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Abstract: This paper presents an investigation into original analytical solutions of the (2+1)-dimensional
combined potential Kadomtsev-Petviashvili and B-type Kadomtsev—Petviashvili equations. For this
purpose, the generalized Kudryashov technique (GKT) and exponential rational function technique
(ERFT) have been applied to deal with the equation. These two methods have been applied to the
model for the first time, and the the generalized Kudryashov method has an important place in
the literature. The characteristics of solitons are unveiled through the use of three-dimensional,
two-dimensional, contour, and density plots. Furthermore, we conducted a stability analysis on the
acquired results. The results obtained in the article were seen to be different compared to other results
in the literature and have not been published anywhere before.

Keywords: exact solution; stability analysis; symbolic computation; generalized Kudrayshov tech-
nique; exponential rational function technique
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1. Introduction

In recent years, there has been an increasing interest in the quest for exact solutions
within the domain of nonlinear partial differential equations (NPDEs). Exact solutions
are solutions to mathematical equations that can be expressed in a closed form, meaning
they can be written as a formula or as an explicitly defined function. Exact solutions
are valuable for several reasons; for example, they provide insights into the underlying
behavior of the equations. By analyzing the form of an exact solution, we can gain a deeper
understanding of the phenomena described by the equations, and they can be used to
validate approximate solutions. If an approximate solution agrees with an exact solution,
we can be more confident in its accuracy and it can be used to make predictions about
real-world phenomena. In some cases, exact solutions can be used to make predictions
about the behavior of physical systems.

Exact solutions have been used to study a wide range of phenomena; for example,
Einstein’s field equations, which describe the curvature of spacetime, have exact solutions
that describe the motion of planets and stars; the Navier-Stokes equations, which describe
the flow of fluids, have exact solutions that can be used to study the behavior of fluids in
various situations; and the equations of elasticity and plasticity, which describe the behavior
of materials under stress, have exact solutions that can be used to study the deformation
of materials. The study of exact solutions is an active area of research, and new exact
solutions are being discovered all the time. These solutions provide valuable insights into
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the behavior of complex systems and can be used to make predictions about the behavior
of real-world phenomena.

The examination of solutions of these equations has become crucial across various
fields of science and technology, including control theory, fiber optics, solid-state me-
chanics, transport infrastructure, atomic engineering, fluid dynamics, and various other
research fields. Numerous successful approaches have been devised for investigating
dynamic structures, such as lump solutions [1,2], the matrix eigenvalue problem [3], auto-
Backlund transformations [4], the auxiliary equation method [5], the generalized Riccati
equation mapping technique [6], the addendum to the Kudryashov technique [7], the
unified method [8], the modified extended tanh-function approach [9], the Hirota bilinear
technique [10], the Lie symmetry approach [11], the improved Bernoulli sub-equation func-
tion procedure [12], the modified (G’ / G)-expansion method [13], the bilinear method [14],
an extended (G’ / G)-expansion method [15], the tanh—coth method [16,17], and so on.

In this research, our objective is to investigate a (2+1)-dimensional combined potential
Kadomtsev-Petviashvili equation incorporating the B-type Kadomtsev—Petviashvili (pKP-
BKP) equation:

b1 (45U tyy + 15Uy tizye + 15Uy tigy + Ugy) + by (6tixtlyy + Usy)

1
+b3(Buyttyy + Btixytty + ngy) + bytixy + bsuyt + beuyy = 0. 1)

where we can choose b as a function of x in some formulations of the KP-pKPBKP equation.
This choice can introduce spatial variation into the strength of internal wave effects, leading
to more intricate wave dynamics and patterns. The equation introduced by Ma in [18]
denoted as Equation (1) has been demonstrated to possess an N-soliton solution. Ma
provided a comprehensive analysis of this equation, where the parameters b;(i = 1,...,6)
are constants capable of influencing the amplitude, depth, width, and periodicity of the
associated wave with arbitrary values. The spatial dimensions are represented by x and
y, while u signifies the amplitude of the relevant wave and t corresponds to time. This
equation exhibits versatility as it can be transformed into various other nonlinear equations,
each manifesting distinct physical characteristics. Specifically, when b; = b3 = by = 0,
by = bs = 1, and by = —1, Equation (1) reduces to a (2+1)-dimensional potential
Kadomtsev-Petviashvili (pKP) equation. The derived pKP equation models the dynamics
of a wave and is expressed as follows:

OUx Uy + Ugy + Uyt — Uyy = 0.

When by = bs = 1,bp = by = 0,b3 = 5, and bg = —5, Equation (1) undergoes a
transformation into a (2+1)-dimensional B-type Kadomtsev—Petviashvili (BKP) equation.
This BKP equation serves as a valuable physical model and can be expressed as follows:

45u§uxx + 15uyxtizy + 15uxtgy + gy + 5(3uxtixy + Btyxlly + Uzyy) + tixt — Sty = 0

Recently, several researchers have explored Equation (1) employing diverse ap-
proaches. For instance, Ma et al. delved into the precise solutions of Equation (1) utilizing
the Hirota bilinear method [19], while Feng et al. acquired resonant multi-soliton solutions
through the application of the linear superposition principle [20]. In contrast to previous
investigations, we will apply two different methods to find original analytical solutions,
namely the generalized Kudryashov technique and the exp rational function method, and
we will present a stability analysis of the obtained results. The aim of this paper is to ob-
tain exact solutions of the (2+1)-dimensional combined potential Kadomtsev—Petviashvili
equation via two different methods, which are the GKT and ERFT methods, and to search
for the stability of some of the obtained solutions. For this purpose, Section 2 provides a
brief description of the GKT and ERFT. Thereafter, in Section 3, we utilize the mentioned
methods on the (2+1)-dimensional B-type Kadomtsev—Petviashvili (BKP) equation. A
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stability analysis and visual representations of the obtained results are given in Section 4.
Finally, Section 5 provides the conclusions of the paper.

2. Methodology
This section provides a detailed explanation of the GKT and ERFT.

2.1. The Generalized Kudryashov Technique

Within this section, we introduce the GKT to find exact solutions of NPDEs [21-24].
We examine a general NPDE presented as:

P(T/l, Uy, uy/ U, Uxy, Myy,. . ) - 0/ (2)

where P is a polynomial of u(x, y, t) and its partial derivatives, in which the highest order
derivatives and nonlinear terms are involved.

The main steps of the GKT are as follows:

Step 1: We use the wave transformation to transform the nonlinear partial differential
equation into an ordinary differential equation, and this transformation comes from Lie
symmetries. In the search for a traveling wave solution of the equation, we apply the
traveling wave transformation:

C=x+y—ct 3)

By using Equation (3), Equation (2) reduces to a nonlinear ordinary differential equa-
tion (ODE).
H(u,u',u",...,) =0, (4)
where the prime denotes derivation with respect to ¢.

Step 2: Assume that the solution to Equation (4) can be expressed in the subsequent
rational form:

N ‘
L wri()
_ 1=
X BiRI(2)
j=0
where &;(i = 0,1,...,N),B;(j = ., M) are constants to be determined such that
an #0,Bm #0 and R R(é) sat1sf1es the ODE
dR
2z = RO~ R(©) (6)
It is obvious that the solution of Equation (6) is
RE) =1z 7)
14 Aeb

where A is an integration constant.

Step 3: To obtain the positive integers N and M in Equation (5) through the application
of the homogeneous balance method, the relationship between the highest-order derivatives
and the highest-power nonlinear terms in Equation (4) is considered.

Step 4: By substituting Equation (5) into Equation (4) along with Equation (6), we
derive a polynomial in terms of R(§). Next, by setting all coefficients of R() to zero,
we establish a system of algebraic equations. Utilizing Maple, we can solve this system
to determine the values of «;(i = 0,1, ..., N),[%j (j =0,1,..., M). Finally, if we substitute
these values and Equation (6) into Equation (5), we can obtain the precise solutions for the
reduced (4).
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2.2. The Exponential Rational Function Technique (ERFT)

In the literature, some methods, such as the new generalized exponential rational func-
tion method [25] and the new modification of the exponential rational function method [26],
give more general forms of the solutions.

Step 1. The solution of Equation (4) can be expressed as follows [27]:

_ Mn
M(g) - nZ:O (1 +€§)nl (8)

where 77, (175 # 0) are constants to be determined later. Determine the integer
N by the homogenous balance method. This method consists of balancing the
highest-order linear term with the highest-order nonlinear term in Equation (4).
Step 2. Putting Equation (8) into Equation (4) and separating all terms with the same
order of ¢"¢ (n=0,1,2,...), we convert the left-hand side of Equation (4) into
another polynomial in €"¢. Then, we equate each coefficient of this polynomial to
zero, yielding a set of algebraic equations for 77, unknown parameters. Finally, we
solve the equation system to construct a variety of exact solutions for Equation (2).

3. Implementations

This section provides the (2+1)-dimensional combined potential Kadomtsev—Petviashvili
and B-type Kadomtsev—Petviashvili equations. For this purpose, first of all, applying the
transformation Equation (3) to Equation (1) yields the following ordinary differential equation:

by (45(u")2u"” +15u"u® + 150'u® 4+ u(®)) 4 by (6u'u + u®)

9
+b3(3u'u” + 3u"u + u®) + byu' — bscu” + bgu”" = 0. ©)

If we integrate this equation once with respect to ¢, we find:
1561 (u')? +3(u')%(by + bs) — bscu’ + (by + be)u’ 10)

by (150 + 2 + 2 )" + bu® =o.

3.1. Implementation of the GKT to the Combined (2+1)-Dimensional Potential
Kadomtsev—Petviashvili and B-Type Kadomtsev—Petviashvili Equations

By employing the homogeneous balance principle in Equation (10), we derive the
balancing number as N = M + 1. Setting M to 1 leads to the determination of N as 2.
Consequently, the solution can be formulated as follows:

ao + a1 R + ayR?
Bo+ PR 7

u(g) = (11)

Here, R(¢) represents Equation (7). Considering this, Equation (11) will be substituted
into Equation (9). Thereafter, we equate all coefficients of the functions R({) to zero,
resulting in a system of equations. This system is given in the appendix (see Appendix A).
From the solutions of this system, we identify several scenarios that are subsequently
discussed in detail as follows:

Case 1: .
xo = _71/ X1 = 1,0 = _2ﬁl/

4b3+16b1+4by+by+b
50:_%//31:[3]/(:: 2 1}752 A6

Therefore, the analytical solution of the (2+1)-dimensional combined potential Kadomtsev—
Petviashvili and B-type Kadomtsev—Petviashvili equations is given as:
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_”‘71 + 5 (”‘1 ) _ 2(2:31 )
xyt)  Bxyt
u(x,y,t) = ﬁi 5 ) (12)

2 + Bi(x,y,t)

where By (x,y,t) = 1—|—A(cosh<x+y— WQ +sinh(x+y— Mt»

bs
and A is an integration constant.

Case 2: (1+260)
a1+
&y = B 11 bo S = K, 00 = _2,31/
c = by+by+b3+be+by

bs
Bo = Bo, B1 = B1,

Therefore, the analytical solution of the (2+1)-dimensional combined potential Kadomtsev—
Petviashvili and B-type Kadomtsev—Petviashvili equations is given as:

Bo(a1+280) 4 2251
B2 (.,
u(xyt) = — ot Btnt), (13)

B
Pot Bz(xfyrf)

where By(x,y,t) =1+ A(cosh(x +y— Wt) + sinh(x +y— WO)
and A is an integration constant.

3.2. Implementation of the ERFT to the Combined (2+1)-Dimensional Potential
Kadomtsev—Petviashvili and B-Type Kadomtsev—Petviashvili Equations

By employing the homogeneous balance principle in Equation (10), we derive the
balancing number as N = 1. Therefore, the solution will take the following form:

m
1+eb

u(g) =mno+ (14)

When we insert this equation into Equation (10), we discover the ensuing system of
equations as follows:

e i bsciy — bany — by — bary — beljy — barpy = 0,

e* 1 3ban? + 3byy? + 15b1573 + 2bsny + 2banpy — 4baipy
—4b6171 + 41756171 + 26b1171 =0,

e 1 —60b1n? — 6bgipy + 6by1y — 1573by + 6byy? — 66b111
+6bscyy + 6b377% + 6b3n; — 6bany =0,

e . 3b317% + 3b217% + 15b171% + 2b3771 + 2b2171 — 4b4111
—4b6171 + 4b5C171 + 26b1171 =0,
et bsom — bany — by — baiy — by — by =0

By solving this system, the following outcomes are generated:

by +by+ b3+ by+ b
= b .

n=-2c (15)

Therefore, the analytical solution of the (2+1)-dimensional combined potential Kadomtsev—
Petviashvili and B-type Kadomtsev—Petviashvili equations can be given as

2
1+ cosh(x+y— M)t) inh _ ((batbatbatbatbe ) )
Y B +sinh(x+vy b

5

u(x,y,t) =no— (16)
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4. Stability Analysis and Graphical Representations

In this section, we will present the plots of the results. Plots will be given in three
dimensions, in two dimensions, and as contour figures. In two-dimensional figures, a red
line was drawn when ¢t = 0, a green line was drawn when t = 0.5, and a blue line was
drawn when t = 1. Figure 1 represents the periodic solution shape for Equation (12).

(a) 3D Plot (b) Contour Plot

(¢) 2D Plot
4

L

-20 -10 0 10 20

-8

|— =0 — =05 =1

Figure 1. Plots of Equation (12) wheny = 0,01 = 01,81 = by =bp =b3 = by =bs =bg =05, A=1.

Figure 2 represents the kink solution shape for Equation (13).

(a) 3D Plot (b) Contour Plot

Figure 2. Cont.
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() 2D Plot
3

-20 -10 0 10 20

x

[—rt — =05 — =]

Figure 2. Plots of Equation (13) wheny = 0,a1 = g = 1 = by = by = b3 = by = bs = bg = 0.5,
A=1.

Figure 3 represents the kink solution shape for Equation (16).

(a) 3D Plot (b) Contour Plot

(c) 2D Plot
-20 -10 10 20
=-0.29 x
-0.41
-0.6
_0_8_

[— =0 — =05 — 1]

Figure 3. Plots of Equation (16) wheny = 0,79 = 0.1,b; = by = bg =0.2,b3 =1,by = 0.9, b5 = 0.6.

A solution to a differential equation is called stable if small perturbations in the initial
conditions lead to solutions that remain close to the original solution. This is relevant
in various fields like physics, engineering, and economics. The stability property of the
solutions is closely related to the momentum in a Hamilton system. From this point of
view, the following formula is given for the Hamiltonian system of the solution:
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where u(¢) is the solution of the model. Then, we calculate the momentum of the Hamilton
system as follows:

oY
aic |C:0’> 0/

where ¢ is an optional constant [28,29].

Assuming the values of the constants a1 = 1,81 = 1Ly = 1,A = 1,c = 2in
Equation (12), and considering the solution in the square area of [—2,2] and performing
the necessary operations, we find the condition as follows:

oY
5 le=2= 9.029945870 — 6.2831853051.
According to the above result, our solution is stable for the assumed conditions.
Assuming the values of the constantsa; = 1,9 =11 =1,y =1,A=1,c=2in
Equation (13), and considering the solution in the square area of [—2,2] and performing
the necessary operations, we find the condition as follows:

oF |c=2= —1.475503757.
dc
According to the above result, our solution is unstable for the assumed conditions.
Assuming the values of the constants 79 = 1,¢ = 2 in Equation (16), and considering
the solution in the square area of [—2,2| and performing the necessary operations, we find
the condition as follows:

oY
— |e=2= 1.205362104.
dc
According to the above result, our solution is stable for the assumed conditions.

5. Conclusions

In our paper, we have effectively obtained explicit solutions for traveling wave pat-
terns for the (2+1)-dimensional combined potential Kadomtsev-Petviashvili and B-type
Kadomtsev—Petviashvili equations employing direct methods through the GKT and ERFT.
These two methods have been applied to the model for the first time, and the generalized
Kudryashov method has an important place in the literature. When we compared our
results with the existing literature, we identified a variety of solutions, each demonstrating
a unique behavior. We conducted an analysis of stability and provided visual representa-
tions, including 2D, 3D, and contour plots of the obtained solutions. Our results exhibit
distinctions from those present in the existing literature, characterized by the inclusion of a
multitude of arbitrary constants, yielding a comprehensive array of solutions. In addition,
we have enriched our paper with a stability analysis and graphical representations. The im-
portance of the figures lies in discerning the configurations of the acquired wave solutions,
with each figure defining a specific type of wave solution. Graphical representations are
instrumental in understanding wave motions. The capacity to determine solutions holds
significance across various fields, including mathematics, physics, and, notably, fiber optics.
The research techniques employed in this study can be extended to a broad spectrum of
nonlinear dynamical models encountered in diverse engineering and scientific disciplines.
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Appendix A

It is important to highlight that this process involves a sequence of intricate steps
carried out using Maple software. We will present the obtained determining equation

system for the GKM.

R9

R™2 1200 B3an 4 90by a3 ] + 15014365 = 0,

RYM ;' —270b1a3B% + 90bya3Bop3 + 720b1 Bz Bo
+540b1 05 B B3 — 360b1 B3as — 45b105B3 = 0,

RO . 6b3Biay +45b1a5p3 — 45b1a2B3ag — 270b1a5 B B3

+1260b;1 038382 — 90by a2 B + 180by 3 B3B1 + 90b1a1 By B3
+285b1a2 87 + 390b1 B30s + 3bra3 B4 + 66283 + 180001 B3aa B3
+3b3a3 BT + 45b1 a1 Boas B2 — 2160b1 Baz By — 16200143 P05 = 0,

—6bya3 BT — 120010387 — 12b3 B30 — 180b1 B3 — 15b1a3 B3 — 6b3a3p]
—3601710(%50,82«0 + 360Dy 41 E%‘;‘Zfﬁ — 27Ob1a%ﬁotx§ﬁ:{ + 18017102 BBy
*180[710(%‘30ﬁ%0é0 — 378051!;2[30,31 + 1710£1a2ﬁ0ﬁ1 +227:?b10(2‘310(0 5

—|—270b10€2‘30ﬁl + 1351710(2‘31060 + 36b2/30/311x2 + 18b30¢2/31/30 — 12[72‘310(2
—135by a1 B3 B3 — 540b1a5 8581 + 14400143 B3 B1 + 120b103 B3 + 18b2a3 83 Bo
+36bsBoBias — 54001 B3z B3 + 2340b; Bias By + 2400b1 f2az B3 = 0,

3bya3 Bt + 720610385 + 15b1a3 8% + 31b1 fIa — 360b1 a3 B3

+7ba Bz — 90Dy a1 Bora B + baPiaz + beBraz + 990b1 a2 Bo B3
—630by 02 B3B3 a0 + 630b1a1 Bazf1 — 990b a1 B3z B3 + 7baBras
+6b20€1ﬁ00&2[3? + 45b1£¥%ﬁ%0€2ﬁ1 + 6b30(11300(213“;’ — 540b1061ﬁ%0é%‘31
+135by 01 B3 f3 — 180b1 0353810 + 540b1a3 B0 B30

—4410b1a3 B3 B1 + 3975b1 a5 B3B3 — 720b103 B0 B3 — 300by a2 B g
+540b1 03 8381 — 90b1 a3 B p3 — 135b1 03300 + 45b1 a0 303

—bscBSan + 90by fEar B3 + 180b1a1 Bz — 36b3a2 B3 Bo

—72byBo Bt + 39b3a3 B3 BT — 6bzan flag + 39ba03 587 — 36b,a3 5 Bo
—6byay Biag + 90b3 B3an B3 — 72b3 o BTz + 585001 B3 an B3 — 108001 BTz Bo
+3b3a3 87 + 30001 a1 Boaa B — 720061 B2 an B + 1800b1a2B3p1 = 0
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R7 ' 720b1a0B3 — 2340b1a3 B3 + 6baBianPo — b3piaz — by pian
—180b10€1 ﬁ%t){zﬁllxo + 2701710(1‘300(2,3%060 + 241)30&1,3%0(2,3%
—byflas — bePian — 930b1 02 B0 Ty — 540b1a2 B3 Bravg
—1710b1 01 B2 B1 + 930by a1 fAan f2 + 24bray BEan B2
*12b20€1,300(2,3? — 135b1l¥%ﬁ%0{2ﬁ1 — 12530(11300(2&?

—45bya1 Boa3 BT + 540b1 a5 85810 — 5401053 Bo B2 g + bscBay
—180b, 83283 + 540by a1 Bz + 4770b1a3 8381 — 16500143 8557
+90b1 a3 B — 540b1a1 B33 — 180b1a3B5B1 — 1350102503
+45b1a5 By 00 + 36b3a3 B3 B1 — 78b3ad B2 + 18b3a3 B3 Bo
—78bya3 8583 + 18bya3 B3 Bo + 6beBiasfo + 120b3 B30 B3
—2700b1 023 + 186b1 Bz Bo + 780001 B2 o B3 — 540001 42 B3 B1
+12bsa B + 36baa3 B3 B1 — bopSan + 12bran fTacg
—150b1£¥1ﬁ0€¥2ﬁ% - 180193‘5%062,3? + 42[73,3013%0(2 + 90b10¢%,50,3%
+540b1 a1 B303 B1 + 120b, B2 5 + 42by Bofias — 24bras BoBiag
+90b; a2 Bo B3 + 150b1 a0 BTy — 24bsaa BoBiag
+1710by a2 B3 B2 0 — 6bscBTazBo + 360b1a5p3 = 0,

R® : —2400byaopBd — 15b1 B3a3 + 2760b1a3BE + 90b1 a3 B — 6bsBiasPo
—120b1a3 B3 + 12b,a3 B¢ — 1201 B1aoBg — 180b1a1 B3B3 a0
—b4ﬁ?a0 — ble?(Xo - bgﬁ‘?ﬂéo + 15,34111710((2) — b@B?DCO + 1710171&2‘3(3)‘310(0
+15b10€:{',38 + 54Ob10é1/3%0é2ﬁ10é0 — 270b10€1,300(2,3%0(0 — 6b20€1,30‘5?060
—blﬁ?t)éo + 12b30¢%‘33 + 330b10(213()‘3“;’060 — 1500171062‘3%‘3%060
+3by B ad + 120by 1 B3 + 3bspiad — 45b1a3 B3 Brag
+1500b10¢1‘38062‘51 + 30b10¢1‘30062ﬁ? — 30b21)¢2‘33ﬁ%0€0 + 481?20(2‘30‘3?060
—30b1 a1 Bo g — 180byaq B3 Brag + 30boa1 Bz f1 + 6b2a1 Pz By
—48bya1 B3an B3 + 45b1 i Bo f2 ek + 135142 B30 By
+30b30€1ﬁ%0€2ﬁ1 — 48b30€1ﬁ%0(2[3% — 30b30€2ﬁ%,3%060
+6b30¢1‘300é2ﬁ:i’ — 540[110&%,3%,310(0 - b5C‘B%¢X]ﬁ0
+180b106%ﬁ015%060 - 270b1062ﬁ0ﬁ%06% - 14b5cﬁ%a2ﬁ% + 6b5c[3‘f042,80
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