
Citation: Agasiev, T.; Karpenko, A.

Exploratory Landscape Validation for

Bayesian Optimization Algorithms.

Mathematics 2024, 12, 426. https://

doi.org/10.3390/math12030426

Academic Editor: Liliya Demidova

Received: 25 December 2023

Revised: 20 January 2024

Accepted: 23 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Exploratory Landscape Validation for Bayesian
Optimization Algorithms
Taleh Agasiev * and Anatoly Karpenko

Department of Computer-Aided Design Systems, Bauman Moscow State Technical University,
Moscow 105005, Russia; apkarpenko@mail.ru
* Correspondence: agtaleh@mail.ru

Abstract: Bayesian optimization algorithms are widely used for solving problems with a high
computational complexity in terms of objective function evaluation. The efficiency of Bayesian
optimization is strongly dependent on the quality of the surrogate models of an objective function,
which are built and refined at each iteration. The quality of surrogate models, and hence the
performance of an optimization algorithm, can be greatly improved by selecting the appropriate
hyperparameter values of the approximation algorithm. The common approach to finding good
hyperparameter values for each iteration of Bayesian optimization is to build surrogate models
with different hyperparameter values and choose the best one based on some estimation of the
approximation error, for example, a cross-validation score. Building multiple surrogate models for
each iteration of Bayesian optimization is computationally demanding and significantly increases
the time required to solve an optimization problem. This paper suggests a new approach, called
exploratory landscape validation, to find good hyperparameter values with less computational effort.
Exploratory landscape validation metrics can be used to predict the best hyperparameter values,
which can improve both the quality of the solutions found by Bayesian optimization and the time
needed to solve problems.

Keywords: Bayesian optimization; Gaussian process; surrogate modeling; hyperparameter tuning;
exploratory landscape analysis; exploratory landscape validation; variability map of objective function

MSC: 90C26; 90C56; 90C59

1. Introduction

Continuous optimization problems with high computational complexity in terms of
objective functions arise in many fields of engineering, material design, automatic machine
learning, and others [1]. In real-world optimization problems, evaluating the value of an
objective function requires time-consuming computational experiments or simulations.
The time needed to solve an optimization problem is primarily defined by the total number
of objective function evaluations performed by the optimization algorithm. When solving
computationally expensive optimization problems, the main termination criterion for the
algorithm is the maximum number of objective evaluations, which is usually called the
computational budget [2].

Problems with a limited computational budget are best solved by optimization al-
gorithms that utilize surrogate models of the objective function [2]. The most promising
candidates for objective evaluation are identified by refining and exploring surrogate mod-
els at every optimization iteration. Hence, both the quality of surrogate models and the
parameters of the model exploration procedure can have an impact on the optimization
algorithm’s efficiency. Many studies have focused on tuning the parameters of the model
exploration procedure, specifically the type and the parameters of the acquisition function,
as well as the parameters of the algorithm for optimizing it [3,4]. This article focuses on

Mathematics 2024, 12, 426. https://doi.org/10.3390/math12030426 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030426
https://doi.org/10.3390/math12030426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3071-5878
https://doi.org/10.3390/math12030426
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030426?type=check_update&version=2

Mathematics 2024, 12, 426 2 of 20

ways to improve the efficiency of optimization algorithms by increasing the quality of
surrogate models.

Surrogate models are usually built by approximation algorithms with tunable hy-
perparameters. Numerous studies have been conducted to find the best hyperparameter
values that maximize the accuracy of surrogate models and, hence, the optimization al-
gorithm’s efficiency [5–7]. The process of finding such hyperparameter values is called
hyperparameter tuning. Here are some examples of hyperparameters being tuned for
different types of surrogate models:

• Degree of polynomial regression models;
• Size of the hidden layer for models based on neural networks;
• Kernel type and parameters for models based on Gaussian process (GP) regression;
• Number of trees and tree depth for models based on random forest regression.

This article considers the tuning of kernel parameters for models based on GP regres-
sion, which includes, for example, the scale mixture parameter α of the rational quadratic
kernel or the ν parameter of the Matern kernel [8].

In order to perform hyperparameter tuning, the hyperparameter efficiency metric is
defined based on the quality estimate of a surrogate model built with a given hyperpa-
rameter vector. The model quality is usually measured on a test sample of points using
some error approximation metric, such as mean absolute error, mean squared error, R2

score, etc. [9,10]. In cases of a strict computational budget, maintaining a separate test
sample by evaluating a costly objective function is not sufficient. To increase the reliability
of hyperparameter efficiency estimates, resampling procedures are used, which involve the
building of multiple models for each hyperparameter vector, for example, the well-known
cross-validation procedure [10]. Using cross-validation for hyperparameter efficiency esti-
mation significantly increases the computational cost of hyperparameter tuning. This article
introduces a new approach for estimating hyperparameter efficiency called exploratory
landscape validation, along with new efficiency metrics that require less computational
effort, and that, in some cases, outperform cross-validation in terms of solution quality.
One of the metrics is based on a so-called ranking preservation indicator [11], calculated
on an extended training sample. Another metric is evaluated by comparing the variability
maps of an objective function [12] constructed for a training sample and a surrogate model.

Much of the recent research on the parameter tuning of optimization algorithms,
which also includes the hyperparameter tuning of surrogate models, has focused on using
exploratory landscape analysis (ELA) algorithms to estimate the characteristic features of
optimization problems [13–15]. The hyperparameter prediction process is based on the
following idea. Given the ELA feature vectors, which incorporate the specifics of problems,
and the best hyperparameter values found for those problems, a machine learning (ML)
algorithm is used to build a tuning model to predict the best hyperparameter values or
the best approximation algorithm [12,16,17]. According to such an ELA-ML approach, the
tuning model is then used to identify hyperparameter values that are reasonably effective
when solving similar problems based on the feature vectors of those problems. In [16], for
example, the authors constructed tuning models that are based on different classification
algorithms to predict the best surrogate modelling algorithm using the ELA features of
the problem. Despite the fact that additional computational effort is required to collect
the training data and build a tuning model, the increase in efficiency of the optimization
algorithm outweighs the computational costs in a long-term perspective. This article also
explores the benefits of using tuning models that are built using the proposed metrics for
finding effective hyperparameter values.

The rest of the article is organized in the following way. Section 2 presents a state-
ment for a global continuous optimization problem, describes the canonical form of the
Bayesian optimization algorithm, and formalizes the hyperparameter tuning and predic-
tion problems. In Section 3, a new approach to the quality estimation of surrogate models,
called landscape validation, is introduced, and includes a variety of criteria for selecting
and predicting the best hyperparameter values. Section 4 starts with the general setup

Mathematics 2024, 12, 426 3 of 20

for computational experiments, followed by a description of the experiments performed
with the hyperparameter tuning and hyperparameter prediction approaches based on the
proposed hyperparameter efficiency metrics; then, the experimental results are discussed.

2. Bayesian Optimization with Hyperparameter Tuning and Prediction

The following statement of the continuous global optimization problem q is considered:

min
X∈DX⊂R|X|

f (X) = f (X∗) = f ∗, (1)

where X =
(

x1, ..., x|X|
)

is the vector of continuous variables of size |X|; f (X) ∈ R1 is a
scalar objective function; DX is a convex region of the permissible variables’ values; X∗ is the
vector of the variables’ values for which the objective function has the minimal value f ∗. It is
assumed that the region DX is formed by the set of inequalities x−i ≤ xi ≤ x+i , i ∈ (1 : |X|),
where x−i and x+i are the lower and upper bounds of the i-th variable, respectively. The
problem (1) is referred to as the base optimization problem.

Due to the high computational complexity of the objective function, the total number
of objective evaluations allowed for solving the problem (1) is limited to Nmax, which is
called the computational budget of the problem. When solving computationally expensive
base problems, common practice is to build and explore surrogate models f̂ (X) of the
objective function f (X). By using a surrogate model f̂ (X), promising areas of the search
region DX can be located approximately without utilizing the budget Nmax. The algorithm
for building surrogate models usually has tunable hyperparameters, the vector of the
values of which is denoted as P =

(
p1, ..., p|P|

)
.

In this section, the Bayesian optimization algorithm is described and the problem
statements for hyperparameter tuning and hyperparameter prediction for the surrogate
modeling algorithm are formulated. The aim of this section is to outline and formalize
common approaches for solving computationally expensive optimization problems, on
the basis of which, new approaches to the hyperparameter efficiency estimation will be
presented in the next section.

2.1. Bayesian Optimization Algorithm

In contrast to other surrogate-based optimization algorithms, Bayesian optimization
algorithms use surrogate models that are based on Gaussian process (GP) approximation.
In GP models, each point X of the search region DX is associated with a normal distribution
of the predicted objective values N

(
µ f̂ (X), σ2

f̂
(X)

)
, where µ f̂ is the mean and σ f̂ is the

standard deviation of f̂ values. Having the probability distribution over f̂ allows for
selection of promising points for the objective function evaluation based on both predicted
objective values and uncertainty estimates of those predictions. Formally, promising
point selection is defined as the maximization problem of a so-called acquisition function.
Hence, the tunable parameters of a Bayesian optimization algorithm include the type
and parameters of the acquisition function, as well as the hyperparameters of the GP
approximation algorithm, which are the type and parameters of a covariance function, also
referred to as a kernel [5].

The Bayesian optimization algorithm includes the following steps (Figure 1):

1. Generate the initial sample L0 =
{(

Xi, f i), i ∈ (1 : Ninit)
}

for training the first GP
model, where Ninit < Nmax is the initial sample size. Points Xi ∈ DX are chosen either
randomly or according to one of the designs of the experiment algorithm, e.g., the
Latin hypercube sampling (LHS) algorithm [18];

2. Perform iterations r ∈ (1 : Niter), where Niter = Nmax − Ninit as follows:

a. Build the surrogate model f̂ r(X) using the current training sample Lr and the
vector P of the hyperparameter values;

Mathematics 2024, 12, 426 4 of 20

b. Select the next point Xi+1 for the objective function evaluation by optimizing an
acquisition function, e.g., by minimizing the lower confidence bound (LCB) [19]
function as follows:

Xi+1 = arg min
X∈DX⊂R|X|

µ f̂ (X)− κσ2
f̂ (X), (2)

where κ is a tunable parameter;
c. Evaluate the objective function for point Xi+1 to obtain the corresponding value

f i+1 and extend the training sample Lr+1 = Lr ∪
(
Xi+1, f i+1).

3. The point that has the minimal corresponding objective value (X∗, f ∗) ∈ LNiter is
considered as the solution of the base problem (1).

Mathematics 2024, 12, 426 4 of 21

a. Build the surrogate model 𝑓 (𝑋) using the current training sample 𝐿 and the
vector 𝑃 of the hyperparameter values;

b. Select the next point 𝑋 for the objective function evaluation by optimizing
an acquisition function, e.g., by minimizing the lower confidence bound (LCB)
[19] function as follows: 𝑋 = arg min∈ ⊂ℝ| | 𝜇 (𝑋) − 𝜅𝜎 (𝑋), (2)

where 𝜅 is a tunable parameter;
c. Evaluate the objective function for point 𝑋 to obtain the corresponding value 𝑓 and extend the training sample 𝐿 = 𝐿 ∪ (𝑋 , 𝑓).

3. The point that has the minimal corresponding objective value (𝑋∗, 𝑓∗) ∈ 𝐿 is
considered as the solution of the base problem (1).

Figure 1. Bayesian optimization with fixed hyperparameter values.

Although the formal optimality of the best-found point 𝑋∗ is not guaranteed in any
sense, the same notation as in the problem definition (1) is used for simplicity. The rest of
the article focuses on ways to improve the optimization algorithm’s efficiency by tuning
the GP hyperparameters.

2.2. Hyperparameter Tuning for a Bayesian Optimization Algorithm
The efficiency of Bayesian optimization can be improved by selecting, at each itera-

tion, the vector 𝑃∗ that is the best for the training sample 𝐿 according to the hyperpa-
rameter efficiency metric 𝜙(𝐿 , 𝑃). Given the set of allowed hyperparameter values 𝐷 ⊂ℝ| |, the best vector 𝑃∗ is found by solving the following hyperparameter optimization
problem at step 2a (Figure 2): 𝑜𝑝𝑡∈ ⊂ℝ| |𝜙(𝐿 , 𝑃) = 𝜙(𝐿 , 𝑃∗), (3)

The hyperparameter efficiency metric 𝜙(𝐿 , 𝑃) is commonly defined based on ap-
proximation accuracy metrics, e.g., mean squared error, on a test sample.

Figure 2. Bayesian optimization with hyperparameter tuning.

In most cases, the size of sample 𝐿 in Bayesian optimization is already not sufficient
for the search space dimension |𝑋| due to a very limited budget 𝑁 . Since it would not
be practical either to split sample 𝐿 into train and test parts or to spend the budget 𝑁
on collecting and updating a separate test sample, the cross-validation procedure is used
to estimate the average accuracy of the surrogate models built with the given vector 𝑃.
The corresponding hyperparameter efficiency metric 𝜙 (𝐿 , 𝑃) is calculated as follows:

Figure 1. Bayesian optimization with fixed hyperparameter values.

Although the formal optimality of the best-found point X∗ is not guaranteed in any
sense, the same notation as in the problem definition (1) is used for simplicity. The rest of
the article focuses on ways to improve the optimization algorithm’s efficiency by tuning
the GP hyperparameters.

2.2. Hyperparameter Tuning for a Bayesian Optimization Algorithm

The efficiency of Bayesian optimization can be improved by selecting, at each iteration,
the vector P∗ that is the best for the training sample Lr according to the hyperparameter
efficiency metric φ(Lr, P). Given the set of allowed hyperparameter values DP ⊂ R|P|, the
best vector P∗ is found by solving the following hyperparameter optimization problem at
step 2a (Figure 2):

opt
P∈DP⊂R|P|

φ(Lr, P) = φ(Lr, P∗), (3)

Mathematics 2024, 12, 426 4 of 21

a. Build the surrogate model 𝑓 (𝑋) using the current training sample 𝐿 and the
vector 𝑃 of the hyperparameter values;

b. Select the next point 𝑋 for the objective function evaluation by optimizing
an acquisition function, e.g., by minimizing the lower confidence bound (LCB)
[19] function as follows: 𝑋 = arg min∈ ⊂ℝ| | 𝜇 (𝑋) − 𝜅𝜎 (𝑋), (2)

where 𝜅 is a tunable parameter;
c. Evaluate the objective function for point 𝑋 to obtain the corresponding value 𝑓 and extend the training sample 𝐿 = 𝐿 ∪ (𝑋 , 𝑓).

3. The point that has the minimal corresponding objective value (𝑋∗, 𝑓∗) ∈ 𝐿 is
considered as the solution of the base problem (1).

Figure 1. Bayesian optimization with fixed hyperparameter values.

Although the formal optimality of the best-found point 𝑋∗ is not guaranteed in any
sense, the same notation as in the problem definition (1) is used for simplicity. The rest of
the article focuses on ways to improve the optimization algorithm’s efficiency by tuning
the GP hyperparameters.

2.2. Hyperparameter Tuning for a Bayesian Optimization Algorithm
The efficiency of Bayesian optimization can be improved by selecting, at each itera-

tion, the vector 𝑃∗ that is the best for the training sample 𝐿 according to the hyperpa-
rameter efficiency metric 𝜙(𝐿 , 𝑃). Given the set of allowed hyperparameter values 𝐷 ⊂ℝ| |, the best vector 𝑃∗ is found by solving the following hyperparameter optimization
problem at step 2a (Figure 2): 𝑜𝑝𝑡∈ ⊂ℝ| |𝜙(𝐿 , 𝑃) = 𝜙(𝐿 , 𝑃∗), (3)

The hyperparameter efficiency metric 𝜙(𝐿 , 𝑃) is commonly defined based on ap-
proximation accuracy metrics, e.g., mean squared error, on a test sample.

Figure 2. Bayesian optimization with hyperparameter tuning.

In most cases, the size of sample 𝐿 in Bayesian optimization is already not sufficient
for the search space dimension |𝑋| due to a very limited budget 𝑁 . Since it would not
be practical either to split sample 𝐿 into train and test parts or to spend the budget 𝑁
on collecting and updating a separate test sample, the cross-validation procedure is used
to estimate the average accuracy of the surrogate models built with the given vector 𝑃.
The corresponding hyperparameter efficiency metric 𝜙 (𝐿 , 𝑃) is calculated as follows:

Figure 2. Bayesian optimization with hyperparameter tuning.

The hyperparameter efficiency metric φ(Lr, P) is commonly defined based on approxi-
mation accuracy metrics, e.g., mean squared error, on a test sample.

In most cases, the size of sample L in Bayesian optimization is already not sufficient
for the search space dimension |X| due to a very limited budget Nmax. Since it would not
be practical either to split sample L into train and test parts or to spend the budget Nmax on
collecting and updating a separate test sample, the cross-validation procedure is used to
estimate the average accuracy of the surrogate models built with the given vector P. The
corresponding hyperparameter efficiency metric φCV(Lr, P) is calculated as follows:

φCV(Lr, P) =
1
K

K

∑
k=1

R2(Lr
k, P) =

1
K

K

∑
k=1

1−
∑
(

f i
k − f̂ i

k

)2

∑
(

f i
k − f k

)2

, (4)

Mathematics 2024, 12, 426 5 of 20

where K is the total number of cross-validation folds, R2(Lr
k, P
)

is the coefficient of determi-
nation, Lr

k ⊂ Lr is the test sample for the k-th fold, f i
k and f̂ i

k are the known and predicted
objective values at the k-th fold correspondingly, and f k is the mean of the known objective
values at the k-th fold.

Using the metric φCV(Lr, P) when solving the problem (3) requires building as many
GP models for each vector P as there are cross-validation iterations. Since building a GP
model has O

(
|L|3

)
complexity, where |L| is the training sample size, the hyperparameter

tuning process may become time consuming and unprofitable. In this article, it is proposed
to develop new hyperparameter efficiency metrics that reduce the computational complex-
ity of solving the problem (3) while maintaining the accuracy of solutions comparable to
the metric φCV(Lr, P).

2.3. Hyperparameter Prediction for a Bayesian Optimization Algorithm

Solving the problem (3) from scratch at each iteration of the Bayesian optimization
is a straightforward but time-consuming approach to hyperparameter tuning. Modern
approaches to parameter tuning or the selection of optimization algorithms involve com-
bining ELA and ML to predict the most efficient algorithm or parameters for solving the
base problem (1) [16,17]. The ELA-ML approach relies on the assumption that the best
optimization algorithm or parameter values for solving similar optimization problems will
also be nearly identical. The similarity of optimization problems can be estimated by a
similarity measure between the corresponding ELA feature vectors.

Although many of the known ELA-ML approaches are developed for the best opti-
mization algorithm selection, the same idea can be adapted for hyperparameter tuning the
following way. The process of solving the problem (3) is divided into separate phases as is
shown in Figure 3.

Mathematics 2024, 12, 426 5 of 21

𝜙 (𝐿 , 𝑃) = 1𝐾 𝑅 (𝐿 , 𝑃) = 1𝐾 1 − ∑ 𝑓 − 𝑓∑ 𝑓 − 𝑓̅ , (4)

where 𝐾 is the total number of cross-validation folds, 𝑅 (𝐿 , 𝑃) is the coefficient of de-
termination, 𝐿 ⊂ 𝐿 is the test sample for the 𝑘-th fold, 𝑓 and 𝑓 are the known and
predicted objective values at the 𝑘 -th fold correspondingly, and 𝑓̅ is the mean of the
known objective values at the 𝑘-th fold.

Using the metric 𝜙 (𝐿 , 𝑃) when solving the problem (3) requires building as many
GP models for each vector 𝑃 as there are cross-validation iterations. Since building a GP
model has 𝑂(|𝐿|) complexity, where |𝐿| is the training sample size, the hyperparameter
tuning process may become time consuming and unprofitable. In this article, it is pro-
posed to develop new hyperparameter efficiency metrics that reduce the computational
complexity of solving the problem (3) while maintaining the accuracy of solutions com-
parable to the metric 𝜙 (𝐿 , 𝑃).

2.3. Hyperparameter Prediction for a Bayesian Optimization Algorithm
Solving the problem (3) from scratch at each iteration of the Bayesian optimization is

a straightforward but time-consuming approach to hyperparameter tuning. Modern ap-
proaches to parameter tuning or the selection of optimization algorithms involve combin-
ing ELA and ML to predict the most efficient algorithm or parameters for solving the base
problem (1) [16,17]. The ELA-ML approach relies on the assumption that the best optimi-
zation algorithm or parameter values for solving similar optimization problems will also
be nearly identical. The similarity of optimization problems can be estimated by a simi-
larity measure between the corresponding ELA feature vectors.

Although many of the known ELA-ML approaches are developed for the best opti-
mization algorithm selection, the same idea can be adapted for hyperparameter tuning
the following way. The process of solving the problem (3) is divided into separate phases
as is shown in Figure 3.

Figure 3. Bayesian optimization with hyperparameter prediction.

Exploration phase—before solving the base problem (1):
1. Define a representative set 𝑄 = {𝑞 , 𝑖 ∈ (1: 𝑀)} of test optimization problems 𝑞 ,

where 𝑀 is the number of test problems;
2. Generate random training samples {𝐿 , , 𝑗 ∈ 1: 𝑀 } of different sizes 𝐿 , ≤ 𝑁 ,

where 𝑀 is the number of samples for each problem 𝑞 ;
3. For each sample 𝐿 , , calculate the vector of ELA features 𝐶 , and find the vector 𝑃 ,∗ that is the best according to some metric 𝜙 𝐿 , , 𝑃 by solving the problem (3);
4. Build a tuning model 𝑃(𝐶) using the set of known pairs 𝐶 , , 𝑃 ,∗ , the total number

of which is 𝑀 × 𝑀 .
Exploitation phase—at step 2a of the Bayesian optimization algorithm:

1. Calculate the vector of features 𝐶 using the current training sample 𝐿 ;
2. Predict the best hyperparameter values 𝑃 = 𝑃(𝐶) using the tuning model built at

step 4 of the exploration stage;

Figure 3. Bayesian optimization with hyperparameter prediction.

Exploration phase—before solving the base problem (1):

1. Define a representative set Q =
{

qi, i ∈
(
1 : MQ

)}
of test optimization problems qi,

where MQ is the number of test problems;
2. Generate random training samples

{
Li,j, j ∈ [1 : ML]

}
of different sizes

∣∣Li,j
∣∣ ≤ Nmax,

where ML is the number of samples for each problem qi;
3. For each sample Li,j, calculate the vector of ELA features Ci,j and find the vector P∗i,j

that is the best according to some metric φ
(

Li,j, P
)

by solving the problem (3);

4. Build a tuning model P̂(C) using the set of known pairs
{

Ci,j, P∗i,j
}

, the total number
of which is MQ ×ML.

Exploitation phase—at step 2a of the Bayesian optimization algorithm:

1. Calculate the vector of features Cr using the current training sample Lr;
2. Predict the best hyperparameter values P̂r = P̂(Cr) using the tuning model built at

step 4 of the exploration stage;
3. Build the surrogate model f̂ r(X) using the current training sample Lr and the vector

P̂r of the predicted hyperparameter values.

The efficiency of hyperparameter prediction is generally defined by the set Q, the
feature vector C, and the metric φ(L, P). The exploration phase involves most of the

Mathematics 2024, 12, 426 6 of 20

computational expenses of solving the problem (3), which makes it practical to apply even
costly metrics, such as the metric φCV(L, P). As illustrated in Figure 3, the test problems
set Q can be refined and extended permanently, even during the exploitation phase. New
metrics are proposed in Section 3 to speed up the quality estimation of surrogate models
for hyperparameter tuning and prediction. The efficiency of hyperparameter prediction
with the metric φCV(L, P) and with the proposed new metrics will be examined in Section 4.
The scope of the article does not include formation of a representative set Q of the test
problems, or identification of the most suitable vector C of ELA features.

3. Exploratory Landscape Validation

This section presents new metrics for estimating the efficiency of vector P on a given
sample L. The new metrics evaluate not only the approximation accuracy of the surrogate
models, as the metric φCV(L, P) does, but also certain properties of them that could be
crucial for the optimization algorithm’s performance. Since the metrics are developed on
the basis of an ELA algorithm, namely the variability map (VM) algorithm [12], we refer to
them as exploratory landscape validation (ELV) metrics.

There are known metrics for estimating the quality of surrogate models that are
not based on approximation accuracy and can, hence, be considered ELV metrics. For
example, the ranking preservation (RP) metric [11], which we will refer to as φRP(L, P),
estimates the level of preservation of comparative relations between pairs of objective
values approximated by the given surrogate model. According to the authors, the metric
φRP(L, P) is calculated using an independent test sample of points, that is not practical
to collect in the context of a strict budget for objective function evaluations. At the same
time, when using interpolating approximation algorithms, such as GP, the metric value
calculated for the training sample will be close to the maximum possible value. To be able
to use the metric φRP(L, P) for hyperparameter tuning, an algorithm for generating an
extended training sample Lext is introduced in this paper. The proposed metrics, which
are based on extended samples Lext, are referred to as φRP(Lext, P) and φAD(Lext, P). The
metric φAD(Lext, P) is unique in the sense that it estimates the quality of surrogate models
by directly comparing the VMs of those models with the VM of the training sample.

Section 3.1 starts with an improved algorithm for building a VM, followed by a
discussion of VM quality assessment. Next, in Section 3.2, an algorithm for constructing
an extended variability map (EVM) from a VM is suggested to enhance the reliability of
landscape validation by extending the training sample. Based on that, new EVM-based
landscape validation metrics φRP(Lext, P) and φAD(Lext, P) are proposed and explained in
Section 3.3. Thus, the proposed ELV approach consists of the process of building VMs,
extending VMs, and calculating values of one of the suggested metrics based on an extended
training sample when solving the problem (3).

3.1. Variability Map of an Objective Function

VMs were first proposed to estimate ELA features of the function f (X) based on a
given sample L [12]. A VM is built by collecting a set of triples T =

{
tj, j ∈ (1 : |T|)

}
from the sample L, where |T| is the total number of triples. Each triple tj =

(
ij
1, ij

2, ij
3

)
is composed of points

(
Xi1 , Xi2 , Xi3

)
that are neighboring in X space. The triples for

each point of sample L are collected from all of its neighboring points. Two points are
considered neighbors if the distance between them is less than the maximum distance
between pairs of the closest points in sample L, taken with some correction factor. Using the
corresponding objective values

(
f i1 , f i2 , f i3

)
of the collected triples, the pair of increment

values
(

δ
j
1, δ

j
2

)
is calculated. The values δ

j
1, δ

j
2 characterize increments of the objective

function between pairs of points (i1, i2) and (i2, i3), respectively. The set of increment
values

{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |T|)

}
then forms the VM and can be visually represented as a

cloud of points on the plane 0δ1δ2, as shown in Figure 4.

Mathematics 2024, 12, 426 7 of 20

Mathematics 2024, 12, 426 7 of 21

between pairs of points (𝑖 , 𝑖) and (𝑖 , 𝑖), respectively. The set of increment values { 𝛿 , 𝛿 , 𝑗 ∈ (1: |𝑇|)} then forms the VM and can be visually represented as a cloud of
points on the plane 0𝛿 𝛿 , as shown in Figure 4.

(a) (b)

Figure 4. Landscape plots and corresponding VMs for (a) Rosenbrock and (b) Rastrigin test optimi-
zation functions. VM’s increment values are represented by blue dots.

In cases where sample 𝐿 is irregular, such as when point density varies a great deal,
using a max–min distance estimate for triple collecting, as suggested in [12], may not be a
sustainable strategy. We propose a new algorithm for VM building based on angular
ranges, which works better with irregular samples as well.

The new algorithm consists of the steps listed below:
1. Select a random point 𝑋 from sample 𝐿 and find the closest point 𝑋 : 𝑖 = arg min∈ :| | , 𝑑 , , (5)

where 𝑑 , = 𝑋 − 𝑋 is the Euclidean distance between the points;
2. Find all the points {𝑋 , 𝑘 ∈ 1: |𝐿| , 𝑘 ≠ 𝑖 , 𝑘 ≠ 𝑖 } that satisfy the conditions: 𝑑 , < 𝑑 , , 𝑑 , < �̅� , 𝛼 , , ≥ 𝜋/2, (6)

where �̅� is the mean distance from 𝑖 -th point to all the other points, 𝛼 , , is the
angle formed by 𝑋 , 𝑋 , 𝑋 points in the 𝑋 space. The first condition is a quick
check that reduces the number of points for which the angle needs to be calculated;

Figure 4. Landscape plots and corresponding VMs for (a) Rosenbrock and (b) Rastrigin test optimiza-
tion functions. VM’s increment values are represented by blue dots.

In cases where sample L is irregular, such as when point density varies a great deal,
using a max–min distance estimate for triple collecting, as suggested in [12], may not be
a sustainable strategy. We propose a new algorithm for VM building based on angular
ranges, which works better with irregular samples as well.

The new algorithm consists of the steps listed below:

1. Select a random point Xi2 from sample L and find the closest point Xi3 :

i3 = arg min
i3∈[1:|L|],i3 6=i2

di2,i3 , (5)

where di2,i3 =
∣∣∣∣Xi3 − Xi2

∣∣∣∣ is the Euclidean distance between the points;

2. Find all the points
{

Xk, k ∈ [1 : |L|], k 6= i2, k 6= i3
}

that satisfy the conditions:

dk,i2 < dk,i3 ,
dk,i2 < di2 ,

αk,i2,i3 ≥ π/2,
(6)

where di2 is the mean distance from i2-th point to all the other points, αk,i2,i3 is the
angle formed by Xk, Xi2 , Xi3 points in the X space. The first condition is a quick check
that reduces the number of points for which the angle needs to be calculated;

3. For each angle range [α−, α+] from the set of ranges {[90, 120], [120, 150], [150, 180]},
that is formed by splitting the range (90, 180) into three equal ranges, do the following:

Mathematics 2024, 12, 426 8 of 20

a. find a point Xi1 ∈
{

Xk
}

that has the minimal distance di1,i2 in that angle range:

Xi1 = arg min
Xi1∈{Xk}

di1,i2 ,

α− < αi1,i2,i3 ≤ α+;
(7)

b. extend the set of triples T with a new one t = (i1, i2, i3);
c. increase the distances di1,i2 and di2,i3 by a factor of 2 so that the other points are

considered if i2 is randomly selected in the next iterations.

4. If the maximum number of triples |T| is not reached, move to step 1.

The presented algorithm has several tunable parameters. The set of angle ranges is
formed by splitting the range of allowed angles (90, 180) into three equal ranges. It is
recommended to use a lower bound of at least 90 degrees as triples with smaller angles
may not be informative for landscape analysis purposes [12]. At the same time the angle
formed by a triple of points in the X space is limited to 180 degrees. The number of splits
determines the maximum number of triples to be collected for each considered point. It is
recommended to increase the number of splits for bigger dimensions |X|. Both the lower
bound of the allowed angle range and the number of splits are tunable parameters of the
algorithm. The maximum number of triples |T| is another parameter of the algorithm
that is usually set as the multiple of the total number of points |L|, e.g., by multiplying
|L| by the number of angle ranges. Increasing the distance between the points in step 3c
helps to avoid selecting the same points for the next triples. It is recommended to multiply
the distance between Xi1 and Xi2 at least by 1.5 and completely remove Xi3 from the Xi2

neighbors (e.g., by setting the corresponding distance value to infinity).
In Figure 5, the difference between the old and the new algorithm for collecting VM

triples based on an irregular sample of points is illustrated. The training sample of size
|L| = 30 is represented by black dots in the X space with dimension |X| = 2. The points of
the collected triples are connected by multicolor lines. It can be seen from the figure that
the new algorithm provides better “coverage” of the X space with the same number of
triples. In Figure 5b, triples form connections between more distant points and fill the gaps
in X space caused by an irregular sample structure. The new algorithm generates triples
with a lesser number of shared pairs of points, which is better for the landscape validation
algorithm, further described below, and which is based on extended training samples.

Mathematics 2024, 12, 426 8 of 21

3. For each angle range 𝛼 , 𝛼 from the set of ranges { 90,120 , 120,150 , 150,180 }, that is formed by splitting the range (90,180) into
three equal ranges, do the following:
a. find a point 𝑋 ∈ {𝑋 } that has the minimal distance 𝑑 , in that angle range: 𝑋 = arg min∈ 𝑑 , , 𝛼 < 𝛼 , , ≤ 𝛼 ; (7)

b. extend the set of triples 𝑇 with a new one 𝑡 = (𝑖 , 𝑖 , 𝑖);
c. increase the distances 𝑑 , and 𝑑 , by a factor of 2 so that the other points

are considered if 𝑖 is randomly selected in the next iterations.
4. If the maximum number of triples |𝑇| is not reached, move to step 1.

The presented algorithm has several tunable parameters. The set of angle ranges is
formed by splitting the range of allowed angles (90,180) into three equal ranges. It is
recommended to use a lower bound of at least 90 degrees as triples with smaller angles
may not be informative for landscape analysis purposes [12]. At the same time the angle
formed by a triple of points in the 𝑋 space is limited to 180 degrees. The number of splits
determines the maximum number of triples to be collected for each considered point. It is
recommended to increase the number of splits for bigger dimensions |𝑋|. Both the lower
bound of the allowed angle range and the number of splits are tunable parameters of the
algorithm. The maximum number of triples |𝑇| is another parameter of the algorithm
that is usually set as the multiple of the total number of points |𝐿|, e.g., by multiplying |𝐿| by the number of angle ranges. Increasing the distance between the points in step 3c
helps to avoid selecting the same points for the next triples. It is recommended to multiply
the distance between 𝑋 and 𝑋 at least by 1.5 and completely remove 𝑋 from the 𝑋 neighbors (e.g., by setting the corresponding distance value to infinity).

In Figure 5, the difference between the old and the new algorithm for collecting VM
triples based on an irregular sample of points is illustrated. The training sample of size |𝐿| = 30 is represented by black dots in the 𝑋 space with dimension |𝑋| = 2. The points
of the collected triples are connected by multicolor lines. It can be seen from the figure
that the new algorithm provides better “coverage” of the 𝑋 space with the same number
of triples. In Figure 5b, triples form connections between more distant points and fill the
gaps in 𝑋 space caused by an irregular sample structure. The new algorithm generates
triples with a lesser number of shared pairs of points, which is better for the landscape
validation algorithm, further described below, and which is based on extended training
samples.

(a) (b)

Figure 5. Triples of points collected (a) based on the max–min distance between the points and
(b) with the proposed algorithm based on angular ranges. Black dots represent the training sample
points in X space (|X| = 2), and multicolor lines connect the points of the collected triples.

Mathematics 2024, 12, 426 9 of 20

The quality of a VM-building algorithm can be formally measured by the average
distance between the points of the triples and average angles formed by those points.
Formalizing the “coverage” quality and analyzing the connection between the quality of
the VM and the efficiency of hyperparameter tuning or prediction is beyond the scope of
this article.

3.2. Extended Variability Map of an Objective Function

A training sample-based landscape validation is not suitable for interpolation tech-
niques like GP; at the same time, it is not practical to evaluate an expensive objective
function for additional points in such cases. We propose the following method for extend-
ing the training sample L using an extended version of a VM, built on that sample.

1. Collect the set of triples T =
{

tj, j ∈ (1 : |T|)
}

as it was described in Section 3.1;
2. For each triple t ∈ T, where t = (i1, i2, i3), perform the following steps:

a. split the vector Xi1 Xi2 into three parts by the points Xk1 and Xk2 , so that the
points Xi1 , Xk1 , Xk2 , Xi2 are arranged in the given order on the same line in X
space, where k1, k2 > |L| for the new points Xk1 , Xk2 ;

b. calculate the approximate objective values f̃ k1 , f̃ k2 for the new points Xk1 , Xk2 , respec-
tively, using a linear interpolation between the known points

{(
Xi1 , f i1

)
,
(
Xi2 , f i2

)}
;

c. update the training sample Lext = Lext ∪
{(

Xk1 , f̃ k1
)

,
(

Xk2 , f̃ k2
)}

;

d. update the extended set of triples Text = Text ∪ {(i1, k1, k2), (k1, k2, i2)};
e. repeat steps a-d for the vector Xi2 Xi3 .

The set of triples Text =
{

tj, j ∈ (1 : |Text|)
}

and the corresponding increment values{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |Text|)

}
form the extended variability map (EVM). The EVM is based

on an extended training sample Lext, which includes the new points linearly interpolated
between the points of triples T. The examples of the original training sample L and the
extended sample Lext, built with the proposed algorithm, are shown in Figure 6. It is clear
from Figure 6b that the new points are placed along the triples of the original sample
presented in Figure 6a.

Mathematics 2024, 12, 426 9 of 21

Figure 5. Triples of points collected (a) based on the max–min distance between the points and (b)
with the proposed algorithm based on angular ranges. Black dots represent the training sample
points in 𝑋 space (|𝑋| = 2), and multicolor lines connect the points of the collected triples.

The quality of a VM-building algorithm can be formally measured by the average
distance between the points of the triples and average angles formed by those points. For-
malizing the “coverage” quality and analyzing the connection between the quality of the
VM and the efficiency of hyperparameter tuning or prediction is beyond the scope of this
article.

3.2. Extended Variability Map of an Objective Function
A training sample-based landscape validation is not suitable for interpolation tech-

niques like GP; at the same time, it is not practical to evaluate an expensive objective func-
tion for additional points in such cases. We propose the following method for extending
the training sample 𝐿 using an extended version of a VM, built on that sample.
1. Collect the set of triples 𝑇 = 𝑡 , 𝑗 ∈ (1: |𝑇|) as it was described in Section 3.1;
2. For each triple 𝑡 ∈ 𝑇, where 𝑡 = (𝑖 , 𝑖 , 𝑖), perform the following steps:

a. split the vector 𝑋 𝑋 into three parts by the points 𝑋 and 𝑋 , so that the
points 𝑋 , 𝑋 , 𝑋 , 𝑋 are arranged in the given order on the same line in 𝑋
space, where 𝑘 , 𝑘 > |𝐿| for the new points 𝑋 , 𝑋 ;

b. calculate the approximate objective values 𝑓 , 𝑓 for the new points 𝑋 , 𝑋 ,
respectively, using a linear interpolation between the known points {(𝑋 , 𝑓), (𝑋 , 𝑓)};

c. update the training sample 𝐿 = 𝐿 ∪ 𝑋 , 𝑓 , 𝑋 , 𝑓 ;
d. update the extended set of triples 𝑇 = 𝑇 ∪ {(𝑖 , 𝑘 , 𝑘), (𝑘 , 𝑘 , 𝑖)};
e. repeat steps a-d for the vector 𝑋 𝑋 .
The set of triples 𝑇 = 𝑡 , 𝑗 ∈ (1: |𝑇 |) and the corresponding increment values { 𝛿 , 𝛿 , 𝑗 ∈ (1: |𝑇 |)} form the extended variability map (EVM). The EVM is based on

an extended training sample 𝐿 , which includes the new points linearly interpolated
between the points of triples 𝑇. The examples of the original training sample 𝐿 and the
extended sample 𝐿 , built with the proposed algorithm, are shown in Figure 6. It is clear
from Figure 6b that the new points are placed along the triples of the original sample
presented in Figure 6a.

(a) (b)

Figure 6. The points and triples of the (a) original and (b) extended samples. Black dots represent
points of the original and the extended training samples in 𝑋 space (|𝑋| = 2), and multicolor lines
connect the points of the collected triples.

Figure 6. The points and triples of the (a) original and (b) extended samples. Black dots represent
points of the original and the extended training samples in X space (|X| = 2), and multicolor lines
connect the points of the collected triples.

Note that the set of triples Text does not include the original set T, while the sample
Lext also includes the points from L. It is recommended to locate the new points Xk1 , Xk2

closer to the points Xi1 , Xi2 , e.g., by making logarithmic steps when splitting the vector

Mathematics 2024, 12, 426 10 of 20

Xi1 Xi2 , since it may positively affect the accuracy of landscape validation. The closer the
new points are to the original ones, the stronger the requirements for the surrogate model
to preserve comparative relations between pairs of those points.

In Figure 7, the VM of the original sample and the EMV of the extended sample can
be seen. Since the new points are linearly interpolated, the additional points of the EVM
(Figure 7b) are located on the diagonals δ1 = δ2 and δ1 = −δ2.

Mathematics 2024, 12, 426 10 of 21

Note that the set of triples 𝑇 does not include the original set 𝑇, while the sample 𝐿 also includes the points from 𝐿. It is recommended to locate the new points 𝑋 , 𝑋
closer to the points 𝑋 , 𝑋 , e.g., by making logarithmic steps when splitting the vector 𝑋 𝑋 , since it may positively affect the accuracy of landscape validation. The closer the
new points are to the original ones, the stronger the requirements for the surrogate model
to preserve comparative relations between pairs of those points.

In Figure 7, the VM of the original sample and the EMV of the extended sample can
be seen. Since the new points are linearly interpolated, the additional points of the EVM
(Figure 7b) are located on the diagonals 𝛿 = 𝛿 and 𝛿 = −𝛿 .

(a) (b)

Figure 7. VM plots for the (a) original and (b) extended samples. VM’s increment values are repre-
sented by blue dots.

3.3. Landscape Validation Metrics
To measure the landscape consistency between a surrogate model and the original

sample 𝐿 using the extended training sample 𝐿 , the value of 𝜙 (𝐿 , 𝑃) metric is
calculated the following way:
1. Build a surrogate model 𝑓(𝑋) using the training sample 𝐿 and the vector 𝑃 of hy-

perparameter values;
2. Using the model 𝑓(𝑋), calculate 𝑓 values for all the points 𝑋 of the extended sam-

ple 𝐿 , where 𝑖 ∈ (1: |𝐿 |). The corresponding values form the sample 𝐿 ;
3. Given the samples 𝐿 and 𝐿 , that have the common 𝑋 values, calculate the

ranking preservation metric:

𝜙 (𝐿 , 𝑃) = 1| | 1, 𝑖𝑓 𝑐𝑜𝑚𝑝(𝑓 , 𝑓) = 𝑐𝑜𝑚𝑝 𝑓 , 𝑓0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒| || | , (8)

where 𝑐𝑜𝑚𝑝(𝑓 , 𝑓) is the result of the comparison of 𝑓 and 𝑓 values with the possible
outcomes: less, equal, more.

Note that 𝐿 includes both the original values 𝑓 from 𝐿 and the linearly interpo-
lated values 𝑓 . The value of the metric 𝜙 (𝐿 , 𝑃) in the range (0,1) measures the ratio
of pairwise comparisons of objective values that are preserved by the model 𝑓(𝑋).

Figure 8 shows an example of models with different levels of ranking preservation.
The training sample points are shown in black, while the predicted model values are
shown in blue. The highest level of ranking preservation is achieved for Model 1, shown
in Figure 8a, as for any pair of points 𝑥 , 𝑥 in the given range the ranking preservation
condition 𝑐𝑜𝑚𝑝(𝑓 , 𝑓) = 𝑐𝑜𝑚𝑝 𝑓 , 𝑓 is met. Model 2 in Figure 8b is violating the

Figure 7. VM plots for the (a) original and (b) extended samples. VM’s increment values are
represented by blue dots.

3.3. Landscape Validation Metrics

To measure the landscape consistency between a surrogate model and the original
sample Lr using the extended training sample Lr

ext, the value of φRP(Lr
ext, P) metric is

calculated the following way:

1. Build a surrogate model f̂ (X) using the training sample Lr and the vector P of
hyperparameter values;

2. Using the model f̂ (X), calculate f̂ i values for all the points Xi of the extended sample
Lr

ext, where i ∈ (1 : |Lext|). The corresponding values form the sample L̂r
ext;

3. Given the samples Lr
ext and L̂r

ext, that have the common Xi values, calculate the
ranking preservation metric:

φRP(Lr
ext, P) =

1(
|Lr

ext|
2

) |Lr
ext |

∑
i=1

|Lr
ext |

∑
j=i+1

{
1, i f comp

(
f i, f j) = comp

(
f̂ i, f̂ j

)
0, otherwise

, (8)

where comp
(

f i, f j) is the result of the comparison of f i and f j values with the possible
outcomes: less, equal, more.

Note that Lr
ext includes both the original values f i from L and the linearly interpolated

values f̃ i. The value of the metric φRP(Lr
ext, P) in the range (0, 1) measures the ratio of

pairwise comparisons of objective values that are preserved by the model f̂ (X).
Figure 8 shows an example of models with different levels of ranking preservation. The

training sample points are shown in black, while the predicted model values are shown in
blue. The highest level of ranking preservation is achieved for Model 1, shown in Figure 8a,
as for any pair of points x1, x2 in the given range the ranking preservation condition
comp

(
f 1, f 2) = comp

(
f̂ 1, f̂ 2

)
is met. Model 2 in Figure 8b is violating the rankings near

the edge points of the training sample. Although Model 1 preserves the ranking better, both
Model 1 and Model 2 will have the highest value of the metric φRP(L, P) when estimated
based on the training sample L only.

Mathematics 2024, 12, 426 11 of 20

Mathematics 2024, 12, 426 11 of 21

rankings near the edge points of the training sample. Although Model 1 preserves the
ranking better, both Model 1 and Model 2 will have the highest value of the metric 𝜙 (𝐿, 𝑃) when estimated based on the training sample 𝐿 only.

(a) (b)

Figure 8. Example of models with (a) high and (b) low ranking preservation levels, |𝑋| = 1.

Figure 9 illustrates the idea of using the extended training sample to identify the level
of ranking preservation. Although Model 2, shown in Figure 9b, has a better accuracy on
the training sample, the violation of extra point ranking indicates that the model may not
be suitable for optimization purposes. Although the metrics 𝜙 (𝐿 , 𝑃) and 𝜙 (𝐿, 𝑃)
are correlated, they are not identical, meaning that models with similar accuracy may pre-
serve the landscape of the training sample differently.

(a) (b)

Figure 9. Example of models with (a) high and (b) low ranking preservation levels for the extended
training sample, |𝑋| = 1.

We propose another landscape validation metric 𝜙 (𝐿 , 𝑃), called the angular di-
vergence (AD) of the EVM. The metric is based on the extended sample 𝐿 , the extended
set of triples 𝑇 and the corresponding increment values {(𝛿 , 𝛿), 𝑗 ∈ (1: |𝑇 |)} . In-
stead of directly measuring the consistency of the 𝑓(𝑋) model’s landscape using the orig-
inal sample 𝐿, it measures the consistency of the corresponding EVMs in the following
way:
1. Build a surrogate model 𝑓(𝑋) using the training sample 𝐿 and the vector 𝑃 of hy-

perparameter values;
2. Using the model 𝑓(𝑋), calculate 𝑓 values for all the points 𝑋 of the extended sam-

ple 𝐿 , where 𝑖 ∈ (1: |𝐿 |). The calculated values form the sample 𝐿 ;
3. For all the triples from 𝑇 , calculate the increment values {(𝛿 , 𝛿), 𝑗 ∈ (1: |𝑇 |)}

using the sample 𝐿 ;
4. Assuming each pair of the increment values (𝛿 , 𝛿) correspond to the vector Δ in

the 𝛿 𝛿 space, and each pair of the values (𝛿 , 𝛿)—to the vector Δ , calculate the
angular divergence metric based on the cosine similarity of the vectors Δ and Δ :

Figure 8. Example of models with (a) high and (b) low ranking preservation levels, |X| = 1.

Figure 9 illustrates the idea of using the extended training sample to identify the level
of ranking preservation. Although Model 2, shown in Figure 9b, has a better accuracy on
the training sample, the violation of extra point ranking indicates that the model may not
be suitable for optimization purposes. Although the metrics φRP(Lext, P) and φCV(L, P) are
correlated, they are not identical, meaning that models with similar accuracy may preserve
the landscape of the training sample differently.

Mathematics 2024, 12, 426 11 of 21

rankings near the edge points of the training sample. Although Model 1 preserves the
ranking better, both Model 1 and Model 2 will have the highest value of the metric 𝜙 (𝐿, 𝑃) when estimated based on the training sample 𝐿 only.

(a) (b)

Figure 8. Example of models with (a) high and (b) low ranking preservation levels, |𝑋| = 1.

Figure 9 illustrates the idea of using the extended training sample to identify the level
of ranking preservation. Although Model 2, shown in Figure 9b, has a better accuracy on
the training sample, the violation of extra point ranking indicates that the model may not
be suitable for optimization purposes. Although the metrics 𝜙 (𝐿 , 𝑃) and 𝜙 (𝐿, 𝑃)
are correlated, they are not identical, meaning that models with similar accuracy may pre-
serve the landscape of the training sample differently.

(a) (b)

Figure 9. Example of models with (a) high and (b) low ranking preservation levels for the extended
training sample, |𝑋| = 1.

We propose another landscape validation metric 𝜙 (𝐿 , 𝑃), called the angular di-
vergence (AD) of the EVM. The metric is based on the extended sample 𝐿 , the extended
set of triples 𝑇 and the corresponding increment values {(𝛿 , 𝛿), 𝑗 ∈ (1: |𝑇 |)} . In-
stead of directly measuring the consistency of the 𝑓(𝑋) model’s landscape using the orig-
inal sample 𝐿, it measures the consistency of the corresponding EVMs in the following
way:
1. Build a surrogate model 𝑓(𝑋) using the training sample 𝐿 and the vector 𝑃 of hy-

perparameter values;
2. Using the model 𝑓(𝑋), calculate 𝑓 values for all the points 𝑋 of the extended sam-

ple 𝐿 , where 𝑖 ∈ (1: |𝐿 |). The calculated values form the sample 𝐿 ;
3. For all the triples from 𝑇 , calculate the increment values {(𝛿 , 𝛿), 𝑗 ∈ (1: |𝑇 |)}

using the sample 𝐿 ;
4. Assuming each pair of the increment values (𝛿 , 𝛿) correspond to the vector Δ in

the 𝛿 𝛿 space, and each pair of the values (𝛿 , 𝛿)—to the vector Δ , calculate the
angular divergence metric based on the cosine similarity of the vectors Δ and Δ :

Figure 9. Example of models with (a) high and (b) low ranking preservation levels for the extended
training sample, |X| = 1

We propose another landscape validation metric φAD(Lext, P), called the angular diver-
gence (AD) of the EVM. The metric is based on the extended sample Lext, the extended set
of triples Text and the corresponding increment values

{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |Text|)

}
. Instead

of directly measuring the consistency of the f̂ (X) model’s landscape using the original
sample L, it measures the consistency of the corresponding EVMs in the following way:

1. Build a surrogate model f̂ (X) using the training sample Lr and the vector P of
hyperparameter values;

2. Using the model f̂ (X), calculate f̂ i values for all the points Xi of the extended sample
Lr

ext, where i ∈ (1 : |Lr
ext|). The calculated values form the sample L̂r

ext;

3. For all the triples from Tr
ext, calculate the increment values

{(
δ̂

j
1, δ̂

j
2

)
, j ∈ (1 : |Tr

ext|)
}

using the sample L̂r
ext;

4. Assuming each pair of the increment values
(

δ
j
1, δ

j
2

)
correspond to the vector ∆j in

the δ1δ2 space, and each pair of the values
(

δ̂
j
1, δ̂

j
2

)
—to the vector ∆̂j, calculate the

angular divergence metric based on the cosine similarity of the vectors ∆j and ∆̂j:

φAD(Lr
ext, P) =

1
|Tr

ext|

Tr
ext

∑
j=1

∆j·∆̂j

||∆j||||∆̂j
∣∣∣∣∣∣ , (9)

Mathematics 2024, 12, 426 12 of 20

where ∆j·∆̂j is a dot product of the corresponding vectors.

The metric φAD(Lext, P) is calculated as an average angle of rotation of EVM points
around the central point of the 0δ1δ2 plane. The rotation angle is determined by the model’s
ability to preserve the ratio between the δ

j
1 and δ

j
2 values, and not the absolute magnitude

of those values. In Figure 10, the example of the AD calculation of a single triple for
models with different levels of ranking preservation is shown. Model 1, presented in
Figure 10a, preserves the signs of the increment values, so the angle between the EVM
points that correspond to the sample and the model is relatively small. Model 2, shown
in Figure 10b, alters the sign of the second increment value, hence the angular divergence
for the corresponding EVM point is around 90 degrees. The signs of both increments are
altered by Model 3 shown in Figure 10c, which results in an even larger angular divergence.
Figure 11 illustrates the angular divergence for the whole EVMs built for GP models with
different values of the Matern kernel parameter. The extended sample increments are
shown in black points, while the increments calculated for the models are shown in blue.
The value of the metric φAD(Lext, P) of the first model shown in Figure 11a is lower than
for the second model shown in Figure 11b (13 and 19 degrees on average, correspondingly).

Mathematics 2024, 12, 426 12 of 21

𝜙 (𝐿 , 𝑃) = 1|𝑇 | Δ ∙ Δ‖Δ ‖‖Δ ‖, (9)

where Δ ∙ Δ is a dot product of the corresponding vectors.
The metric 𝜙 (𝐿 , 𝑃) is calculated as an average angle of rotation of EVM points

around the central point of the 0𝛿 𝛿 plane. The rotation angle is determined by the
model’s ability to preserve the ratio between the 𝛿 and 𝛿 values, and not the absolute
magnitude of those values. In Figure 10, the example of the AD calculation of a single
triple for models with different levels of ranking preservation is shown. Model 1, pre-
sented in Figure 10a, preserves the signs of the increment values, so the angle between the
EVM points that correspond to the sample and the model is relatively small. Model 2,
shown in Figure 10b, alters the sign of the second increment value, hence the angular di-
vergence for the corresponding EVM point is around 90 degrees. The signs of both incre-
ments are altered by Model 3 shown in Figure 10c, which results in an even larger angular
divergence. Figure 11 illustrates the angular divergence for the whole EVMs built for GP
models with different values of the Matern kernel parameter. The extended sample incre-
ments are shown in black points, while the increments calculated for the models are
shown in blue. The value of the metric 𝜙 (𝐿 , 𝑃) of the first model shown in Figure
11a is lower than for the second model shown in Figure 11b (13 and 19 degrees on average,
correspondingly).

(a) (b) (с)

Figure 10. Example of angular divergence of a single triple and the corresponding point on a VM
for models with (a) high, (b) medium, and (c) low ranking preservation levels, |𝑋| = 1. Figure 10. Example of angular divergence of a single triple and the corresponding point on a VM for
models with (a) high, (b) medium, and (c) low ranking preservation levels, |X| = 1.

Mathematics 2024, 12, 426 13 of 21

(a) (b)

Figure 11. EVMs of GP models with Matern kernel parameter (a) 𝜈 = 0.5 and (b) 𝜈 = 2.5.

4. Computational Experiment
In this section, the results of computational experiments performed with the pro-

posed landscape validation metrics are presented. The baseline is set by estimating the
Bayesian optimization efficiency with fixed hyperparameter values. In the first experi-
ment, the efficiency of Bayesian optimization with hyperparameter tuning based on dif-
ferent landscape validation metrics is estimated. The second experiment evaluates the ef-
ficiency of the hyperparameter prediction approach based on ELA-ML approach with dif-
ferent landscape validation metrics.

4.1. General Setup
The Bayesian optimization efficiency is estimated on the set 𝑄 = {𝑞 , 𝑖 ∈ (1: 𝑀)} of

optimization problems that are based on the BBOB set of 24 test functions, that are widely
used for optimization efficiency studies [20]. The BBOB set is accessed by using Python
interface of the IOHexperimenter package [21]. Each function in the BBOB set is available
for arbitrary dimensions |𝑋| and the numbers of so-called instances obtained by a ran-
dom shift in 𝑋 space. The set 𝑄 of test optimization problems is composed of BBOB test
functions that have dimensions |𝑋| = 2,4,8 and the fixed instance number. Hence the to-
tal number of test problems is 𝑀 = 72.

To solve test problems 𝑄, an open Python implementation of the Bayesian optimiza-
tion algorithm in the ByesOpt package is used [22]. The surrogate models are built using
the Matern kernel, which has a tunable parameter 𝜈 with a recommended value of 𝜈 = 2.5 specified in the package. The set of allowed 𝜈 values is fixed to 𝐷 ={0.5, 1.5, 2.0, 2.5, 3.0, 𝑖𝑛𝑓} for hyperparameter tuning and prediction. By default, the pack-
age uses the LCB acquisition function with 𝜅 = 2.576 to select the next point for objective
evaluation [22].

The set of ELA features 𝐶 = (𝑐 , … 𝑐) is used to categorize the test problems for
hyperparameter prediction. The vector 𝐶 includes 41 features evaluated by the pFlacco
package [23] and 43 features based on VM [12]. Only ELA features that are based on a
fixed sample of points are used since additional objective evaluations are not permissible
with a fixed computational budget. The ELA features that require cell mapping of the
search space are also excluded. Due to the exponential growth of the total number of cells
with the dimension |𝑋|, the sample sizes will not be sufficient for cell mapping feature
calculation.

Figure 11. EVMs of GP models with Matern kernel parameter (a) ν = 0.5 and (b) ν = 2.5.

Mathematics 2024, 12, 426 13 of 20

4. Computational Experiment

In this section, the results of computational experiments performed with the proposed
landscape validation metrics are presented. The baseline is set by estimating the Bayesian
optimization efficiency with fixed hyperparameter values. In the first experiment, the
efficiency of Bayesian optimization with hyperparameter tuning based on different land-
scape validation metrics is estimated. The second experiment evaluates the efficiency of the
hyperparameter prediction approach based on ELA-ML approach with different landscape
validation metrics.

4.1. General Setup

The Bayesian optimization efficiency is estimated on the set Q =
{

qi, i ∈
(
1 : MQ

)}
of optimization problems that are based on the BBOB set of 24 test functions, that are
widely used for optimization efficiency studies [20]. The BBOB set is accessed by using
Python interface of the IOHexperimenter package [21]. Each function in the BBOB set is
available for arbitrary dimensions |X| and the numbers of so-called instances obtained by a
random shift in X space. The set Q of test optimization problems is composed of BBOB test
functions that have dimensions |X| = 2, 4, 8 and the fixed instance number. Hence the total
number of test problems is MQ = 72.

To solve test problems Q, an open Python implementation of the Bayesian opti-
mization algorithm in the ByesOpt package is used [22]. The surrogate models are
built using the Matern kernel, which has a tunable parameter ν with a recommended
value of νrec = 2.5 specified in the package. The set of allowed ν values is fixed to
Dν = {0.5, 1.5, 2.0, 2.5, 3.0, in f } for hyperparameter tuning and prediction. By default,
the package uses the LCB acquisition function with κ = 2.576 to select the next point for
objective evaluation [22].

The set of ELA features C = (c1, . . . c84) is used to categorize the test problems for
hyperparameter prediction. The vector C includes 41 features evaluated by the pFlacco
package [23] and 43 features based on VM [12]. Only ELA features that are based on a fixed
sample of points are used since additional objective evaluations are not permissible with
a fixed computational budget. The ELA features that require cell mapping of the search
space are also excluded. Due to the exponential growth of the total number of cells with the
dimension |X|, the sample sizes will not be sufficient for cell mapping feature calculation.

In the following sections, the method of solving the tuning problem (3) is referred to as
a strategy of the Bayesian optimization algorithm. The efficiency of the following strategies
is analyzed:

• Fixed vector P—no hyperparameter tuning;
• Hyperparameter tuning with the considered metrics:

- metric φCV(L, P) with 5 folds (see Equation (4) in Section 2.2);
- metric φRP(Lext, P) (see Equation (8) in Section 3.3);
- metric φAD(Lext, P) (see Equation (9) in Section 3.3).

• Predicted vector P̂ (see Section 2.3);
• The metrics φRP(Lext, P) and φAD(Lext, P) will be referred to as φRP(L, P) and φAD(L, P),

respectively, to simplify the experiment description.

In the experiments, the efficiency of the Bayesian optimization algorithm with a given
strategy is measured by the solution’s quality and by the computational cost of solving a
test problem. The solution’s quality is determined by the best objective value found during
the run. The computational cost is assessed by estimating the average time required to
solve a test problem, which includes the time spent on building surrogate models and
calculating values of the selected metric. Since test problems are used, the time spent on
objective evaluation is negligible. The time required to build a tuning model is not taken
into account when using the hyperparameter prediction strategy. The experiments were
performed on a computer with an Intel E5-2643 processor.

Mathematics 2024, 12, 426 14 of 20

4.2. Bayesian Optimization with Hyperparameter Tuning

To compare the efficiency of Bayesian optimization with fixed hyperparameter values
and hyperparameter tuning, the experiment with the following steps is performed.

1. For each problem qi ∈ Q with the objective function fi(X), generate the number of

random initial samples
{

L0
i,j, j ∈ (1 : 10)

}
, each sample of size

∣∣∣L0
i,j

∣∣∣ = 5|X|;
2. Using each initial sample L0

i,j, perform iterations r ∈ (1 : 10|X|) of the Bayesian
optimization algorithm, as described in Section 2.1;

3. Using each initial sample L0
i,j, perform iterations r ∈ (1 : 10|X|) of the Bayesian

optimization algorithm with hyperparameter tuning, as described in Section 2.2, with
each of the following metrics: φCV

(
Lr

i,j, P
)

, φRP

(
Lr

i,j, P
)

and φAD

(
Lr

i,j, P
)

. The best
hyperparameter values are selected from the set Dν;

4. Estimate the average of the best objective values f
∗
i found in 10 random runs with

fixed hyperparameter values in step 2 and with hyperparameter tuning based on the
metrics φCV

(
Lr

i,j, P
)

, φRP

(
Lr

i,j, P
)

and φAD

(
Lr

i,j, P
)

in step 3:

f
∗
i =

1
10 ∑

j
f ∗i,j, (10)

where f ∗i,j is the best objective value found for the problem qi in the j-th run;
5. For each problem qi select the metric φi(L, P) with which the best objective value was

found on average.

In the described experiment, each of the 72 test optimization problems was solved
using 10 random initial samples and four different strategies with the computational budget
15|X|−2880 runs of the Bayesian optimization algorithm in total.

4.3. Bayesian Optimization with Hyperparameter Prediction

The experiment aims to measure the efficiency of using the hyperparameter prediction
approach based on the ELA-ML framework by performing the following steps for each op-
timization problem qi, i ∈ (1 : 72). The experiment is split into exploration and exploitation
phases as it is described in Section 2.3.

Exploration phase—evaluate ELA features, find the best hyperparameter values:

1. Remove problems from the set Q that are based on the same BBOB function as
the current problem qi, including those with different dimensions |X|, so that the
remaining problems compose the set Qi = {qk, k ∈ (1 : 69)};

2. For each problem qk generate the random samples
{

Lk,s, s ∈ (1 : 300)
}

with different
sizes

∣∣Lk,s
∣∣ ∈ (5|X|, 15|X|). Within the given range, 20 sample sizes are chosen and

15 random samples of each size are generated in DX ;
3. For each sample Lk,s calculate the vector of ELA features Ck,s, where

∣∣Ck,s
∣∣ = 84 and

find the best hyperparameter values P∗k,s by solving the problem (3) with the set of
allowed values Dν. As the hyperparameter efficiency metric use the metric φk(L, P),
which showed the best performance for the problem qk in Section 4.2;

4. Use the set of pairs
{

Ck,s, P∗k,s

}
as a training sample to build a tuning model P̂i(C) by

using the random forest classifier implemented in the scikit-learn package [24].

Exploitation phase—use the tuning model P̂i for hyperparameter prediction:

1. For the current problem qi, generate the number of random initial samples
{

L0
i,j, j ∈ (1 : 10)

}
,

each sample of size
∣∣∣L0

i,j

∣∣∣ = 5|X|;
2. Using each initial sample L0

i,j perform iterations r ∈ (1 : 10|X|) of the Bayesian opti-

mization algorithm with hyperparameter prediction by using the tuning model P̂i, as
described for the exploitation phase in Section 2.3;

Mathematics 2024, 12, 426 15 of 20

3. Estimate the average of the best objective values f
∗
i found in 10 random runs with

hyperparameter prediction.

Each tuning model P̂i is built using 20,700 pairs of observations, all of which are
collected for problems based on different BBOB functions. The experiment is structured
in such a way that it is comparable to the cross-validation procedure. Each problem qi
is excluded from the exploration phase to build a tuning model and is solved during
the exploitation phase with the hyperparameter values predicted by that model. The
hyperparameter values are predicted based on the ELA features similarity between the
problem qi and the set of problems {qk} analyzed during the exploration phase. In our case,
the accuracy of hyperparameter prediction for a particular problem qi depends, among
other factors, on the presence of BBOB functions with a similar landscape in the set {qk}.

4.4. Experimental Results

The results of the first experiment are summarized in Table 1. For each problem qi,
the best strategy is selected that provides the best value f

∗
i . For each considered strategy,

the table shows the number of problems qi where the best result was found while using
that strategy. It should be noted that for certain test problems, such as with the linear slope
objective function, multiple strategies were able to find the optimal solution.

Table 1. The number of best-solved problems with the fixed hyperparameter value and the hyperpa-
rameter tuning approach using different metrics.

Bayesian Optimization Strategy Number of Problems with the Best
–
f
*

i

Fixed vector P 12
Hyperparameter tuning with:

metric φCV 24
metric φRP 24
metric φAD 21

With the fixed hyperparameter values, the number of best-solved problems is the
lowest, as expected. Using the proposed metrics for hyperparameter tuning leads to the best
results on a wider range of problems. Based on the results, it can be assumed that different
problems require different approaches to hyperparameter tuning, i.e., different metrics.

Table 2 summarizes the results of the second experiment in the same manner. On top
of that, the average of the best-found values f

∗
i and the average time required to solve a test

problem are provided. Since the scale of objective values of the test problems vary a great
deal, the best-found values f

∗
i were normed to the range (0; 1), so that 0 and 1 correspond

to the best and worst values f ∗i,j found for the problem qi in all the runs with different
strategies.

Table 2. The experimental results with the fixed hyperparameter value, the hyperparameter tuning
approach using different metrics and the hyperparameter prediction approach.

Bayesian Optimization
Strategy

Number of Problems
with the Best Value f

*
i

Average of Normed
Best Values f

*
i

Average Time for
Solving a Problem, s

Fixed vector P 9 0.379 24
Hyperparameter tuning with:

metric φCV 19 0.303 457
metric φRP 13 0.305 211
metric φAD 17 0.305 173

Predicted vector P̂ 26 0.290 144

It is evident that the proposed hyperparameter prediction approach provides the best
results for a larger number of problems. The metric φCV that requires cross-validation of the
surrogate models is the most time-consuming but also the most accurate metric. However,
with the proposed metrics φRP and φAD the results of comparable quality can be found

Mathematics 2024, 12, 426 16 of 20

with over 50% less effort. By using the hyperparameter prediction strategy, the problems
can be solved with even less time (up to 70%), while the quality of the results is about 5%
better than for the most accurate metric φCV .

Fixedmetric φCVmetric φRPmetric φADPredictedWhen benchmarking optimization
algorithms, average efficiency estimates are often not sufficient for making informed con-
clusions. Figure 12 presents the experimental results in the form of so-called performance
profiles [25]. The performance profile of each strategy is constructed by calculating the
number of test problems with a better value f

∗
i ≤ f

′
for all possible values f

′ ∈ (0, 1). As a
result, the performance profile plot shows the number of test problems as a function of the
quality of the solution. For example, the two most effective strategies for finding near-best
values f

∗
i ≤ 0.1 use the fixed vector P and hyperparameter tuning with the metric φCV .

Figure 13 presents the same performance profiles for all the algorithm runs with random
initial samples (10 random runs for each of the 72 problems).

Mathematics 2024, 12, 426 17 of 21

Figure 12. Performance profile plots for different strategies of Bayesian optimization: the number of
test problems solved with better values 𝑓̅∗.

Figure 13. Performance profile plots for different strategies of Bayesian optimization: the number of
runs with better values 𝑓∗.

In Figure 14 the performance profile plots are shown for the number of test problems
as a function of the time required to solve a problem. It can be clearly seen that the plot
has «jumping» segments due to the time difference between solving the problems of dif-
ferent dimensions |𝑋| = 2,4,8. The computational complexity grows with the problem di-
mension slower for the metric 𝜙 than for the metric 𝜙 . The hyperparameter predic-
tion strategy is relatively expensive for smaller dimensions due to the computational costs
involved in estimating the features vector 𝐶 and evaluating the tuning model 𝑃(𝐶). Us-
ing the fixed vector 𝑃 and selecting hyperparameter values with the metric 𝜙 are ob-
viously the strategies with the best and the worst time efficiency, respectively. Figure 15
presents the same performance profiles for all the algorithm runs with random initial sam-
ples (10 random runs for each of the 72 problems).

Figure 12. Performance profile plots for different strategies of Bayesian optimization: the number of
test problems solved with better values f

∗
.

Mathematics 2024, 12, 426 17 of 21

Figure 12. Performance profile plots for different strategies of Bayesian optimization: the number of
test problems solved with better values 𝑓̅∗.

Figure 13. Performance profile plots for different strategies of Bayesian optimization: the number of
runs with better values 𝑓∗.

In Figure 14 the performance profile plots are shown for the number of test problems
as a function of the time required to solve a problem. It can be clearly seen that the plot
has «jumping» segments due to the time difference between solving the problems of dif-
ferent dimensions |𝑋| = 2,4,8. The computational complexity grows with the problem di-
mension slower for the metric 𝜙 than for the metric 𝜙 . The hyperparameter predic-
tion strategy is relatively expensive for smaller dimensions due to the computational costs
involved in estimating the features vector 𝐶 and evaluating the tuning model 𝑃(𝐶). Us-
ing the fixed vector 𝑃 and selecting hyperparameter values with the metric 𝜙 are ob-
viously the strategies with the best and the worst time efficiency, respectively. Figure 15
presents the same performance profiles for all the algorithm runs with random initial sam-
ples (10 random runs for each of the 72 problems).

Figure 13. Performance profile plots for different strategies of Bayesian optimization: the number of
runs with better values f ∗.

Mathematics 2024, 12, 426 17 of 20

In Figure 14 the performance profile plots are shown for the number of test problems
as a function of the time required to solve a problem. It can be clearly seen that the plot has
«jumping» segments due to the time difference between solving the problems of different
dimensions |X| = 2, 4, 8. The computational complexity grows with the problem dimension
slower for the metric φAD than for the metric φRP. The hyperparameter prediction strategy
is relatively expensive for smaller dimensions due to the computational costs involved
in estimating the features vector C and evaluating the tuning model P̂(C). Using the
fixed vector P and selecting hyperparameter values with the metric φCV are obviously
the strategies with the best and the worst time efficiency, respectively. Figure 15 presents
the same performance profiles for all the algorithm runs with random initial samples
(10 random runs for each of the 72 problems).

Mathematics 2024, 12, 426 18 of 21

Figure 14. Performance profile plots for different Bayesian optimization strategies: the number of
test problems solved in less time.

Figure 15. Performance profile plots for different Bayesian optimization strategies: the number of
runs completed in less time.

5. Discussion
The presented exploratory landscape validation approach enables the finding pf ef-

fective hyperparameter values without relying on approximation accuracy estimations of
surrogate models. In cases of limited computational budget and hence relatively small
training samples, landscape validation metrics provide a faster way to estimate the effi-
ciency of hyperparameter values. The presented metrics summarize the essential differ-
ences between the landscapes of surrogate models and training samples, that are generally
characterized by ELA features. The study, however, has the following potential limita-
tions. The experiments were performed with test optimization problems, but the applica-
bility of the proposed metrics is mainly determined by the computational complexity of
objective evaluation and hence the computational budget. In the event of a higher com-
plexity of objective evaluation and relatively small budget, the computational impact even

Figure 14. Performance profile plots for different Bayesian optimization strategies: the number of
test problems solved in less time.

Mathematics 2024, 12, 426 18 of 21

Figure 14. Performance profile plots for different Bayesian optimization strategies: the number of
test problems solved in less time.

Figure 15. Performance profile plots for different Bayesian optimization strategies: the number of
runs completed in less time.

5. Discussion
The presented exploratory landscape validation approach enables the finding pf ef-

fective hyperparameter values without relying on approximation accuracy estimations of
surrogate models. In cases of limited computational budget and hence relatively small
training samples, landscape validation metrics provide a faster way to estimate the effi-
ciency of hyperparameter values. The presented metrics summarize the essential differ-
ences between the landscapes of surrogate models and training samples, that are generally
characterized by ELA features. The study, however, has the following potential limita-
tions. The experiments were performed with test optimization problems, but the applica-
bility of the proposed metrics is mainly determined by the computational complexity of
objective evaluation and hence the computational budget. In the event of a higher com-
plexity of objective evaluation and relatively small budget, the computational impact even

Figure 15. Performance profile plots for different Bayesian optimization strategies: the number of
runs completed in less time.

Mathematics 2024, 12, 426 18 of 20

5. Discussion

The presented exploratory landscape validation approach enables the finding pf ef-
fective hyperparameter values without relying on approximation accuracy estimations of
surrogate models. In cases of limited computational budget and hence relatively small train-
ing samples, landscape validation metrics provide a faster way to estimate the efficiency
of hyperparameter values. The presented metrics summarize the essential differences
between the landscapes of surrogate models and training samples, that are generally char-
acterized by ELA features. The study, however, has the following potential limitations.
The experiments were performed with test optimization problems, but the applicability of
the proposed metrics is mainly determined by the computational complexity of objective
evaluation and hence the computational budget. In the event of a higher complexity of
objective evaluation and relatively small budget, the computational impact even of the
cross-validation metric may become negligible. On the other hand, if the budget is large
enough, the increase in the optimization algorithm’s efficiency may not be sufficient to
justify the computational cost of hyperparameter tuning with any of the considered metrics.
Analyzing applicability conditions for different tuning strategies when solving practical
optimization problems could be the focus of future research. It is also promising to explore
other ways of estimating the level of landscape feature preservation by surrogate models
based on the known ELA methods, for example, by direct comparison of ELA feature
vectors. Landscape validation can be based on various ways of measuring the differences
between the variability maps of samples and surrogate models.

It was shown that landscape validation metrics can be used to both find and predict
the best hyperparameter values during Bayesian optimization. Another potential extension
of this work is to analyze the efficiency of hyperparameter prediction with different ELA
algorithms and approximation algorithms used for building a tuning model. The efficiency
of hyperparameter prediction is also affected by the level of similarity between the problems
being solved at exploration and exploitation phases, which is difficult to formalize. One
possible approach would be to use the ELA features of the test problem set to define the
region of allowed feature values for the exploitation-phase problems. If the new problem
has unrelated feature values, then the efficiency of the predicted hyperparameter values
cannot be guaranteed; therefore, the default hyperparameter values should be used for that
problem. In such cases, the test problem set should be refined to keep it representative of
the problems solved during the exploitation phase.

6. Conclusions

The article considers different approaches to improving the efficiency of Bayesian
optimization algorithms by selecting the best hyperparameter values of the surrogate
modeling algorithm. The optimal vector of hyperparameter values is found based on a
hyperparameter efficiency metric, which defines the way of measuring the quality of a
surrogate model built with different vectors. The hyperparameter tuning problem is being
solved at each iteration of Bayesian optimization, so using computationally demanding
metrics may lead to a significant increase in the time spent solving the problem.

When solving computationally expensive optimization problems, the number of
objective evaluations allowed is relatively small, as well as the size of the training sample for
building a surrogate model. The commonly used efficiency metric for such cases is the cross-
validation score, which requires building multiple surrogate models on different subsets
of the training sample. In this article, a new approach is introduced called exploratory
landscape validation (ELV), which includes the proposed hyperparameter efficiency metrics
to assess the quality of surrogate models without considering the approximation error
estimates. The experiments showed that hyperparameter tuning with the new metrics can
provide solutions of comparable quality with less than half the time required when using
the cross-validation metric. The experimental results also indicate that different metrics
provide the best solutions for different optimization problems.

Mathematics 2024, 12, 426 19 of 20

Another way of reducing the costs of hyperparameter tuning is to build a model
that predicts the best hyperparameter values during Bayesian optimization based on ELA
features estimated from the training sample. The hyperparameter prediction approach is
based on collecting a test set of problems, estimating the ELA features of those problems,
finding the best hyperparameter values according to an efficiency metric, and building a
tuning model. In general, each optimization problem has its own best-suited efficiency
metric for hyperparameter tuning. In the computational experiment, the tuning models are
built to predict the hyperparameter values that are most effective according to the metrics
chosen individually for each test optimization problem. With the suggested hyperparameter
prediction approach and individual efficiency metrics, better-quality solutions were found
in less than 70% of the time needed by a hyperparameter tuning approach based on cross-
validation score. Even though additional computational expenses are required to create a
tuning model, they are insignificant when compared to potential permanent improvement
in the optimization algorithm’s efficiency.

Author Contributions: Conceptualization, A.K. and T.A.; methodology, A.K.; software, T.A.; val-
idation, T.A.; formal analysis, T.A.; investigation, T.A.; writing—original draft preparation, T.A.;
writing—review and editing, T.A.; visualization, T.A.; supervision, A.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source code and the results of the computational experiments are
openly available at https://github.com/agataleh/boela_bench (accessed on 6 January 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alizadeh, R.; Allen, J.K.; Mistree, F. Managing computational complexity using surrogate models: A critical review. Res. Eng. Des.

2020, 31, 275–298. [CrossRef]
2. Palar, P.S.; Liem, R.P.; Zuhal, L.R.; Shimoyama, K. On the use of surrogate models in engineering design optimization and

exploration: The key issues. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague,
Czech Republic, 13–17 July 2019; Association for Computing Machinery: New York, NY, USA; pp. 1592–1602.

3. Jariego Perez, L.C.; Garrido Merchan, E.C. Towards Automatic Bayesian Optimization: A first step involving acquisition functions.
In Proceedings of the 19th Conference of the Spanish Association for Artificial Intelligence, Advances in Artificial Intelligence,
Malaga, Spain, 22–24 September 2021; Springer: Cham, Switzerland; pp. 160–169.

4. Gan, W.; Ji, Z.; Liang, Y. Acquisition functions in Bayesian optimization. In Proceedings of the 2nd International Conference on
Big Data & Artificial Intelligence & Software Engineering (ICBASE), Zhuhai, China, 24–26 September 2021; IEEE: Piscataway
Township, NJ, USA; pp. 129–135.

5. Palar, P.S.; Parussini, L.; Bregant, L.; Shimoyama, K.; Zuhal, L.R. On kernel functions for bi-fidelity Gaussian process regressions.
Struct. Struct. Multidiscip. Multidiscip. Optim. Optim. 2023, 66, 37. [CrossRef]

6. Yu, H.; Tan, Y.; Sun, C.; Zeng, J. A comparison of quality measures for model selection in surrogate-assisted evolutionary
algorithm. Soft Comput. Comput. 2019, 23, 12417–12436. [CrossRef]

7. Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al.
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2023, 13, e1484. [CrossRef]

8. Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 4,
pp. 83–89.

9. Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput.
Comput. Chem. Chem. Eng. Eng. 2018, 108, 250–267. [CrossRef]

10. Garbo, A.; German, B.J. Performance assessment of a cross-validation sampling strategy with active surrogate model selection.
Struct. Multidiscip. Optim. 2019, 59, 2257–2272. [CrossRef]

11. Diaz-Manriquez, A.; Toscano, G.; Coello Coello, C.A. Comparison of metamodeling techniques in evolutionary algorithms. Soft
Comput. 2017, 21, 5647–5663. [CrossRef]

12. Agasiev, T.A. Characteristic feature analysis of continuous optimization problems based on Variability Map of objective function
for optimization algorithm configuration. Open Comput. Sci. 2020, 10, 97–111. [CrossRef]

13. Škvorc, U.; Eftimov, T.; Korošec, P. Understanding the problem space in single-objective numerical optimization using exploratory
landscape analysis. Appl. Soft Comput. 2020, 90, 106138. [CrossRef]

https://github.com/agataleh/boela_bench
https://doi.org/10.1007/s00163-020-00336-7
https://doi.org/10.1007/s00158-023-03487-y
https://doi.org/10.1007/s00500-019-03783-0
https://doi.org/10.1002/widm.1484
https://doi.org/10.1016/j.compchemeng.2017.09.017
https://doi.org/10.1007/s00158-018-02190-7
https://doi.org/10.1007/s00500-016-2140-z
https://doi.org/10.1515/comp-2020-0114
https://doi.org/10.1016/j.asoc.2020.106138

Mathematics 2024, 12, 426 20 of 20

14. Renau, Q.; Doerr, C.; Dreo, J.; Doerr, B. Exploratory landscape analysis is strongly sensitive to the sampling strategy. In Proceedings
of the 16th International Conference on Parallel Problem Solving from Nature, Leiden, The Netherlands, 5–9 September 2020;
Springer: Cham, Switzerland; pp. 139–153.

15. Kerschke, P.; Preuss, M. Exploratory landscape analysis. In Proceedings of the Companion Conference on Genetic and Evolution-
ary Computation, Lisbon, Portugal, 15–19 July 2023; Association for Computing Machinery: New York, NY, USA; pp. 990–1007.

16. Saini, B.S.; López-Ibáñez, M.; Miettinen, K. Automatic surrogate modelling technique selection based on features of optimization
problems. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17
July 2019; Association for Computing Machinery: New York, NY, USA; pp. 1765–1772.

17. Kerschke, P.; Trautmann, H. Automated algorithm selection on continuous black-box problems by combining exploratory
landscape analysis and machine learning. Evol. Comput. 2019, 27, 99–127. [CrossRef] [PubMed]

18. Viana, F.A.; Venter, G.; Balabanov, V. An algorithm for fast optimal Latin hypercube design of experiments. Int. J. Numer. Methods
Eng. 2010, 82, 135–156. [CrossRef]

19. Wang, X.; Jin, Y.; Schmitt, S.; Olhofer, M. Recent advances in Bayesian optimization. ACM Comput. Surv. 2023, 55, 1–36. [CrossRef]
20. Varelas, K.; El Hara, O.A.; Brockhoff, D.; Hansen, N.; Nguyen, D.M.; Tušar, T.; Auger, A. Benchmarking large-scale continuous

optimizers: The bbob-largescale testbed, a COCO software guide and beyond. Appl. Soft Comput. 2020, 97, 106737. [CrossRef]
21. de Nobel, J.; Ye, F.; Vermetten, D.; Wang, H.; Doerr, C.; Bäck, T. Iohexperimenter: Benchmarking platform for iterative optimization

heuristics. Evol. Comput. 2023, 1–6. [CrossRef] [PubMed]
22. Nogueira, F. Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python. 2014. Available online:

https://github.com/bayesian-optimization/BayesianOptimization (accessed on 6 December 2023).
23. Prager, R.P.; Trautmann, H. Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems

in Python. Evol. Comput. 2023, 1–25. [CrossRef] [PubMed]
24. Hao, J.; Ho, T.K. Machine learning made easy: A review of scikit-learn package in python programming language. J. Educ. Behav.

Stat. 2019, 44, 348–361. [CrossRef]
25. Moré, J.J.; Wild, S.M. Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 2009, 20, 172–191. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/evco_a_00236
https://www.ncbi.nlm.nih.gov/pubmed/30365386
https://doi.org/10.1002/nme.2750
https://doi.org/10.1145/3582078
https://doi.org/10.1016/j.asoc.2020.106737
https://doi.org/10.1162/evco_a_00342
https://www.ncbi.nlm.nih.gov/pubmed/37486979
https://github.com/bayesian-optimization/BayesianOptimization
https://doi.org/10.1162/evco_a_00341
https://www.ncbi.nlm.nih.gov/pubmed/37486976
https://doi.org/10.3102/1076998619832248
https://doi.org/10.1137/080724083

	Introduction
	Bayesian Optimization with Hyperparameter Tuning and Prediction
	Bayesian Optimization Algorithm
	Hyperparameter Tuning for a Bayesian Optimization Algorithm
	Hyperparameter Prediction for a Bayesian Optimization Algorithm

	Exploratory Landscape Validation
	Variability Map of an Objective Function
	Extended Variability Map of an Objective Function
	Landscape Validation Metrics

	Computational Experiment
	General Setup
	Bayesian Optimization with Hyperparameter Tuning
	Bayesian Optimization with Hyperparameter Prediction
	Experimental Results

	Discussion
	Conclusions
	References

