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Abstract: For a family of dynamical systems with k > 0 independent first integrals evolving in a
compact region of a Euclidean space, we study the equilibrium locus. We show that under mild and
generic conditions, it is a smooth manifold that can be viewed as the total space of a certain fiber
bundle and that this bundle comes equipped with a natural connection. We then proceed to show
parallel transport for this connection does exist and explore some of its properties. In particular, we
elucidate how one can to some extent measure the variation of the system eigenvalues restricted to a
given fiber.
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1. Introduction

We study the equilibrium locus of a family of dynamical systems with k > 0 indepen-
dent first integrals; in other words we explore the zero set of a vector field in Euclidean
space, with at least one first integral, giving rise to a foliation of the ambient space. More pre-
cisely the system is assumed to evolve inside a compact set V ⊂ Rn of maximal dimension,
whose boundary ∂V has the structure of a stratified manifold.

We show that if the vector field is analytic and satisfies some genericity conditions,
the equilibrium locus E is a smooth manifold of dimension m + k, where m is the number
of parameters and k the number of independent first integrals. We then focus on the
projection from E onto the space of parameters Λ. We prove that this projection has the
structure of a fiber bundle, that we call the equilibrium bundle, and that an Erhesmann
connection can be naturally associated to it. We explicitly prove that parallel transport
exists for this connection and discuss its holonomy group. Next, we prove that it can be
made equivalent to a Riemannian submersion provided one chooses an appropriate metric
on E. Finally, we show how one can extract some information about the variation of the
(nonzero) eigenvalues of the Jacobian matrix of the vector field along a loop embedded in a
fiber of the above projection.

The viewpoint developed in this article does not seem to appear as such in the lit-
erature. Yet, it is clearly connected with works in dynamical systems in general, more
specifically differential equations. It is worth in this respect quoting papers by the Russian
school. In particular, several articles by Valery Romanovski and coworkers provide a
useful entry point ([1]). Equilibria of systems admitting at least one first integral have
been studied in particular in [2] and related papers (see the reference list of [2]). A more
topological viewpoint is developed in [3] and other papers by these authors (see again their
reference list). It is also worth noting that the stability problem for equilibria is pervasive in
the literature, at least since . . . Poincaré. In the present paper, it is addressed in Section 7.
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Finally, we remark that a natural generalization of the considerations of the present paper
would consist in addressing the same issues for more general trajectories, starting with the
periodic ones.

The paper is organized as follows. In Sections 2 and 3, we lay down all the definitions
and assumptions, and we deduce the first consequences. The other sections are the core
of our work. Sections 4 and 5 deal with the definition of the equilibrium bundle, the natural
connection on it and the construction of the parallel transport. In Section 6, the connection
is analyzed from the perspective a Riemannian submersion. Section 7, we discuss the
variation of the non-zero eigenvalues of the vector field along a loop embedded in a fiber
of the equilibrium bundle.

In Section 8, we are finally in a position to discuss examples and possible applications.
The first example was investigated in [4]. It is a dynamical system that describes the
behavior of circular net of cells. Our work can therefore be seen as a vast generalization of
this particular case. We also discuss other possible examples and applications.

2. Definitions and First Properties

Let us consider an n−dimensional (n > 0) smooth dynamical model ẋ = f (λ, x),
depending on m parameters λ (m > 0). We make the following assumptions:

1. λ ∈ Λ, where Λ is a connected open set of Rm (m > 0),
2. x ∈ V, where V ⊂ Rn, is a compact submanifold of Rn of codimension zero, whose

boundary ∂V is a stratified manifold. The system is assumed to stay inside V, that is
on ∂V, the vector field either points inward or is tangent to ∂V.

3. There exist k smooth independent first integrals h1, · · · , hk (k > 0), independent
of the parameter(s) λ, so that for every i, hi : Rn → R is a smooth function. Here
the independence of the functions h1, · · · , hk means that their gradients are linearly
independent at every points.

Writing M = Λ × V, for (λ, x) ∈ M, f (λ, x) ∈ TxV ≃ Rn, the tangent space of V at x,
so that we may and do consider f as a smooth map M → Rn giving the components of the
“velocity” at the point x ∈ V with parameter λ ∈ Λ. We denote by E ⊂ M the equilibrium
locus defined by the vanishing condition f (λ, x) = 0 and assume throughout that E is
not empty.

Proposition 1. In the setting described by Assumption 3 above, the Jacobian matrix ∂ f
∂x has rank at

most n − k on E.

Proof. Consider 1 ≤ l ≤ k and λ ∈ Λ. Then a solution x(t) of the system satisfies
hl(x(t)) = Cst and taking the derivative with respect to t, we get: f (λ, x(t)) · ∇hl(x(t)) = 0
where the dot denotes the usual scalar product on Rn. Since through every point x ∈ V
and any λ ∈ Λ, there is an integral curve of the vector field f (λ, .) passing through x, this
is valid for every λ ∈ Λ and x ∈ V:

∀λ ∈ Λ, ∀x ∈ V,< f (λ, x),∇hl(x) >= 0.

Taking a further derivative, we get:

n

∑
i=0

(
∂ fi
∂xj

∂hl
∂xi

+ fi
∂2hl

∂xj∂xi

)
= 0,

for every j (1 ≤ j ≤ n) where we write f componentwise: f = ( f1, · · · , fn). This is
equivalent to writing: (

∂ f
∂x

)T
∇hl + D2hl f = 0, (1)



Mathematics 2024, 12, 457 3 of 11

where D2hl denotes the Hessian matrix of hl and the superscript T denotes transposition
(both ∇hl and f are regarded as n-vectors). Now at an equilibrium point ( f = 0), the second

term vanishes and thus the kernel of
(

∂ f
∂x

)T
contains the k vectors ∇hl(x). Since the first

integrals hl (l = 1, . . . , k) are assumed to be independent, that kernel has at least dimension
k and rank

(
∂ f
∂x

)
≤ n − k.

Observe now that the functions h1, · · · , hk being independent of λ, the vanishing

identities
(

∂ f
∂λ

)T
∇hl = 0 are also obtained for l = 1, . . . , k. We may therefore require

the further:

Non-degeneracy Conditions: (i) The rank of the matrix ∂ f
∂λ is constant equal to min(m, n −

k); (ii) The rank of the matrix ∂ f
∂x is constant equal to n − k for (λ, x) ∈ E and n − p(λ, x)

at points (λ, x) ̸∈ E, where p(λ, x) ≤ k; (iii) For every (λ, x) ∈ E, ker
(

∂ f
∂x (λ, x)

)
⊕

im
(

∂ f
∂x (λ, x)

)
= Rn.

Remark 1. Conditions (i) and (ii) simply express the fact that there are no further degeneracies,
beyond the one exhibited in Proposition 1. The third condition (iii) requires that the kernel and
image of the partial Jacobian matrix ∂ f

∂x be transverse subspaces of Rn, which is true for a dense open
set of the matrices with a fixed a given rank.

Example 1.

1. Consider the following vector field in R2: f = (v(λ, x, y), 0), such that for all λ ∈ Λ = R,
v(λ, x, y)x ≤ 0 when x2 + y2 = 1, so that V can be taken to be the Euclidean unit ball of R2.
Obviously, h1 = y is a first integral and

∂ f
∂x

=

(
∂v
∂x

∂v
∂y

0 0

)
.

Of course,
(

∂ f
∂x

)T
∇h1 = 0. A similar result is obtained if one consider 1

2 y2 instead of y.
The set of equilibrium points E = {(λ, x, y)|v(λ, x, y) = 0} has dimension 2.

2. Consider now a vector field f is R3, such that h1 = x2 + y2 + z2 and h2 = 4x2 + 4y2 + z2/4
are first integrals. These functions are obviously differentially independent, outside the union
of the plane z = 0 and the line x = y = 0. Take V to be the union of the points {(x, y, z)}
such that h1 = R1 and h2 = R2, with R1, R2 ∈ [1, 3]× [5, 15] and R2 ≥ 5R1.
Then let us consider f = (−λy(z − x), λx(z − x), 0)) with Λ = R∗

+; it is straightforward
to compute

∂ f
∂x

=

 λy −λ(z − x) −λ y
λz − 2λx 0 λ x

0 0 0


and E = {(λ, x, y, z) ∈ Λ×V|x = z}. Then for (λ, x, y, z) ∈ E, as expected:

(
∂ f
∂x

)T
∇h1 =(

∂ f
∂x

)T
∇h2 = 0. Also, obviously, dim(E) = 3.

Proposition 2. Consider the map f : M = Λ × V → Rn and assume the nondegeneracy
conditions above hold true. If f is an analytic vector field, the equilibrium locus E = f−1(0) is a
smooth real analytic variety of dimension m + k.
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Proof. Since f is analytic, E is analytic by definition. Moreover, the Jacobian matrix of f
has constant rank along E. Indeed, let J be this Jacobian matrix: J =

(
∂ f
∂λ , ∂ f

∂x

)
. Then by

the non-degeneracy condition, the kernel of the transpose JT is precisely the span of ∇hl
for 1 ≤ l ≤ k. Therefore, rank(J) = n − k along E which is a smooth analytic variety of
dimension m + n − (n + k) = m + k.

This proposition fails to be true if the field f is smooth but not analytic. Indeed,
for such a field there may exist an open set U ⊂ M included in f−1(0). In that case,
the equilibrium locus will have dimension m + n > m + k.

We assume from now on that f is analytic and write π : E ⊂ Λ × V → Λ. This is an
analytic and proper map whose image we denote by Λ0 ⊂ Λ.

3. On the Nature of Λ0

We start with the following observation.

Lemma 1. The set Λ0 is closed in Λ.

Proof. This is a direct consequence of the fact that π is proper. Alternatively, in a more
down-to-earth and detailed way, consider λ ∈ Λ \ Λ0, i.e., for every x in V, f (λ, x) ̸= 0.
By continuity, there are open sets Ux and Vx, respectively, in Λ and V, such that for all
(µ, y) ∈ Ux × Vx, f (µ, y) ̸= 0. The collection {Vx}x∈V is an open cover of V. Since V
compact we can extract a finite subcover, Vx1 , · · · , Vxp . Writing U = Ux1 ∩ · · · ∩ Uxp , for all
(µ, x) ∈ U × V, f (µ, x) ̸= 0 which shows that Λ \ Λ0 is open in Λ.

Lemma 2. For λ ∈ Λ0, the fiber Eλ of π over λ is a smooth real analytic k-dimensional manifold.

Proof. Given λ ∈ Λ0 let fλ = f (λ, ·) : V → Rn. By the non-degeneracy condition, the rank
of fλ is constant equal to n − k over Eλ = f−1

λ (0) which is therefore as in the statement of
the lemma.

Proposition 3. The closed set Λ0 has non empty interior in Λ.

Proof. Assume Λ0 had empty interior and consider a point (λ, x) where π has a maximal
rank. Then this rank is constant over a neighborhood U of this point. If the rank is m, then
π restricted to U is a submersion, so that π(U) is open in Λ, which is impossible if Λ0 has
empty interior. Therefore, the rank of π is always strictly smaller than m and consequently
the dimension of the fibers has to be at least k + 1, contradicting Lemma 2 above.

From now on, we will focus on the case where λ lies in the interior of Λ0. Restricting
attention to a connected component of Λ if need be, we may and will assume in the sequel
that Λ0 is open and connected. Finally and for the sake of notational simplicity, we rename
Λ0 just Λ. In other words, we henceforth assume that Λ is open and connected in Rm and
that the projection π : E → Λ is surjective.

4. Fibers over the Parameter Space

Let us refine Lemma 2 slightly

Proposition 4. For every λ ∈ Λ the fiber Eλ = π−1(λ) is a compact smooth real analytic variety
of dimension k whose boundary (if any) is contained in ∂V.

Proof. With the notations used in the proof of Lemma 2, we know that Eλ = f−1
λ (0) is

indeed a smooth real analytic variety of dimension k. Being a closed set in V, it is compact.
Its boundary is nonempty if and only if fλ vanishes on the boundary ∂V of V. Indeed

if x0 is a point in Eλ not in ∂V, then by the implicit function theorem, Eλ is locally the graph
of a function of k variables, so x0 cannot lie on the boundary of Eλ.
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Corollary 1. If k = 1, the fibers over Λ have connected components which are diffeomorphic either
to circles or to line segments. In the latter case, the ends of the segment lie on ∂V.

Proposition 5. The rank of the projection π is constant equal to m. It is a surjective submersion.

Proof. The tangent space of E at u = (λ, x) is ker(J) = ker
([

∂ f
∂λ , ∂ f

∂x

])
. Moreover (a, b) ∈

Tu(E) ∩ ker(π∗) if and only if ∂ f
∂λ a + ∂ f

∂x b = 0 and π∗(a, b) = a = 0. Hence, ker(π∗,u) =

{(0, b)| ∂ f
∂x b = 0}. Therefore dim(ker(π∗,u)) = k and rank(π∗,u) = m + k − k = m.

Note that this result is consistent with Lemma 2 and Proposition 4.

Proposition 6. The triplet (E, π, Λ) defines a fiber bundle.

Proof. By Erhesmann’s theorem, it is enough to show that π is a proper surjective submer-
sion to conclude that it is a fiber bundle. Now it is surjective by definition, and we already
know it is proper (because V is compact). Finally, it is a submersion by Proposition 5.

Since Λ is assumed to be connected, following Section 3, we get the following corollary.

Corollary 2. The fibers of Eλ of E are all diffeomorphic.

In the sequel the bundle (E, π, Λ) will be called the equilibrium bundle.

5. Parallel Transport of the Fibers
5.1. Connection

In this section, we aim at defining a connection on the equilibrium bundle and showing
that parallel transport exists. In a very general setting, a connection on a bundle π : E → B
is defined by an horizontal distribution, that is a subbundle of the tangent bundle TE → E,
say H, such that for every u ∈ E, we have:

TuE = Vu ⊕ Hu,

where Vu is the vertical summand of the tangent space, that is the set of tangent vectors X
at u, such that π∗(X) = 0. In other words Vu ⊂ TuE is spanned by the vectors which are
tangent to the fiber over π(u). We will denote by V the vertical subbundle of TE.

5.2. Transversality between Fibers and Integral Manifolds

Given u = (λ0, x0) ∈ E, a basis of ker
([

∂ f
∂x (u)

]T
)

is given by (∇hl(x0))1≤l≤k. There-

fore the family (∇hl(x0))1≤l≤k is also a basis of the subspace orthogonal to im
(

∂ f
∂x (u)

)
, so

that:

im
(

∂ f
∂x

(u)
)
= {v ∈ Rn | vT∇hl(x0) = 0, l = 1, . . . , k} (2)

Let a = h(x0) ∈ Rk where h = (h1, · · · , hk) and let Na be the manifold defined by
Na = V ∩

(
∩k

l=1Z(hl − al)
)

, i.e., hl = al on Na, with a = (a1, · · · , ak). Equation (2) simply
means that:

im
(

∂ f
∂x

(u)
)
= Tx0 Na (3)

From this equation, one can state:

Proposition 7. Assuming the vector field f (λ, x) satisfies the genericity condition iii) in §2,
the manifold Nh(x) and the fiber Eλ are transverse at x in V for every (λ, x) ∈ Λ × Eλ.
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5.3. Lifting Curves

We now show how a curve in Λ can be naturally lifted to E. So let λ(t) : [0, 1] → Λ
define a curve from λ(0) = λ1 to λ(1) = λ2 in Λ (both ends are included).

Given x ∈ Eλ1 we want to build a curve γ : [0, 1] → E ∩ Nh(x) starting from x = γ(0).
So γ(t) must satisfy:

∀t ∈ [0, 1],
{

π(γ(t)) = λ(t)
∀i, hi(γ(t)) = hi(x)

This yields the following differential system:{
∂ f
∂λ (λ(t), γ(t))λ̇(t) + ∂ f

∂x (λ(t), γ(t))γ̇(t) = 0
∀i,∇hi(γ(t))Tγ̇(t) = 0

which can be written more compactly as:

A(t)γ̇(t) = b(t), (4)

with

A(t) =

[
∂ f
∂x (λ(t), γ(t))

∂h
∂x (γ(t))

]
, b(t) =

[
− ∂ f

∂λ (λ(t), γ(t))λ̇(t)
0

]
,

where h = (h1, · · · , hk).

Proposition 8. The differential system defined by Equation (4), has a unique solution defined on
the closed interval [0, 1].

Proof. By Proposition 7, the matrix A(t) has full rank n for every t ∈ [0, 1]. Therefore,
Equation (4) can be written:

γ̇(t) =
(

A(t)T A(t)
)−1

A(t)Tb(t)

where the right-hand side actually depends on γ(t). The functions entering on the right-
hand side being smooth, a fortiori Lipschitz, elementary results about differential equations
(the Cauchy–Kovaleska theorem) garantee the local existence (in time) and uniqueness of a
solution with given initial condition, thus also over a compact interval.

Theorem 1. For any λ ∈ Λ and any x ∈ Eλ, the intersection Eλ ∩ Nh(x) consists of a finite set of
points. Moreover, the number of points in Eλ ∩ Nh(x) is independent of λ.

Proof. By Proposition 7, the intersection Eλ ∩ Nh(x) is discrete, hence finite since Eλ is
compact. Let λ1, λ2 ∈ Λ and consider a curve λ(t), defined on [0, 1] joining these two
points. For every x ∈ Eλ1 , there is a unique lift of λ(t) drawn on Nh(x) and starting at x,
which ends at some y ∈ Eλ2 . Lifts starting from a point in Eλ2 ∩ Nh(x) are also uniquely
defined. This sets up a one-to-one correspondence between the points of Eλ1 ∩ Nh(x) and
those of Eλ2 ∩ Nh(x).

5.4. The Natural Connection

Let π′ : E → Rn be the projection to the second summand. Consider again the function
h : Rn → Rk, (h = (h1, · · · , hk)) and note that h ◦ π′ is a submersion. Now for a ∈ Rk,
if (h ◦ π′)−1 ̸= ∅ it is a submanifold of E of dimension m. Let u = (λ, x) ∈ (h ◦ π′)−1(a).
Then the tangent space of (h ◦ π′)−1(a) at u is ker

(
[0k,m, ∂h

∂x (x)]
)

.
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Lemma 3. The tangent space of (h ◦ π′)−1(a) at u = (λ, x) is the complement of the tangent
space of Eλ at x in TuE.

Proof. This is a direct consequence of Equation (3) and the non-degeneracy condition
(iii).

This results shows that we can define a connection on E choosing as the horizon-
tal space:

Hu = Tu((h ◦ π′)−1(h(x))).

We call it the natural connection of the equilibrium bundle.

Theorem 2. The natural connection of the equilibrium bundle is flat (i.e., its curvature vanishes).

Proof. The curvature of a connection measures the failure of the horizontal distribution
to be integrable. Here however, for u ∈ E the subspace Hu is tangent to an embedded
submanifold of E. Therefore the distribution (Hu)u is indeed integrable and the curvature
vanishes.

Theorem 3. Parallel transport exists for the natural connection on the equilibrium bundle.

Proof. It is well-known that when the fibers are compact, parallel transport exists (see [5]
(p. 204) for details). By Proposition 4, the fibers in our case are indeed compact, so this
result applies. Here in fact Proposition 8 makes parallel transport explicit.

Consider two points λ1, λ2 ∈ Λ and a curve λ(t) joining them. Consider a point x in
the fiber Eλ1 and the manifold (h ◦ π′)−1(h(x)). By Proposition 8, there exists a curve γ(t)
on E ∩ (h ◦ π′)−1(h(x)) starting at x, such that ∀t, π(γ(t)) = λ(t) and ˙γ(t) ∈ H(λ(t),γ(t)),
which explicitly shows that parallel transport exists.

The connection being flat, assuming the base manifold Λ is simply connected, the holon-
omy groups vanish, which we record in the following theorem.

Theorem 4. Assuming that the base manifold Λ is simply connected, the holonomy groups of the
equilibrium bundle are trivial and the fiber bundle is trivial.

Proof. The horizontal lift of a smooth path in Λ entirely lies in (h ◦ π′)−1(a) for some a.
Since every fiber intersects h−1(a) in the same finite number of points, there are finitely
many horizontal lifts of a smooth loop. Therefore, the holonomy groups are finite and
are Lie transformation groups of the fibers. Now, since the curvature of the connection
identically vanishes, the restricted holonomy groups are in fact trivial, applying a result
of [6] which generalizes the Ambrose–Singer theorem to general fiber bundles.

Since the base space Λ is assumed to simply connected, the holonomy group at a point
is identical to the restricted holonomy group at this point. This leads to the conclusion.

6. The Natural Connection via a Riemannian Submersion

Let us Φ be the natural connection form, Φ ∈ Ω1(E, TE) (that is for each p ∈ E , we
have Φp ∈ End(TpE)), which is the projection over the vertical bundle, so that for each
p ∈ E, we have Φp ◦ Φp = Φp and im(Φ) = V , i.e., the vertical bundle.

Let us define a Riemann metric on E as follows:

g(X, Y) =< Φ(X), Φ(Y) >1 + < π∗(I − Φ(X)), π∗(I − Φ(Y)) >2,

where < ., . >1 and < ., . >2, respectively, denote the standard inner product in Rm ×Rn

and in Rm.
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When E is endowed with this metric, as we shall assume from now, the projection π
becomes a Riemannian submersion. Indeed Hu is the orthogonal complement of Vu in TuE
and the restriction π∗ : Hu → Tπ(u)Λ is an isometry.

Therefore, the natural connection coincides with the connection defined by π as a
Riemannian submersion.

There is apparently no reason for which the parallel transport would define an isometry
between two different fibers with the given metric.

However, since by theorem 4, the holonomy groups are trivial if we further assume
that Λ is simply connected, then in that case the parallel transport does not depend on the
chosen curve on Λ. Therefore, we have a well-defined diffeomorphism γλ2λ1 : Eλ1

∼→ Eλ2
between any two fibers, such that:

γλλ = IdEλ

γλ3λ1 = γλ3λ2 ◦ γλ2λ1

(5)

This observation allows transporting the metric from one fiber to another such that
the parallel transport becomes an isometry between these two fibers. Choosing one fiber
and transporting its metric to other fibers makes the parallel transport between any two
fibers an isometry, thanks to the cocycle condition (5).

Corollary 3. If parallel transport is an isometry between fibers, the fibers Eλ for all λ ∈ Λ are
totally geodesic in E for the Levi–Civita connection induced by the metric on E.

Proof. Since parallel transport defines an isometry, between fibers, these latter are totally
geodesic. See [7] (proposition 1.1) .

7. The Eigenvalues along the Fibers

The stability of an equilibrium point is controlled by the sign of the real parts of the
eigenvalues of the Jacobian matrix. In this section we set up, in the general framework
of our discussion, a map at the level of the fundamental groups which can provide some
information on these signs, or rather their changes. First, note that the stability of an
equilibrium is determined by the non-zero eigenvalues, since the system is constrained to
evolve along the submanifold defined by the k first integrals. We shall now consider the
variation of the nonzero eigenvalues along a homotopy class of loops for a given value of
the parameter.

Consider a given value of λ ∈ Λ. It is natural to look at the map e : (λ, x) ∈ Eλ 7→ µ
where µ = [µ1, . . . , µn−k] denotes the set of the nonzero eigenvalues. In other words
µ ∈ (C⋆)n−k/Sn−k where for p > 0, Sp denotes the permutation group on p objects and
the action here is by permutations of the factors.

Slightly more generally consider a manifold Y and its p-fold product X = Yp for
some p > 0. Let S = Sp act by permutation of the factors and let Z = X/S denote the
quotient (Here and below, for the sake of simplicity, the topological objects and morphisms
are assumed to be smooth). One may consider Z either as a topological space, or as an
orbifold. In this section, we will make use of both categories. The case at hand is relatively
elementary because we are dealing with a global quotient under the action of a finite group.
The theory of orbifolds is more general and adapted to the proper discontinuous action
of a topological groups. Given that in our example the application is fairly intuitive, we
refrain from recalling the details, referring instead to [8] for much more.

Given a (smooth) map f : E → Z where E is a manifold, we may consider the
topological fundamental group (or functor rather) denoted π

top
1 or just π1, giving rise to

a map
π1( f ) : π1(E) → π1(Z)
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where Z is considered as a topological space. We may also consider the orbifold fundamen-
tal group πorb

1 and the attending map

πorb
1 ( f ) : πorb

1 (E) → πorb
1 (Z).

But in fact πorb
1 (E) = π

top
1 (E)(= π1(E)) because E is just a manifold (a “trivial”

orbifold). So we get two maps π1( f ) and πorb
1 ( f ) with the same source, namely π1(E),

and respective targets π1(Z) and πorb
1 (Z) according to whether Z is considered in the

category of topological spaces or that of orbifolds.
There remains to compute the groups π1(Z) and πorb

1 (Z), which can be done easily (in
our case), using [9,10] to which we refer the reader. Indeed, assume that G is a topological
group acting properly discontinuously on a connected smooth manifold X. The quotient
Z = X/G exists as a topological space and π1(X/G) is then an extension of G/I by π1(X),
where I (the letter stands for “inertia”) is the normal subgroup of G generated by the
elements whose action has fixed points in X. If X = Yp and G = Sp acts by permutations,
it is easy to see that I = G and so π1(X/G) = π1(X) = (π1(Y))p = Zp if Y = C⋆.

On the other hand, πorb
1 (X/G) is (essentially by definition) an extension of G itself by

π1(X). Now if again X = Yp and G = Sp the extension splits and πorb
1 (X/G) is given as a

semi-direct product πorb
1 (X/G) = Sp ⋉ (π1(Y))p where again the action of Sp on π1(Y)p

is by permutations of the factors. In our case, π1(Y) = Z and so returning to the orginal
situation we get a natural map

πorb
1 (e) : π1(Eλ) → Sp ⋉Zp

which records both the monodromy of the individual (nonzero) eigenvalues and their per-
mutations.

What does this tell us about stability in this very general setting? Let us restrict
attention to the topological fundamental group π1(µ) = Zp (p = n − k). Then for any
nonzero element (m1, . . . , mp) in the image of π1(e), with a nonzero component—say —mi
for some index i, we can assert that the eigenvalue µi has crossed the imaginary axis
(Re(z) = 0) at least 2mi times, so that the sign of its real part has changed at least that many
times. Although at this level of generality it seems difficult to extract more information
from the map e, this may be feasible in specific, concrete cases.

8. Examples and Applications

Our first and motivating example concerns mathematical biology and consists of a
circular network of cells, i.e., a finite set of cells that are connected along a ring such that
the last cell is connected to the first. An instance of this kind of model is the ribosome flow
model on a ring, which has been introduced in [11].

Such a model is a parametric dynamical system defined as follows:

ẋ1 = λnxn(1 − x1)− λ1x1(1 − x2)
ẋ2 = λ1x1(1 − x2)− λ2x2(1 − x3)
...

ẋn−1 = λn−2xn−2(1 − xn−1)− λn−1xn−1(1 − xn)
ẋn = λn−1xn−1(1 − xn)− λnxn(1 − x1)

The parameters λ1, · · · , λn are real strictly positive numbers. They define the degree of
diffusion between the cells. As shown in [11], if the initial point lies in the hypercube [0, 1]n,
then the system always stays within these limits. Then this system models the occupancy
levels of a circular chain of n sites (for example, a circular DNA), while λ1, · · · , λn are
transition rates. In [4], the author analysed the structure of the equilibrium locus of
this system.
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Coming to dynamical systems in general, one is looking for systems such that (a) the
trajectories are confined to a compact region of phase space (b) they possess more or less
natural first integrals (conserved quantities) and (c) they display varieties of equlibria of
positive dimensions. Requirements (a) and (b) are quite common and easy to satisfy: think
of parametrized Hamiltonian systems and the conservation of energy, global momentum,
possibly angular momentum, or conserved quantities coming from some continuous group
of geometric symmetries, via Noether’s theorem.

Requirement (c) is less commonly fulfilled. The system which first comes to mind,
stemming from celestial mechanics, the oldest and in some sense motivating domain
in dynamical systems, is the so-called N-body problem, i.e., the system of differential
equations which governs the motion (in ordinary three dimensional Euclidean space)
of N > 1 massive bodies interacting according to Newton’s law of gravitation. This
horrendously difficult problem (for N > 2) was first studied in “modern” times by Lagrange
and Euler, who isolated by now famous discrete sets of relative equilibria. Because the
problem is so old, so natural and so difficult, literally dozens of variants of all kinds have
been produced. All of them satisfy (a) and (b) and so does the original system. Some
of them, especially those which involve blowups of certain singularities, also satisfy (c)
(see [12]). A precise investigation of such systems would lead us too far afield. We hope to
return to such and similar problems at some later time.

Finally, we remark that it would also be interesting to explore the field of mathematical
economy, where similar systems may exist in some abundance. Again, such an exploration
is postponed to later studies, possibly by other, more specialized authors.

In addition to these examples, one would consider the application of our results to
control theory. Having first integrals, the system is not controllable. However, lying on the
manifold defined by fixed values a = (a1, · · · , ak) ∈ Rk of the first integrals, there is a non
denumerable set Ea = E ∩

(
∩k

i=1π′−1 ◦ h−1
i (ai)

)
of possible equilibrium points according

to the value of the parameter vector. The notations are defined in Section 5.4. According to
the discussion there, this set is actually a manifold of dimension m.

By Proposition 8, every curve in Λ can be lifted into a curve that lies in Ea. Therefore, if
the parameters are considered as commands, one can change the set of available equilibrium
point(s) continuously. The stabilization around an equilibrium is then a classical control
problem that we do not recall here.

Author Contributions: The two authors have similar contributions. Writing—original draft, Y.K.;
Writing—review & editing, P.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in
the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, Z.; Romanovski, V.G.; Yu, J. Centers and limit cycles of a generalized cubic Riccati system. Int. J. Bifurc. Chaos Appl. Sci.

Eng. 2020, 30, 2050021. [CrossRef]
2. Dudoladov, S.L. Stability criteria for the equilibrium resonance position in systems admitting a first integral. Regul. Khaoticheskaya

Din. 1996, 1, 77–86. (In Russian)
3. Dancer, E.N.; Toland, J.F. Equilibrium states in the degree theory of periodic orbits with a first integral. Proc. Lond. Math. Soc.

1991, 3, 569–594. [CrossRef]
4. Kaminski, Y. Equilibrium locus of the flow on circular networks of cells. Discret. Contin. Dyn. Syst.—S 2018, 11, 1169–1177.

[CrossRef]
5. Michor, P. Topics in Differential Geometry; American Mathematical Society: Providence, RI, USA, 2008.
6. Reckziegel, H.; Wilehlmus, E. How the curvature generates the holonomy for a connection in an arbitrary fibre bundle. Results

Math. 2006, 49, 339–359. [CrossRef]

http://doi.org/10.1142/S0218127420500212
http://dx.doi.org/10.1112/plms/s3-63.3.569
http://dx.doi.org/10.3934/dcdss.2018066
http://dx.doi.org/10.1007/s00025-006-0228-y


Mathematics 2024, 12, 457 11 of 11

7. Ziller, W. Fatness Revisited, Lecture Notes, Preliminary Version. Available online: https://www2.math.upenn.edu/~wziller/
papers/Fat-09.pdf (accessed on 1 January 2024).

8. Thurston, W.P. The Geometry and Topology of Three-Manifolds; Princeton University Lecture Notes; Princeton University: Princeton,
NJ, USA, 1979; Chapter 13.

9. Armstrong, M.A. The fundamental group of the orbit space of a discontinuous group. In Mathematical Proceedings of the Cambridge
Philosophical Society; Cambridge University Press: Cambridge, UK, 1968; Volume 64, pp. 299–301.

10. Armstrong, M.A. Calculating the fundamental group of an orbit space. Proc. Am. Math. Soc. 1982, 84, 267–271. [CrossRef]
11. Raveh, A.; Zarai, Y.; Margaliot, M.; Ruller, T. Ribosome Flow Model on a Ring. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12,

1429–1439. [CrossRef]
12. Devanay, R. Blowing Up Singularities in Classical Mechanical Systems. Am. Math. Mon. 1982, 89, 535–552. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www2.math.upenn.edu/~wziller/papers/Fat-09.pdf
https://www2.math.upenn.edu/~wziller/papers/Fat-09.pdf
http://dx.doi.org/10.1090/S0002-9939-1982-0637181-X
http://dx.doi.org/10.1109/TCBB.2015.2418782
http://dx.doi.org/10.1080/00029890.1982.11995493

	Introduction
	Definitions and First Properties
	On the Nature of 0
	Fibers over the Parameter Space
	Parallel Transport of the Fibers
	Connection
	Transversality between Fibers and Integral Manifolds
	Lifting Curves
	The Natural Connection

	The Natural Connection via a Riemannian Submersion
	The Eigenvalues along the Fibers
	Examples and Applications
	References

