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Abstract: We consider systems of reaction–diffusion equations. We describe a new effect in the wave
interaction for these systems: the collision of several travelling fronts may induce chaos or periodic
oscillations. This effect depends on the initial locations of the travelling fronts: For some initial
positions chaos occurs and for others it does not. In a space-homogeneous system, we need at least
three fronts to create time-periodic behaviour, while to create chaos, we should have four fronts. We
also provide a short review of previously known results, and different known mechanisms of chaos
generation for reaction–diffusion systems. Our results can be used for pattern coding, in particular,
for morphogenesis.
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1. Introduction

In this paper, we prove the existence of a new effect in the interaction of wave fronts for
reaction–diffusion systems. These systems have important applications in biology, ecology,
chemistry (combustion), and physics (see, for example, [1,2]). They exhibit travelling front
propagation, an effect important in ecology, when one species replaces another. This could
be a result of climate change or species invasive properties. The first existence of such fronts
was proved mathematically in seminal works [3,4] for reaction–diffusion equations (see [2]
for more detail). Recall the travelling wave is a solution of the form U(x − Vt), where V is a
constant speed. Great attention was devoted to this domain after the remarkable paper [5].
The results of this work allow us to understand the large-time behaviour of solutions for a
large class of reaction–diffusion equations, in particular, what can happen if two travelling
waves meet. Although we are not capable of describing the collision process in detail, the
result will always be either a new travelling wave or a constant solution U(x, t) ≡ const. An
exhaustive survey of these classical results can be found in [2].

From an application point of view, systems of reaction–diffusion equations are of much
greater interest; however, up to now there is an absence of general analytical results on the
existence and interaction of travelling waves, with the exception of some particular classes of
systems. For example, the results on the existence of the waves can be extended to the case
of so-called monotone reaction–diffusion systems. An n-component system with a reaction
part fi(u), where u = (u1, . . . , un) and fi are smooth functions, is called monotone if ∂ fi

∂uj
≥ 0

for all i ̸= j. The reason why monotone systems can be investigated successfully and the
results are similar to the simplest case of one equation (n = 1) can be explained as follows.
In both cases, the corresponding dynamical systems generate monotone semiflows St, t > 0,
in appropriate phase function spaces H. A semiflow defined on the partially ordered Banach
space H is monotone if it conserves a partial order >> in that space. The general theory of
monotone dynamical systems was developed first in the seminal works of M. Hirsch’s (see [6]
for an overview).
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For monotone reaction–diffusion systems the partial order can be defined as so: u >> v
if ui > vi for each i. For chemical kinetics, the monotone dynamics means the following.
Let ui(x, t), i = 1, . . . , n be concentrations of reagents participating in chemical kinetics.
Let us consider two sets of concentrations, u and v, which both evolve according to given
monotone chemical kinetics. Then, if all initial concentrations ui(x, 0) are more than the
corresponding initial v concentrations, ui(x, 0) ≥ vi(x, 0) for each i and x ∈ Ω, where the
domain Ωi is a chemical reactor, this relation is conserved for all t > 0: ui(x, t) ≥ vi(x, t)
for all i, x, t > 0. Roughly speaking, larger input concentrations produce larger output
concentrations at each time moment.

However, unfortunately the reaction–diffusion systems that are most interesting for
applications are not monotone. What could happen in the non-monotonic case? Some
investigations and results, obtained using mainly asymptotical and numerical methods, have
shed light on this problem. The question of the existence of chaotic regimes in chemistry
received great attention in the 1980s–1990s. First, one can note that if a reactor is well stirred
and we consider a spatially homogeneous state, then we can take a system of reaction–
diffusion under zero Neumann boundary conditions, where the reaction part generates
chaotic behaviour (clearly, in this case we need at least three reagents). It is easy to show then
that if diffusion coefficients are sufficiently large, this dynamical chaos is stable under space
perturbations. This case, however, is not interesting for us since it it just the usual dynamical
chaos, where diffusion effects play no role. Moreover, in this case we do not have any wave
phenomena. In the space-homogeneous case, the first two beautiful ideas were proposed in
Kuramoto’s book [7]. The first one can be outlined as follows. Suppose that the reaction part
generates a limit cycle, i.e., we are dealing with a chemical oscillator. If diffusion is absent (the
diffusion coefficients are equal to zero), then we have an infinite set of oscillators located at
points x of the reactor. All oscillators oscillate the same way, but each of them has its own
phase ϕ(x) depending on the point x. For small diffusion coefficients one can develop an
asymptotic approach, which has a transparent physical sense: it describes a weak interaction
between oscillators via diffusion. The phase becomes a function of x and time t. One can show
that the phase evolution is governed by the famous Burgers equation, which can be linearized
and reduced to the heat transfer equation. If the heat conduction coefficient is positive, all the
solutions of the Burgers equation are time convergent. Physically, this means that all oscillators
are synchronized in the limit of large times. If the heat conduction coefficient is negative, we
have an exponential instability of solutions of the Burgers equation for the phase. This can be
interpreted as chaos (turbulence) describing the desynchronization of the oscillators. Such
an effect arises for special reaction parts and, moreover, the diffusion coefficients should be
different. It is not easy to justify these asymptotical results using rigorous methods (however,
if we replace a space-continuous model with a discrete one, i.e., consider oscillators on a
lattice, then it can be achieved using standard methods). Moreover, we do not have wave
phenomena here. Nonetheless, this Kuramoto model can be extended to describe moving
chaos that captures more and more new territories.

The second idea from [7] describes chemical wave fronts unstable in space, and it was
pioneered independently by Sivashinsky [8] for combustion and other authors for fluid
dynamics [9,10]. This instability problem, leading to the intriguing Kuramoto–Sivashinsky
equation, is studied in many works, and we do not consider it in this paper.

A number of non-trivial wave effects induced by diffusion in chemistry were found
in [11,12] using numerical simulations. In these works, simple cubic autocatalytic models are
investigated. It is shown that complex dynamics, induced initially by the propagation of a
constant-velocity constant-form reaction wave, is possible. The chaotic nature of this wave can
be confirmed by numerical methods (but it is hard to justify it using analytical approaches).

In [13], the wave solutions are found using numerical simulations for a disease propaga-
tion model, which has the form of a two-component reaction–diffusion system. The results
in [13] show that spatio-temporal chaos can be generated by waves. Ref. [14] also concerns
a two-component reaction–diffusion system, describing a predator–prey model taking into
account species migration. It is shown that there are possible patterns corresponding to
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spatio-temporal chaos. These patterns appear inside a space subdomain and then the chaotic
pattern invades all the area.

In our work, we propose a model, which, in contrast to those mentioned above, can be
studied using rigorous methods, and moreover, it permits us to describe wave collisions.
The main result can be outlined as follows. There are possible interesting phenomena in
the collisions of wave fronts. In contrast to one-component and monotone cases, in the
general situation, when travelling wave fronts meet they are capable of producing chaotic
or periodic solutions. The result of the collision of waves depends on their initial positions.
We show that in the spatially homogeneous case time periodical solutions are possible
for n > 2 and chaotic solutions for n > 3. The result of the waves meeting are so-called
generalised travelling waves (GTWs), earlier studied in [15]. GTWs have solutions of
the form

u = U(x, q(t)), ui = Ui(x − qi(t)),

where U(x) is a function and qi(t) satisfies the system of ordinary differential equations

dqi
dt

= Qi(q), (1)

where q = (q1, . . . , qn), and Q is a smooth vector field. This means that the solution is a
family of travelling fronts where each front moves with the speed Qi(q). However, the
fronts are not independent: each component, in general, depends on each other.

Let us outline the physical mechanism beyond the complicated dynamics. This mech-
anism is fundamental and it is connected with spontaneous symmetry breaking. To start,
let us consider the simplest case of a reaction–diffusion equation. We consider the scalar,
time-dependent Ginzburg–Landau (TDGL) equation. This equation describes the dynamics
in a bistable medium where there are two stable thermodynamically equivalent states. This
basic equation belongs to a family of canonical equations which govern the dynamics of
condensed matter at a critical point. The scalar Ginzburg–Landau equation corresponds
to the simplest case, where the system mass is not conserved and the order parameter is
a scalar [16,17]. The TDGL equation is well studied and describes interesting effects, in
particular, there exist kink solutions and solutions describing kink chains [18]. The TDGL
equation reads

ut =
1
2

uxx + u − u3. (2)

This equation describes a dissipative process. In fact, the Ginzburg–Landau energy,
which is

E[u(·, ·)] =
∫ ∞

−∞

(
u2

x + (1 − u2)2)dx

decreases along trajectories defined by (2). This energy is the sum of two contributions, the
Landau term

∫
(1 − u2)2dx and the Ginzburg gradient term

∫
u2

xdx. The Landau term has
two absolute minima u± ≡ ±1, which correspond to two stable phases minimizing the
free energy of a bistable medium. There exist, however, more non-trivial solutions (kinks)
corresponding to transitions from one phase to another:

ukink = tanh(x − q),

where q defines a kink location. The kink is a standing wave because the system is bistable
and both phases u± are energetically equivalent. We have a family of kink solutions
parameterized by q. The existence of such a family, which can be considered as a one-
dimensional manifold embedded in the infinite-dimensional phase space, is connected
with the translation invariance (symmetry) of our bistable medium: all positions q are
equivalent. Interesting solutions of the TDGL are studied in [18]. They describe kink
chains where the kinks are separated by long intervals. The kinks move very slowly due
to an exponentially weakening interaction between the closest kinks. It is very difficult to
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detect this slow evolution using numerical methods [18]. In this paper, we use an approach
similar to in [18].

Even more interesting phenomena arise if we consider a more complicated model:

ut =
1
2

uxx + u − u3 + λg(u, x), (3)

where λ > 0 is a small parameter, g can be interpreted as a small perturbation violating
the phase symmetry. This weak perturbation breaks the bistability symmetry. In this
case, the equilibrium spatially homogeneous system states u± become energetically non-
equivalent. This perturbation g causes two effects. The first effect is that the shape of the
kink experiences a slight deformation and the second effect is that the kink begins to move
slowly, i.e., q depends on t. For the kink coordinates q we obtain

dq/dt = λQ(q, g(·, ·)), (4)

where Q is a linear functional of the perturbation g:

Q = C−1
∫ ∞

−∞
g(ukink(x, q), x)Ũ (x, q)dx,

Here,

Ũ (x, q) =
∂ukink(x, q)

∂q

denotes the so-called Goldstone’s mode, which appears in all physical models with symme-
try, and

C = −
∫ ∞

−∞
Ũ (x, q)2dx.

The expression for Q can be obtained in different ways. The most natural asymptotic
derivation (although non-rigorous) of (4) can be achieved using energetic arguments (see
Appendix B). The rigorous justification has been presented in many works (see, for exam-
ple, [18]). An asymptotic approach was first developed in [19].

Furthermore, let us consider the n independent instances of Equation (2) for unknown
ui(x, t), i = 1, . . . , n, where each equation contains a small perturbation gi(u1, . . . , un).
Then, using the same arguments and methods as for a single equation we can show that
there is a set of kink solutions tanh(x − qi(t)) where each kink moves according to

dqi/dt = λQi(q, gi(·, ·)), q = (q1, . . . , qn). (5)

Using different gi we can obtain a rich family of different Qi that allows us to find
complicated effects in multi-component kink collisions.

The construction has a transparent interpretation. In a multi-component system
where separate components interact weakly, there arises a weak interaction between kinks.
When the kinks become closer to each other, this interaction leads to the formation of
a complicated connected state of kinks. This connected state can evolve chaotically or
periodically in time. However, the chaos emerges when these kinks come closer together.
If at initial moment t = 0 the wave fronts are far from each other, then the interaction is
absent and we observe a collection of usual travelling fronts which move independently.
The complicated time behaviour and oscillations arise when the fronts are close enough.
This mechanism of chaos onset is illustrated in Figure 2.

We think that such behaviour is also possible in systems other than reaction–diffusion
systems, because the effect is quite general and admits an energetic interpretation (see
Appendix B).

Note that numerical simulations show that chaotic waves exist for realistic models of
population dynamics; see [14]. They extend our possibilities in pattern formation and can
be applied for pattern coding and morphogenesis problems; see [20,21]. A key difference
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between chaotic waves and usual travelling fronts can be understood if we consider the
somitogenesis problem [22–24]. Somitogenesis is the process of somite formation. Somites
are paired blocks that produce layered periodical patterns in the developing embryos of
animals. Somites appear in the initial stages of morphogenesis, and further, they give rise
to different organs, for example, skeletal muscle. The clock and wavefront (CWF) model,
first proposed in [25], see also [26], allows us to describe the somite formation as a result of
the oscillating expression of genes (which was detected in experiments, see [27]). However,
such a model permits us to explain only how periodical gene expression oscillations encode
periodical layers. To encode arbitrary patterns we need waves with chaotic dynamics [21].
Chaotic waves also help in practical problems of pattern coding [20].

2. Statement of the Problem

We consider the Cauchy problem for general reaction–diffusion systems:

∂u
∂t

= D
∂2u
∂x2 + F(u), x ∈ R, t ≥ 0 (6)

with the initial condition
u(x, 0) = u0(x). (7)

Here, u = (u1, . . . , um), F = (F1, . . . , Fm), and D is a diagonal matrix with positive
diagonal elements di, i = 1, . . . , m. The function F(u) has the form

F(u) = f (u) + λg(u),

where f = ( f1, . . . , fm), g = (g1, . . . , gm), λ is a small positive parameter, and f (u) satisfies
the following conditions:

f (u+) = f (u−) = 0

for some constant vectors u+ and u−, u− < u+ (the inequality is understood component-
wise),

∂ fi(u)
∂uj

≥ 0, i, j = 1, . . . , m, i ̸= j, u ∈ Bκ , (8)

and f (u) ∈ C2(Bκ). Here, Bκ denotes the set of u ∈ Rm satisfying the inequality
u− − κ ≤ u ≤ u+ + κ, where κ is a small positive number. The main case, where all
conditions to f are fulfilled, is given by the relations

fi(u) = ui − u3
i , di = 1/2. (9)

Here, u± = ±1. Below, we consider this case in order to simplify the statement, and
moreover, due to the basic role of the Ginzburg–Landau model in physics.

If λ = 0 and if we suppose for simplicity that u0(±∞) = u±, then the large-time
behaviour of solutions of the Cauchy problem (6) and (7) is described by travelling-wave
solutions. We recall that a travelling wave is a solution of the form u(x, t) = w(x − ct).
Here, c is an unknown constant, the wave velocity, and the function w(x) is a solution of
the problem

Dw
′′
+ cw

′
+ f (w) = 0, w(±∞) = u±. (10)

In the case (9), this problem is particularly easy: w(x − q) = tanh(x − q), where q is a
constant and c = 0, i.e., in this case we are dealing with standing waves. To simplify the
subsequent statement, we restrict ourselves by the case (9). The general case of a weakly
perturbed monotone system satisfying (8) can be considered in a similar way. Then, we
define the non-perturbed kink solution by

ukink = W(x, q) =
(
w(x − q1), . . . , w(x − qn)

)
, (11)
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where q = (q1, . . . , qn) is a vector determining the kink positions: qi defines the position of
the kink for the i-th component.

3. Generalized Travelling Waves (GWTs), Universal Dynamical Approximation, and
Function Spaces
3.1. GWT

GWTs can be defined as more general solutions

u(x, t) = v(x, q1(t), . . . , qm(t)), (12)

where the function qi(t) satisfies the system of ordinary differential equations

dqi
dt

= λΦi(q, λ), i = 1, . . . , m, (13)

where Φ(q, λ) depends on the perturbation g. The existence of such solutions is proved
in [15]. Due to the translational invariance of system (6), the right-hand side Φi is a function
of the difference qi − ql . We can, thus, reduce (13) to a shorted system

dyi
dt

= λΦ̃i(y, λ), i = 1, . . . , n, (14)

where n = m − 1 and yi = qi − qm.
Further, we apply the idea of universal dynamical approximation (UDA)

(see Appendix A). The right-hand side Φ̃ in (14) depends on g, it is a linear functional of g.
By adjusting the perturbation g, we can approximate any prescribed smooth vector field
Q(y) by Φ with an arbitrarily small accuracy ϵ > 0 (in a compact domain which contains
an absorbing set of the system dq/dt = Q(q)).

This fact, and fundamental results of the theory of dynamical systems (see Appendix A),
allows us to prove that there can exist periodic (for n ≥ 3) and even chaotic (for n ≥ 4)
solutions enjoying special properties. They can describe a collision of wave fronts leading
to chaos.

3.2. Function Space and Invariant Manifold

To formulate the results, first let us introduce useful function spaces. Let E = C(R)
be the Banach space of bounded continuous functions and C2(R) the space of functions
the first and second derivatives of which belong to C(R). The operator Au = Du

′′
, with

the domain D(A) = C2(R), is sectorial in C(R) [28]. (Here,
′

denotes the derivative with
respect to x.) Hence, we can introduce the space Eα = D(Aα

1) with the norm

∥u∥α = ∥Aα
1u∥,

where ∥ · ∥ is the uniform norm, and α ≥ 0, A1 = A − aI, a > 0, I is the identity operator
(see [29]).

It is shown [15] that under certain conditions system (6) has an invariant locally
attracting manifold Mλ for all sufficiently small λ > 0. This manifold is a C1-graph
ṽ = V(q, λ) in Eα, where 1/2 < α < 1.

The dynamics of system (6) reduced to Mλ is defined by the system of ordinary
differential equations

q
′
(t) = λΦ(q, λ), (15)

where Φ(q, λ) is continuous together with its first derivative with respect to q. This function
is a sum of the main term Φ(0) and a perturbation Φ(1):

Φ(q, λ) = Φ(0)(q) + Φ(1)(q, λ), (16)
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Φ(0)(q, λ) = −
∫ ∞

−∞
g(W(z, q)) Ũ(z)dz, (17)

where W(z, q) is defined by (11),

|Φ(1)(q, λ)|, |Φ(1)
q(q, λ)| < Cλ, (18)

where

Ũ(z) =
√

3
2

cosh−2(z). (19)

The system of equations (15) describes a slow motion of the kink system. These
equations have a transparent energetic interpretation. Equation (15) for kink coordinates qi
show an energetic balance: the energy dissipation per unit time equals the energy change
per unit time due to the kink interaction (see Appendix B).

4. Main Result

The main new result is given by the following theorem.

Theorem 1. For n > 3 there is a smooth function g such that for sufficiently small λ > 0
systems (15) and (16) have solutions q(t) enjoying the following properties:

(A) for 0 < t < T, where T = o(λ−1), one has

qi(t) = qi(0)− λc̄it + O(λ2), (20)

where c̄i is a constant which is positive for i = 1 and negative for i = 2, . . . , n;
(B) for t >> T the dynamics (15) of qi is defined by chaotic hyperbolic dynamics.

Comments:
(i) On hyperbolic chaotic dynamics, see [30]. Among systems, which we can find in

real applications, the Lorenz system has a dynamical behaviour close to hyperbolic. By
adjusting g we can change the chaotic dynamics of q.

(ii) The physical interpretation of this theorem is transparent. First, the fronts (kinks)
move independently and, therefore, with almost constant velocities. When the kinks get
close to each other they start interacting. This interaction can lead to chaos or periodic
oscillations (if the perturbation g is adjusted in an appropriate way) (see Figure 2).

5. Proof

Outline of the proof
Our plan is as follows. First, we prove the existence and boundedness of the solutions;

after this, we introduce new coordinates (q, v) in the phase space. The vector q defines the
kink coordinates, whereas v is a kink form correction. Using these coordinates, we obtain
the existence of a locally invariant n-dimensional manifold. Then, we can describe the
dynamics on this manifold. The proof of (B) uses some new ideas.

5.1. A Priori Estimates, Global Existence, and Uniqueness

We assume that the function g(u) is smooth, and f is defined by (9).

Lemma 1. For sufficiently small λ > 0, there exists a constant vector b = (b1, . . . , bn) such that
the solution u(x, t) of the Cauchy problem (6) and (7) satisfies the inequality

u+ − b ≤ u(x, t) ≤ u− + b (21)

for all x ∈ R and t ≥ 0 if
u+ − b ≤ u0(x) ≤ u− + b, x ∈ R. (22)

Proof. The proof is standard; see [15].
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We note that the global existence and uniqueness of the classical solutions of (6) and
(7) is well known (see, for example, [3,5]).

A priori estimate (21) implies that for sufficiently small λ > 0 Equations (6) and (7)
generate a semigroup St if we restrict ourselves by initial data satisfying (22). If the initial
condition u0 belongs to Eδ for some δ > 0 and satisfies (22), then for any t > 0, the solution
Stu0 belongs to Eα for any 0 < α < 1 and satisfies (21). We denote by ⟨, ⟩ the inner product
in Lm

2 (R) and in L2(R).

5.2. Invariant Manifold

In this subsection, we define an invariant locally attracting manifold Mλ describing the
large-time behaviour of the solutions of Equations (6) and (7). If λ = 0, then this manifold
is defined by the relation

M0 = {u : u = w(x − x0)},

where w(x) is given by

w = (w1, . . . , wn)
tr, wi = tanh(x − x0

i ).

The shift x0 can be considered as a coordinate on this manifold. The global semiflow St

reduced to M0 can be described by the equation dx0/dt = 0. It is shown that for small λ ̸= 0
the invariant manifold Mλ still exists and is close to M0 [15]. We outline it following [15].

5.3. Coordinates in the Neighbourhood of M0

Denote Wα
δ the neighbourhood of M0 in the space Eα:

Wα
δ = {u ∈ Eα : inf

x0
∥u(z)− w(z − x0)∥α < δ}. (23)

In the case α = 0, we use the notation Wδ.
We study solutions of (6) with the initial conditions u0 from Wα

δ , α > 0. Let us
introduce new variables (q, v) as follows. For each u ∈ Wα

δ we put

v(z − q) = u(z)− w(z − q) ∈ E, (24)

where a real number q should satisfy the following equation

ρ(q, u) ≡ ⟨u(·)− w(· − q), Ũ(· − q)⟩ ≡
∫ ∞

−∞
(u(z)− w(z − q))Ũ(z − q)dz = 0. (25)

Here, Ũ is defined by (19).
Below, we denote by C all positive constants independent of u and λ.

5.4. Change of Variables

Consider the solution u(x, t) of the Cauchy problem (6) and (7). Suppose that u(z, t) ∈
Wα

δ for 0 ≤ t ≤ T for some T > 0. For each t fixed, we define q(t) and v(ξ, t) by the
following relations:

ρ(q, u(·, t)) = 0, v(ξ, t) = u(ξ + q(t), t)− w(ξ). (26)

The function q(t) determines the shift of the unperturbed wave and v is a perturbation
of the wave. Equations (6) and (7) reduce to system (15) in a small neighbourhood of locally
attracting invariant manifold [15].

5.5. Concluding Steps

The idea is illustrated by Figures 1 and 2. We suppose that the nonlinearity f has the
form (9). Consider a system of ordinary differential equations

dy
dt

= Q(y), y ∈ Rn (27)
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where Q(y) ∈ C2(Rn). Suppose that B is a bounded domain in Rn with a smooth boundary
∂B such that

y · Q(y) =
n

∑
i=1

yiQi < −δ1, δ1 > 0, if y ∈ ∂B (28)

i.e., the corresponding vector field on the boundary ∂B fits inside B. This means that the set
B is absorbing. We suppose that dynamics (27) has hyperbolic invariant set Γ, which lies
inside B: Γ ⊂ B.

Figure 1. This image shows the main idea of the proof. Let y be the mutual distances between kinks
(see proof). We have the two domains in the y-space Rn (in this image n = 2), Bδ and B′, and a
structurally stable attractor A. There are embeddings A ⊂ B′ ⊂ Bδ. These domains are shown as
ellipses. The attractor A, which is a limit cycle, is shown by a closed curve. The vector field Y(y)
is equal to a constant vector field c̄ outside of Bδ (it is shown by arrows). In the transient domain
Bδ − B′ we have a smooth homotopy between the constant field c̄ and Q. We choose the field c̄ as
follows: (a) it should be directed toward the interior of Bδ at a part ∂E of the boundary ∂Bδ; (b) some
components of the vector c̄ must be positive and other ones are negative. Condition (a) implies that
the y-trajectories enter for absorbing set B′. Therefore, for large times t these trajectories are defined
by the attractor A. Condition (b) entails that the y-dynamics describes a collision of travelling fronts
(see the next image).

Figure 2. This image shows the time evolution of travelling fronts (kinks) under condition (b) of the
previous image. At the initial moment t = 0 the kinks are far from each other. The kink velocities and
their initial coordinates can be chosen so that when the kink coordinates q(t) approach the boundary
of the domain Bδ, they end up on the boundary set ∂E, where the trajectories of the semiflow St

Y
enters for Bδ. Beginning with this moment, the kinks interact and form a connected state. Their
coordinates can evolve in time in a periodical (for m > 2) or chaotic manner (for m > 3).
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As an example, we can consider the Lorentz system, which has the form

dy1

dt
= σ(y2 − y1),

dy2

dt
= ry1 − y1y3 − y2,

dy3

dt
= y1y2 − by3.

Depending on the positive parameters b, r, and σ, the solution of these equations can
have convergent, periodic, or chaotic behaviour. Then, the absorbing set B is defined by

B = {y : y ∈ R3, ry2
1 + y2

2 = b(y3 − r)2 ≤ br2}.

Note that the dynamics of system (27) on the hyperbolic set Γ is structurally stable
due to the theorem on the persistence of hyperbolic sets (see [31–33] and Appendix A).
This implies that there is a small constant ε > 0 such that if we perturb the field Q by
a perturbation Q̃, which is ε small in C1 norm on the absorbing set, then the perturbed
system (27) defined by the vector field Q + Q̃ also has a hyperbolic invariant set Γ′, which is
topologically equivalent to Γ, close to Γ and the dynamics of the perturbed system restricted
to Γ′ is orbitally topologically equivalent to the dynamics (27) restricted to Γ.

Our first step is to compress the domain B. We define a family of vector fields
Qδ = Q(δ−1y), where δ ∈ (0, 1) is a positive constant. Note that |Qδ|C1(B) < cδ−1.
System (27) becomes

dy
dt

= δQ(δ−1y), y ∈ Rn (29)

It is clear that this system is equivalent to (27) and it has an absorbing set Bδ such that
diam(Bδ) = O(δ). We can take such a δ ∈ (0, 1) that the Bδ is contained in the ball in Rn of
radius 1/2 centred at 0. This absorbing set Bδ contains the attractor A of the system (29).
Then, there is an open domain B′ with a smooth boundary ∂B′ such that

A ⊂ B′ ⊂ Bδ.

Moreover, one can suppose that B′ is sufficiently close to Bδ:

inf
{y∈∂Bδ , ỹ∈∂B′}

|y − ỹ| > δ0, (30)

sup
{y∈∂Bδ , ỹ∈∂B′}

|y − ỹ| < 2δ0, (31)

where ∂X denotes the boundary of a set X and δ0 is a small positive number such that
δ0 << δ. If δ0 > 0 is small enough, then B′ is also an absorbing set such that the field Q is
directed toward to the interior of B′ at ∂Bδ.

Let us set m = n + 1 and let us define gi by

gi(u1, . . . , um) = (2π)−1/2 p−1 exp(−u2
i /2p2)Pi(u1, . . . , um), (32)

where p > 0 is a small parameter such that p << ε (where ε is the constant of persistence
introduced above and depending on the field Q only) and Pi are smooth functions of u,
which will be adjusted later. We note that gi is well localized at ui = 0. The value ui = 0
corresponds to x = qi. We substitute gi from (32) into the right-hand side of (17) and
by the standard Laplace method we obtain an asymptotic estimate of the integral on the
right-hand side of (17) that gives

Φ(0)
i (q) = Φ̄i(q) + pϕ0(q),

where ϕ0(q) is a small smooth correction bounded in C2(Rn) norm and

Φ̄i = Pi
(

tanh(qi − q1), tanh(qi − q2), . . . , tanh(qi − qm)
)
.
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To simplify computations, we set

Pm(u) = C̄m = const.

We introduce new variables yi by yi = qi − qm, i = 1, . . . , n. These variables are conve-
nient to take into account the translation invariance of our problem. Then, qi − ql = yi − yl,
where i, l ∈ {1, . . . , n}. Note that the variables (y, qm) have a clear meaning: the quantity
qm determines the speed of movement of the kink system as a whole, and the quantity y
determines the mutual distances between the kinks.

In these new variables, the system of differential equations for q reduces to the follow-
ing system for y:

dyi
dt

= Yi(y) + Ỹi(y), (33)

where i = 1, . . . , n and

Yi(y) = Pi(tanh(yi − y1), tanh(yi − y2), . . . , tanh(yi − yn), tanh(yi))− C̄m,

|Ỹi|C1(Rm) < c1 p,

where c1 is a positive constant uniform in p and λ. Let r(y) be the distance between a point
y and the set B′. This distance r equals the distance between y and the boundary ∂B′ when
y lies outside of B′, and r = 0 if y lies inside B′. We define Y as

Yi = Qi(y)χδ0(r) + c̄i(1 − χδ0(r))), (34)

where χδ0(r) is a C2-smooth monotone increasing function defined on [0, ∞) such that

χδ0(r) ≡ 1, 0 < r < δ0/2,

χδ0(r) ≡ 0, r > δ0.

Relation (34) means that outside a neighbourhood of B the field Y equals the constant
vector c̄ = (c̄1, . . . , c̄n), whereas inside B this field equals Q. It is clear that one can choose
appropriate functions Pi(y) such that the relation (34) holds. Then the theorem on the
persistence of hyperbolic sets [31,32] implies that with g defined by (16), sufficiently small
p, λ > 0 and appropriate δ, δ0 the y-dynamics defined by the system dy/dt = Y(y) gener-
ates a hyperbolic chaotic dynamics if a hyperbolic chaotic dynamics exists for system (27)
(see Appendix A).

The proof is complete.

5.6. Effects of Dependence on Initial Data

The front collisions exhibit interesting phenomena of dependence on initial data (initial
kink coordinates). Consider Figure 1. We see that depending on the initial data y(0) the
y-trajectories can either enter an absorbing set, or pass by. In the latter case, chaos is absent
and we have usual travelling waves. The kink speed oscillations are of the order O(λ2).
Figure 3 shows the case where all the trajectories enter the absorbing set; therefore, we
observe the complicated large-time behaviour of interacting fronts. However, there appears
an additional interesting effect: the speeds of the travelling fronts depend on the initial
data. This dependence is smooth.

Bistability effects are illustrated by Figure 4. The prescribed dynamics has two local
attractors, each attractor has its own area-of-attraction basin. The y-trajectories are defined
by a constant vector field, these trajectories enter different attractors depending on their
initial data. For some initial data, chaotic or periodical large-time behaviour does not occur.
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Figure 3. This image shows the case where the front collision leads to periodical large-time behaviour of
interacting fronts for all initial data. In this case the fronts have different speeds for different initial data.

Figure 4. This image shows the case where we have a bistable situation. The prescribed dynamics
has two local attractors, each attractor has its own area-of-attraction basin. The y-trajectories, defined
by a constant vector field and shown by arrows, enter different attractors depending on the initial
data. Some trajectories pass by the attractors.

6. Concluding Remarks

What can happen when chemical waves meet? This is a hard problem, with theoreti-
cal results obtained for waves described by reaction–diffusion equations and monotone
reaction–diffusion systems. For the most important case of non-monotone systems this
problem has been studied in a few works using numerical methods (for example, [34]).

In this paper, based on some previously obtained results, we propose the first model, which
allows us to investigate this problem on chemical wave collisions using analytical methods. We
show that this reaction–diffusion model exhibits a rich variety of non-trivial phenomena.

The results presented show that for the case of four components the collision of travel-
ling fronts can generate chaotic waves and for the case of three components this collision
can generate time-periodic waves. There arise interesting effects of dependency on the
initial data: depending on the initial positions we obtain either chaos, periodical dynamics,
or convergent dynamics, when the result of the wave meeting is a new travelling front.

These phenomena have a transparent physical interpretation. The wave fronts come
closer and form a bound state where the waves interact by exchanging energy. For each
reagent, dissipation, associated with wave motion, is equal to an energy transferred from
other reagents. Such effects are possible in open systems only, and some reagents should
be activators, whereas other are inhibitors.

To conclude let us note the following. Assume we would like to have a very compli-
cated wave motion, say, with an attractor of fractal dimension 100. Then, the method of
this paper needs a system with >100 reagents. There arises a natural question: is it possible
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to obtain such a complicated behaviour (have an attractor of dimension 100) with only two
reagents? It is possible for reaction–diffusion systems in multidimensional domains [35].
Whether it is true or not for the one-dimensional case is as yet unknown.

Finally, we conclude that the possibility of the emergence of complex dynamic regimes
as a result of the interaction of waves is shown by rigorous methods. We think that complex
coherent waves of gene expression found in Drosophila morphogenesis [36] (see, in particular,
Figure 2 from this paper) and neurodynamics [37] cannot be explained by the usual approach
based on travelling fronts of constant form and velocity. We believe, therefore, that the gener-
alized travelling front concept could be useful in the future to handle data on gene expression
where we are dealing with many genes. In [36], the gene expression was measured for a
hundred genes in the time course of the Drosophila embryo’s development. It was shown that
there exist six temporal waves of coherent gene expression during this Drosophila morpho-
genesis. Moreover, it was found that the most powerful gene expression waves correspond to
great morphogenetic movements. The time-duration analysis of Drosophila embryogenesis
first made in [36] reveals a connection between waves of gene expression and morphogenetic
processes. The coherent gene expression means that the genes and the corresponding waves
interact. Such spatio-temporal patterns of gene expression corresponding to many interacting
gene waves are similar to wave patterns, which can be described using generalized travelling
waves. In fact, it is impossible to describe the complex gene patterns existing in real organ-
isms by usual travelling waves. Consider a simple example. Gene expression leads to cell
differentiation, and different cells form tissues. To explain, for example, a periodic pattern
corresponding to the stripes of a zebra’s skin, it is sufficient to have a single morphogen with
two expression levels, high and low. Depending on these expression levels, the morphogen
can induce black (B) or white (W) cells. By a usual travelling wave one can obtain a periodic
sequence of cells, say, BWBW. . . . However, to encode a non-periodic pattern, say, BWAE
BWW EEE. . . , we need a whole group of genes and their complex expression depending on
spatial localization. These cellular patterns can be obtained using generalized travelling fronts;
see [21] for more details. We think, therefore, that the generalized travelling front concept can
be useful in the future to handle such data on gene expression, in particular, when we are
dealing with many genes.
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Appendix A. Universal Dynamical Approximation

Let us recall the concept of the realization of the vector fields for dissipative systems
proposed by P. Poláčik in [38]. For definiteness, we consider the case of a system with
continuous time (the case of iterations is treated similarly). We consider dynamical systems
which enjoy the following properties A and B:

A Dynamical systems (defined by vector field F) generate global semiflows St
P in an ambient

Hilbert or Banach phase space H. These semiflows depend on some parameters P (which could be
elements of another Banach space B). They have global attractors and finite-dimensional locally
attracting invariant C1-manifolds M, at least for some P .

B The dynamics of St
P reduced to the invariant manifolds can be almost completely tuned by

variations of the parameter P .
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This can be described as follows. Assume that the differential system

dq
dt

= Q(q), Q ∈ C1(Bn
R) (A1)

defines a global semiflow in a ball Bn
R ⊂ Rn of radius R > 0 centred at 0.

For any prescribed dynamics (A1) and any ϵ > 0, one can choose suitable parameters
P = P(n, F, ϵ) such that

1. the semiflow St
P has a C1-smooth locally attracting invariant manifold MP diffeo-

morphic to Bn;
2. the reduced dynamics St

P |MP is defined by equations

dq
dt

= Q̃(q,P) , Q̃ ∈ C1(Bn) , (A2)

where
|Q − Q̃|C1(Bn) < ϵ . (A3)

According to the terminology introduced by [38] we say that our family of semiflows
ϵ-realizes the vector field Q if the estimate (A3) holds. The properties A and B mean that our
class system realizes all finite dimensional vector fields, with an arbitrarily high accuracy.
In other words, one can say that by tuning P , the reduced dynamics on the invariant
manifold can be specified with an arbitrarily small error. Therefore, roughly speaking, all
robust dynamics (stable under small perturbations) can be generated by systems which
satisfy the above formulated properties. Such systems are denoted as UDA systems (systems
having the property of universal dynamical approximation). In order to show that the UDA
concept also covers the case of chaotic dynamics, let us recall some facts about chaos and
hyperbolic sets. Let us consider systems of differential equations defined by (A2) which
satisfy the following conditions:

Condition on the structural stability of prescribed dynamics (SSPD). System (A2)
generates a global semiflow St, t > 0, defined on the n-dimensional closed ball Bn ⊂ Rn and having
structurally stable (for example, hyperbolic) local attractors Al , l = 1, . . . , k .

Comment. Recall that structural stability is a fundamental property of dynamics,
which means that the topological structure of the trajectories of the system (A2) on Al
are unaffected by C1-small perturbations of the vector field Q. In particular, under small
perturbations hyperbolic rest points remain so and only slightly shift, they cannot be
transformed into cycles, and vice versa, hyperbolic cycles cannot become points.

These attractors can have a complex form, since structurally stable dynamics may be
chaotic. If a hyperbolic invariant set Γ is attracting and this set is not a rest point or a limit
cycle, we say that Γ is a chaotic (strange) attractor [31]. Hyperbolic sets have a fundamental
property of hyperbolic sets, so-called persistence. Informally speaking, this means that the
hyperbolic sets are stable (robust) with respect to small sufficiently smooth perturbations
(see [31] for details).

Appendix B. Energetic Interpretation of Equations for Kink Coordinates

The system of equations (15) describes a slow motion of a kink system. These equations
have a transparent energetic interpretation. Let us multiply the equation for ui by ∂ui

∂t and
integrate over all x. Then, we have

Ki = −dEi/dt + λRi, (A4)

where
Ki =

∫ ∞

−∞
(

∂ui
∂t

)2dx,

Ei =
1
4

∫ ∞

−∞

((∂ui
∂x

)2
+ (1 − u2

i )
2
)

dx
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and
Ri =

∫ ∞

−∞
gi(u, x)

∂ui
∂t

dx.

The relation (A4) shows an energetic balance. The term Ki is always positive and
defines the energy dissipation, the term Ei is a non-perturbed kink energy and the term
Ri shows the change in energy due to the perturbation gi. If we substitute into Ki the
unperturbed kink solution ui(x − qi(t)) (removing the terms that describe the deformation
of the kink form), we obtain that

Ki ≈
(dqi

dt
)2

∫ ∞

−∞
Ũ 2dx. (A5)

Here, and below, the symbol ≈ means that we take into account only the main terms as
λ → 0, for example, λ + 2λ2 ≈ λ. The same substitution gives Ei ≈ 0 that is a consequence
of translation invariance, and

Ri ≈
dqi
dt

∫ ∞

−∞
gi(ukink(x, q), x)Ũdx. (A6)

We substitute these asymptotics for Ki, Ei, and Ri into (A4) and see that

(dqi
dt

)2 ≈ Qi(q)
dqi
dt

(A7)

is equivalent to (15). We obtain, thus, that the main motion, Equation (15), for kinks
represents an energetic balance: the energy dissipation per unit time Ki equals the energy
change per unit time Ri due to the kink interaction.

A rigorous derivation of Equation (15) for kink coordinates can be found in [15].
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