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Abstract: Copy number variation (CNV) has been increasingly recognized as a type of genomic/genetic
variation that plays a critical role in driving human diseases and genomic diversity. CNV detection
and analysis from cancer genomes could provide crucial information for cancer diagnosis and
treatment. There still remain considerable challenges in the control-free calling of CNVs accurately
in cancer analysis, although advances in next-generation sequencing (NGS) technology have been
inspiring the development of various computational methods. Herein, we propose a new read-depth
(RD)-based approach, called CNVbd, to explore CNVs from single tumor samples of NGS data.
CNVbd assembles three statistics drawn from the density peak clustering algorithm and isolation
forest algorithm based on the denoised RD profile and establishes a back propagation neural network
model to predict CNV bins. In addition, we designed a revision process and a boundary search
algorithm to correct the false-negative predictions and refine the CNV boundaries. The performance
of the proposed method is assessed on both simulation data and real sequencing datasets. The
analysis shows that CNVbd is a very competitive method and can become a robust and reliable tool
for analyzing CNVs in the tumor genome.

Keywords: copy number variation; boundary; breakpoint; single tumor sample; NGS data

MSC: 92D20

1. Introduction

Copy number variation (CNV) refers to a type of intermediate-scale structural varia-
tion with copy number changes and has been increasingly recognized as having a significant
effect on human genomic diversity, tumorigenesis, and the pathogenesis of multiple inher-
ited genetic disorders and intellectual disability [1–4]. CNVs can be insertions, deletions,
duplications, inversions, translocations, transversions, or more complicated forms involv-
ing DNA segments ranging in size from hundreds of base pairs to several megabases or
even beyond. It has been estimated that CNVs occur in more than 12% of the human
genome as passenger mutations or covering functional genes of human cancer and other
complex diseases [5]. Additionally, a large part of CNVs exist in the protein-coding re-
gions and thus influence the concerned gene expressions [6]. Therefore, CNV detection
is fundamental for the comprehensive genetic analysis of human diseases and a better
understanding of genome evolution.

The read-depth (RD)-based methods for CNV detection have been proven to be the
most versatile and most widely used for both whole-genome and whole-exome sequencing
data [7,8] among the varieties of computational tools that emerged along with the massive
and high-resolution data generated by the next-generation sequencing (NGS) technologies.
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Moreover, the RD-based approaches are not affected by the short read length and discon-
tinuous targeted regions across the genome and have the potential to accurately estimate
the absolute copy numbers [9]. CNVs can be divided into two groups: copy number gain
and copy number loss. A gain should show higher RD intensity than expected, while
a loss shows the opposite [10]. The RD strategies work under the assumption that the
depth of coverage is approximately proportional to the copy number of that location [11].
The depth of coverage at a location can be represented by the read count (RC), i.e., the
number of reads mapped to the location. However, there are some factors, such as low
sequencing depth, GC content bias, mappability bias, experimental noise, and alignment
errors, that reduce base pair resolution and distort the relationship between the RC and the
copy number. This necessitates a procedure of binning along the genome and a process
of GC bias correction, which have become an essential part of the RD-based approaches
for CNV detection [12]. Generally, the pipeline of CNV detection based on RD includes
the following major steps: quality control of raw reads, alignment of reads to the reference
genome, data preprocessing (binning, RD calculation, and GC bias or other bias correction
across the RDs), and CNV calling (inferring gain or loss by developing a statistical model
or machine learning algorithms based on the RD profile and other alignment information).
Although these general operations of the RD-based approaches enhance the possibility
of detecting large CNVs and also work for complicated genomic areas, they fail to obtain
accurate CNV boundaries, which increases the false-positive rate.

A large number of methods under the RD-based framework have been developed
for detecting CNVs of different sizes and types from various viewpoints. Conventional
detection approaches construct statistical models that usually presuppose a probability dis-
tribution followed by RDs and forecast CNVs using hypothesis-based analytical techniques.
For instance, SegSeq [13] and ReadDepth [14] adopt models based on Poisson, Gaussian,
and negative binomial distributions. There are also many other methods that implement
a segmentation process after various bias corrections (e.g., FREEC [15], CNVnator [16],
CNVkit [17], and iCopyDAV [18]) or apply different algorithms to infer the copy numbers
(e.g., CopywriteR [19], GROM-RD [20], and SeqCNV [21]) in order to detect the CNVs
as well as the breakpoints, i.e., the start/end boundaries of predicted CNVs. FREEC and
CNVnator achieve fine performance and are therefore often used for comparison with
a newly developed method. Currently, CNVs are mostly regarded as outlier events to
be analyzed from the RD profile since the CNV regions only account for a small part
of the genome. For example, CNV-LOF [22], CNV-KOF [23], and IhybCNV [24] adopt
different outlier factors to calculate anomaly scores and determine CNVs by applying a
boxplot or binary clustering model. Along with the development of machine learning,
models based on classification, regression, neural networks, or clustering are adopted by
CNV detection methods, including AluScanCNV2 [25], CNV_IFTV [26], CNV-RF [27], and
dpCNV [28], and so on. However, most such types of methods are not able to locate the
precise breakpoints of CNVs unless specific treatment is taken. Nonetheless, due to the
intrinsic complexity of the genome and the existence of various systemic noises, there still
remain many challenges associated with the analysis of NGS data for CNVs. Therefore, it
requires more feasible and reliable strategies for the detection of CNVs from NGS data.

We present a new method called CNVbd to detect CNVs from single tumor samples
of NGS data. CNVbd generates a RD profile through a binning procedure and GC content
corrections. Based on the RD file, it calculates three types of outlier scores derived from
the density peak clustering algorithm and the isolation forest algorithm for each genome
bin. Combining RDs with the three statistics, it then trains a back propagation (BP) neural
network model to predict CNV bins. In addition, CNVbd implements a revision process
specifically designed for connecting the successive CNV pieces so as to improve the false
negative rate, as well as a boundary search algorithm for locating the breakpoints. To
validate our proposed method, we first compare its performance on simulation data to four
peer methods. We also apply our proposed boundary search algorithm to the peer methods
in order to compare their boundary accuracy. We further verified the CNVbd method on
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real tumor samples. The comparative study demonstrates the superiority of CNVbd over
the other approaches, and we expect it to become a routine approach for the detection of
CNVs from single tumor samples of NGS data.

2. Methods
2.1. Overview of CNVbd

CNVbd is based on the RD approach, which does not require a control-matched
sample. The flowchart of CNVbd is illustrated in Figure 1. Firstly, a sequenced sample
(i.e., a Fastq file) is aligned to the reference sequence (i.e., an Hg38 Fasta file) by BWA [29],
which is currently one of the most popular alignment tools. This process produces the
SAM/BAM file, through which the RC profile is generated with SAMtools [30]. The
RC values of the value-lost and “N” positions are filled with zeros to obtain a complete
and workable RC profile. Then, an RD profile is generated by dividing the complete
RC profile into bins and performing a GC bias correction process. With the RD profile,
CNVbd begins to detect CNVs through four steps. In the first step, four CNV-related
features are extracted or calculated. In the second step, the BP neural network algorithm
is trained based on the four features to predict the gain or loss CNV bins. In the third
step, a designed revision process is applied to certain CNV regions. In the last step, a
boundary search algorithm is implemented to refine the CNV boundaries, and all CNVs
are finally declared. The CNVbd program is written in Python and is freely available
at https://github.com/BDanalysis/CNVbd, accessed on 8 May 2023. This software is
easy to install and configure. Please refer to the above website for the specific usage and
requirements of this method. The principle and implementation for each of the steps are
described in detail in the following subsections.
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Figure 1. Flowchart of the CNVbd method. It is composed of CNV detection and boundary refinement.

2.2. Preprocessing

This step includes drawing up the RC profile and generating the RD profile by bin-
ning and correcting the GC content bias. The complete RC profile is divided into non-
overlapping bins of a fixed size along the genome, and the reads falling into each bin are
counted, which is a strategy to capture the local variation signals. The size was set to
1500 bp here in order to provide a relatively loose range for the subsequence boundary

https://github.com/BDanalysis/CNVbd
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search. For each bin, a mean RC was computed to attain its RD value. The ratio of the
number of bases “G” and “C” to the number of all the bases in a bin is known as the
GC content. GC content bias is caused by the unequal distribution of reads during the
polymerase chain reaction [31], which has an impact on the RD values.

In this paper, GC content bias was corrected for the RD profile following the method
introduced in [26], as shown in Equation (1):

ri =
r − re

rgc − re
·r̃i (1)

where r̃i represents the raw RD of the i-th bin, r represents the average RD across all bins,
rgc represents the average RD across those bins with a similar GC fraction to the i-th bin,
and re represents the average error-mapped read count across the genome that can be
estimated according to the mapping information recorded in the SAM file using SAMtools.
The result ri is the corrected RD value of the i-th bin. Thus, a corrected RD profile was
obtained.

2.3. Extract and Calculate CNV-Related Features

Extracting effective features that capture the signature of CNVs is one of the key steps
to detect CNVs, which will directly affect the detection accuracy. For each bin, we extracted
four features, i.e., read-depth (RD), local density (LD), minimum distance (MD), and IFTV
deep (ID), as shown in Table 1, with their corresponding meanings described. The RD was
prepared. The other three features were measured based on the RD.

Table 1. Description of the extracted features.

Feature Description

Read-depth (RD), ri The corrected RD for each bin

Local density (LD), ρi
The number of points that are closer than the cutoff distance to
point i

Minimum distance (MD), δi
The minimum distance between the point i and any other point
with higher density

IFTV deep (ID), hi The isolation forest deep, i.e., the average depth of ri in all iTrees

2.3.1. Calculate the Values of the Features LD and MD

The LD and MD are two quantities introduced and mainly used in clustering by fast
search and find of density peaks [32] for outlier detection. The local density ρi is equal to
the number of points that are within a cutoff distance of the i-th bin point, calculated using
Equation (2):

ρi = ∑
j
X
(
dij − dc

)
(2)

where X (x) = 1 if x < 0 and X (x) = 0; otherwise, dc is the cutoff distance, and dij =√(
ri − rj

)2
+ (i − j)2 represents the Euclidean distance between the i-th and j-th bin points.

The minimum distance δi denotes the distance from the i-th bin point to its nearest higher
density bin point, shown as Equation (3):

δi = min
j:ρj>ρi

dij (3)

For the point with the highest density, take δi = dij. An example is shown in Figure 2,
where LD = 5, dc equals the length of the dashed line and MD equals the length of the
brown dotted line. Both quantities only depend on the distance dij. An outlier is supposed
to have a lower LD value and a larger MD value than normal points.
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2.3.2. Calculate the Value of the Feature ID

An isolated forest is a collection of isolated trees (iTrees). Each iTree is a binary tree
classifier, with every leaf being a class, which is trained by Algorithm 1 and can be referred
to [26]. The deep level of a value in an iTree is defined as the path length from the root to
the leaf that the value belongs to. For a clear understanding of Algorithm 1, an example of
training an iTree on a set of ten values is presented in Figure 3, where the bold numbers are
the randomly selected values following step (3).
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h(8.2) = 2, h(2.1) = h(2.6) = 3, h(4.5) = h(4.8) = 4, and h(4.1) = h(4.3) = h(5.0) = h(5.2) = 5.
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Algorithm 1. Training an iTree.

(1) Take a subsample X of Nn bins from all the bins;
(2) Let Q be the list of RD values in X;

(3)

Randomly select a value qϵ[min(Q), max(Q)] as a root or sub-root and divide X into
two subsets, the left side and the right side:

Xl = {xϵX|Q(x) < q}
Xr = {xϵX|Q(x) ≥ q}

where Q(x) is the RD value of bin x;
(4) Let X = Xl or X = Xr;
(5) Repeat steps (2) to (4) until |X| ≤ 1.

Since outliers take fewer steps to be classified, they have smaller deep values than
normal values generally. The ID value hi of the i-th bin is equal to the mean depth of ri over
all the iTrees, as shown by Equation (4):

hi = E(h(ri)) (4)

Considering the large number of genome bins, the subsample size Nn and the number
of iTrees Nt were both taken as 256 to assure convergence and obtain reliable detection of
anomalies in the experiments.

2.4. Predict the CNV Bins by Training the BP Neural Network Algorithm

With the four features, we predicted the CNV bins by training the BP neural network
algorithm [33]. The BP neural network is a well-known method of training a multilayer
feedforward neural network and is applied to many fields due to its simple topology and
good learning ability. It consists of three types of layers: input, hidden, and output. The
core idea of the algorithm is that it adjusts the weights between neurons through back
propagation, which continuously reduces errors and thus optimizes output. Here, the BP
neural network we use contains four layers: one input, two hidden, and one output, as
shown in Figure 4. The input layer consists of 4 neurons corresponding to the 4 features.
The two hidden layers consist of 25 neurons and 10 neurons, respectively, according to our
extensive testing. The parameters of the architecture were determined by extensive testing.
The number of hidden layers was tested from 1 to 5, and it turned out that two hidden
layers were enough to accomplish the classification task and did not cause overfitting. All
the combinations of the number of neurons in the two layers from the set {5, 10, 15, 20, 25,
30} are tested, and (25, 10) works best. For the hidden layers, we used the Rectified Linear
Unit (ReLU) function [34] as their activation function (Equation (5)) for good stability and
fast convergence. As for the output layer, we used the Softmax function as its activation
function (Equation (6)), which can effectively display the multi-classification results in the
form of probability.

f (WTx + b) = max(0, WTx + b) (5)

f (WTx + b) =
eWT x+b

∑i(Wi
Tx + bi)

(6)

Here, W denotes the weight matrix between two layers, b denotes the corresponding biases,
and x denotes the neuron input vector from the previous layer. Thus y = WTx + b in
Equation (6) is the output, and Wi is the i-th column of W.

The output layer consists of three neurons corresponding to predicted normal or two
types of CNV bins (i.e., gain or loss) according to their RD values. A detected CNV region
is declared a loss if its RD value is lower than the mean RD over all the bins; otherwise, it is
a gain. Since real samples are generally impure, the model is trained on simulated datasets
incorporating multiple tumor purities for well-rounded generalization. The datasets are
divided into two parts according to 4:1 for training and validation, respectively. The model
can also be trained on real sequencing samples with ground-truth CNVs.
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2.5. Revise the CNV Regions

In this section, we design a revision process to reduce the false negatives, trying to
pick up the local signals that could not be captured by the prediction model, especially for
data with low sequencing coverage. The previous step predicted each bin in the form of
gain, loss, or normal. A segment of continuous gain, loss, or normal bins is called a gain,
loss, or normal block, respectively. A normal block consisting of at least ten bins is regarded
as big; otherwise, it is small. Now we can divide the sample sequence into CNV regions by
big normal blocks. The CNV regions are classified into two categories: the continuous type,
which is entirely a CNV block, and the alternate type, which consists of CNV blocks and
small normal blocks, as shown in Figure 5. The revision process aims at the alternate CNV
regions with a proportion of CNV bins above a certain level because false predictions exist
with a higher possibility in these regions than in the continuous ones.
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In the revision process, each normal bin will be compared with its nearby bins, since
adjacent bins across the genome are usually positionally correlated from the perspective
of copy number [5,35]. The revision process is implemented on an alternate CNV region
when the proportion P of CNV bins is greater than the threshold τ. For each CNV block in
a region, the revision process runs over normal bins, first on the left side, then on the right
side, from near to far. For each CNV block, denote by DL and DR the left and right base
values, respectively, calculated by Equations (7) and (8):

DL = (1 − P)·RDCNV + P·RDLN (7)

DR = (1 − P)·RDCNV + P·RDRN (8)
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where RDCNV is the average RD value of all the bins in the CNV block, and RDLN (or
RDRN) is the average RD value of the nearest ten normal bins contained in the left (or
right) big normal block of the CNV region. Each normal bin between two consecutive CNV
blocks is revised twice by comparing its RD value, respectively, to DR as the right side of
the left CNV block and to DL as the left side of the right CNV block. A bin will be finally
declared to be a CNV bin if it gets revised at least once, i.e., the RD value of the bin exceeds
DL or DR. The revision process for a normal bin on the left side of a CNV block is described
in Algorithm 2. The revision process for a bin on the right side of a CNV block is similar,
except that RDRN and DR are used accordingly. Considering that the amplitudes resulting
from copy number gains and losses are usually unsymmetrical [36], the threshold τ for a
gain region or a loss region is set to be different, respectively, 0.2 or 0.4, which would be the
best according to our extensive testing.

Algorithm 2. Revise the normal bins on the left side of a CNV block.

(1) Calculate the CNV proportion P in the region;
(2) If P ≥ τ, then calculate DL; otherwise, keep bin i as normal and quit.

(3)
If ri ≥ DL for a gain region (or ri ≤ DL for a loss region), then bin i is revised to be a
CNV gain (or loss); otherwise, keep bin i as normal and quit.

(4) Recalculate RDCNV and let i = i − 1.
(5) Repeat steps (2) to (4) until there is no normal bin left on the left side.

To understand the revision algorithm more clearly, please see the example shown in
Figure 6. The revision process of bins i and i + 1 were completed by the following two
big steps:

1. For the left gain block, the revision process starts at bin i. (1) Calculate P = 4/6 ≈
0.66 > 0.2. Assume that RDLN = 4.5 and RDRN = 4.2 have been calculated. (2)
Calculate RDCNV = (8 + 9)/2 = 8.5 and DR ≈ 0.34·8.5 + 0.66·4.2 = 5.66. It can be
seen that ri = 5 < DR, so the bin i stays normal. In this case, the revision for the right
side of the left gain block is over. Bin i + 1 also stays normal.

2. For the right gain block, the revision process starts at bin i + 1. (1) Calculate RDCNV =
(8 + 8)/2 = 8 and DL ≈ 0.34·8 + 0.66·4.5 = 5.49. It can be seen that ri+1 = 6 > DL,
so bin i + 1 is revised to be a gain. (2) For bin i, recalculate RDCNV = (8 + 8 + 6)/3 ≈
7.33 and DL ≈ 0.34·7.33 + 0.66·4.5 = 5.46. Since ri = 5 < DL, bin i stays normal.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

right side, from near to far. For each CNV block, denote by 𝐷  and 𝐷  the left and right 
base values, respectively, calculated by Equations (7) and (8): 𝐷 = (1 − 𝑃) ∙ 𝑅𝐷 + 𝑃 ∙ 𝑅𝐷  (7) 𝐷 = (1 − 𝑃) ∙ 𝑅𝐷 + 𝑃 ∙ 𝑅𝐷  (8)

where 𝑅𝐷   is the average RD value of all the bins in the CNV block, and 𝑅𝐷   (or 𝑅𝐷 ) is the average RD value of the nearest ten normal bins contained in the left (or right) 
big normal block of the CNV region. Each normal bin between two consecutive CNV 
blocks is revised twice by comparing its RD value, respectively, to 𝐷  as the right side of 
the left CNV block and to 𝐷  as the left side of the right CNV block. A bin will be finally 
declared to be a CNV bin if it gets revised at least once, i.e., the RD value of the bin exceeds 𝐷  or 𝐷 . The revision process for a normal bin on the left side of a CNV block is described 
in Algorithm 2. The revision process for a bin on the right side of a CNV block is similar, 
except that 𝑅𝐷  and 𝐷  are used accordingly. Considering that the amplitudes result-
ing from copy number gains and losses are usually unsymmetrical [36], the threshold 𝜏 
for a gain region or a loss region is set to be different, respectively, 0.2 or 0.4, which would 
be the best according to our extensive testing. 

Algorithm 2. Revise the normal bins on the left side of a CNV block. 
(1) Calculate the CNV proportion 𝑃 in the region; 
(2) If 𝑃 ≥ 𝜏, then calculate 𝐷 ; otherwise, keep bin 𝑖 as normal and quit. 

(3) If 𝑟 ≥ 𝐷  for a gain region (or 𝑟 ≤ 𝐷  for a loss region), then bin 𝑖 is revised 
to be a CNV gain (or loss); otherwise, keep bin 𝑖 as normal and quit. 

(4) Recalculate 𝑅𝐷  and let 𝑖 = 𝑖 − 1. 
(5) Repeat steps (2) to (4) until there is no normal bin left on the left side. 

To understand the revision algorithm more clearly, please see the example shown in 
Figure 6. The revision process of bins 𝑖 and 𝑖 + 1 were completed by the following two 
big steps: 
1. For the left gain block, the revision process starts at bin 𝑖. (1) Calculate 𝑃 = 4/60.66 0.2. Assume that 𝑅𝐷 = 4.5 and 𝑅𝐷 = 4.2 have been calculated. (2) Cal-

culate 𝑅𝐷 = (8 + 9)/2 = 8.5  and 𝐷 0.34 ∙ 8.5 + 0.66 ∙ 4.2 = 5.66 . It can be 
seen that 𝑟 = 5 < 𝐷 , so the bin 𝑖 stays normal. In this case, the revision for the right 
side of the left gain block is over. Bin 𝑖 + 1 also stays normal. 

2. For the right gain block, the revision process starts at bin 𝑖 + 1. (1) Calculate 𝑅𝐷 =(8 + 8)/2 = 8 and 𝐷 0.34 ∙ 8 + 0.66 ∙ 4.5 = 5.49. It can be seen that 𝑟 = 6 𝐷 , 
so bin 𝑖 + 1 is revised to be a gain. (2) For bin i, recalculate 𝑅𝐷 = (8 + 8 + 6)/37.33 and 𝐷 0.34 ∙ 7.33 + 0.66 ∙ 4.5 = 5.46. Since 𝑟 = 5 < 𝐷 , bin 𝑖 stays normal. 
Finally, bin 𝑖 still stays normal, and bin 𝑖 + 1 is revised to be a gain. 

 
Figure 6. An example of a revision for the two normal bins marked by black triangles with 𝑟 = 5 
and 𝑟 = 6. 

  

Figure 6. An example of a revision for the two normal bins marked by black triangles with ri = 5 and
ri+1 = 6.

Finally, bin i still stays normal, and bin i + 1 is revised to be a gain.

2.6. Refine the CNV Boundary and Declare CNVs

Most of the existing methods of detecting CNV using bin dividing take the boundaries
of end-bins as the CNV boundaries by default, which is hardly in line with reality. Therefore,
we made an effort to refine the CNV boundary based on the previous predictions. After
performing revisions, many normal bins become CNV bins, so that some regions of the
alternate type become continuous types. However, each CNV region keeps the values of
RDLN and RDRN unchanged. We designed a boundary search (BDS) algorithm to find the
ends of every CNV block. Suppose the left (or right) boundary is inside the border region
covering the left-end (or right-end) CNV bin and its adjacent normal bin. The algorithm is
implemented in the region by the idea of dichotomy, i.e., splitting the search region in half
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every time until the scope reduces to a single base that will be considered the boundary. For
example, to search the left boundary of a gain block, the process is as shown in Algorithm
3, which starts with the left-end CNV-bin and its adjacent normal bin, denoted by bin1 and
bin2, respectively. The iteration process is driven by repeatedly subdividing two bins into
four smaller bins and choosing two of them to narrow the search by comparing the RD
values of the sub-bins to the base value R.

Algorithm 3. The left boundary search for a gain block.

(1)
Divide bin1 and bin2 in half into four sub-bins: binA, binB, binC, and binD, from
right to left.

(2)
Calculate R =

(
RDLN + RDCNV

)
/2 and the deviations dA = rA − R, dB = rB − R,

dC = rC − R, and dD = rD − R of the four sub-bins.

(3)

Choose two adjacent ones from the four sub-bins from right to left: take the first pair
of sub-bins whose deviations change from non-negative to negative, if they exist; or
take the leftmost two sub-bins, binC and binD, if min(dA, dB, dC, dD) ≥ 0;
otherwise, take the rightmost two bins, binA and binB.

(4)
Replace bin1 and bin2 with the two sub-bins chosen in step (3), recalculate RDLN
and RDCNV , and repeat steps (1) to (3) until the lengths of the two sub-bins reduce
to a single base.

As for searching the right boundary of a gain block, the algorithm is only different in
step (3) in that the bin-choosing order is from left to right. With regard to a loss region, the
BDS algorithm needs only to switch the positive and negative deviation conditions in step
(3). For a better understanding of Algorithm 3, please see an example for the left boundary
search of a gain block, as shown in Figure 7, where the first five iterations are presented.
The values of RDLN , RDCNV , and R are recalculated during the third and fourth iterations.
After the boundaries are refined, CNVs can be declared.
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3. Results

To assess the effectiveness and reliability of our proposed method, we carried out
experiments on both simulated and real datasets. CNVbd is trained on the simulation
samples produced independently and is then tested on different simulation samples and
applied to a collection of real sequencing samples. In the simulation study, with given
ground-truth CNVs, we compared CNVbd to the two classic methods FREEC and CN-
Vnator and to the other two methods CNV-IFTV and dpCNV that also, respectively, use
features derived from isolation forest and density peak clustering algorithms in terms
of precision, sensitivity, and F1 score. Here, precision is equal to the number of correct
predictions divided by the total number of predictions, sensitivity is equal to the number
of correct predictions divided by the total number of ground-truth CNVs, and the F1 score
is the harmonic mean of sensitivity and precision. In a consistent experimental scenario,
the trade-off between precision and sensitivity can explain the fairness of performance. To
ensure that the comparison is as fair as possible, the default or recommended parameters
of the compared methods were used during experiments. The effectiveness of the BDS
algorithm was also verified on the simulated datasets. Moreover, to validate the practicabil-
ity of CNVbd, we applied it to three real datasets without ground-truth CNVs obtained
from the European Genome-phenome Archive (EGA) database. In this case, precision and
sensitivity cannot be quantified directly. In order to evaluate the performance of CNVbd
and the four peer methods on real sequencing samples, we analyzed their results by using
the overlapping density score (ODS) proposed in [36].

3.1. Simulation Studies

CNVbd first needs to train a model to predict CNVs. The training datasets were
generated by our previously developed simulation tool, IntSIM [37], which simulates broad
and focal CNV events based on a class of statistical models with input parameters trained
from real sequencing genomes. The mixed samples with coverage depths of 4× and 6× and
tumor purities of 0.2~0.5 were used to train the prediction model. The testing datasets were
produced by the popular simulation tool ART [38], which generates simulated sequencing
reads by emulating the technology-specific sequencing process. Six scenarios were formed
from various configurations of coverage depth (6× and 8×) and tumor purity (0.2, 0.4, and
0.6). Five replicated samples are produced in each configuration. Fourteen CNV regions,
including six gains and four losses ranging from 10,000 to 300,000 bp, were simulated in
each simulation replication. CNVbd and the four peer methods were implemented on the
30 samples for the performance comparison.

The comparative results of all five methods are illustrated in Figure 8, where the
average values of precision, sensitivity, and F1 score (black curves) in different scenarios
are presented. Here, one true positive is counted when it covers at least half of the region
of one real CNV. We can observe that the efficiency of almost all the methods improves
generally with the increase in tumor purity or coverage depth (Cov). For instance, the F1
score of the CNVbd method increases from around 0.4 to more than 0.8 when the tumor
purity rises from 0.2 to 0.6. In terms of precision, the CNVbd obtains the top spot in one
of the six simulation scenarios and ranks second inferior to the FREEC in three scenarios.
In terms of recall, CNVbd is second only to CNVnator in all the simulation scenarios,
followed by FREEC, CNV_IFTV, and dpCNV with their respective strong points. However,
CNVbd yields the largest F1 score in five simulation configurations. As a summary of the
above analysis and discussion, it is evident that CNVbd exhibits the best trade-off between
precision and recall and shows stable performance in the detection of CNVs.

In order to verify the effectiveness of our proposed BDS algorithm, we compared the
boundary deviations (from the true boundaries) of the common CNVs predicted by all five
methods, as shown by the boxplots in Figure 9a,b, by taking the average value over all
samples with the same coverage depth. The diagram uses the quartiles of the data as an
indication of the spread, where the box lies between the upper and lower quartiles, the red
solid line dividing the box into two and the blue dashed line represent the median and the
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mean value, respectively, the straight line extends from the ends of the box to the maximum
and minimum values, and the round dots represent abnormal values. It can be seen that
CNVnator performs best with both low and compact deviations, while CNVbd obtains
the lowest minimum values for both coverages and the second lowest mean and median
for coverages 6× and 8×, respectively. We also ran the BDS algorithm after the four peer
methods and compared the boundary deviations, as shown in Figure 9c–f, including the
comparison of the CNVbd methods before and after the performance of the BDS algorithm.
It can be observed that the applications of the BDS algorithm indeed narrow the boundary
deviations for all of the five methods in general, although here the changes are set to
be limited to the length of one bin based on the previous predictions of a method. One
may also choose more border bins as the searching region in the application of the BDS
algorithm. Nevertheless, the above analysis shows that BDS is an effective algorithm for
boundary refinement.
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3.2. Application to Real Blood Samples

In view of the situation that the ground-truth CNVs provided by a database are
usually incomplete (unless all CNVs are detected) and have inaccurate boundaries (un-
less specific treatments are taken for the precise breakpoints), this results in incorrect
precision and sensitivity and thus unreliable comparisons. To evaluate the efficacy of
our proposed method, CNVbd was applied to analyze three real sequencing samples
without ground truth, namely EGAD00001000144_LC, EGAR00001004802_2053_1, and
EGAR00001004836_2561_1, obtained from the EGA database (https://www.ebi.ac.uk/ega,
accessed on 27 May 2015). These samples include a lung cancer sample and two ovarian

https://www.ebi.ac.uk/ega
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cancer samples. We performed CNVbd on the 21st chromosome for each of the samples
and made a comparison to the four peer single sample-based methods using the ODS
calculated by Equation (9):

ODS = mcnv.m′
cnv (9)

where mcnv represents the total number of overlapped events divided by the total number
of compared methods, and m′

cnv represents the total number of overlapped events divided
by the number of events predicted by itself. Considering the CNV boundaries, we calculate
the ODS by counting each base in a CNV as an event. Thus, we actually count the total
length instead of the number of CNVs detected by a method.

(c)

(d)

(e)

(f)(b)

(a)

Figure 9. Boundary deviation comparison between the CNVbd method and the four peer methods
before and after the applications of the BDS algorithm. (a,b) The boundary deviation comparison
between the five methods. (c–f) The boundary deviation comparison between the five methods before
and after the applications of the BDS algorithm.

CNVnator retrieves the largest number of overlapping events in all three samples, but
it also predicts the most non-overlapping events. Although CNVbd detects a slightly lower
number of overlapping events than CNVnator, it detects zero non-overlapping events
from two samples. FREEC detects a moderate number of overlapping events, and dpCNV
obtains the least number of overlapping events in each sample. The overlapping events
between the five methods performed on the lung cancer sample are described in Figure 10.
The ODSs of the five methods for each sample are calculated and displayed in Table 2. For
the purpose of controlling the ODS in order of magnitude, the length unit of CNVs is set to
be kb (kilobase, i.e., 1000 bp). CNVbd obtains the top ODS on the lung cancer sample and
the second largest ODS on the two ovarian cancer samples, while it wins by the average
ODS over the three samples. This indicates that CNVbd shows stable performance and
superior consistency with other methods.
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Table 2. The ODSs of the five methods.

Sample CNVbd CNV-IFTV FREEC CNVnator dpCNV

LC 294.138 239.989 33.868 19.553 206.781
2053_1 293.321 96.898 329.671 43.774 4.0
2561_1 249.202 91.875 319.158 18.718 60.295

Average 278.887 142.921 227.566 27.348 90.359

4. Discussion and Conclusions

In the genome evaluation and research of complex human diseases, accurate iden-
tification of CNVs and precise demarcation of their boundaries are crucial to analyzing
genome variations and tumorigenesis from a biological and medical perspective and further
developing target drugs for cancer treatment. In this study, we present a new method
called CNVbd for the detection of CNVs from NGS data of single tumor samples. CNVbd
is an RD-based approach that focuses on the strategy of exploring copy number anomalies.
It assembles several reasonable and effective statistics—RD, LD, MD, and ID—generated
for each sequence bin to feature the outliers from a local viewpoint and constructs a global
model by training a BP neural network algorithm to predict CNVs. It also establishes a
revision process to control the false negative rate and improve precision and sensitivity.
In addition, it provides an algorithm to refine the CNV boundaries. The CNVbd method
captures both the local and global features of copy number data and presents a complete
pipeline for comprehensive detection of CNVs and their boundaries.

The effectiveness and reliability of CNVbd are verified via experiments on several
groups of simulation datasets and three real sequencing datasets without ground truth.
In the simulation study, CNVbd is compared to four peer methods in terms of precision,
sensitivity, and F1 score. The boundary deviations from the true boundaries are also
compared. The results indicate that CNVbd achieves the best trade-off between precision
and sensitivity and shows stable performance in different experimental scenarios. The BDS
algorithm has been effectively applied to all of the five methods. In the real data experiment,
the consistency of CNVbd with other methods is validated. Overall, CNVbd is expected to
become a reliable and routine tool for the detection of CNVs from NGS data. The CNVbd
program is written in Python and is publicly available at https://github.com/BDanalysis/

https://github.com/BDanalysis/CNVbd
https://github.com/BDanalysis/CNVbd
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CNVbd, accessed on 8 May 2023, along with the specific usage and requirements of the
method. The BDS algorithm can also be independently performed by users.

With regard to the limitations of our proposed method and future improvements,
let us discuss the following three aspects: On the one hand, the cutoff distance in the
calculation of features LD and MD may change a lot for samples of different coverage
depths, and CNVbd cannot provide a rule for taking the appropriate value of the parameter.
One may need to carry out sufficient testing to obtain the best choice for samples with
large sequencing coverage. On the other hand, the BDS algorithm contained in CNVbd for
boundary searching largely relies on the previous prediction results, although the searching
scope can be extended to more border bins by users. Additionally, the false positives also
need to be rectified, especially for data with high sequencing coverage, and the normal
cell contamination in the real samples impacts the detection accuracy, which we do not
deal with especially. Therefore, we intend to devise a strategy for coping with the adverse
effects of sample impurity and reducing false positives in future work.
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