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Abstract: The internal validity of a causal inference made based on an observational study is often
subject to debate. The potential outcomes framework of causal inference stipulates that causal
inference is essentially a missing data problem, and we follow this spirit to define the ideal sample as
the combination of the observed data and the missing/counterfactual data for regression models. The
robustness of a causal inference can be quantified by the probability of a robust inference for internal
validity in regression, i.e., the PIVR, which is the probability of rejecting the null hypothesis again for
the ideal sample provided the same null hypothesis has been already rejected for the observed sample.
Drawing on the relationship between the PIVR and the mean counterfactual outcomes, we formalize
a conceptual framework of quantifying the robustness of a regression-based causal inference based
on a joint distribution about the mean counterfactual outcomes, holding the observed sample fixed.
Interpretatively, the PIVR is the statistical power of the null hypothesis significance testing that is
thought to be built on the ideal sample. We demonstrate the conceptual framework of quantifying
the robustness of a regression-based causal inference with an empirical example.
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1. Introduction

Causal inferences are often made from observational studies based on regression
models [1–4]. Internal validity (internal validity refers to whether one can establish a
valid causal relationship based on a particular design/setting; External validity, however,
refers to whether a causal relationship can be generalized to other populations/settings,
i.e., generalizability), which refers to whether one can infer a causal relationship between
two variables given they are correlated [5], is difficult to evaluate and is often in doubt
since there is no randomization involved in making a causal inference in observational
study [6–9]. Causal inference is essentially a missing data problem based on the key
concept of potential outcomes which refers to the outcomes under all possible treatments
for each subject [10,11]. Regardless of the treatment assignment, only one of the potential
outcomes can be realized and the others are missing for every individual (the missing
potential outcomes are called the counterfactual outcomes) [2,11–13]. Most inferences in
observational studies assume “unconfoundedness”, which states that the counterfactual
outcomes would be missing at random (MAR) conditional on a set of covariates, and thus
suggests internal validity should not be compromised by the lack of randomization once the
pivotal covariates are controlled [14,15]. Drawing on the assumption of unconfoundedness,
the concept of propensity score, which is the probability of receiving the treatment given
the pivotal covariates, was introduced and is widely applied to observational studies, via
various approaches such as matching, weighting, and stratification [2].
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Because the unconfoundedness assumption is hardly testable [8,16,17], one may sus-
pect the counterfactual outcomes are not MAR and thus a causal inference may be invali-
dated. For null hypothesis significance testing (NHST), this means one may fail to reject
a null hypothesis had the counterfactual outcomes became available, even if he/she has
already rejected the same null hypothesis based on the observed sample. The robustness
of a causal inference is defined in this context of whether a null hypothesis can be still
rejected when the unconfoundedness assumption fails. To evaluate the robustness of a
causal inference, a belief about the counterfactual outcomes or missing confounders is
typically required so that one could decide whether an inference is still valid based on
such belief [18–21]. In this paper, we propose a conceptual framework of quantifying the
robustness of a regression-based causal inference based on one’s distributional belief about
the mean counterfactual outcomes.

Our conceptual framework is built on the probability of rejecting a null hypothesis
given a joint distribution of the mean counterfactual outcomes, assuming the same null
hypothesis has already been rejected for the observed sample. This will allow for users
to evaluate the likelihoods of whether causal inference can still hold across all different
plausible values of the mean counterfactual outcomes. Different from most sensitivity
analysis or robustness indices, our conceptual framework requires a prior belief about the
joint distribution of the mean counterfactual outcomes so that the robustness of a causal
inference can be quantified across the distribution, whose goal is to promote scientific
discourse about causality via a transparent discussion about the counterfactual outcomes.

This paper is organized as follows: we first define the counterfactual data which are
built on the counterfactual outcomes. Next, we define the ideal sample that incorporates
both the counterfactual data and the observed data, which as the name suggests is ideal for
making causal inferences [20,22–24]. Based on the ideal sample, we define the probability
of a robust inference for internal validity in regression (henceforth abbreviated as the
PIVR) as a robustness index for regression-based causal inference. The robustness of a
causal inference is mainly informed by the expected value of the PIVR, which can be easily
obtained based on a joint distribution of the mean counterfactual outcomes. To illustrate
this approach, we quantify the robustness of the inference of [25], which found a significant
negative effect of kindergarten retention on reading achievement. The inference of [25]
was built on a nationally representative sample and a design based on propensity score
stratification, given the treatments (retained in kindergarten versus promoted to the first
grade) were impossible to be randomly assigned to students, particularly raising concerns
about its internal validity [13,20,26,27].

2. Research Setting and Definitions
2.1. Research Setting

Throughout this paper, we assume a causal inference has been made based on a re-
gression model and an observational study which has two groups (i.e., the treatment group
and the control group). We further assume the inference is made based on a representative
sample such that its internal validity is the major concern. In this paper, average treatment
effect is estimated by the beta coefficient (we define βW as the beta coefficient in order
to standardize the discussion, but one can always apply our framework to an ordinary
regression coefficient of the treatment indicator with the necessary transformation) of the
treatment indicator W, i.e., β̂W in the regression Y = β0 + βWW + β1Z1 + · · ·+ βpZp + ε,
where W = 1 for treatment cases, 0 for the control. We assume the above regression model
is a classical linear regression model (CLRM), i.e., ε follows normal distribution with the
common variance σ2. The covariates Z1, Z2, · · · , Zp included in the regression model are
typically needed for the unconfoundedness assumption to be plausible. We note that the
estimated propensity scores and/or the propensity score design (propensity score matched
pairs or strata) could be controlled in the above regression model as well.
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2.2. Definitions

Definition 1. The counterfactual data for a subject refers to the imaginary observation which
consists of his/her counterfactual outcome (instead of the observed outcome), his/her counterfactual
treatment status (i.e., his/her treatment status is different than what he/she actually received) and
his/her values for the covariates controlled in the regression model. Thus, there are no variables
confounded with treatment assignment when both the counterfactual data and the observed data are
included [10].

Example 1. In [25], the counterfactual data for John who was retained in the kindergarten would
be John’s potential reading score had he been promoted to first grade, and the covariates (e.g., gender,
race, socioeconomic status) were identical to those in his observation.

Figure 1 illustrates the conceptualization of the counterfactual data in [25] for the
regression estimator. Let Yob

r,i and Yob
p,j be the observed reading scores for the retained

students and the promoted students, respectively, and their corresponding counterfactual
reading scores are denoted by Yun

p,i and Yun
r,j . Ri denotes the observed data for any student

i who was retained in the kindergarten and is written as
[
Yob

r,i , W = 1, Z1,i, Z2,i, · · · , Zp,i

]
,

and the corresponding counterfactual data Pi should be
[
Yun

p,i , W = 0, Z1,i, Z2,i, · · · , Zp,i

]
.

Likewise, Pj denotes the observed data of any student j who was promoted to the first grade

and is written as
[
Yob

p,j, W = 0, Z1,j, Z2,j, · · · , Zp,j

]
, and the corresponding counterfactual

data Rj is
[
Yun

r,j , W = 1, Z1,j, Z2,j, · · · , Zp,j

]
. By definition, the observed sample consists of

the observed data Pj and Ri, whereas the counterfactual data Pi and Rj are missing from
the observed sample. Furthermore, we define Yun

t and Yun
c as the means of Yun

r,j and Yun
p,i ,

respectively, i.e., they denote the mean counterfactual outcomes of the control subjects (the
promoted students) and the treated subjects (the retained students). We will show the PIVR
is a function of them, conditional on the observed sample.
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Definition 2. We define the following observed sample statistics required for computing the PIVR:
(i) Yob

t which denotes the mean observed outcome of the treated subjects (the retained students);
(ii) Yob

c which denotes the mean observed outcome of the control subjects (the promoted students);
(iii) σ̂2

t and σ̂2
c which denote the variances of the observed outcomes of the treated and control subjects,

respectively; (iv) nob which denotes the observed sample size; (v) π which denotes the proportion of
the treated subjects in the observed sample; (vi) R̂2 denotes the R-square for the regression model
defined in the Section 2.1 based on the observed sample. We also use β̂ob

W to denote the estimated beta
coefficient of W based on the observed sample.

Definition 3. The ideal sample refers to the combination of the observed data and the counterfactual
data for all sampled subjects. Based on the definition of the ideal sample, we define Yid

t and Yid
c as

the mean of all the outcomes under the treatment and the mean of all the outcomes under the control,
respectively, should all potential outcomes become available (in our conceptualization). Furthermore,
we use β̂id

W and se
(

β̂id
W

)
to denote the estimated beta coefficient of W and its standard error based

on the ideal sample. It is noteworthy that the ideal sample is a fixed sample pertains to the same
observed subjects, and each subject has both the observed and counterfactual data, i.e., both potential
outcomes are thought to be available for every subject in the ideal sample. Therefore, the central task
for forming the ideal sample is to conceptualize the counterfactual outcomes, given the observed
sample and domain knowledge. When the unconfoundedness assumption fails, the counterfactual
data are distinct from the observed data, implying a gap between the observed outcomes and the
counterfactual outcomes. Therefore, to evaluate the robustness of a causal inference, one needs
to conceptualize all the plausible values of the counterfactual outcomes and how likely the causal
inference can still hold conditional on those plausible values. Essentially, our conceptual framework
is built on the relationship between the counterfactual outcomes and the null hypothesis significance
testing (NHST) result based on the ideal sample, given a conceptual knowledge about the plausible
values of the counterfactual outcomes.

3. The Probability of a Robust Inference for Internal Validity in Regression

The PIVR is rooted in the context of null hypothesis significance testing (NHST). To
decide whether there is an effect, the null hypothesis H0 : βW = 0 is tested against the
alternative hypothesis Ha : βW ̸= 0 (our framework should be easily modified for constants
other than 0 or one-sided hypothesis). The PIVR is meaningful only if the null hypothesis
has already been rejected based on the observed sample. Since the counterfactual outcomes
might be distinct from the observed outcomes, it is natural to wonder whether the null
hypothesis would be rejected again based on the ideal sample if the counterfactual outcomes
were known, evidencing their inference is robust for internal validity.

Drawing on the above intuition, the probability of a robust inference for internal
validity in regression (PIVR) is defined as follows for an observed significant β̂ob

W , based on
the ideal sample:

PIVR = P(β̂id
W is significant | β̂ob

W is significant) (1)

This means that the PIVR evaluates the probability of rejecting the null hypothesis H0
again based on the ideal sample, given the fact that H0 has already been rejected based
on the observed sample, if the counterfactual data are included. It is important to note
that β̂id

W and β̂ob
W should have the same sign to ensure the conclusion from rejecting H0 is

consistent [20]. For a NHST that is built on either normal or student’s t-distribution, the

PIVR has the following relationship with the T-ratio T =
β̂id

W
se(β̂id

W)
:

If β̂ob
W is significantly positive:

Φ−1(PIVR) = T − C (2)
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If β̂ob
W is significantly negative:

Φ−1(PIVR) = C − T (3)

where C is the critical value and Φ−1 is the inverse of the standard normal CDF. We caution
readers that (2) and (3) are approximately true for studies with small sample sizes and C
is typically chosen based on the level of significance α, i.e., C could be written as Z1−α/2
for a significantly positive β̂ob

W or Zα/2 for a significantly negative β̂ob
W [21]. For example,

C would be 1.96 if β̂ob
W is significantly positive and the level of significance is 0.05. The

Equations (2) and (3) above uncover that the PIVR is the statistical power of retesting the
null hypothesis H0 : βW = 0 versus the alternative hypothesis Ha : βW = β̂id

W based on the
ideal sample, as the statistical power has the exactly same expression (i.e., if one replace the
PIVR with the statistical power in the Equations (2) and (3)).

4. The Relationship between the PIVR and the Counterfactual Outcomes

The relationship between the PIVR and the two mean counterfactual outcomes (i.e.,
Yun

t : the mean counterfactual outcome for the control subjects had they switched to the
treatment group and Yun

c : the mean counterfactual outcome for the treated subjects had
they switched to the control group) is derived as follows:

Theorem 1. The probit link of the PIVR is a function of Yun
t and Yun

c , conditional on the observed
sample statistics R̂2, nob, Yob

t , Yob
c , σ̂2

t , σ̂2
c , π as well as the critical value C for rejecting the null

hypothesis. Specifically, if β̂ob
W is significantly positive, we have:

Φ−1(PIVR) =

√
2nob

√
1 − R2

Yid
t − Yid

c√
2σ̂2

t + 2π(1 − π)
[(

Yun
t − Yob

t

)
2 +

(
Yun

c − Yob
c

)
2
]
+ 2σ̂2

c +
(

Yid
t − Yid

c

)2
− C (4)

If β̂ob
W is significantly negative, we have:

Φ−1(PIVR) = C −
√

2nob
√

1 − R2

Yid
t − Yid

c√
2σ̂2

t + 2π(1 − π)
[(

Yun
t − Yob

t

)
2 +

(
Yun

c − Yob
c

)
2
]
+ 2σ̂2

c +
(

Yid
t − Yid

c

)2
(5)

where Yid
t and Yid

c are:
Yid

t = (1 − π)Yun
t + πYob

t

Yid
c = πYun

c + (1 − π)Yob
c

(6)

(Proof in Supplementary Material).

Theorem 1 (i.e., the Equations (4) and (5)) is derived based on the key results offered

by (2) and (3), that is, the complex term in (4) (or (5)) is the expression of T =
β̂id

W
se(β̂id

W)
. As

normality is assumed for testing H0 : βW = 0 versus Ha : βW = β̂id
W based on the ideal

sample, one can then derive (4) and (5) according to the definition of the PIVR. R2 denotes
the R-square for the regression of Y on W and Z in the ideal sample. For convenience, we
assume the R-square of the aforementioned regression model based on the ideal sample is
the same as its counterpart based on the observed sample, i.e., we assume R2 = R̂2 so that
we can obtain the exact form of (4) or (5) based on the observed sample. It is clear that the
PIVR is conditional on the values of mean counterfactual outcomes Yun

t and Yun
c besides

the observed sample statistics, so they need to be conceptualized. Yid
t is weighted average

of Yun
t and Yob

t , with the weight defined by π. For the example of the effect of kindergarten
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retention on reading achievement [25], Yun
t is the mean reading score for the promoted

students had they all been retained instead and Yob
t is the observed mean reading score for

the retained students, with the weight defined by the proportion of students who were

retained in the observed sample. Likewise, Yid
c is weighted average of the mean reading

score for the retained students had they all been promoted instead (Yun
c ) and the observed

mean reading score for the promoted students (Yob
c ). Interestingly, Theorem 1 also has a

Bayesian interpretation where Yun
t and Yun

c characterize the counterfactual data that defines
the prior distribution of the causal parameter [19,28,29].

Theorem 1 entails the use of critical value C as the decision threshold for rejecting
the null hypothesis H0 : βW = 0, which is mostly appropriate for NHST. However, we
note that the decision threshold for rejecting the null hypothesis H0 could also be a fixed
value that is pragmatically set based on transaction cost and/or policy implications [20].
For example, it might be sensible to use a fixed effect size (like 1) as the decision threshold
for [25], i.e., the null hypothesis H0 would not be rejected unless the effect size exceeds 1,
considering the substantial cost of implementing or revoking the policy of kindergarten
retention [30]. Under such circumstances, the relationship between the PIVR and the mean
counterfactual outcomes would change so that it depends on the actual decision threshold
rather than the critical value C.

The aforementioned relationships between the PIVR and the mean counterfactual
outcomes allow for one to compute the PIVR based on specific values of Yun

t and Yun
c .

In the example of [25], if one believes the mean reading score of the promoted students
had they been retained instead (i.e., Yun

t ) was equal to the mean of their observed reading
score (45.78) and that the mean reading score of the retained students had they been
promoted instead (i.e., Yun

c ) was equal to the grand mean (45.2), β̂id
W would follow normal

distribution with mean as −0.022 and standard deviation as 0.006. As a result, the PIVR
which is P(β̂id

W < −1.96 × .006) would then be 0.92. Furthermore, inferences about the
PIVR are possible based on joint distributions of Yun

t and Yun
c . For example, assuming Yun

t
follows the uniform distribution in [45, 45.78] and Yun

c follows the uniform distribution in
[36.77, 45.78], the expected value of the PIVR would be 0.86 and its 95% confidence interval
would be [0.14, 1.00] across all possible distributions of β̂id

W defined by Yun
t and Yun

c . We
will detail such analysis in the next section.

5. Example: The Effect of Kindergarten Retention on Reading Achievement
5.1. Overview

Kindergarten retention is estimated to affect 7 percent to 15 percent of the student
population in the U.S. and cost USD 20 billion dollars annually [30,31]. It also imposes
physical and psychological costs on retained students, and thus has been a controversial
issue for many years. To examine the effectiveness of kindergarten retention, [25] conducted
propensity score analysis using nationally representative data from the Early Childhood
Longitudinal Study (ECLS) and a rich set of covariates such as student background informa-
tion, psychological/motivational measures, as well as pretests. Based on a multilevel model
which controlled for both the logit of propensity scores as well as the propensity score
strata, they estimated the effect of kindergarten retention on students’ reading achievement
as −9.01 with standard error of 0.68, which amounted to an effect size of 0.67. Ultimately,
Hong and Raudenbush concluded that retention reduces achievement: “children who were
retained would have learned more had they been promoted (page 200)”.

However, the internal validity of [25] is open to debate since it relied on the un-
confoundedness assumption, which required all potential confounding variables to be
controlled by their propensity score model. Nonetheless, [20] has argued that some po-
tential confounders, such as key measures of cognitive ability and emotional disposition,
might still be missing in their propensity score model and thus may have potentially biased
the estimates. If an omitted confounder were negatively correlated with kindergarten
retention and positively correlated with reading achievement, the estimate of kindergarten
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retention could be downwardly biased, and thus their inference would be invalidated if
such omitted confounder was taken into account.

To address the above concern such that researchers and policymakers may evaluate the
robustness of an inference with questionable internal validity, we develop an analytical pro-
cedure based on the relationship between the PIVR and the mean counterfactual outcomes
in Theorem 1. Specifically, this analytical procedure has six steps: (i) obtain the required
sample statistics, (ii) choose critical value C (here we assume one use a statistical threshold,
but a decision threshold could be a non-statistical one), (iii) obtain the relationship between
the PIVR and the mean counterfactual outcomes, (iv) specify a joint distribution about the
mean counterfactual outcomes, (v) calculate the expected value and confidence interval for
the PIVR, and (vi) evaluate the robustness based on the expected value of the PIVR.

5.2. Quantifying the Robustness of the Inference of Hong and Raudenbush (2005) [25]

(i) Obtain the required sample statistics: The required observed sample statistics R̂2, nob,

Yob
t , Yob

c , σ̂2
t , σ̂2

c , π are obtained as follows: R̂2 = 0.36, nob = 7639, Yob
t = 36.77,

Yob
c = 45.78, σ̂2

t = 143.26, σ̂2
c = 138.83, π = 0.0617 [20].

(ii) Choose critical value C: Given that [25] reported that kindergarten retention had
a significant negative effect on reading achievement, we decided to choose C as
−1.96 which means the level of significance is 0.05 for rejecting the null hypothesis
H0 : βW = 0.

(iii) Obtain the relationship between the PIVR and the mean counterfactual outcomes:
Plugging the observed sample statistics and the critical value above into (5), the
PIVR is the probit function of the mean counterfactual reading score for the retained
students had they been promoted instead (i.e., Yun

c ) and the mean counterfactual
reading score for the promoted students had they been retained instead (i.e., Yun

t )
as follows:

Φ−1(PIVR) = −1.96 −
109.25 ×

(
0.9383Yun

t − 0.0617Yun
c − 40.69

)
√

564.18 + 0.116 ×
[(

Yun
t − 36.77

)
2 +

(
Yun

c − 45.78
)

2
]
+

(
0.9383Yun

t − 0.0617Yun
c − 40.69

)2
(7)

(iv) Specify a joint distribution about the mean counterfactual outcomes: This step requires
one to form a joint distribution about the two mean counterfactual outcomes. In
general, the distributional belief about the mean counterfactual outcomes should
be based on counterfactual thought experiments with explicit justifications. It is
recommended that one choose the ranges of the mean counterfactual outcomes based
on domain knowledge and literature, and that those ranges should only include the
unfavorable scenarios, i.e., the values of mean counterfactual outcomes that would
make the observed results less significant. As a rule of thumb, one can then form
uniform distributions based on the ranges of the mean counterfactual outcomes.

In this example, the counterfactual thought experiments are carried out by conceptu-
alizing the questions “what would the mean reading score of the promoted students be
had they been retained instead (i.e., Yun

t )” and “what would the mean reading score of the
retained students be had they been promoted instead (i.e., Yun

c )”. Those questions can be
answered by reflecting on the counterfactual outcomes based on belief about the average
retention (treatment) effects for the retained students and for the promoted students, iden-

tified by Yob
t − Yun

c and Yun
t − Yob

c , respectively. For illustration, we compare two different
joint distributions about Yun

t and Yun
c .

The first joint distribution: Given the estimated average retention effect for the re-
tained students was significantly negative (36.77 − 45.78 = −9.01), it is reasonable to think
kindergarten retention also had a negative impact on reading achievement for the promoted
students, which is also supported by the literature [32–34]. In addition, we believed that
the original estimate of average retention effect for the retained students, which was −9,
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was overestimated such that the inference of [25] could be invalidated. This means Yun
c

should be no smaller than Yob
t (which was 36.77) and no larger than Yob

c (which was 45.78).
Furthermore, we only focused on small average retention effects for the promoted students,

i.e., Yun
t was slightly smaller than Yob

c which was 45.78, as larger effects for the promoted
students would increase the effect size and make the discussion about the PIVR less practi-
cal. As a result, we assumed Yun

t followed the uniform distribution in [45, 45.78] and Yun
c

followed the uniform distribution in [36.77, 45.78]. This indicates that β̂id
W follows a normal

distribution whose mean is in the range [−0.054, 0] and standard deviation is 0.0065.
The second joint distribution: The purpose of having a second joint distribution of Yun

t
and Yun

c is to illustrate the impact of tighter bounds of Yun
t and Yun

c on inferences about
the PIVR [35,36]. For this purpose, we assumed Yun

t followed the uniform distribution
in [45, 45.5] and Yun

c followed the uniform distribution in [36.77, 45.2], which means the
ranges of Yun

t and Yun
c were slightly narrowed in the second joint distribution, comparing

to the first joint distribution. This indicates β̂id
W follows a normal distribution whose mean

is in the range [−0.052, −0.011] and standard deviation is 0.0065.

(v) Calculate the expected value and confidence interval for the PIVR: Figure 2 illustrates
the levels of the PIVR for [25] based on the first joint distribution of Yun

t and Yun
c . The

distribution of the PIVR is approximated by the following process: 1—repeatedly draw
random values from the first joint distribution; 2—obtain the corresponding normal
distribution for β̂id

W (specifically, the mean of such normal distribution); 3—compute
the PIVR which is P(β̂id

W < −1.96× 0.0065) based on the normal distribution obtained
in the second step. We can then derive the expected value of the PIVR as 0.86 and
its 95% confidence interval as [0.14, 1.00], for the first joint distribution. This means
the chance that the inference of [25] is robust for internal validity is expected to be
86% based on the first joint distribution. For the second joint distribution of Yun

t
and Yun

c , we derive the expected value of the PIVR as 0.96 and its 95% confidence
interval as [0.66, 1.00] by a similar fashion. This suggests the chance that Hong and
Raudenbush’s inference is robust for internal validity is expected to be 96% based on
the second joint distribution, and we have higher confidence about the robustness of
Hong and Raudenbush’s inference compared to the results obtained based on the first
joint distribution.

(vi) Evaluate the robustness based on the expected value of the PIVR: Given the PIVR can
be interpreted as the statistical power of retesting the null hypothesis H0 : βW = 0
based on the ideal sample, we use PIVR = 0.8 as the threshold which is often used
for strong statistical power [37,38]. Consequently, we conclude that the inference
of [25] is expected to be robust given the first joint distribution of Yun

t and Yun
c , as the

expected value 0.86 exceeds the threshold 0.8. We conclude again that the inference
of [25] is expected to be robust given the second joint distribution of Yun

t and Yun
c ,

as the expected value 0.96 exceeds the threshold 0.8. We caution readers that the
above conclusions might not hold if a different joint distribution Yun

t and Yun
c and/or

a different threshold for strong statistical power is chosen for PIVR analysis.

The above PIVR calculations (i.e., the step 4 and 5) can be conceptualized as the
process of retesting the null hypothesis H0 : βW = 0 versus the alternative hypothesis
Ha : βW = β̂id

W iteratively based on different values of Yun
t and Yun

c drawn from their
joint distribution. Based on Theorem 1, one can easily calculate the PIVR which can be
interpreted as the statistical power of the above hypothesis (re)testing, conditional on values
of Yun

t and Yun
c . We illustrate the interpretation of the PIVR as the statistical power by

assuming Yun
c = 45.2 which is the grand mean of the test scores in [25] in the Supplementary

Material Figure S1. As Yun
t decreases, the PIVR increases as the effect size grows. Based

on a joint distribution of Yun
t and Yun

c , which effectively conveys one’s belief about the
unconfoundedness assumption, PIVR analysis can be thought of as power analysis for the
NHST H0 : βW = 0 versus Ha : βW = β̂id

W conditional on one’s belief (in the form of a joint
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distribution of Yun
t and Yun

c ). An inference that is robust for internal validity should, on
average, have a strong statistical power based on a joint distribution of Yun

t and Yun
c .
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Figure 2. The contour plot of the PIVR based on the first joint distribution of Yun
t and Yun

c with the x
axis representing Yun

c and the y axis representing Yun
t . The first joint distribution is defined based

on the belief that the average retention effect for the promoted students should not be positive and
the average retention effect for the retained students was overestimated, which means both Yun

t and
Yun

c are smaller than 45.78. The vertical and horizontal dashed lines correspond to the upper bounds
of Yun

t and Yun
c for the second joint distribution, which are 45.2 and 45.5, respectively. Therefore,

the lower-left area (segmented by the dashed lines) represents the second joint distribution of Yun
t

and Yun
c .

6. Discussion

Focusing on the beta coefficient of treatment indicator, we began by defining the
counterfactual data, and the ideal sample consisted of the counterfactual data and the
observed data. The assessment of internal validity should be based on the ideal sample,
and for null hypothesis significance testing (NHST) this means one should test the null
hypothesis (versus the alternative hypothesis) based on the ideal sample and check if the
result is consistent with the testing result based on the observed sample. The probability
of a robust inference for internal validity in regression, i.e., the PIVR, is thus defined as
the probability of rejecting the null hypothesis H0 : βW = 0 again based on the ideal
sample, given that it has been rejected based on the observed sample. Internal validity is
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evaluated by estimating the mean and 95% confidence interval of the PIVR based on a joint
distribution of the mean counterfactual outcomes.

It is worth clarifying that the ideal sample is formed by adding counterfactual out-
comes to the observed sample/data, and therefore the ideal sample essentially addresses
missing data issue (i.e., the counterfactuals are missing) rather than sampling issue (i.e., the
observed sample of individuals or subjects remain fixed for the ideal sample). The ideal
sample is typically meaningful, after one obtains a significant result based on the observed
sample and starts to question the internal validity of the result. The robustness/internal
validity of the result would then have to be evaluated based on plausible values of the
counterfactual outcomes, which in our approach need to be conceptualized by a thought
experiment with explicit justifications. By this logic, our robustness indices, the PIVR,
inform the probability of rejecting the null hypothesis again based on the ideal sample
(as the same null hypothesis has already been rejected based on the observed sample). It
should be clear that the sole driver of the PIVR is the mean counterfactual outcomes from
the Theorem 1, as the ideal sample consists of the observed sample which is always fixed
and the missing counterfactual outcomes which should be varying within certain limits.

There are similar approaches designed for internal validity assessment in different
disciplines. For statisticians, sensitivity analysis has been considered as an essential part
in causal inference [7,8,17,39–41]. In sensitivity analysis, one would evaluate the impact
of a missing confounder on regression estimates and nonparametric tests by conceptually
connecting the assumption of unconfoundedness to the plausibility of random assignment
in matched pairs. Other notable work in sensitivity analysis has slightly different perspec-
tives but all starts with the potential failure of the unconfoundedness assumption [42–47].
In particular, Bayesian sensitivity analysis [48–51] utilizes a Bayesian framework where
the models for the outcome and the unmeasured confounder are parameterized so as to
identify the key confounding parameters. Bayesian sensitivity analyses typically involves a
data augmentation step that allows for one to repeatedly impute missing values for the
unobserved confounder and a prior specification step that brings more flexibility; thus,
unobserved confounders can be taken into account given a joint posterior distribution of
the confounding and treatment effect parameters. Robustness indices of causal inferences
have been applied to educational research [19,21,52]. Those indices quantify the strength
of internal validity in terms of the impact of an unmeasured confounding variable, or the
proportion of observed cases can be replaced by null cases that an inference can withstand.
Bounds of treatment effect are found more often in the field of economy [36,37,53,54]. They
can be obtained by imposing further (detailed) assumptions on the counterfactuals and can
be tightened by making the assumption(s) more informative. Notably, Manski’s bounds of
treatment effect are nonparametric and built on situations where the unconfoundedness
assumption does not hold. Manski’s bounds also inform the worth of a causal inference
through exploring loss-based alternatives rooted in the context of program evaluation. In
the field of psychology, probabilities of reproducibility become increasingly popular as they
are designed to protect readers from misguidance and misinterpretation of p-values [55–59].
The probabilities of reproducibility are driven by the reproducibility of a scholarly finding
rather than its statistical significance, thus becoming tools for tackling the reproducibility
crisis [60,61].

Different from the aforementioned similar approaches, our approach is built on
thought experiments and domain knowledge/beliefs about the counterfactual outcomes
rather than additional models/assumptions about the treatment assignment (such as
propensity scores). The purpose of having thought experiments/beliefs about the counter-
factual outcomes (instead of models/assumptions) is that one often can infer what would
happen in a counterfactual scenario based on domain knowledge, which arguably should be
the core of causal inference. The PIVR typically requires much fewer modeling/parametric
assumptions about the outcome and treatment assignment compared to sensitivity analysis
or Bayesian sensitivity analysis. Compared to robustness indices and Manski’s bounds,
the PIVR asks for a thought experiment about all plausible counterfactual outcomes based
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on explicit justifications, and therefore it is more comprehensive and concrete. Another
difference is that the PIVR is a probabilistic index while the robustness indices and Manski’s
bounds are not (the robustness indices are thresholds and the Manski’s bounds are bound-
ing the treatment effects). The PIVR is actually the probability of replicating a significant
result in an observational study for the ideal sample, and it is similar to prep [57,62], which
is the probability of obtaining an effect with the same sign as the observed one. Different
from prep and other probabilities of reproducibility, the PIVR takes counterfactual outcomes
into consideration and therefore it is not a function of p-value. Therefore, it does not
inherit any of the limitations associated with p-value as most proposed probabilities of
reproducibility do [63].

The scholarly significance of this study manifests in three aspects: First, it prompts
researchers to conceptualize the counterfactual outcomes and form distributional beliefs
about them. This will foster critical thinking as well as scientific discourse about internal
validity since people can use the PIVR to understand under what circumstances and to
what degree internal validity will be robust using regression. Thought experiments can be
carried out in contexts that are similar or different from the study of interest to facilitate
the conceptualization of the counterfactual outcomes. For our example, one can imagine
a direct comparison between two cohorts of students from the same school district, i.e., a
comparison between one cohort from a school with retention policy and another cohort
from a school without such policy in the same district. One can also alter the criteria of
retention/promotion and attempt to infer the potential outcomes under those scenarios.
Lastly, one can even imagine the retention/promotion policy to be enforced in a secondary
school/university and conceptualize its impact. Second, the PIVR can be interpreted as
the statistical power of retesting the null hypothesis H0 : βW = 0 versus the alternative
hypothesis Ha : βW = β̂id

W based on the ideal sample. Therefore, it offers an intuitive
interpretation of the robustness of an inference based on NHST. We caution readers that the
PIVR does not inform true effect or model validity for a particular study, rather it is used to
indicate when and to what degree a significant hypothesis testing result can still hold based
on one’s belief about the counterfactuals. Third, the PIVR is pragmatic as it quantifies the
impact of the counterfactual outcomes (and thus internal validity) on decision-making,
given a distributional belief and a decision threshold chosen by researcher(s).

There are notable limitations associated with our approach: First, our approach re-
quires a distributional belief about the mean counterfactual outcomes, which could be
challenging to obtain and even unfeasible in some cases. As we have pointed out, such
distributional belief should be derived based on domain knowledge/literature and only
cover the unfavorable scenarios where the significance of the observed results would be
compromised. On the other hand, an unjustified, non-specific, subjective belief may put
the causal discourse at risk and render the robustness analysis meaningless. Second, our
approach was developed mainly for CLRM and therefore may not be appropriate for
studies with discrete outcomes and nonlinear models. Third, our approach is arguably an
abstract approach as it is directly built on counterfactual thought experiments (and the
conceptualized plausible values for mean counterfactual outcomes), and we did not make
further inquiries as to why the counterfactual outcomes change, which may be due to an
omitted confounder, the violation of stable unit treatment value assumption (SUTVA), or
measurement error. Remarkably, SUTVA is a major challenge for making causal inference in
educational research, as students frequently interact with each other [9]. For our example,
this means the academic progress of a student might be related to his/her reaction to
retention/promotion as well as other students’ reactions. Therefore, the PIVR is inadequate
for evaluating a specific causal mechanism or data-generating process (DGP), such as the
existence of an interaction between the treatment and a missing confounder, and it is only
appropriate for evaluating the robustness of a conclusion drawn from NHST. In light of the
above concerns, a power of test may be needed to study the performance of the PIVR as
well as specific statistical approach that was engaged in causal inference [64].
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12030388/s1, Figure S1: The relationship between the PIVR
and retesting the null hypothesis based on the ideal sample for [25], assuming Yun

c = 45.2. The
solid curve represents the null hypothesis: βW = 0 and the dashed curve represents the alternative
hypothesis: βW = β̂id

W . The grey shaded area symbolizes the PIVR of [25].
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