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Abstract: In discrete mathematics, graph theory is the study of graphs, which are mathematical
structures used to model pairwise relations between objects. Chemical graph theory is concerned
with non-trivial applications of graph theory to the solution of molecular problems. Its main goal is
to use numerical invariants to reduce the topological structure of a molecule to a single number that
characterizes its properties. Topological indices are numerical invariants associated with the chemical
constitution, for the purpose of the correlation of chemical structures with various physical properties,
chemical reactivity, or biological activity. They have found important application in predicting the
behavior of chemical substances. The Graovac–Ghorbani (ABCGG) index is a topological descriptor
that has improved predictive potential compared to analogous descriptors. It is used to model both
the boiling point and melting point of molecules and is applied in the pharmaceutical industry. In
the recent years, the number of publications on its mathematical properties has increased. The aim
of this work is to partially solve an open problem, namely to find the structure of unicyclic graphs
that minimize the ABCGG index. We characterize unicyclic graphs with even girth that minimize the
ABCGG index, while we also present partial results for odd girths. As an auxiliary result, we compare
the ABCGG indices of paths and cycles with an odd number of vertices.
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1. Introduction

Let G be a simple connected undirected graph of order n = |V(G)| and size m = |E(G)|.
The degree d(v) of a vertex v ∈ V(G) is the number of vertices adjacent to v. We write
dG(v) if we want to emphasize the graph G in which the degree of a vertex v is considered.
The distance d(u, v) between the vertices u and v is defined as the number of edges on the
shortest path connecting u and v. In chemical graph theory, a graph is used to represent a
molecule by considering the atoms as the vertices of the graph and the molecular bonds as
the edges.

Molecular descriptors can be defined as mathematical representations of molecular
properties generated by algorithms. The numerical values of molecular descriptors are used
to quantitatively describe the physical and chemical information of molecules. Topological
descriptors are molecular descriptors [1] that serve as a tool for the compact and effective
description of structural formulas used to study and predict the structure-property correla-
tion of organic compounds [2–4]. Countless applications of topological indices have been
reported, most of which are related to the study of medical and pharmacological issues.

The best known topological index seems to be the Randić connectivity index [5], which
has numerous applications in chemistry and pharmacology, with a profound mathemat-
ical background. A quite successful descendant of the Randić index is the atom–bond
connectivity (ABC(G)) index introduced by Estrada et al. in 1998 [6], as follows

ABC(G) = ∑
uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.
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According to Furtula [7], the ABC index is one of the best degree–based molecular
descriptors.

In 2010, Graovac and Ghorbani defined a new version of the atom-bond connectivity
index, a distance-based topological descriptor known as the Graovac–Ghorbani (ABCGG)
index [8]. It is defined as

ABCGG(G) = ∑
uv∈E(G)

√
nu + nv − 2

nunv
, (1)

where nu is the number of vertices that are closer to the vertex u than to vertex v, and nv is
the number of vertices that are closer to v than to u. It was pointed out in [7] that the ABCGG
index provides significantly better correlations than the atom–bond connectivity index for
certain physico-chemical properties. In recent years, the mathematical properties of the
ABCGG index [9–14] have been intensively studied in the literature. Recently, a survey of
the ABCGG index was presented in [15], which included a complete bibliography for future
research. Its recentness and the current knowledge on the ABCGG index suggest that there
are many opportunities for further research into its properties.

For many types of graphs, extreme values of the ABCGG index are unknown. In 2013,
Das et al. [16] found maximum values of the ABCGG index for unicyclic graphs, while
the problem of finding minimum values for the same class of graphs has remained open.
Throughout this paper, we investigate the properties of the ABCGG index in unicyclic
graphs. We characterize unicyclic graphs with even girth that minimize the ABCGG index,
while we present partial results for odd girth. As an auxiliary result, we compare the
ABCGG indices of paths and cycles with an odd number of vertices. Our study is significant
because it partially solves an open problem regarding the ABCGG index of unicyclic graphs
using new mathematical results related to this quantity, which can be applied to other types
of graphs.

2. Preliminaries

We present two lemmas related to summands in the definition (1) of the ABCGG index.

Lemma 1. Let f : N2 → R be a function defined by f (x, y) =
√

x+y−2
xy . Then

(i) f (x, y) = f (y, x) ≥ 0, ∀(x, y) ∈ N2;

(ii) f (x, 1) < 1, ∀x ∈ N, f (2, 1) =
√

1/2 and f (x, 1) is a strictly increasing function of x;

(iii) For x ≥ 2 and y ≥ 2 it holds f (x, y) ≤
√

1/2 and f is a decreasing function, i.e.,
∀(x, y), (x′, y′) ∈ N2 it holds

(x ≤ x′ and y ≤ y′) ⇒ f (x, y) ≥ f (x′, y′);

(iv) For x ≥ 2, y ≥ 2, t ∈ N and y > t it holds f (x, y) ≥ f (x + t, y − t) if and only if y − x ≥ t.

Proof. Let g : N2 → R be a function defined by g(x, y) = x+y−2
xy . Then, f (x, y) =

√
g(x, y),

i.e., f is monotonic transformation of g (if g increases (decrases), then f increases (de-
creases)). Notice that g ( f ) is a symmetric function. It is easy to prove that claims (i) and
(ii) hold for g, and consequently for ( f ). (iii) Let r, t ∈ N0 and x, y ≥ 2. Then

g(x, y)− g(x + t, y + r) =
x + y − 2

xy
− x + t + y + r − 2

(x + t)(y + r)

=
rx(x − 2) + ty(y − 2) + tr(x + y − 2)

xy(x + t)(y + r)

≥ 0.
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Therefore, f (x, y) ≥ f (x + t, y + r) and f (2, 2) = 1/
√

2. (iv) Let t ∈ N, x, y ≥ 2 and y > t.
Then,

g(x, y)− g(x + t, y − t) =
x + y − 2

xy
− x + t + y − t − 2

(x + t)(y − t)

=
t(x + y − 2)(y − x − t)

xy(x + t)(y − t)
.

We conclude that g decreases if and only if y ≥ x + t. Therefore, f (x, y) ≥ f (x + t, y − t) if
and only if y ≥ x + t.

Throughout this paper, for uv ∈ E(G) and the numbers nu and nv defined as in (1),
f (nu, nv) is called the gg-value of uv.

Lemma 2. For n ≥ 5, we have

2

√
n − 3
n − 2

>

√
n − 2
n − 1

+

√
1
2

. (2)

Proof. Cases n = 5 and n = 6 can be checked directly. Let n ≥ 7. Both sides of inequality (2)

are increasing functions of n. For n ≥ 7, we have 2
√

n−3
n−2 ≥ 1.7889 and

√
1
2 +

√
n−2
n−1 <√

1
2 + 1 = 1.7071. Therefore,

min
n≥7

2

√
n − 3
n − 2

> sup
n≥7

(√
1
2
+

√
n − 2
n − 1

)

and this completes the proof.

3. Main Results

Paths and cycles are fundamental concepts in graph theory, often considered as
subgraphs of other graphs [17]. A path graph Pn is a graph whose vertices can be listed in
the order 1, 2, . . . , n, so that the edges are {i, i + 1} for i = 1, . . . , n − 1. The cycle graph Cn
is derived from Pn by connecting vertices 1 and n using an edge. A unicyclic graph G is a
connected graph with exactly one cycle. This implies |E(G)| = n. We now compare the
ABCGG indices for paths and cycles.

3.1. Graovac–Ghorbani Index of Paths and Cycles

In 2014, Rostami and Sohrabi-Haghighat found trees that minimize the ABCGG index.

Theorem 1 ([18]). The path Pn is the n−vertex tree with the minimum Graovac–Ghorbani index.

The Graovac–Ghorbani index of a path Pn is given by the following formula:

ABCGG(Pn) =
n−1

∑
i=1

√
n − 2

i(n − i)
,

which can be written as

ABCGG(Pn) =


2 ·

n−1
2

∑
i=1

√
n − 2

i(n − i)
, for n odd,

2 ·
n
2 −1

∑
i=1

√
n − 2

i(n − i)
+

2
√

n − 2
n

, for n even.



Mathematics 2024, 12, 384 4 of 17

From part (iv) of Lemma 1, we can observe that the gg-values of the edges in Pn decrease as
we move from pendant edges to the central one (ones). For an even n, the smallest gg-value
is obtained for a single central edge and is equal to f (n/2, n/2) = 2

√
n−2
n , while for n odd,

we have two central edges with the smallest gg-value f ((n − 1)/2, (n + 1)/2) = 2
√

n−2
n2−1 .

In a cycle graph Cn, all edges have the same gg-value. For n even, this is
√

n−2
n2
4

= 2
n ,

while for n odd, we have
√

n−3
(n−1)2

4

= 2
√

n−3
n−1 . Therefore,

ABCGG(Cn) =


2
√

n − 2, for n even,

2n
√

n − 3
n − 1

, for n odd.

In [10], Dimitrov et al. investigated the ABCGG index of bipartite graphs. As an
auxiliary result, they established that ABCGG(Pn) > ABCGG(Cn) for all even n ≥ 8, while
for n ∈ {4, 6}, it holds ABCGG(Pn) < ABCGG(Cn). Here, we examine the case where n is
odd. For this purpose, we need several auxiliary results.

Lemma 3. For n ≥ 3 and i = 1, . . . , ⌊ n
2 ⌋ it holds

2

√
n − 2

i(n − i)
>

√
n − 1 + i

i
· 2

√
n − 3

n(n − 2)
. (3)

Proof. Let us prove that 4
n − 2

i(n − i)
>

n − 1 + i
i

· 4(n − 3)
n(n − 2)

, that is

n(n − 2)2 > (n − 3)(n − i)(n + i − 1). (4)

By expanding and simplifying both sides of (4), we obtain n > i(i − 1)(3− n),, which holds
for any n ≥ 3. Therefore, the inequality (4) and consequently (by taking square roots) (3)
holds.

Lemma 4. For odd n ≥ 11 it holds

n−1
2

∑
i=1

√
n − 1 + i

i
> n. (5)

Proof. Numerical calculations show that for n odd, 11 ≤ n ≤ 23 inequality holds. Let
n ≥ 25. Then, n = 2t + 1, t ≥ 12 and inequality (5) can be written as

t

∑
i=1

√
2t + i

i
> 2t + 1. (6)

It is easy to see that
√

2t+i
i is a decreasing function of i. Therefore, all summands in (6) are

decreasing and the last one is equal to
√

3. Next, we notice that
√

2t+i
i < 2 ⇔ 2t/3 < i ≤ t.

Similarly,
√

2t+i
i < 3 ⇔ i > t/4. Bearing in mind that i ∈ N, we have
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√
3 ≤

√
2t + i

i
< 2, for ⌊2t/3⌋ < i ≤ t, (7)

2 ≤
√

2t + i
i

< 3 for ⌊t/4⌋ < i ≤ ⌊2t/3⌋, (8)√
2t + i

i
≥ 3, for 1 ≤ i ≤ ⌊t/4⌋. (9)

Let t = k(mod 3), k ∈ {0, 1, 2} and t = l(mod 4), l ∈ {0, 1, 2, 3}. Then, ⌊2t/3⌋ =
2(t − k)/3, ⌊t/4⌋ = (t − l)/4 and inequalities (7)–(9) imply

t

∑
i=1

√
2t + i

i
>

(
t − 2(t − k)

3

)√
3 +

(
2(t − k)

3
− t − l

4

)
2 +

t − l
4

3

= 2t +
(4
√

3 − 5)t − 8(2 −
√

3)k − 3l
12

. (10)

Notice that (10) is larger than 2t + 1 if and only if

(4
√

3 − 5)t − 8(2 −
√

3)k − 3l > 12. (11)

If we analyze the inequality (11) for each of the 12 possible pairs (k, l), we come to the
conclusion that it holds for t ≥ 12. The results are summarized in Table 1 and the proof is
complete.

Table 1. Values of t for k ∈ {0, 1, 2, 3} and l ∈ {0, 1, 2} in the proof of Lemma 4.

(k, l) t (k, l) t (k, l) t

(0, 0) 12, 24, 36, 48, . . . (1, 0) 16, 28, 40, 52, . . . (2, 0) 20, 32, 44, 56, . . .
(0, 1) 21, 33, 45, 57 . . . (1, 1) 13, 25, 37, 49, . . . (2, 1) 17, 29, 41, 53, . . .
(0, 2) 18, 30, 42, 54, . . . (1, 2) 22, 34, 46, 58, . . . (2, 2) 14, 26, 38, 50, . . .
(0, 3) 15, 27, 39, 51, . . . (1, 3) 19, 31, 43, 55, . . . (2, 3) 23, 35, 47, 59, . . .

Now, we are ready to prove the main result.

Theorem 2. For 4 ≤ n ≤ 7 it holds ABCGG(Pn) < ABCGG(Cn), while for n = 3 and for n ≥ 8
we have ABCGG(Pn) > ABCGG(Cn).

Proof. As we mentioned above, for n even, n ≥ 4 inequalities were proven in [10].
For n = 3, ABCGG(C3) = 0 <

√
2 = ABCGG(P3). Inequality ABCGG(Pn) < ABCGG(Cn)

can be checked directly for n ∈ {5, 7, 9}. Let n ≥ 11, n odd. From Lemmas 3 and 4, it
follows that

ABCGG(Pn) = 2

n−1
2

∑
i=1

√
n − 2

i(n − i)

>

n−1
2

∑
i=1

√
n + i − 1

i
· 2

√
n − 3

n(n − 2)

>

n−1
2

∑
i=1

√
n + i − 1

i
· 2

√
n − 3

(n − 1)2

> 2n
√

n − 3
n − 1

= ABCGG(Cn).
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Graovac–Ghorbani indices of Pn and Cn for some n are presented in Table 2.

Table 2. Numerical values of Graovac–Ghorbani indices of Pn and Cn, 3 ≤ n ≤ 12.

n ABCGG(Pn) ABCGG(Cn) n ABCGG(Pn) ABCGG(Cn)

3 1.4142 0 8 5.1431 4.8990
4 2.3401 2.8284 9 5.7155 5.5114
5 3.1463 3.5356 10 6.2546 5.6569
6 3.8697 4 11 6.7657 6.2225
7 4.5310 4.6667 12 7.2524 6.3246

3.2. Unicyclic Graphs

As we mentioned in the introduction, unicyclic graphs maximizing the ABCGG index
were found in [16]. To the best of our knowledge, the problem of minimizing the ABCGG
index for unicyclic graphs has not been solved in general. By studying the ABCGG index of
bipartite graphs. Dimitrov et al. [10] characterized unicyclic graphs with an even number
of vertices and even girth in a non-explicit way that minimized the ABCGG index. By C′

n
we denote a unicyclic n−vertex graph consisting of a cycle Cn−1 with a pendant vertex,
and by C′′

n we denote a graph with an odd number of vertices n comprised of two even
cycles Cn−1 and C4 that have three common vertices and two common edges.

Theorem 3 ([10]). Among all bipartite graphs on n ≥ 8 vertices, the minimum Graovac–Ghorbani
index is attained by the cycle Cn for even n, by C′

n for odd n ≤ 15, and by C′′
n for odd n ≥ 17.

For n < 8, the graph that minimizes the Graovac—Ghorbani index is the path Pn on n vertices.
Furthermore, these are the unique graphs with these properties.

If we restrict ourselves to bipartite unicyclic graphs with an even number n of vertices,
n ≥ 8, then a direct consequence of Theorem 3 states that for such n, the cycle Cn is a
unicyclic graph with even girth and minimal ABCGG index.

Pendant edge-moving transformation of a connected graph G. Let a ≥ b ≥ 1 and let G be a
connected graph with an induced path (induced subgraph that is a path) Pa+b+1, in which
only one internal vertex has a degree of at least 3. Let a be the number of vertices of Pa+b+1
on one side of w, and b the number of vertices on the other side, see Figure 1. By moving a
pendant vertex from the b−side of a path to its a−side, we perform a so-called pendant
edge-moving transformation of G.

In [18], Rostami and Sohrabi-Haghighat proved the following lemma for trees. We
generalize it to connected graphs.

w
w

b

a

b-1

a+1

Figure 1. Pendant edge-moving transformation of a connected graph.

Lemma 5. Let G be a connected n−vertex graph that allows the pendant edge-moving transforma-
tion, and let G1 be the resulting graph. Then

ABCGG(G1) < ABCGG(G).

Proof. Let a ≥ b ≥ 1 and let Pa+b+1 be an induced path of G with a single internal vertex w,
such that dG(w) ≥ 3. Then, w is a cut-vertex in both G and G1. Let H := (G \ Pa+b+1) + w.
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Then, H = (G1 \ Pa+b+1) + w and the pendant edge-moving transformation preserves the
gg-values of the edges in H. We have

ABCGG(G) = ∑
uv∈E(H)

√
nu + nv − 2

nunv
+

a

∑
i=1

√
n − 2

i(n − i)
+

b

∑
j=1

√
n − 2

j(n − j)
.

Similarly,

ABCGG(G1) = ∑
uv∈E(H)

√
nu + nv − 2

nunv
+

a+1

∑
i=1

√
n − 2

i(n − i)
+

b−1

∑
j=1

√
n − 2

j(n − j)
.

We obtain

ABCGG(G)− ABCGG(G1) =

√
n − 2

b(n − b)
+

√
n − 2

(a + 1)(n − a − 1)

= f (b, n − b)− f (a + 1, n − a − 1).

If we take t = a − b + 1, then n − b ≥ b + t and from Lemma 1 (iv) we obtain

ABCGG(G)− ABCGG(G1) = f (b, n − b)− f (a + 1, n − a − 1)

= f (b, n − b)− f (b + t, n − b − t) > 0.

For s ∈ N, s ≥ 3, we denote by C(r1, r2, . . . , rs) an n−vertex unicyclic graph consisting
of a cycle Cs, |V(Cs)| = {v1, v2, . . . , vs} and paths Pri , ri ≥ 1, such that vi is an end vertex
of Pri , i = 1, . . . , s. The vertices v1, . . . , vs are positioned clockwise on Cs, see Figure 2.
Consequently, n = r1 + · · ·+ rs.

v1
v2

v3

v4

v5v6

v7

v8

Figure 2. The unicyclic graph C(3, 2, 3, 4, 1, 2, 1, 1).

Theorem 4. Let G be a unicyclic graph with a cycle Cs, s ≥ 3, V(Cs) = {v1, . . . , vs}, and let Tri

be an ri−vertex tree in G containing vi, i = 1, . . . , s. Then

ABCGG(G) ≥ ABCGG(C(r1, . . . , rs)).

Proof. We repeatedly apply a pendant-edge moving transformation to G; i.e., to each
Tri , i = 1, . . . , s, we perform a sequence of pendant-edge moving transformations until
we obtain a path Pri . These transformations preserve the unicyclic property of G, while
Lemma 5 implies a reduction in the ABCGG index.

Due to Theorem 4, unicyclic graphs with minimal ABCGG index belong to the class of
graphs C(r1, r2, . . . , rs). Due to a different behavior, n−vertex unicyclic graphs of girth 3
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are considered separately.
The calculations show that among all unicyclic graphs with 3 ≤ n ≤ 5 vertices,

the graph C(n − 2, 1, 1) has the smallest ABCGG index.

Theorem 5. Let n ≥ 6 and let G be an n−vertex unicyclic graph of girth 3. Then

ABCGG(G) > ABCGG(Cn).

Proof. The cases n = 6 and n = 7 can be tested directly. Let n ≥ 8. From Theorem 4, it
follows for every unicyclic graph G of girth 3 with trees Tri , i = 1, 2, 3 that ABCGG(G) ≥
ABCGG(C(r1, r2, r3)). Therefore, we only focus on the graphs C(r1, r2, r3). Without loss of
generality, we assume r1 ≥ r2 ≥ r3 ≥ 1. We consider three cases:
Case 1: r2 = 1. Then, r1 = n − 2 and r3 = 1. According to Lemma 2 and Theorem 2,
we have

ABCGG(C(n − 2, 1, 1)) =
n−3

∑
i=1

√
n − 2

i(n − i)
+ 2

√
n − 3
n − 2

+ 0

>
n−3

∑
i=1

√
n − 2

i(n − i)
+

√
1
2
+

√
n − 2
n − 1

= ABCGG(Pn) > ABCGG(Cn).

Case 2: r2 ≥ 2 and r3 = 1. Then, r1 + r2 = n − 1. Notice that the gg-value of the edge

v1v2 is equal to f (r1, r2) =
√

r1+r2−2
r1r2

, and for j = 1, 2, the gg-value of the edge vjv3 is

f (rj, 1) =
√

rj−1
rj

. By applying Theorem 2 and parts (ii) and (iii) of Lemma 1, we obtain

ABCGG(C(r1, r2, 1)) =
r1−1

∑
i=1

√
n − 2

i(n − i)
+

r2−1

∑
i=1

√
n − 2

i(n − i)

+

√
r1 − 1

r1
+

√
r2 − 1

r2
+

√
r1 + r2 − 2

r1r2

>
r1−1

∑
i=1

√
n − 2

i(n − i)
+

r2−1

∑
i=1

√
n − 2

i(n − i)
+ 2

√
1
2

>
r1−1

∑
i=1

√
n − 2

i(n − i)
+

r2−1

∑
i=1

√
n − 2

i(n − i)

+

√
n − 2

r1(n − r1)
+

√
n − 2

r2(n − r2)

= ABCGG(Pn) > ABCGG(Cn).

Case 3: r3 ≥ 2. Since r1 ≥ r2 ≥ r3 and r1 + r2 + r3 = n, we have r3 ≤ ⌊n/3⌋ and
r2 ≤ ⌊n/2⌋ − 1. From Lemma 1 (iii), we have f (r1, r2) > f (r1, r2 + r3) = f (r1, n − r1),
f (r2, r3) > f (r2, r3 + r1) = f (r2, n − r2) and f (r1, r3) > f (r1 + r2, r3) = f (r3, n − r3). This
and the part (iv) of Lemma 1 imply
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ABCGG(C(r1, r2, r3)) =
r1−1

∑
i=1

√
n − 2

i(n − i)
+

r2−1

∑
i=1

√
n − 2

i(n − i)
+

r3−1

∑
i=1

√
n − 2

i(n − i)

+

√
r1 + r2 − 2

r1r2
+

√
r1 + r3 − 2

r1r3
+

√
r2 + r3 − 2

r2r3

>
r1

∑
i=1

√
n − 2

i(n − i)
+

r2

∑
i=1

√
n − 2

i(n − i)
+

r3

∑
i=1

√
n − 2

i(n − i)

>
r1

∑
i=1

√
n − 2

i(n − i)
+

r2

∑
i=1

√
n − 2

i(n − i)
+ (r3 − 1)

√
n − 2

r3(n − r3)

≥
r1

∑
i=1

√
n − 2

i(n − i)
+

r2

∑
i=1

√
n − 2

i(n − i)
+ (r3 − 1)

√
n − 2

r2(n − r2)

> ABCGG(Pn).

The last inequality holds since f (r2, n − r2) > f (x, n − x), x = r2 + 1, . . . , ⌊n/2⌋. Application
of Theorem 2 results in ABCGG(C(r1, r2, r3)) > ABCGG(Cn) and the proof is complete.

Next, we find the smallest gg-values of the edges of a cycle Cs, s ≥ 4 in any unicyclic
n−vertex graph G.

Lemma 6. Let n ∈ N, n ≥ 4 and let G be a unicyclic graph with cycle Cs, s ≥ 4. Then we have for
each edge e = uv ∈ E(Cs)

√
nu + nv − 2

nunv
≥



2
√

n − 2
n

, for n even and s even, (12)

2

√
n − 3

n(n − 2)
, for n even and s odd, (13)

2
√

n − 3
n − 1

, for n odd and s odd, (14)

2

√
n − 2
n2 − 1

, for n odd and s even. (15)

The equality is given if s = n, i.e., the edge e belongs to Cn, or if s = n − 1, i.e., the edge e belongs to
a cycle in C′

n. The graphs Cn and C′
n are unique unicyclic graphs containing the maximum number

of cycle edges with the smallest gg-values.

Proof.
Case 1: n and s are even. For each edge e = uv ∈ E(Cs), s ≥ 4 we have nu, nv ≥ 2,
nu + nv = n and the largest value of the product nunv is obtained for nu = nv = n/2.

Therefore,
√

nu+nv−2
nunv

≥
√

n−2
n2
4

= 2
√

n−2
n , which is a gg-value of an arbitrary edge of Cn.

Case 2: n is even and s is odd. Then, s ≥ 5 and at least one vertex of G does not lie on a
cycle Cs. For e = uv ∈ E(Cs), we have nu, nv ≥ 2 and nu + nv = t ≤ n − 1, since there is at
least one vertex that is equidistant from u and v. (For t = n − 1, such a vertex is unique

and belongs to Cs). If t is odd, then nunv ≤ t−1
2 · t+1

2 , so
√

nu+nv−2
nunv

≥ 2
√

t−2
t2−1 . Note that

4(t−2)
t2−1 is a decreasing function of odd t ≥ 5 and reaches its minimum value for t = n − 1.

(If t = 3, then nu = 1 and nv = 2, which implies s = 3.) Therefore,
√

nu+nv−2
nunv

≥ 2
√

n−3
n(n−2) .
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If t is even, then 4 ≤ t ≤ n − 2 and nunv ≤ t2

2 , so
√

nu+nv−2
nunv

≥
√

t−2
t2
4

. Function t−2
t2
4

is a decreasing function of even t ≥ 4. It follows that 2
√

t−2
t2 ≥ 2

√
n−4

(n−2)2 . However,

2
√

n−4
(n−2)2 ≥ 2

√
n−3

n(n−2) for every (even) n ≥ 6. Therefore,
√

nu+nv−2
nunv

≥ 2
√

n−3
n(n−2) .

Let w be the vertex on a cycle for which dG(w) ≥ 3 (such a vertex exists since at least one
vertex of G is not on a cycle). Then, there is a single edge f ∈ E(Cs) whose end vertices are
equidistant from w. Since a tree attached to w exists, we conclude that the gg-value of f
is greater than 2

√
n−3

n(n−2) and there exists at least one pendant edge in G having gg-value√
n−2
n−1 > 2

√
n−3

n(n−2) . Therefore, G contains at least 2 edges with a non-minimal gg-value.
We conclude that the maximum number of cycle edges with the smallest gg-value is n − 2
and they belong to G = C′

n.
Case 3: n and s are odd. Then, s ≥ 5 and for a cycle edge e = uv, we have nu, nv ≥ 2,
nu + nv = t ≤ n − 1. Similarly to in Case 2, if t is odd, then nunv ≤ t−1

2 · t+1
2 and√

nu+nv−2
nunv

≥ 2
√

t−2
t2−1 ≥ 2

√
n−4

(n−2)2−1 , since t ≤ n − 2. It follows that 2
√

n−4
(n−2)2−1 ≥ 2

√
n−3

n−1 .

If t is even, then 4 ≤ t ≤ n − 1, nunv ≤ t2

2 and
√

nu+nv−2
nunv

≥
√

t−2
t2
4

≥ 2
√

n−3
n−1 . Cycle Cn is

the unique graph in which all edges have the smallest gg-value.
Case 4: n is odd and s is even. Then, s ≥ 4 and for any cycle edge in G, we have nu, nv ≥ 2

and nu + nv = n. It follows that
√

nu+nv−2
nunv

≥ 2
√

n−2
n−1

2 · n+1
2

= 2
√

n−2
n2−1 . In C′

n, all cycle edges

have the smallest gg-value.

In the following, we compare gg-values of edges in an arbitrary n−vertex tree with
the smallest gg-values of cycle edges in an n−vertex unicyclic graph G.

Lemma 7. Let n, i ∈ N, n ≥ 4 and i ≤ ⌊n/2⌋. Then

√
n − 2

i(n − i)
≥


2
√

n − 2
n

, for n even,

2

√
n − 2
n2 − 1

, for n odd.

(16)

and for n ≥ 5, it holds

√
n − 2

i(n − i)
<



2

√
n − 3

n(n − 2)
⇔
(

i >
n −

√
n − 1

2
and n even

)
, (17)

2
√

n − 3
n − 1

⇔
(

i >
n −

√
n − 2

2
and n odd.

)
(18)

Proof. We have f (i, n − i) =
√

n−2
i(n−i) and from Lemma 1 (iv), by taking t = 1 we obtain

f (1, n − 1) > f (2, n − 2) > · · · > f (⌊n/2⌋, ⌈n/2⌉) =


2
√

n − 2
n

, for n even,

2

√
n − 2
n2 − 1

, for n odd
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and the inequality (16) is proven.
To prove (17), notice that n−2

i(n−i) < 4 n−3
n(n−2) is equivalent to

4i2 − 4ni +
n(n − 2)2

n − 3
< 0,

which is a quadratic inequality of variable i. Its solutions are integers i from the interval(
n−

√
n−1

2 , n
2

]
. Therefore, (17) holds. Similarly, we note that n−2

i(n−i) < 4 n−3
(n−1)2 is equivalent to

4i2 − 4ni +
(n − 2)(n − 1)2

n − 3
< 0,

which gives integer solutions i from
(

n−
√

n−2
2 , n−1

2

]
and we have proven (18).

We are ready to characterize unicyclic graphs with even girth that minimize the
Graovac–Ghorbani index.

Theorem 6. For n ≥ 4, let G be an n−vertex unicyclic graph of even girth. Then

ABCGG(G) ≥

 ABCGG(Cn), for n even,

ABCGG(C′
n), for n odd.

(19)

Proof. Let us consider the case where n is even. The inequality (12) from Lemma 6 implies
that the gg-value of each edge of a cycle in G is greater than or equal to the gg-value of
Cn, which is equal to 2

n
√

n − 2. Moreover, inequality (16) from Lemma 7 implies that the
gg-value of each edge of a tree in G (if any) is greater than or equal to the gg-value of Cn.
For n odd, the inequality (15) from Lemma 6 implies that the gg-value of each edge of a
cycle in G is greater than or equal to the gg-value of a cycle edge in C′

n, which is equal to

2
√

n−2
n2−1 . The inequality (16) from Lemma 7 implies that the gg-value of each edge of a tree

in G (which exists) is greater than or equal to the gg-value of a cycle edge C′
n. Since C′

n
contains a single pendant edge, we obtain

ABCGG(G) = ∑
uv∈E(Cs)

f (nu, nv) + ∑
uv/∈E(Cs)

f (nu, nv)

≥ 2s
√

n − 2
n2 − 1

+ 2(n − s − 1)

√
n − 2
n2 − 1

+

√
n − 2
n − 1

= 2(n − 1)

√
n − 2
n2 − 1

+

√
n − 2
n − 1

= ABCGG(C′
n)

and the inequality (19) is proven.

Lemma 8. For odd n ≥ 5, it holds ABCGG(C′
n) > ABCGG(Cn).

Proof. A simple calculation shows that the inequality holds for n = 5, 7. Let n ≥ 9.
The Lemma 3 implies √

n − 2
n − 1

>

√
n

2
· 2

√
n − 3

n − 1
.
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Therefore,

ABCGG(C′
n) =

√
n − 2
n − 1

+ (n − 1)
2
√

n − 2√
n2 − 1

=

√
n − 2
n − 1

+
2(n − 1)√

n + 1
·
√

n − 2
n − 1

=

√
n − 2
n − 1

(
2(n − 1)√

n + 1
+ 1
)

>

√
n

2

(
2(n − 1)√

n + 1
+ 1
)

2
√

n − 3
n − 1

.

Since ABCGG(Cn) =
2n

√
n−3

n−1 , it is sufficient to prove the inequality

√
n

2

(
2(n − 1)√

n + 1
+ 1
)
> n,

which is equivalent to √
n(n − 3)√
n + 1 + 2

>
2n√

n + 1 +
√

n
. (20)

For n ≥ 9, we have
√

n(n − 3) ≥ 2n and for n ≥ 5, it holds
√

n + 1 +
√

n >
√

n + 1 + 2.
Therefore, the inequality (20) holds and this completes the proof.

Corollary 1. Let n ≥ 4 and let G be an n−vertex unicyclic graph of girth s ≥ 4, s is even. Then

ABCGG(G) ≥ ABCGG(Cn).

Proof. The result follows directly from Theorem 6 and Lemma 8.

We continue our studies by examining unicyclic graphs G with odd girth s, where s ≥ 5.
We say that the edge of a tree in G (if any) is gg-small if its gg-value

√
n−2

i(n−i) satisfies the
inequality (17) (if n is even) or the inequality (18) (if n is odd).

Theorem 7. Let n ≥ 5 and let G be an n−vertex unicyclic graph of odd girth s ≥ 5 with zero
gg-small edges. Then

ABCGG(G) ≥

 ABCGG(Cn), for n odd,

ABCGG(C′
n), for n even.

Proof.
Case 1: n is odd. If e = uv ∈ E(Cs), then, from the inequality (14) of Lemma 6, we have
f (nu, nv) ≥ 2

√
n−3

n−1 . Let e = uv /∈ E(Cs). The assumption of zero gg-small edges in G

means that the reversed inequality in (18) holds; i.e., f (nu, nv) ≥ 2
√

n−3
n−1 . We conclude

ABCGG(G) ≥ ABCGG(Cn).
Case 2: n is even. Then, G contains at least one vertex that is not on the cycle. Consequently,
it contains at least one pendant edge and for at least one cycle edge f = wz there are
p ≥ 2 vertices equidistant from u and v. We have nw + nz = t = n − p. Note that p and
t have the same parity and t ≤ n − 2 if t is even, while t ≤ n − 3 if t is odd. We omit the
details and refer to Case 2 of Lemma 6 to conclude that f (nw, nz) ≥ f (n/2 − 1, n/2 − 1)
= 2

√
n−4

(n−2)2 . The above considerations in combination with the inequality (13) and the

reversed inequality in (17) result in
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ABCGG(G) = ∑
uv∈E(Cs)

√
nu + nv − 2

nunv
+ ∑

uv/∈E(Cs)

√
nu + nv − 2

nunv

≥ 2

√
n − 4

(n − 2)2 + 2(s − 1)

√
n − 3

n(n − 2)

+ 2(n − s − 1)

√
n − 3

n(n − 2)
+

√
n − 2
n − 1

= 2

√
n − 4

(n − 2)2 + 2(n − 2)

√
n − 3

n(n − 2)
+

√
n − 2
n − 1

= ABCGG(C′
n).

Lemma 9. For even n ≥ 6, it holds ABCGG(C′
n) > ABCGG(Cn).

Proof. The proof follows directly from the inequalities√
n − 2
n − 1

> 2

√
n − 4

(n − 2)2 ≥ 2

√
n − 3

n(n − 2)
> 2

√
n − 2
n

.

Corollary 2. Let n ≥ 5 and let G be an n−vertex unicyclic graph of odd girth s ≥ 5 with zero
gg-small edges. Then

ABCGG(G) ≥ ABCGG(Cn).

Proof. The result follows directly from Theorem 7 and Lemma 9.

Now, we focus on graphs with odd girth s ≥ 5 that contain gg-small edges. Note
that pendant edge-moving transformations of such graphs also contain gg-small edges.
Therefore, we consider C(r1, . . . , rs) with gg-small edges.

Lemma 10. There exist at most two paths Prk and Prl , k ̸= l, k, l ∈ {1, . . . , s} in C(r1, . . . , rs),
which contain gg-small edges.

Proof. If C(r1, . . . , rs) contains paths, then the maximum number of vertices that are not on
a cycle Cs is equal to n − 5. Suppose that there are at least three paths in C(r1, . . . , rs) that
contain gg-small edges. Then, the number of vertices on these paths is at least 3i, where,
according to Lemma 7, i > n−

√
n−2

2 if n is odd, and i > n−
√

n−1
2 if n is even. In both cases,

we show that 3i > n − 5. For n odd, 3 n−
√

n−2
2 > n − 5 can be written as n + 10 > 3

√
n − 2,

while for n even, 3 n−
√

n−1
2 > n − 5 can be written as n + 10 > 3

√
n − 1. Both inequalities

are valid for every n ≥ 5, and we obtain a contradiction.

Theorem 8. If C(r1, . . . , rs) contains two disjoint paths with gg-small edges, then

ABCGG(C(r1, . . . , rs)) >

 ABCGG(Cn), for n odd,

ABCGG(C′
n), for n even.

Proof. For the sake of simplicity, we use the notation H := C(r1, . . . , rs). Let us consider a
graph H1 = C(r1, . . . , r5). Then, H1 contains the maximum number of vertices that do not
lie on a cycle (it is n − 5), and it consequently has the maximum number of gg-small edges.
Let S1 and S be the set of gg-small edges in H1 and H, respectively. Then, |S| ≤ |S1].
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Case 1: n is odd. For 9 ≤ n ≤ 27, at most one path in H1 contains gg-small edges, so we
assume n ≥ 29. Let us calculate |S1|. For simplicity, we assume that the paths in H1 are
balanced, i.e., each contains (n − 5)/2 edges (moving a pendant vertex from a path P to a
path Q in H1 decreases the number of gg-small edges of P by one, while simultaneously
increasing the number of gg-small edges in Q by one). Then, from the inequality (18) of
Lemma 7, the number of gg-small edges on each path in H1 is equal to the number of
integers i satisfying the condition n−

√
n−2

2 < i ≤ n−5
2 . If n−

√
n−2

2 is an integer, then the
number of gg-small edges on both paths is

|S1| = 2

(
n − 5

2
− n −

√
n − 2

2

)
=

√
n − 2 − 5.

From Lemma 3, we know

2

(√
n − 2
n − 1

+

√
1
2

)
>

(
√

n +

√
n + 1

2

)
· 2

√
n − 3

n(n − 2)

>

(
√

n +

√
n + 1

2

)
· 2

√
n − 3

n − 1
. (21)

Notice that
√

2n +
√

n + 1 >
√

2n − 4 −
√

2, for each n ≥ 2. By dividing this inequality by√
2, we obtain

√
n +

√
n + 1

2
> 4 +

√
n − 2 − 5 = 4 + |S1| ≥ 4 + |S|. (22)

By inserting (22) into (21), we obtain

2

(√
n − 2
n − 1

+

√
1
2

)
> (4 + |S|) · 2

√
n − 3

n − 1
. (23)

The above inequality shows that sum of the four largest gg-values on paths in H is greater
than 4 + |S| gg-values of Cn.
If n−

√
n−2

2 /∈ N, then the number of gg-small edges on both paths in H1 is

|S1| = 2

(
n − 5

2
−
⌈

n −
√

n − 2
2

⌉
+ 1

)

< 2

(
n − 5

2
− n −

√
n − 2

2
+ 1

)
=

√
n − 2 − 3.

It is easy to see that
√

2n +
√

n + 1 >
√

2n − 4 +
√

2 for each for n ≥ 2, that is

√
n +

√
n + 1

2
> 4 +

√
n − 2 − 3 > 4 + |S1| ≥ 4 + |S|. (24)
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Combining (24) with (21), we obtain (23). We conclude that for n odd, we have |S| <√
n − 2 − 3. From (23) and from Lemmas 6 and 7, we obtain

ABCGG(H) = ∑
uv∈E(Cs)

√
nu + nv − 2

nunv
+ ∑

uv/∈(E(Cs)∪S)

√
nu + nv − 2

nunv

+ ∑
uv∈S

√
nu + nv − 2

nunv

> 2s
√

n − 3
n − 1

+ 2(n − s − |S| − 4)
√

n − 3
n − 1

+ (4 + |S|) · 2
√

n − 3
n − 1

= 2n
√

n − 3
n − 1

= ABCGG(Cn).

Case 2: n is even. For 8 ≤ n ≤ 36, at most one path in H1 contains gg-small edges, so let
n ≥ 38. Similarly to Case 1, we consider H1 with balanced paths. Then, one path contains
(n − 4)/2 edges and the other one contains (n − 6)/2 edges. Note that n−

√
n−1

2 /∈ N.
Therefore, on one path, the number of gg-small edges is equal to the number of integers i
that satisfy

⌈
n−

√
n−1

2

⌉
≤ i ≤ n−4

2 , while on the other path, this is the number of integers i

that satisfies
⌈

n−
√

n−1
2

⌉
≤ i ≤ n−6

2 . We have

|S1| = 2

(
n − 6

2
−
⌈

n −
√

n − 1
2

⌉
+ 1

)
+ 1 <

√
n − 1 − 3.

From Lemma 3, we have√
n − 2
n − 1

+ 2

√
1
2
>

(√
n

2
+

√
n + 1

2

)
· 2

√
n − 3

n(n − 2)
. (25)

Since for each n ≥ 2 it holds
√

n +
√

2n + 2 > 2
√

n − 1, combining this with (25) gives(√
n − 2
n − 1

+ 2

√
1
2

)
> (3 + |S|) · 2

√
n − 3

n(n − 2)
. (26)

From (26) and from Lemmas 6 and 7, we obtain

ABCGG(H) = ∑
uv∈E(Cs)

√
nu + nv − 2

nunv
+ ∑

uv/∈(E(Cs)∪S)

√
nu + nv − 2

nunv

+ ∑
uv∈S

√
nu + nv − 2

nunv

> 2

√
n − 4

(n − 2)2 + 2(s − 1)

√
n − 3

n(n − 2)
+

√
n − 2
n − 1

+ 2(n − s − |S| − 4)2

√
n − 3

n(n − 2)
+ (3 + |S|) · 2

√
n − 3

n(n − 2)

= 2

√
n − 4

(n − 2)2 + 2(n − 2)

√
n − 3

n(n − 2)
+

√
n − 2
n − 1

= ABCGG(C′
n).
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Corollary 3. If a pendant edge-moving transformation of an unicyclic graph G with odd girth s ≥ 5
yields C(r1, . . . , rs) with gg-small edges on two disjoint paths Prk and Prl , then ABCGG(G) >
ABCGG(Cn).

Proof. Theorems 4, 8 and Lemma 9 give

ABCGG(G) ≥ ABCGG(C(r1, . . . , rs)) > ABCGG(C′
n) > ABCGG(Cn).

Now, a single type of unicyclic graph with an odd girth remains to be investigated.
This is a graph with gg-small edges whose pendant edge-moving transformation gives
C(r1, . . . , rs) with gg-small edges on a single path. Numerical experiments indicate that
many such graphs have an ABCGG index larger than ABCGG(Cn). However, at this mo-
ment, we are not able to provide a general proof of this conjecture, so we leave this for
future research.

4. Conclusions

In this study, we investigated the Graovac–Ghorbani index for unicyclic graphs. As an
auxiliary result, we first showed that for every n ≥ 8 the ABCGG index of the cycle Cn is
larger than the ABCGG index of the path Pn. We characterized unicyclic graphs of even girth
with the smallest ABCGG index using pendant edge-moving transformation. For unicyclic
graphs with odd girth, we offer a conjecture based on an analysis of a large number of cases.

Conjecture 1. Let G be an n−vertex unicyclic graph with an odd girth s ≥ 5. Then

ABCGG(G) ≥ ABCGG(Cn).

Funding: The author received no funding for this work.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Balaban, A.T.; Ivanciuc, O. Historical Development of Topological Indices. In Topological Indices and Related Descriptors in QSAR

and QSPR; Devillers, J., Balaban, A.T., Eds.; Gordon & Breach: Amsterdam, The Netherlands, 1999; pp. 21–57.
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