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Abstract: In the era of self-media, the spontaneity and anonymity of information dissemination have
led to a surge in rumors, posing significant challenges to cybersecurity. This paper introduces a
novel dual-layer VR − SHI1 I2R rumor control model for studying collaborative rumor-debunking
efforts. Utilizing mathematical modeling and simulation methods, we propose key thresholds
for rumor propagation from both theoretical and simulation perspectives, and explore optimal
methods for rumor control. Our model is validated with real data from actual cases, confirming
its accuracy and the effectiveness. The study shows that without intervention, rumors will spread
rapidly. Both constant and dynamically optimized control significantly slow down the spread of
rumors. However, dynamic optimization control significantly reduces control costs compared to
fixed control schemes. Moreover, we find that controlling only the media layer is insufficient. These
findings highlight the importance of meticulous approaches to rumor control in the digital age.

Keywords: collaborative debunking strategy; public refutation; information distortion; propagation
efficacy; optimal control

MSC: 49K15

1. Introduction

A rumor is unverified information circulated across communication channels, im-
pacting areas such as epidemic prevention, public policy, social events, medical health,
and natural phenomena. In today’s ‘self-media era’, rumor dissemination is faster and
more extensive, amplifying its societal harm. Rumor spread can have adverse effects
on the online environment and social stability and erode trust in traditional media and
government institutions. Effective control of rumors is of paramount importance.

Research on rumor spread predominantly employs mathematical modeling. The study
of rumor propagation models can be categorized into three stages: classical offline interper-
sonal network models, social network models incorporating various influencing factors,
and heterogeneous models that integrate network structure and contextual factors.

Classical offline interpersonal network models draw inspiration from epidemic disease
spreading due to similarities in mechanisms and dissemination objects [1]. Notable models
such as DK [2] and MT [3] have been widely applied to predict rumor spread in small-scale
social networks characterized by word-of-mouth communication, laying the theoretical
foundation for subsequent rumor propagation models. Regarding social network models
that account for diverse influencing factors, researchers have developed isomorphic models
from various perspectives. These models consider elements like opinion leaders, repetitive
retweeting behaviors [4,5], public biases [6], user experiences [7], multilingual contexts [8],

Mathematics 2024, 12, 462. https://doi.org/10.3390/math12030462 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030462
https://doi.org/10.3390/math12030462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12030462
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030462?type=check_update&version=1


Mathematics 2024, 12, 462 2 of 22

and uncertain propagation environments [9,10] to analyze critical nodes and pathways. In
the realm of heterogeneous network rumor propagation models, researchers have devised
models that account for the diverse nature of social networks. For instance, Shioda et al. [11]
explored the specific effects of strong information correlation on the Twitter platform,
while Zhao et al. [12] introduced a novel SEIR rumor propagation model based on scale-
free networks.

The inhibitory effect of media on rumor spreading cannot be ignored, Zhao et al. [13]
specifically studied the effect of positive and negative media reports on rumor spreading,
and they established a new class of SIR rumor-spreading model. In addition, rumor screen-
ing and anti-rumor behaviors of the public have also been studied. Xiao et al. [14] proposed
a rumor propagation dynamics model based on evolutionary games and anti-rumor infor-
mation, proving that rumors are not only influenced by anti-rumor information but also by
user behaviors and psychological factors. Zhu et al. [15] established a reaction–diffusion ru-
mor propagation model by considering a non-smooth control function to reflect government
and media refutation of rumor propagation. Pan et al. [16] comprehensively considered
population- and media-debunking mechanisms and established a class of SIDRW rumor
propagation model. Zhong et al. [17] similarly considered the population’s refutation
behavior of rumor and designed a randomized sedation scheme to suppress rumor propa-
gation. The above models gradually improve the research on rumor propagation in social
networks, and to a certain extent, reflect the propagation characteristics of public opinion
information, as well as the process of public opinion propagation under external interven-
tion or considering the influence of a person’s own psychology and behavior. The above
models have studied the dynamics of rumors from the perspective of public refutation or
media rumor debunking alone, but the responses of the public and media to rumors are
two-sided, and the two are coupled with each other and work together. However, there is
no rumor propagation model that integrates public refutation and media behavior.

Many articles have discussed optimal control [18–33], with Ding, Li, et al. [20] es-
tablishing the Controlled Rumor–Truth Spreading Model, which considers the isolation
of rumor spreaders and the effects of time. They used the variational method to obtain
optimal control quantities and conducted simulations. Conversely, Xupeng Luo, Haijun
Jiang, et al. [30] considered the multilingual environment and intervention mechanism,
establishing the I2SR rumor propagation model. They obtained optimal control conditions
using Pontryagin’s minimum principle. However, none of the above-mentioned articles
fully consider media control.

Few works consider the role of the media in guiding the spread of rumors, let alone
simultaneously considering the public’s refutation behavior of rumors. Therefore, this
paper focuses on the coupled propagation between a virtual layer with media intervention
and a social network layer that incorporates public refutation. The main contributions of
this paper are as follows:

• A two-layer VR − SHI1 I2R rumor propagation model under the coupling of virtual
and real layers is established by comprehensively considering the propagation and
clarification of rumors by the media and the propagation and refutation of rumors by
the public;

• We analyze the dynamic behavior of the control model and propose optimal control
schemes. Theoretical proofs demonstrate the existence and stability of equilibrium
points in the model, along with the expression for the optimal control strategy;

• Based on real case data, we verify the accuracy of the model and the effectiveness
of the collaborative control strategy through simulation experiments. By compar-
ing experimental data, we demonstrate that the cost under the collaborative rumor
debunking strategy is significantly lower than that under a single control strategy.

The rest of the paper is organized as follows. Section 2 deals with the modeling
and preparation. The establishment of equilibrium points and their stability analysis are
studied in Section 3. The optimal control of the model is given in Section 4. In Section 5,
the simulation analysis of the model in conjunction with a real case is given.
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2. Model Formulation

In the modern era, a large number of social groups acting as media join in the spread
of rumors, and their guiding effect is extremely obvious. As the main body of rumor
dissemination, a person’s subjective judgment on rumors also has a great influence on
rumor dissemination. Considering the above factors, a virtual reality two-layer rumor prop-
agation model is established, where the virtual layer (V) denotes the network constructed
by media such as virtual online social network platforms like Facebook, TikTok, etc., which
spreads or clarifies the rumors through the form of articles, videos, etc., and the real layer
(R) denotes the social network constructed by real human beings, such as friends, family
members, colleagues, etc., through language, text messages, etc., which is used to share or
refute rumors.

2.1. Establishment of the Virtual Layer (V)

The media in the virtual layer (V) are classified into three types, namely, silent media
M1 (Silent Media), which denotes unpublished media related to the event, rumor-spreading
media M2 (Rumor-spreading Media), which denotes media that spreads rumor-related
opinions, and rumor-refuting media M3 (Rumor-refuting Media), which denotes media
that spreads rumor-refuting media. At a certain moment, each type of media may be in one
of the above three states, and the specific transition relationship is shown in Figure 1.

Figure 1. Relationships between Media in Virtual layer V.

Next, we provide a detailed description of the specific dissemination process of the
V-layer and its corresponding parameters. First of all, each individual or section of the
public can create independently and thus have the nature of media, or can stop creating
and withdraw from the dissemination platform. Therefore, there are always inputs and
outputs in the V-layer, and we assume that newly registered media enter the V-layer with
probability Λ1, and existing media exit the V-layer with probability µ1. Secondly, the media
can not identify the truth of a rumor on first learning about it, so there are two possible
transformation states: rumor spreading and rumor refuting. Therefore, we assume that
silent media transform into rumor-refuting media with probability ψ1, and transform into
rumor-spreading media with probability ψ2. In addition, rumor-spreading media may
change their viewpoints under the influence of positive information from rumor-refuting
media, and we assume that the conversion rate is ψ3.

2.2. Establishment of the Real Layer (R)

The sections of the public in the Reality (R) layer are classified into five types, namely,
Unknowns S (Suspicious), a section of the public that indicates susceptibility to unknown ru-
mors, Information Disseminators H (Hesitate), a section of the public that indicates known
information and disseminates information directly without thinking, Rumor Spreaders I1
(Infective), a section of the public that indicates known information and spreads rumors
with a negative attitude, Rumor Debunkers I2 (Independent), a section of the public that
indicates that information is known and spreads disinformation in a positive manner, and
Silent R (Reticent), a section of the public that expresses a loss of interest in a topic and no
longer makes relevant statements. At a certain moment, each section of the public may
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be in one of the above five states, and the specific transformation relationship is shown in
Figure 2.

Figure 2. Relationships between sections of the public in Reality layer R.

Next, we give a detailed description of the specific propagation process of the R layer
and its corresponding parameters. Firstly, because the subjective judgment of human
beings and the degree of interest in the event will be changed by external influences, the
sections of the public will change dynamically over time. Therefore, there are inputs and
outputs in the R layer at all times, and we assume that the newly joined unknowns enter
the R layer with probability Λ2 and the already existing sections of the public exit the
system with probability µ2. Secondly, most rumors do not have the nature of rumors when
they are initially spread, but are spread only as information. Therefore, we assume that
the unknowns, when exposed to the information, may either disseminate the information
directly without thinking or remain silent because they are not interested in the information.
Therefore, we assume that the probability that the unknowns will be transformed into
information disseminators is α1 and the probability that they will be transformed into
silencers is α2. In addition, information disseminators may develop a deterministic attitude
towards information after being influenced by rumors spreading in real social networks.
Therefore, we assume that the probability that a information disseminator will transform
into a rumor spreader is β1, the probability that he/she will transform into a rumor
debunker is β3, and the probability that he/she will transform into a silencer is β2. Finally,
rumor spreaders may change their negative attitudes or lose interest in rumors over time
or for their own reasons after being positively influenced by rumor debunkers in real social
networks. Therefore, we assume that the probability of a rumor spreader changing to a
rumor debunker is φ2 and the probability of changing to a silencer is φ1.

2.3. The Coupling between the Virtual Layer and Real Layer

Based on the above propagation criteria, the following kinetic equations for this
VR − SHI1 I2R model are obtained:

dM1(t)
dt = Λ1 − (δ1 I1(t) + ψ1M3(t) + ψ2M2(t) + δ2 I2(t) + µ1)M1(t),

dM2(t)
dt = δ1M1(t)I1(t) + (ψ2M1(t)− ψ3M3(t)− δ3 I2(t)− µ1)M2(t),

dM3(t)
dt = δ2M1(t)I2(t) + δ3M2(t)I2(t) + (ψ1M1(t) + ψ3M2(t)− µ1)M3(t),

dS(t)
dt = Λ2 − (α1H(t) + α2 + η3M3(t) + µ2)S(t),

dH(t)
dt = (α1S(t)− θM2(t)− η1M3(t)− β1 I1(t)− β2 − β3 I2(t)− µ2)H(t),
dI1(t)

dt = θH(t)M2(t) + (β1H(t)− η2M3(t)− φ2 I2(t)− φ1 − µ2)I1(t),
dI2(t)

dt = β3H(t)I2(t) + φ2 I1(t)I2(t)− µ2 I2(t),
dR(t)

dt = α2S(t) + β2H(t) + φ1 I1(t) + (η1H(t) + η2 I1(t) + η3S(t))M3(t)− µ2R(t).

(1)
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The specific transformational relationships of the model are shown in Figure 3.

Figure 3. VR − SHI1I2R transformation relationships.

Based on the above analysis, the state transitions in social networks under virtual
reality are obtained. The parameters in the model and the meanings of their representations
are shown in Table 1.

Remark 1. In Dong et al. [18], a two-layer XYZ − ISR model of rumor propagation considering
media intervention was developed. The difference between the model developed in this paper and
[18] is that the role of public refutation is also considered, which makes the developed model more
complex but more practical.

The initial values of the model satisfy: M1(t) ≥ 0, M2(t) ≥ 0, M3(t) ≥ 0, S ≥ 0, H ≥ 0,
I1(t) ≥ 0, I2(t) ≥ 0, R ≥ 0

Let
N1(t) = M1(t) + M2(t) + M3(t). (2)

From model (1) and Equation (2), we can obtain:

dN1(t)
dt

=
dM1(t)

dt
+

dM2(t)
dt

+
dM3(t)

dt
= Λ1 − µ1N1(t).

(3)

And: limt→∞ N1(t) =
Λ1
µ1

.
Let

N2(t) = S(t) + H(t) + I1(t) + I2(t) + R(t). (4)
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From model (1) and Equation (4), we can obtain:

dN2(t)
dt

=
dS(t)

dt
+

dH(t)
dt

+
dI1(t)

dt
+

dI2(t)
dt

+
dR(t)

dt
= Λ2 − µ2N2(t).

(5)

And: limt→∞ N2(t) =
Λ2
µ2

.

Table 1. Parameters and implications in the VR − SHI1 I2R model.

Parameters Description Realm

α1
Probability of converting an unknown into a

disseminator of information. [0,1]

α2 Probability that an unknown is converted to a silent. [0,1]

β1
Probability that an information disseminator is

converted to a rumor spreader. [0,1]

β2
Probability of converting information

disseminators into silencers. [0,1]

β3
Probability that an information disseminator is

converted into a rumor debunker. [0,1]

φ1 Probability of conversion of a rumor spreader into a silencer. [0,1]

φ2
Probability that a rumor spreader is converted

to a rumor debunker. [0,1]

ψ1 Probability of silent media converting to rumor-refuting media. [0,1]

ψ2
Probability of conversion of silent media

to rumor-spreading media. [0,1]

ψ3
Probability of rumor-spreading media converting

to rumor-refuting media. [0,1]

θ
The role of rumor-spreading media in orienting

information disseminators. [0,1]

η1
The role of rumor-refuting media in orienting

information disseminators. [0,1]

η2 The role of rumor-refuting media in orienting rumor spreaders. [0,1]
η3 The role of rumor-refuting media in orienting the unknowns. [0,1]
δ1 The role of rumor spreaders in orienting silent media. [0,1]

δ2
The role of rumor debunkers

in orienting silent media. [0,1]

δ3
The role of rumor debunkers in orienting

rumor-spreading media. [0,1]

Λ1 V-Layer input rate [0,1]
µ1 V-layer output rate [0,1]
Λ2 R-Layer input rate [0,1]
µ2 R-layer output rate [0,1]

Therefore, the dynamics of the model will be discussed in the following areas:
Ω = {(M1(t), M2(t), M3(t), S(t), H(t), I1(t), l2(t), R(t)) ∈ R+|M1(t) + M2(t) + M3(t) ≤
Λ1

µ1
, S(t) + H(t) + I1(t) + I2(t) + R(t) ≤ Λ2

µ2
}.

3. Dynamic Analysis

In this section,we analyze the existence and stability of equilibrium points to under-
stand the impact of collaborative rumor-debunking strategies on the dynamics of multiple
rumor propagation.



Mathematics 2024, 12, 462 7 of 22

3.1. Existence of Equilibrium Points

In order to calculate the equilibrium points of model (1), we need to solve the following
system of equations,

Λ1 − (δ1 I1(t) + ψ1M3(t) + ψ2M2(t) + δ2 I2(t) + µ1)M1(t) = 0,

δ1M1(t)I1(t) + (ψ2M1(t)− ψ3M3(t)− δ3 I2(t)− µ1)M2(t) = 0,

δ2M1(t)I2(t) + δ3M2(t)I2(t) + (ψ1M1(t) + ψ3M2(t)− µ1)M3(t) = 0,

Λ2 − (α1H(t) + α2 + η3M3(t) + µ2)S(t) = 0,

(α1S(t)− θM2(t)− η1M3(t)− β1 I1(t)− β2 − β3 I2(t)− µ2)H(t) = 0,

θH(t)M2(t) + (β1H(t)− η2M3(t)− φ2 I2(t)− φ1 − µ2)I1(t) = 0,

(β3H(t) + φ2 I1(t)− µ2)I2(t) = 0,

α2S(t) + β2H(t) + φ1 I1(t) + (η1H(t) + η2 I1(t) + η3S(t))M3(t)− µ2R(t) = 0.

(6)

Through calculating, model (1) exists five equilibrium points as follows:
(1) E0 =

(
M1

0, 0, 0, S0, 0, 0, 0, R0
)

, M1
0 = Λ1

µ1
, S0 = Λ2

µ2+α2
, R0 = α2Λ2

µ2(µ2+α2)
.

(2) E1 =
(

M1
1, 0, 0, S1, H1, 0, 0, R1

)
, M1

1 =
Λ1

µ1
, S1 =

β2 + µ2

α1
,

H1 =
α1Λ2 − α2β2 − µ2(α2 + β2 + µ2)

α1(β2 + µ2)
, R1 =

α2 − β2

α1
+

Λ2β2

µ2(β2 + µ2)
.

(3) E2 =
(

M1
2, 0, M3

2, S2, 0, 0, 0, R2
)

, M1
2 =

µ1

ψ1
, M3

2 =
Λ1ψ1 − µ1

2

µ1ψ1
,

S2 =
Λ2µ1ψ1

η3(Λ1ψ1 − µ1
2) + µ1ψ1(µ2 + α2)

,

R2 =
Λ2

[
η2
(
Λ1ψ1 − µ1

2)+ α2µ1ψ1
]

η2η3(Λ1ψ1 − µ1
2) + µ1µ2ψ1(µ2 + α2)

.

(4) E3 =
(

M1
3, 0, M3

3, S3, H3, 0, 0, R3
)

, M1
3 =

µ1

ψ1
, M3

3 =
Λ1ψ1 − µ1

2

µ1ψ1
,

S3 =
µ1ψ1(β2 + µ2) + η1(Λ1ψ1 − µ1

2)

α1µ1ψ1
, H3 =

Λ2µ1ψ1

µ1ψ1(β2 + µ2) + η1(Λ1ψ1 − µ1
2)
−

µ1ψ1(µ2 + α2) + η3(Λ1ψ1 − µ1
2)

α1µ1ψ1
,

R3 =
ψ1µ1µ2(α2 − β2) + µ2(η3 − η1)

(
Λ1ψ1 − µ1

2)
α1µ1µ2ψ1

+
Λ2β2µ1ψ1 + η1Λ2(Λ1ψ1 − µ1

2)

µ1µ2ψ1(β2 + µ2) + η1µ2(Λ1ψ1 − µ1
2)

.

(5) E4 = (M1
∗, M2

∗, M3
∗, S∗, H∗, I1

∗, I2
∗, R∗)

where M1
∗, M2

∗, M3
∗, S∗, H∗, I1

∗, I2
∗, R∗ > 0.

Remark 2. In comparison to rumor propagation models [4,5,8,12], our control model (1) has added
three equilibrium points E1, E2, E3. In particular, the appearance of equilibrium point E1 is caused
by the hesitation mechanism, while the appearance of equilibrium points E2 and E3 is the result of
the propagation and refutation of the the virtual layer.
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3.2. Stability Analysis of Equilibrium Points

In model (1), it is evident that the equilibrium points E0, E1, E2, and E3 are all points
without rumor spreaders. Therefore, we can collectively refer to them as Rumor-Free
Equilibrium Points (RFEP). By proving the stability of these Rumor-Free Equilibrium
Points, we can assess the control effectiveness of collaborative debunking strategies.

Theorem 1. The RFEP E0 of model (1) is asymptotically stable for R0 < 1 and unstable for R0 > 1.

Proof. Due to the local stability of the RFEP, E0 is related to the eigenvalues of the corre-
sponding Jacobian matrix J(E0), and the Jacobian matrix at the E0 rumor-free equilibrium is
as follows:
J(E0) =

−µ1
−ψ2Λ1

µ1

−ψ1Λ1
µ1

0 0 −δ1Λ1
µ1

−δ2Λ1
µ1

0

0 ψ2Λ1−µ2
1

µ1
0 0 0 δ1Λ1

µ4
0 0

0 0 ψ1Λ2−µ2
1

µ1
0 0 0 δ2Λ1

µ1
0

0 0 −η3Λ2
µ2+α2

−α2 − µ2
−α1Λ2
µ2+α2

0 0 0

0 0 0 0 α1Λ2−(µ2+α2)(β2+µ2)
µ2+α2

0 0 0

0 0 0 0 0 −φ1 − µ2 0 0

0 0 0 0 0 0 −µ2 0

0 0 η3Λ2
µ2+α2

α2 β2 φ1 0 −µ2



.

By a simple calculation, the characteristic equation of J(E0) is obtained according to
|λE − J(E0)|

(λ + µ1)(λ +
µ1

2 − ψ2Λ1

µ1
)(λ +

µ1
2 − ψ1Λ1

µ1
)(λ + α2 + µ2)(λ +

(µ2 + α2)(β2 + µ2)− α1Λ2

µ2 + α2
)

(λ + φ1 + µ2)(λ + µ2)
2 = 0.

(7)

The characteristic roots of the equation thus obtained are:

λ01 = −µ1, λ02 =
ψ2Λ1 − µ1

2

µ1
, λ03 =

ψ1Λ1 − µ1
2

µ1
, λ04 = −α2 − µ2,

λ05 =
α1Λ2 − (µ2 + α2)(β2 + µ2)

µ2 + α2
, λ06 = −φ1 − µ2, λ07 = λ08 = −µ2.

Eight eigenvalues are obtained. To render them all negative, additional constraints on
λ02, λ03, λ05 are necessary. This is achieved by rearranging terms such that all unknown
parameters appear to the left of the ‘less than’ sign, with the right side being 1. This entire
left-hand side of the resulting inequality is termed the thresholds R01, R02, R03:

R01 =
ψ2Λ1

µ1
2 , R02 =

ψ1Λ1

µ1
2 , R03 =

α1Λ2

(µ2 + α2)(β2 + µ2)
.

This shows that there are negative real parts only when λ satisfy R0 = max{R01, R02, R03},
and R0 < 1. By the Hartman–Grobman Theorem, it can be judged that E0 is asymptotically
stable for R0 < 1 and unstable for R0 > 1.

Theorem 2. The RFEP E1 of model (1) is asymptotically stable for R1 < 1 and unstable for R1 > 1.
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Proof. Due to the local stability of the RFEP, E1 is related to the eigenvalues of the corre-
sponding Jacobian matrix J(E1), and the Jacobian matrix at the E1 rumor-free equilibrium is
as follows:

J(E1) =



−µ1
−ψ2Λ1

µ1

−ψ1Λ1
µ1

0 0 −δ1Λ1
µ1

−δ2Λ1
µ1

0

0 ψ2Λ1−µ2
1

µ1
0 0 0 δ1Λ1

µ1
0 0

0 0 ψ1Λ1−µ2
1

µ1
0 0 0 δ2Λ1

µ1
0

0 0 −η3(β2+µ2)
a1

−α1Λ2
β2+µ2

−β2 − µ2 0 0 0

0 A0 A1 A2 0 A3 A4 0

0 A5 0 0 0 A6 0 0

0 0 0 0 0 0 A7 0

0 0 A8 α2 β2 φ1 0 −µ2



,

where
A0 = −θ

α1Λ2−α2β2−µ2(α2+β2+µ2)
α1(β2+µ2)

, A1 = −η1
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1(β2+µ2)
,

A2 = α1Λ2−α2β2−µ2(α2+β2+µ2)
β2+µ2

, A3 = −β1
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1(β2+µ2)
,

A4 = −η3
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1(β2+µ2)
, A5 = θ

α1Λ2−α2β2−µ2(α2+β2+µ2)
α1(β2+µ2)

,

A6 = β1
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1(β2+µ2)
− φ1 − µ2, A7 = β3

α1Λ2−α2β2−µ2(α2+β2+µ2)
α1(β2+µ2)

− µ2,

A8 = η1
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1(β2+µ2)
+ η3(β2+µ2)

α1
.

By a simple calculation, the characteristic equation of J(E1) is obtained according to
|λE − J(E1)|

(λ + µ1)(λ +
µ1

2 − ψ2Λ1

µ1
)(λ +

µ1
2 − ψ1Λ1

µ1
)

(
λ +

α1Λ2

β2 + µ2

)
λ(λ − A6)(λ − A7)(λ + µ2) = 0. (8)

The characteristic roots of the equation thus obtained are:

λ11 = −µ1, λ12 = ψ2Λ1−µ1
2

µ1
, λ13 = ψ1Λ1−µ1

2

µ1
, λ14 = −α1Λ2

β2+µ2
, λ15 = 0,

λ16 = β1
α1Λ2 − α2β2 − µ2(α2 + β2 + µ2)

α1(β2 + µ2)
− φ1 − µ2,

λ17 = β3
α1Λ2 − α2β2 − µ2(α2 + β2 + µ2)

α1(β2 + µ2)
− µ2, λ18 = −µ2.

Through calculation and employing the same method as in Theorem 1, we have
determined the threshold value: R11 = ψ2Λ1

µ1
2 , R12 = ψ1Λ1

µ1
2 , R13 = β1

α1Λ2−α2β2−µ2(α2+β2+µ2)
α1(β2+µ2)(φ1+µ2)

,

R14 = β1
α1Λ2−α2β2−µ2(α2+β2+µ2)

α1µ2(β2+µ2)
. This shows that there are negative real parts only when λ

satisfy R1 = max{R11, R12, R13, R14}, and R1 < 1. Furthermore, when R1 > 1, λ has at
least one positive real part. Therefore, it can be judged that E1 is asymptotically stable for
R1 < 1 and unstable for R1 > 1.

Theorem 3. The RFEP E2 of model (1) is asymptotically stable for R2 < 1 and unstable for R2 > 1.

Proof. Due to the local stability of the RFEP, E2 is related to the eigenvalues of the corre-
sponding Jacobian matrix J(E2), and the Jacobian matrix at the E2 rumor-free equilibrium is
as follows:
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J(E2) =



−Λ1ψ1
µ1

−ψ2µ1
λ1

−µ1 0 0 −δ1
µ1
ψ1

−δ2
µ2
ψ1

0

0 B0 0 0 0 δ1
µ1
ψ1

0 0

Λ1ψ1−µ2
1

µ1
µ

Λ1ψ1−µ2
1

µ1ψ1
0 0 0 0 δ2

µ1
ψ1

0

0 0 B1 B2 B3 0 0 0

0 0 0 0 B4 0 0 0

0 0 0 0 0 B5 0 0

0 0 0 0 0 0 −µ2 0

0 0 B6 B7 B8 B9 0 −µ2



,

where
B0 = (ψ2−ψ1)µ1

2−ψ3(Λ1ψ1−µ1
2)

µ1ψ1
, B1 = −η3Λ2µ1ψ1

η3(Λ1ψ1−µ1
2)+µ1ψ1(µ2+α2)

,

B2 =
−η3

(
Λ1ψ1 − µ1

2)− µ1ψ1(µ2 + α2)

µ1ψ1
, B3 =

−α1Λ2µ1ψ1

η3
(
Λ1ψ1 − µ1

2
)
+ µ1ψ1(µ2 + α2)

,

B4 = α1Λ2µ1ψ1
η3(Λ1ψ1−µ1

2)+µ1λ1(µ2+α2)
− η1(Λ1ψ1−µ1

2)
µ1ψ1

− β2 − µ2,

B5 = − η2(Λ1ψ1−µ1
2)

µ1ψ1
− φ1 − µ2, B6 = η3Λ2µ1ψ1

η3(Λ1ψ1−µ1
2)+µ1ψ1(µ2+α2)

,

B7 = η3(Λ1ψ1−µ1
2)

µ1ψ1
+ α2, B8 = η1(Λ1ψ1−µ1

2)
µ1ψ1

+ β2, B9 = η2(Λ1ψ1−µ1
2)

µ1ψ1
+ φ1.

By a simple calculation, the characteristic equation of J(E2) is obtained according to
|λE − J(E2)| (

λ +
Λ1ψ1

µ1

)
(λ − B0)λ(λ − B2)(λ − B4)(λ − B5)(λ + µ2)

2 = 0. (9)

The characteristic roots of the equation thus obtained are:

λ21 = −Λ1ψ1

µ1
, λ22 =

(ψ2 − ψ1)µ
2
1 − ψ3(Λ1ψ1 − µ1

2)

µ1ψ1
, λ23 = 0,

λ24 = −η3(Λ1ψ1−µ1
2)−µ1ψ1(µ2+α2)

µ1ψ1
, λ25 = α1Λ2µ1ψ1

η3(Λ1ψ1−µ1
2)+µ1ψ1(µ2+α2)

− η1(Λ1ψ1−µ1
2)

µ1ψ1
− β2 − µ2,

λ26 = − η2(Λ1ψ1−µ1
2)

µ1ψ1
− φ1 − µ2, λ27 = λ28 = −µ2.

Through calculation and employing the same method as in Theorem 1, we have determined

the threshold value: R21 =
(ψ2−ψ1)µ1

2

Ψ3(Λ1ψ1−µ1
2)

, R22 =
α1Λ2µ1ψ1

[η3(Λ1ψ1−µ1
2)+µ1ψ1(µ2+α2)]

[
η1(Λ1ψ1−µ1

2)
µ1ψ1

+β2+µ2

] .

This shows that there are negative real parts only when λ satisfy R2 = max{R21, R22},
and R2 < 1. Furthermore, when R2 > 1, λ has at least one positive real part. Therefore, it
can be judged that E2 is asymptotically stable for R2 < 1 and unstable for R2 > 1.

Theorem 4. The RFEP E3 of model (1) is asymptotically stable for R3 < 1 and unstable for R3 > 1.

Proof. Due to the local stability of the RFEP, E3 is related to the eigenvalues of the corre-
sponding Jacobian matrix J(E3), and the Jacobian matrix at the E3 rumor-free equilibrium is
as follows:
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J(E3) =

−Λ1ψ1
µ1

−ψ2µ1
ψ1

−µ1 0 0 − δ1µ1
ψ1

− δ2µ1
ψ1

0

0 C0 0 0 0 δ1µ1
ψ1

0 0

A1u1−µ2
1

µ1
ψ3

Λ1u1−µ2
1

µ1ψ1
0 0 0 0 δ2µ1

ψ1
0

0 0 C1 C2 C3 0 0 0

0 C4 C5 C6 0 C7 C8 0

0 C9 0 0 0 C10 0 0

0 0 0 0 0 0 C11 0

0 0 C12 C13 β2 +
η1(Λ1ψ1−µ2

1)
µ1ψ1

φ1 +
η1(Λ1ψ1−µ2

1)
µ1ψ1

0 −µ2



,

where

C0 = µ1
2(ψ2−ψ1+ψ3)−ψ3Λ1ψ1

µ1ψ1
, C1 = −η3µ1ψ1(β2+µ2)−η1η3(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C2 = −α1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
, C3 = −µ1ψ1(β2+µ2)−η1(Λ1ψ1−µ1

2)
µ1ψ1

,

C4 = −θΛ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
+ θµ1ψ1(µ2+a2)+θη3(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C5 = −η1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
+ µ1ψ1η1(µ2+α2)+η1η2(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C6 = α1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− µ1ψ1(µ2+α2)+η3(Λ1ψ1−µ1

2)
µ1ψ1

,

C7 = −β1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
+ β1µ1ψ1(µ2+α2)+β1η3(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C8 = −β3Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
+ β3µ1ψ1(µ2+α2)+β3η3(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C9 = θΛ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− θµ1ψ1(µ2+α2)+θη3(Λ1ψ1−µ1

2)
α1µ1ψ1

,

C10 = β1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− β1(µ2+α2)+α1(Λ1ψ1−µ1

2)
α1

− (β3η3−α1η2)(Λ1ψ1−µ1
2)

α1µ1ψ1
,

C11 = β3Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− β3µ1ψ1(µ2+α2)+β3η3(Λ1ψ1−µ1

2)
α1µ1ψ1

− µ2,

C12 = η1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
+ η3(β2+µ2)−η1(µ2+α2)

α1
, C13 = α2 +

η3(Λ1ψ1−µ1
2)

µ1ψ1
.

By a simple calculation, the characteristic equation of J(E3) is obtained according to
|λE − J(E3)|(

λ +
Λ1ψ1

µ1

)
(λ − C0)(λ − C2)(λ − C10)(λ − C11)(λ + µ2)λ

2 = 0. (10)

The characteristic roots of the equation thus obtained are:

λ31 = −Λ1ψ1
µ1

, λ32 = µ1
2(ψ2−ψ1+ψ3)−ψ3Λ1ψ1

µ1ψ1
, λ33 = 0, λ34 = −α1Λ2µ1ψ1

µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1
2)

,

λ35 = 0, λ36 = β1Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− β1(µ2+α2)+α1(Λ1ψ1−µ1

2)
α1

− (β3η3−α1η2)(Λ1ψ1−µ1
2)

α1µ1ψ1
,

λ37 = β3Λ2µ1ψ1
µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1

2)
− β3µ1ψ1(µ2+α2)+β3η3(Λ1ψ1−µ1

2)
α1µ1ψ1

− µ2, λ38 = −µ2.

Through calculation and employing the same method as in Theorem 1, we have deter-
mined the threshold value:

R31 = µ1
2(ψ2−ψ1+ψ3)

ψ3Λ1ψ1
,

R32 = β1Λ2α1µ1
2ψ1

2

[µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1
2)][β1(µ2+α2)+α1(Λ1ψ1−µ1

2)−(β3η3−α1η2)(Λ1ψ1−µ1
2)]

,
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R33 = β3Λ2α1µ1
2ψ1

2

[µ1ψ1(β2+µ2)+η1(Λ1ψ1−µ1
2)][β3µ1ψ1(µ2+α2)+β3η3(Λ1ψ1−µ1

2)+α1µ1ψ1µ2]
.

This shows that there are negative real parts only when λ satisfy R3 = max{R31, R32, R33},
and R3 < 1. Furthermore, when R3 > 1, λ has at least one positive real part. Therefore, it can
be judged that E3 is asymptotically stable for R3 < 1 and unstable for R3 > 1.

Remark 3. Theorems 1–4 establish criteria for the stability of the four equilibrium points. When
λ = max{λ0, λ1, λ2, λ3} < 0 and R = max{R1, R2, R3} < 1, at least one equilibrium point among
the four is stable, indicating that rumors naturally fade away without the need for intervention
strategies. However, when λ > 0 and R > 1, rumors persist in spreading, necessitating the
implementation of control strategies. Furthermore, upon comparing these four criteria, it becomes
evident that λ3 < λ1 and R3 < R1. From this perspective, we can conclude that collaborative
debunking strategies reduce the original spreading threshold R0 of the traditional rumor propagation
model. Consequently, collaborative debunking strategies play a significant inhibitory role in the
context of rumor propagation.

4. Optimal Control Problems

By incorporating an optimal control approach, the spread of rumors over an expected
period of time can be effectively controlled at minimal cost. In the model, we add three
control variable, u1, u2, and u3. The control variable u1 represents efforts to curb the spread
of rumors, including measures such as imposing bans on sections of the public spreading
rumors and prohibiting large-scale gathering of people offline to spread rumors. The
expression (1− u1) represents the level of ability of rumor spreaders to convert information
disseminators into rumor spreaders by spreading rumors, and reduces the ability of rumor
spreaders to guide rumor spreading by adding controls. The control variables u2, u3
denote the control and clarification of rumors, including measures such as the government
strengthening the supervision of platforms and urging the clarification of rumors, the rumor-
dispelling media seizing cyberspace to enhance the power of public opinion guidance, and
the implementation of measures such as criticizing, educating, and severely punishing
sections of the public that spread rumors and cause serious social harm.

Therefore, the control model with the specific control intensities mentioned above can
be described as:

dM1(t) = [Λ1 − (δ1 I1(t) + ψ1M3(t) + ψ2M2(t) + δ2 I2(t) + µ1)M1(t)]dt,

dM2(t) = [δ1M1(t)I1(t) + (ψ2M1(t)− ψ3M3(t)− δ3 I2(t)− (µ1 + u2(t)))M2(t)]dt,

dM3(t) = [δ2M1(t)I2(t) + δ3M2(t)I2(t) + (ψ1M1(t) + ψ3M2(t)− µ1)M3(t)]dt,

dS(t) = [Λ2 − (α1H(t) + α2 + η3M3(t) + µ2)S(t)]dt,

dH(t) = [(α1S(t)− θM2(t)− η1M3(t)− β1(1 − u1(t))I1(t)− β2 − β3 I2(t)− µ2)H(t)]dt,

dI1(t) = [θH(t)M2(t) + (β1(1 − u1(t))H(t)− η2M3(t)− φ2 I2(t)− φ1 − (µ2 + u3(t)))I1(t)]dt,

dI2(t) = [(β3H(t) + φ2 I1(t)− µ2)I2(t)]dt,

dR(t) = [α2S(t) + β2H(t) + φ1 I1(t) + (η1H(t) + η2 I1(t) + η3S(t))M3(t)− µ2R(t)]dt,

(11)

with initial condition as in the following M1(0) > 0, M2(0) > 0, M3(0) > 0, S(0) > 0,
H(0) > 0, I1(0) > 0, I2(0) > 0, R(0) > 0.

We define vectors:

x(t) = [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t), x8(t)]T , u(t) = [u1(t), u2(t), u3(t)]T .

And there is: dx(t) = f
(
x(t), u(t)

)
dt.
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The objective function is:

J(u) =
1
2

[∫ t f

t0

(A1M2(t) + A2 I1(t) +
B1

2
u1(t)2 +

B2

2
u2(t)2 +

B3

2
u3(t)2)dt

]
,

where B1, B2, and B3 are cost coefficients for optimal control, t0 is the start time, and t f is
the end time. Our goal is to find an optimal control quantity u∗(t) = (u1

∗(t), u2
∗(t), u3

∗(t))
that minimizes the value of J(u).

The Hamiltonian function of the control problem can be described as:

H =A1M2(t) + A2 I1(t) +
B1

2
u1(t)2 +

B2

2
u2(t)2 +

B3

2
u3(t)2

+ λ1(t)[Λ1 − δ1M1(t)I1(t)− ψ1M1(t)M3(t)− ψ2M1(t)M2(t)− δ2M1(t)I2(t)− µ1M1(t)]

+ λ2(t)[ψ2M1(t)M2(t) + δ1M1(t)I1(t)− ψ3M2(t)M3(t)− δ3M2(t)I2(t)− (µ1 + u2(t))M2(t)]

+ λ3(t)
[
ψ1M1(t)M3(t) + ψ3M2(t)M3(t) + δ2M1(t)I2(t) + δ3M2(t)I2(t)− µ1M3(t)

]
+ λ4(t)[Λ2 − α1S(t)H(t)− α2S(t)− η3S(t)M3(t)− µ2S(t)]

+ λ5(t)[α1S(t)H(t)− θH(t)M2(t)− η1H(t)M3(t)− β1(1 − u1(t))H(t)I1(t)− β2H(t)

− β3H(t)I2(t)− µ2H(t)]

+ λ6(t)
[
β1(1 − u1(t))H(t)I1(t) + θH(t)M2(t)− η2 I1(t)M3(t)− φ2 I1(t)I2(t)− φ1 I1(t)

− µ2 I1(t)− u3(t)I1(t)
]

+ λ7(t)[β3H(t)I2(t) + φ2 I1(t)I2(t)− µ2 I2(t)]

+ λ8(t)[α2S(t) + β2H(t) + φ1 I1(t) + η1H(t)M3(t) + η2 I1(t)M3(t) + η3S(t)M3(t)− µ2R(t)]

,

where λi(i = 1, 2, . . . , 8) denotes the concomitant function. Based on the above discussion,
we reach the following conclusions. Optimal control problems allow for a unique optimal
solution u1

∗(t), u2
∗, u3

∗, where t ranges from [t0, t f ]. Furthermore, there are conditions for:
∂H
∂u1

= 0, ∂H
∂u2

= 0, ∂H
∂u3

= 0.
∂H
∂u1

= B1u1 + λ5β1HI1 − λ6β1HI1,

∂H
∂u2

= B2u2 − λ2M2,

∂H
∂u2

= B3u3 − λ6 I1.

Thus, we obtain the optimal immune control strategy as:

u1
∗(t) = min

{
max

[
λ6β1 HI1−λ5β1 HI1

B1

]
, 1
}

,

u2
∗(t) = min

{
max

[
λ2 M2

B2

]
, 1 − µ1

}
,

u3
∗(t) = min

{
max

[
λ6 I1
B3

]
, 1 − µ2

}
.

The transverse condition is λ(t f ) = 0. The corresponding covariance function λ(t)
satisfies the auxiliary equation: λ̇i = − ∂H

∂xi
. Therefore, we obtain:

λ̇1 = − ∂H
∂x1

= λ1(δ1 I1 + ψ1M3 + ψ2M2 + δ2 I2 + µ1)− λ2(ψ2M2 + δ1 I1)− λ3(ψ1M3 + δ2 I2),

λ̇2 =− ∂H
∂x2

= −A1 + λ1ψ2M1 − λ2(ψ2M1 − ψ3M3 − δ3 I2 − µ1 − u2)− λ3(ψ3M3 + δ3 I2)

+ λ5θH − λ6θH,

λ̇3 =− ∂H
∂x3

= λ1ψ1M1 + λ2ψ3M2 − λ3(ψ1M1 + ψ3M2 − µ1) + λ4η3S + λ5η1H + λ6η2 I1−

λ8(η1H + η2 I1 + η3S),
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λ̇4 = − ∂H
∂x4

= λ4(α1H + α2 + η3M3 + µ2)− λ5α1H − λ8(α2 + η3M3),

λ̇5 =− ∂H
∂x5

=λ4α1S − λ5[α1S − θM2 − η1M3 − β1(1 − u1)I1 − β2 − β3 I2 − µ2]

− λ6[β1(1 − u1)I1 + θM2]− λ7β3 I2 − λ8(β2 + η1M3),

λ̇6 =− ∂H
∂x6

=− A2 + λ1δ1M1 − λ2δ1M1 + λ5β1(1 − u1)H − λ6(β1(1 − u1)H − η2M3 − φ2 I2 − φ1

− µ2 − u3)− λ7 φ2 I2 − λ8(φ1 + η2M3),

λ̇7 =− ∂H
∂x7

=λ1δ2M1 + λ2δ3M2 − λ3(δ2M1 + δ3M2) + λ5β3H + λ6 φ2 I1 − λ7(β3H + φ2 I1 − µ2),
λ̇8 = − ∂H

∂x8
= λ8µ2.

5. Numerical Simulaton

In this section, we will verify the accuracy of the model, the dynamic behavior of the
model, and the effectiveness of the optimal control strategy through simulation experiments.

5.1. Real Data Fitting

In this study, we take the data relating to the “Hu Xinyu disappearance case” obtained
from “Baidu Index” as an example. By fitting the system parameters of the model (1) (with
specific parameter values as listed in the 6th column of Table 2) in the ratio of 4:1, we obtain
simulation curves for rumor spreaders I1 based on the model, as shown by the red curve in
Figure 4. Upon comparison with the real data represented by orange scattered points in
Figure 4, it is evident that the trends of the two datasets are consistent. Therefore, model (1)
can effectively predict real rumor propagation behavior.

Figure 4. Graph of rumor spreader curves for E4 and scatter fit to real data.
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Table 2. Simulation parameters for each equilibrium point.

Parameter Values in E0 Values in E1 Values in E2 Values in E3 Values in E4

Λ1 8 8 8 8 8
Λ2 80 80 80 80 80
µ1 0.2 0.2 0.2 0.2 0.2
µ2 0.1 0.1 0.1 0.1 0.1
α1 0.0001 0.00024 0.0002 0.0003 0.008
α2 0.01 0.08 0.001 0.007 0.001
β1 0.001 0.001 0.001 0.001 0.002
β2 0.001 0.001 0.001 0.009 0.001
β3 0.001 0.001 0.001 0.001 0.0001
φ1 0.001 0.001 0.001 0.001 0.001
φ2 0.001 0.001 0.001 0.001 0.001
ψ1 0.001 0.001 0.009 0.009 0.001
ψ2 0.003 0.003 0.009 0.001 0.001
ψ3 0.001 0.001 0.009 0.009 0.001
θ 0.001 0.001 0.001 0.001 0.001
η1 0.006 0.001 0.002 0.002 0.002
η2 0.001 0.001 0.001 0.001 0.001
η3 0.001 0.001 0.002 0.002 0.002
σ1 0.001 0.001 0.001 0.001 0.001
σ2 0.001 0.001 0.001 0.001 0.005
σ3 0.001 0.001 0.001 0.001 0.001

5.2. Stability of Equilibrium Points

In order to verify the stability of the different equilibrium points in Section 3, we
performed numerical simulations for each equilibrium point using the system parameters
in Table 2.

Based on the data in Table 2, we can generate the following simulation plots.
From the plots in Figures 5–9, we can conclude that at each equilibrium point, the sys-

tem can eventually converge to a constant value. Therefore, the stability of each equilibrium
point derived in Section 3 can be proved.
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Figure 5. Based on the second column of Table 2, we can calculate that R01 = 0.6, R02 = 0.2, R03 = 0.72.
Thus, R0 = 0.72 < 1. From Theorem 1, the system can be balanced to the equilibrium point E0. As
Figure 5 shows, the simulation results also indicate that the system can be balanced to the point

E0 =
(

M1
0, 0, 0, S0, 0, 0, 0, R0

)
.
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Figure 6. Based on the third column of Table 2, we can calculate that R11 = 0.6, R12 = 0.2,
R13 = 0.42, R14 = 0.42. Thus, R1 = 0.6 < 1. From Theorem 2, the system can be balanced to
the equilibrium point E1. As Figure 6 shows, the simulation results also indicate that the system can

be balanced to the point E1 =
(

M1
1, 0, 0, S1, H1, 0, 0, R1

)
.
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Figure 7. Based on the forth column of Table 2, we can calculate that R21 = 0, R22 = 0.86. Thus,
R2 = 0.86 < 1. From Theorem 3, the system can be balanced to the equilibrium point E2. As
Figure 7 shows, the simulation results also indicate that the system can be balanced to the point

E2 =
(

M1
2, 0, M3

2, S2, 0, 0, 0, R2
)

.
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Figure 8. Based on the fifth column of Table 2, we can calculate that R31 = 0.06, R32 = 0.0014,
R33 = 0.27. Thus, R3 = 0.27 < 1. From Theorem 4, the system can be balanced to the equilibrium
point E3. As Figure 8 shows, the simulation results also indicate that the system can be balanced to
the point E3 = (M1

3, 0, M3
3, S3, H3, 0, 0, R3).



Mathematics 2024, 12, 462 17 of 22

0 20 40 60 80 100
t

0

10

20

30

40

nu
m

be
r

LayerV

M1
M2
M3

(a) Media layer.

0 20 40 60 80 100
t

0

100

200

300

400

500

nu
m

be
r

LayerR

S
H
I1
I2
R

(b) Population Layer.

Figure 9. Based on the sixth column of Table 2, we can calculate that R03 = 62.74, R14 = 15.59,
R22 = 13.34, R31 = 5. From Figure 9, we can obtain that the system cannot reach the rumor-free
equilibrium point (neither I1 nor M2 eventually converge to 0) when R < 1 is not satisfied. However,
each section of the public eventually converges to a number that is not 0, which we call the local
equilibrium point E4 = (M1

∗, M2
∗, M3

∗, S∗, H∗, I1
∗, I2

∗, R∗).

5.3. Optimal Control

In Section 4, we added three control quantities u1, u2, and u3 to the system. In order to
investigate what effects these control quantities have on the system state and other control
quantities, the simulation values are given here to introduce the following nine cases:
Case 1: When the added control quantities u1 = 0, u2 = 0, and u3 = 0, we get Figure 9;
Case 2: When the added control quantities u1 = u1

ave, u2 = u2
ave, and u3 = u3

ave, we get
Figure 10;
Case 3: When the added control quantities u1 = 0.2857, u2 = 0.0037, and u3 = 0, we get
Figure 11;
Case 4: When the added control quantities u1 = 0.2857, u2 = 0, and u3 = 0.8554, we get
Figure 12;
Case 5: When the added control quantities u1 = 0, u2 = 0.0037, and u3 = 0.8554, we get
Figure 13;
Case 6: When the added control quantities u1 = 0.2857, u2 = 0, and u3 = 0, we get
Figure 14;
Case 7: When the added control quantities u1 = 0, u2 = 0.0037, and u3 = 0, we get
Figure 15;
Case 8: When the added control quantity u1 = 0, u2 = 0, and u3 = 0.8554, we get Figure 16;
Case 9: When the added control quantities u1 = u1

∗, u2 = u2
∗, and u3 = u3

∗, we get
Figure 17.
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Figure 10. State change diagrams and control variable diagrams for case 2.
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Figure 11. State change diagrams and control variable diagrams for case 3.

0 20 40 60 80 100
t

0

10

20

30

40

nu
m

be
r

LayerV

M1
M2
M3

0 20 40 60 80

1
2
3
4
5

(a) Media layer.

0 20 40 60 80 100

t

0

200

400

600

800

n
u
m

b
e
r

LayerR

S

H

I1

I2

R

80 100
0

10

20

(b) Population Layer.

Figure 12. State change diagrams and control variable diagrams for case 4.
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Figure 13. State change diagrams and control variable diagrams for case 5.
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Figure 14. State change diagrams and control variable diagrams for case 6.
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Figure 15. State change diagrams and control variable diagrams for case 7.
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Figure 16. State change diagrams and control variable diagrams for case 8.
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Figure 17. State change diagrams and control variable diagrams for case 9.

Remark 4. The average of the optimal values of each control quantity can be obtained by simulation
as: u1

ave = 0.4661, u2
ave = 0.3177, u3

ave = 0.5875.

According to Table 3, we can obtain the statistical graphs of the various components of
the control strategy optimization metrics under different cases shown in Figure 18. We use
the control strategy optimization metric to measure the control capability of each control
case. That is, the cases with different controls added (Cases 2–9) are compared with the case
without controls added (Case 1) to find the corresponding ratio. Thus, it can be concluded
that the larger the ratio, the better the control method.
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Figure 18. Statistical graphs of control strategy optimization metrics of the various components in
the objective function under different cases. (a) Control strategy optimization metrics plot for the M2

part. (b) Control strategy optimization metrics plot for the I1 part. (c) Control strategy optimization
metrics plot for the sum of the components.

Table 3. Simulation values under different controls.

- A1 M2 A2 I1
B1
2 u2

1
B2
2 u2

2
B3
2 u2

3 Jsum

Case 1 6.8920 3598.8 0 0 0 3605.7
Case 2 0.0273 3.4906 8.6900 1.0093 1.7258 14.9430
Case 3 3.1433 1273.2 3.2650 0.0001 0 1279.6
Case 4 0.4149 13.4107 3.2650 0 3.6585 20.7491
Case 5 0.4374 26.1513 0 0.0001 3.6585 30.2474
Case 6 3.1794 1277.8 3.2650 0 0 1284.2
Case 7 6.8390 3592.5 0 0.0001 0 3599.3
Case 8 0.4528 26.7827 0 0 3.6585 30.8941
Case 9 0.00130.00130.0013 1 0.17320.17320.1732 1 1.0833 × 10−35 4.0625 × 10−36 2.7083 × 10−37 0.17450.17450.1745 1

1 The data bolded and highlighted in green is the smallest value in each column of data.

From Case 1, it is evident that, in the absence of any control measures applied to
the system, rumors exhibit an initial burst of eruption, spreading rapidly. Contrasting
Case 2 and Case 9, the optimal control strategy indicates that imposing robust control
during the initial eruption phase and subsequently reducing the control intensity after
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the rumor subsides is more effective than maintaining a constant control throughout. The
optimal control strategy has a 98.83% reduction compared to the constant control strategies.
Importantly, the dynamic optimal control approach (Case 9) significantly elevates the level
of rumor management.

Moreover, we can clearly derive from the statistics shown in Figure 18 that Case 7 has the
lowest total control indicator compared to the other control cases, and thus, we can conclude
that the control of the media layer alone does not curb the spread of rumors very well.

6. Conclusions

In this paper, we establish a two-layer rumor propagation model that considers the
impact of the virtual layer on the external orientation of the real layer and the reciprocal
influence of the real layer on the virtual one. Additionally, we incorporate the combined
effect of rumor debunking by the media and the public and propose a mechanism for this
collaborative effort. Utilizing this novel model, we analyze the existence and stability of
various equilibrium points, theoretically substantiate the stability of these points through
linearization methods, and deduce the threshold value of the rumor propagation process
by calculation. This threshold delineates the suppression of rumor spreading under the
collaborative efforts of the media and the public. Furthermore, we implement three different
control measures into the model, reflecting pragmatic control methods, and calculate the
specific expression of the optimal control. Finally, to verify the accuracy of the above
analysis of equilibrium point theory and to study the suppression effect of different control
measures on rumor spreading, we render a visualization of the optimization indices of the
control strategy under different control scenarios through simulation.

Our findings reveal that while solitary debunking endeavors by either the media or
the public can suppress the spread of rumors, a collaborative debunking approach by both
can more effectively inhibit the spread of rumors. Specifically, our simulation experiments
demonstrate that the cost of the non-cooperative constant control strategy is the lowest
at 20.7491 (case 4), while the cost for the cooperative constant control strategy is 14.9430.
However, the cost for the optimal control strategy is significantly lower at 0.1745 (case 9),
representing a 98.83% reduction compared to the constant control strategies. These results
offer more effective methods and strategies for preventing and intervening in the spread
of rumors.
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