*  CNN-based model: Deepr [9].
e Graph-based model: GRAM [13], G-BERT [12], CGL [10], and Chet [11].

The evaluation metrics for the above-mentioned baseline were based on the results
reported in Chet’s study.

Parameter settings. In the experiments, we initialized the model’s parameters ran-
domly. Hyperparameters and activation functions were tuned on the validation set. For
disease prediction, the masking rate & was set to 0.6 for MIMIC-III and 0.5 for MIMIC-IV.
The GRU hidden size was set to 256 for MIMIC-III and 200 for MIMIC-IV. Subgraph-based
features F(t_; were the same for both datasets, set at 32. Atten size a was set to 32 for both
datasets. For heart failure prediction, the masking rate « was set to 0 for both datasets.
The GRU hidden size was set to 32 for MIMIC-III and 64 for MIMIC-IV. Subgraph-based
features Fé were the same for both datasets, set at 32. Atten size a was set to 32 for both
datasets. Common disease prediction and heart failure prediction used the same parameter
settings, with experiments conducted only on the MIMIC-IV dataset.

We employed the Adam [26] optimizer with 100 iterations and a learning rate of 0.01.
Our experiments were carried out on a GeForce RTX 3090 while using Python 3.10 and
PyTorch 2.0.

4.2. Comparative Experiments

Disease prediction. Comparison of diagnosis prediction results on the MIMIC-III and
MIMIC-1V datasets using w-F1 (%), R@10 (%), R@20 (%), AUC (%), and Parame (M). On
average, each patient in the dataset has around 13 diseases per visit, and we chose k = 10
and k = 20 for our R@K metric to evaluate the performance of disease prediction.

In Tables 1 and 2, we showcase DRR’s predictive performance for diseases across both
the MIMIC-III and MIMIC-1V datasets. Our model achieves the state-of-the-art perfor-
mance. Notably, it performs admirably despite having a modest 2.3 million parameters.
Furthermore, our model outperforms other models significantly, particularly on the MIMIC-
IV dataset. MIMIC-IV is more advanced than MIMIC-III due to its inclusion of a larger
volume of historical patient data. This highlights the shortcomings of earlier methodologies
in handling extended time series, while our approach successfully augments time-series
features by extracting global subgraph-based features.

Heart failure prediction. We showcase the results of our model in the heart failure
prediction task in Table 3, using AUC (%) and F; (%) as evaluation metrics. Even in low-
parameter situations, our method achieves state-of-the-art performance. It is crucial to
notice that we set the masking rate to 0 for the heart failure prediction task. This is primarily
due to the importance of disease co-occurrence associations in clinical medical diagnosis.
We categorize undiscovered illnesses into high-risk and low-risk categories by considering
these co-occurrence associations. Although a patient’s condition might be caused by a
low-risk disease, the majority of confirmed diseases should be caused by high-risk diseases.
We use masking to disrupt some of the disease co-occurrence relationships in order to
force the model to learn the association between detected diseases and low-risk diseases. It
is interesting to note that while the disease prediction task benefits from using masking,
the heart failure prediction challenge sees the model performing better without it. This
discovery is primarily attributed to the fact that the heart failure prediction task focuses on
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determining whether a patient will be diagnosed with heart failure at T 4 1, making the
correlations between diseases’ co-occurrences essential. On the other hand, the association
between currently diagnosed diseases and low-risk diseases emerges as the key bottleneck
for boosting model performance in the disease prediction task, which aims to predict all
potential diseases a patient may be diagnosed with at T + 1. This outcome also supports
the important role played by our disease relationship reasoning module in establishing
connections between low-risk diseases and currently identified diseases.

Table 1. Comparison of diagnosis prediction results on MIMIC-III datasets using w-F1 (%), R@10 (%),
R@20 (%), AUC (%), and Parame (M). On average, each patient in the dataset has around 13 diseases per
visit, and we chose k = 10 and k = 20 for our R@K metric to evaluate the performance of disease prediction.

Diagnosis Prediction MIMIC-III

Models w-F (%) R@10 (%) R@20 (%) Params (M)
RETAIN 20.69 26.13 35.08 2.90
Deepr 18.87 24.74 33.47 1.16
GRAM 21.52 26.51 35.80 1.59
Dipole 19.35 24.98 34.02 2.18
Timeline 20.46 25.75 34.83 1.23
G-BERT 19.88 25.86 35.31 6.15
HiTANet 21.15 26.02 35.97 3.33
CGL 21.92 26.64 36.72 1.5
Chet 22.63 28.64 37.87 2.12
DRR 24.69 28.31 37.43 2.34

Table 2. Comparison of diagnosis prediction results on MIMIC-IV datasets using w-F1 (%), R@10 (%),
R@20 (%), AUC (%), and Parame (M). On average, each patient in the dataset has around 13 diseases per
visit, and we chose k = 10 and k = 20 for our R@K metric to evaluate the performance of disease prediction.

Diagnosis Prediction MIMIC-1V

Models w-F (%) R@10 (%) R@20 (%) Params (M)
RETAIN 24.71 28.02 34.46 3.56
Deepr 24.08 26.29 33.93 1.44
GRAM 23.50 27.29 36.36 1.67
Dipole 23.69 27.38 35.58 2.51
Timeline 25.26 29.00 37.13 1.52
G-BERT 24.49 27.16 35.86 7.53
HiTANet 24.92 27.45 36.37 3.93
CGL 25.41 28.52 37.15 1.83
Chet 26.35 30.28 38.69 2.59
DRR 29.30 30.73 39.65 2.32

Common disease prediction. As shown in Table 4, we selected four common disorders
to assess the applicability of our methodology from the MIMIC-IV dataset. To predict these
four prevalent diseases, we used the same factors as in the heart failure prediction task.
Additionally, we used the state-of-the-art Chet method as a benchmark because it also
utilizes parameters from the heart failure prediction task.
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Table 3. Hear failure prediction results on MIMIC-III and MIMIC-IV using AUC (%) and F1 (%).

Heart Failure MIMIC-III MIMIC-IV

Models AUC (%) F (%) Params (M) AUC (%) F (%) Params (M)
RETAIN 83.21 71.32 1.67 89.02 67.38 1.99
Deepr 81.36 69.54 0.53 88.43 61.36 0.65
GRAM 83.55 71.78 0.96 89.61 68.94 0.88
Dipole 82.08 70.35 1.41 88.69 68.94 0.88
Timeline 83.34 71.03 0.95 87.53 66.07 0.73
G-BERT 81.50 71.18 3.58 87.26 68.04 3.95
HiTANet 82.77 71.93 2.08 88.10 68.21 3.95
CGL 84.19 71.77 0.55 89.05 69.36 0.60
Chet 86.14 73.08 0.68 90.83 74.14 0.88
DRR 86.33 72.35 0.85 94.30 81.57 1.00

Table 4. Common diseases prediction results on MIMIC-IV using AUC (%) and F1 (%).

Diseases Prediction Chet DRR

Diseases Name AUC (%) F (%) AUC (%) F (%)
Diabetes 83.98 74.55 95.13 87.15
Heart Attack 91.13 61.94 94.11 63.58
Hypertension 84.32 75.22 87.52 77.22
Cardiac Arrhythmia 85.34 32.43 90.03 79.37

4.3. Ablation Study

In Table 5, we performed ablation tests to confirm the efficacy of our suggested disease
relationship reasoning module and global graph-based feature fusion module. In the
MIMIC-IV dataset’s disease prediction task, we compared these experiments. DRR, ;- is
the model with both modules removed. DRR, - is the model with the disease relationship
reasoning module removed, and DRR- is the model with the global graph-based feature
fusion module removed. DRR represents the model without removing either module.

Table 5. The results of ablation experiments are conducted on MIMIC-1V for disease prediction tasks,
Using w-F; (%) as the evaluation metric.

Model Name w-F (%)
DRR, ;- 26.35
DRR,- 28.95
DRR,- 28.43

DRR 29.30

4.4. Visualization Analysis

We conducted a visualization analysis in the context of heart failure prediction to
validate the efficacy of our model. Prior to applying the classifier, we extracted features
and reduced the dimensionality using the t-SNE approach [27]. Subsequently, we labeled
the data points and applied color coding, with red indicating diagnosed patients and
blue indicating undiagnosed patients. Figure 3 presents the visualization results, where
Figure 3a represents the outcomes before training, and Figure 3b represents the results after
training. In Figure 3a, the features of both diagnosed and undiagnosed patients seem to
cluster together. However, after model training, as shown in Figure 3b, we observe that
diagnosed and undiagnosed patients are divided into distinct clusters. This demonstrates
the strong classification capability of our model.



Mathematics 2024, 12, 488

11 of 12

References

e Undiagnosed -’ ¢ Undiagnosed
e Diagnosed - e Diagnosed
Y
, #
L

(a) untrain result (b) train result

Figure 3. Visualization analysis. Prior to the classifier, features were retrieved, and dimensionality
was reduced using the t-SNE approach. The red dots denote the characteristics of patients diag-
nosed with heart failure, and the blue dots represent those of individuals undiagnosed with the
condition. (a) shows the characteristics of patients extracted directly without model training, where
features of both diagnosed and undiagnosed individuals are interwoven. In contrast, (b) shows
the characteristics post model training, demonstrating a clear demarcation between the features of
heart failure patients and those without, thereby emphasizing the model’s effectiveness in precise
feature differentiation.

5. Conclusions

In this paper, we introduce an approach aiming at addressing the challenges associated
with health event prediction. This model incorporates a disease relationship reasoning
module and a global graph-based feature fusion module. The disease relationship reasoning
module enhances the model’s understanding of the relationship between detected diseases
and low-risk diseases, thereby overcoming the prediction model’s limitations. It achieves
this by randomly masking illness co-occurrence connections. The global graph-based
feature fusion module complements the global features that are often neglected in RNN-
based methods by integrating local subgraph-based features. Experiments conducted on
the EHR dataset verify the effectiveness of our method. Our method achieved 2.06% of
w-F; improvement on MIMIC-III, 2.95% of w-F; improvement on MIMIC-IV compared to
the current state-of-the-art methods. In the future, we plan to incorporate a wider range
of clinical data and explore more efficient and interpretable approaches for healthcare
event prediction.
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