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Abstract: In this paper, the problem of preview optimal control for second-order nonlinear systems
for marine vessels is discussed on a fully actuated dynamic model. First, starting from a kinematic
and dynamic model of a three-degrees-of-freedom (DOF) marine vessel, we derive a fully actuated
second-order dynamic model that involves only the ship’s position and yaw angle. Subsequently,
through the higher-order systems methodology, the nonlinear terms in the system were eliminated,
transforming the system into a one-order parameterized linear system. Next, we designed an internal
model compensator for the reference signal and constructed a new augmented error system based on
this compensator. Then, using optimal control theory, we designed the optimal preview controller for
the parameterized linear system and the corresponding feedback parameter matrices, which led to
the preview controller for the original second-order nonlinear system. Finally, a numerical simulation
indicates that the controller designed in this paper is highly effective.

Keywords: trajectory tracking; marine vessel; preview control; fully-actuated system
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1. Introduction

The advent and rapid evolution of autonomous maritime vehicles, particularly un-
manned surface vessels (USVs), marks a pivotal shift in naval architecture and maritime
operations. Their development is propelled by the pressing need for safer, more efficient,
and cost-effective solutions to maritime challenges, ranging from environmental moni-
toring and oceanographic research to military surveillance and cargo transport. In the
cutting-edge domain of maritime automation, trajectory tracking control methodologies for
USVs represent a critical research focus [1–3]. These methods are vital to ensure that USVs
can accurately follow predetermined paths through the complex and often unpreviewable
marine environment. As the deployment of USVs expands across a myriad of applica-
tions—from oceanographic research and environmental monitoring to defense and com-
mercial shipping—developing robust and reliable trajectory-tracking control techniques
becomes imperative [4]. These control strategies must not only address the challenges
posed by dynamic ocean currents, wind, and waves, but also navigate regulatory and
safety considerations in increasingly crowded maritime spaces [5]. The essence of trajectory
tracking control lies in its ability to integrate sophisticated algorithms, thereby enabling
USVs to perform with unprecedented precision and autonomy. A detailed exploration
delves into trajectory tracking control methods, uncovering their foundational principles
and the technological innovations driving their advancement.
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Preview control is a control method that can make reasonable use of information in
advance to improve the effectiveness of system operation [6]. It was proposed in 1966
by Sheridan [7]. A proportional integral derivative plus preview controller (PIDP) was
derived based on the linear quadratic optimal control theory by Tomizuka in 1979 [8]. After
that, the augmented error system method was applied to the preview control problem, and
the discrete- and continuous-time optimal preview controllers were obtained by Katayama
in 1985 [9] and in 1987 [10]. On this basis, PIDP has also been applied to other dynamic
systems, such as multirate setting systems [11,12], descriptor systems [13], and stochastic
systems [14]. Preview control theory is also combined with other control methods, such
as robust control [15,16], sliding mode control [17,18], repetitive control [19] and so on.
Although these control methods are simple to implement, they do not allow for a direct
extension to marine vessels since existing methods are more suitable for dealing with linear
models. In order to improve the performance of marine vessels and improve the use of
control resources, this paper proposes the use of high-order system approaches for the
design of preview controllers for marine vessels.

In recent years, the advent of USVs has revolutionized the maritime industry. These
cutting-edge vessels promise to redefine maritime operations, offering unparalleled ben-
efits in terms of efficiency, safety, and cost-effectiveness [20]. However, the deployment
of USVs introduces complex challenges, notably in navigating dynamic and often unpre-
viewable marine environments while ensuring safety and compliance with international
maritime regulations. In this context, the application of optimal control emerges as a pivotal
technological advancement [21,22].

The optimal preview control provides a robust mathematical framework for enforcing
safety constraints in dynamic systems, making them invaluable tools for the autonomous
navigation and control of unmanned ships. By integrating the optimal preview control
into the fully actuated control systems of USVs, it is possible to systematically ensure
that these vessels not only maintain safe distances from obstacles and other vessels but
also adhere to navigational rules and environmental considerations [23]. This integration
not only enhances the operational safety of USVs, but also paves the way for their wider
acceptance and integration into the global maritime traffic system. Through this lens,
our discussion explores the transformative impact of optimal preview control on the
development and deployment of autonomous marine vessels, highlighting the potential
for significant advancements in maritime safety, efficiency, and sustainability.

The main contributions are listed below.

(i) This paper introduces a novel parametric design method that eliminates the nonlinear
terms in a fully actuated second-order nonlinear marine vessel dynamic model, trans-
forming it into a linear steady-state form. Compared to existing control methods [24–26],
our approach retains the original nonlinear system’s dynamic characteristics while
significantly simplifying the control design, enabling more precise control in variable
dynamic models.

(ii) An internal model is employed to construct a new augmented error system. We
uniquely combine an internal model compensator with the error system approach to
track reference signals with known structures. Unlike traditional optimal control meth-
ods that often fail to handle dynamic and variable reference trajectories efficiently [27],
our compensator design enables robust tracking under complex dynamic environ-
ments. Furthermore, we rigorously derive stabilization and observability conditions
to ensure system stability and control feasibility, setting this study apart from methods
lacking theoretical guarantees.

(iii) The paper presents a first application of optimization-based preview control, applied
for fully actuated marine vessels. This approach focuses on state design, demon-
strating its effectiveness through numerical simulations that validate the controller’s
precision in trajectory tracking.

The remaining part of the paper is organized as follows. The technical preliminar-
ies, and the problem formulation are demonstrated in Section 2. In Section 3, utilizing
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the methodology of preview control, a preview tracking controller with noteworthy and
improved performance is designed for the trajectory tracking system. Here, the prop-
erties of both controllability and observability are rigorously established with optimal
design conditions. Simulation results are conducted in Section 4, and Section 5 concludes
this paper.

2. Problem Statement

The kinematic and kinetic of three DOF marine vessels in the earth-fixed and body-
fixed coordinate frame are expressed as{

η̇ = R(φ)v,

v̇ = M−1(−C(v)v − D(v)v + τ).
(1)

where η = [ηx, ηy, φ]T is the position (ηx, ηy) and yaw angle φ, v = [u, ν, r]T is the surge
velocity u, sway velocity ν, and yaw rate r, τ = [τ1, τ2, τ3]

T is the control input vector
consisting of the surge force τ1, the sway force τ2, and the yaw torque τ3. Figure 1 describes
the corresponding target model. The rotation matrix R(φ), the diagonal inertia matrix
M, the Coriolis and centripetal matrix C(v), and the damping matrix D(v) can be given
as follows:

R(φ) =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1



M =

 m − Xu̇ 0 0
0 m − Yν̇ mxg − Yṙ
0 mxg − Yṙ Iz − Nṙ



C(v) =

 0 0 −(m − Yν̇)ν − (mxg − Yṙ)r
0 0 (m − Xu̇)u

(m − Yν̇)ν + (mxg − Yṙ)r −(m − Xu̇)u 0



D(v) =

 −Xu − X|u|u|u| 0 0
0 −Yν − Y|ν|ν|ν| − Y|r|ν|r|(v) −Nν − N|ν|ν|ν| − N|r|ν|r|(v)
0 −Yr − Y|ν|r|ν| − Y|r|r|r| −Nr − N|ν|r|ν| − N|r|r|r|}(v)


Here, m is the mass of the ship, Iz is the moment of inertia about the yaw rotation,

xg is the distance from the origin of the body-fixed frame to the center of gravity of the
ship, the other symbols X∗, Y∗, N∗ are the corresponding hydrodynamic derivatives, and
Yṙ = Nν̇. In addition, M is a positive definite matrix. It is noted that RT(φ)R(φ) = I.

The generalized velocity v is explicitly contained in the model (1). For navigation
control, it is usually necessary to convert it into an explicit function containing only the
generalized position η. Derivating the kinematic of system (1) with respect to t yields

η̈ = Ṙ(φ)v + R(φ)v̇ (2)

where Ṙ(φ) represents the total derivative of R(φ) with respect to t, i.e., Ṙ(φ) = dR(φ)
dφ

dφ
dt .

For convenience, it is abbreviated as Ṙ(φ). It is obtained from (2) that v̇ = R−1(φ)(η̈ −
Ṙ(φ)v). Then, by substituting it into the dynamic equations of system (1), we derive

MR−1(φ)η̈+
[
C(v)− MR−1(φ)Ṙ(φ)

]
v + D(v)v = τ (3)
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Figure 1. The coordinate frames of the target model.

Furthermore, by utilizing v = R−1(φ)η̇, and denoting M0(η) = MR−1(φ), C0(η, η̇) =[
C(v)− MR−1(φ)Ṙ(φ)

]
R−1(φ), D0(η, η̇) = D(v)R−1(φ), one can acquire the following

Euler–Lagrange system as

M0(η)η̈+ C0(η, η̇)η̇+ D0(η, η̇)η̇ = τ (4)

Let us consider the case that the design objective is to let the output η track a properly
given signal vector ηd = [ηxd, ηyd, φd]

T generated by the following reference model:{
ẋd = Adxd
ηd = Cdxd

(5)

where Ad and Cd are known constant matrices of appropriate dimensions.

Remark 1. According to [28], if a reference trajectory ηd(t) is given, we can establish the structural
characteristics model of yd(t) based on system (5). Representing ηd(t) in vector form gives:

ηd(t) =


yd1(t)
yd2(t)

...
ydm(t)

. (6)

Taking the Laplace transform of ηd(t), we obtain:

Yd(s) =


n1(s)
p1(s)
n2(s)
p2(s)

...
nm(s)
pm(s)

. (7)

Here, p(s) is referred to as the structural characteristic of ηd(t), where p(s) is the least common
multiple of p1(s), p2(s), . . . , pm(s). Moreover, p(s) satisfies the following polynomial form:

p(s) = sr + αr−1sr−1 + · · ·+ α1s + α0. (8)

Using Equations (7) and (8), system (5) can be derived. The least common multiple p(s) forms
the output of system (5).

In addition, the reference signal ηd is satisfied the following assumption:
Assumption 1. The reference signals ηd are piecewise continuous differentiable. ηd is

known for t ≤ s ≤ t + lr, where lr is the preview length.
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The control objective in this paper is to design a tracking controller τ with preview
compensation for system (4) (i.e., (1)) by making full use of the previewable informa-
tion of the reference signal ηd, so that the output vector can track the reference signal
asymptotically.

Due to the limited research on preview controllers for nonlinear systems, most conclu-
sions are based on first-order linear systems. However, the model (4) studied in this paper
is a higher-order nonlinear one; therefore, we need to transform it formally.

First, for the system (4), by multiplying M−1
0 (η) on both sides, we can obtain

η̈+ M−1
0 (η)[C0(η, η̇)η̇+ D0(η, η̇)η̇] = M−1

0 (η)τ (9)

Then, the following controller is introduced for the system (9).

τ = M0(η)[−A1η̇− A0η+ ū] + C0(η, η̇)η̇+ D0(η, η̇)η̇ (10)

where A0 and A1 are the gain matrices to be determined, ū is virtual input.
Thus, we can obtain a higher-order linear system in the form of

η̈+ A1η̇+ A0η = ū (11)

Further, by letting xT =
[
ηT η̇T]T , y = η, Ac =

[
0 I

−A0 −A1

]
, Bc =

[
0
I

]
, and

Cc =
[
I 0

]
, Equation (11) can be transformed into the following first-order system form{

ẋ = Acx + Bcū
y = Ccx

(12)

Denoting Ac0 =

[
0 I
0 0

]
and K =

[
−A0 −A1

]
, it is noted that Ac = Ac0 + BcK

and Equation (12) can be expressed equivalently as{
ẋ = Ac0x + Bcv̄
y = Ccx

(13)

where v̄ = Kx + ū.
As a result, designing the control law τ for the higher-order nonlinear system (4) is

equivalent to finding the state feedback gain matrix K and virtual input ū for system (13).

Remark 2. This paper introduces a novel parametric design method that eliminates the nonlinear
terms in a fully actuated second-order nonlinear marine vessel dynamic model, transforming it into
a linear steady-state form. While traditional nonlinear control methods, such as backstepping [24],
sliding mode control [25], or adaptive control [26], often require complex designs tailored to specific
system dynamics, our approach simplifies the control problem by systematically linearizing the
original system without sacrificing its key dynamic characteristics. This contrasts with methods like
backstepping, which can suffer from computational complexity and sensitivity to modeling errors, or
sliding mode control, which may encounter chattering issues in practical applications. By achieving
a linear representation, our method enables the application of advanced control strategies, such
as optimization-based preview control, leading to significantly improved precision and robustness
in complex marine environments. Furthermore, the proposed method maintains computational
efficiency and facilitates theoretical analysis, offering a clear advantage over many traditional
nonlinear techniques in terms of practicality and scalability.

3. Designing the Preview Tracking Control

Let the error signal e as the difference between y and ηd, i.e,

e = y − ηd (14)
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The concept of the internal model is used to construct an augmented system together
with the technique of preview control. The definition of the minimal m-copy internal model
is given beforehand. To illustrate an overview of the algorithm, the block diagram for the
proposed control algorithm is shown in Figure 2.

 reference   
trajectory

internal model 
compensator

g

 1 2ξ G ξ G e

d

, 

USV

e
tracking 
controller

preview term



Figure 2. The block diagram for preview control design.

Theorem 1. Definition 1 [29]: Given any square matrix Ad, a pair of matrix (G1, G2) is said to
incorporate a minimal m-copy internal model of the matrix Ad, if the pair admits the following form:

G1 =


β 0 · · · 0
0 β · · · 0
...

...
. . .

...
0 0 · · · β


md×md

G2 =


θ 0 · · · 0
0 θ · · · 0
...

...
. . .

...
0 0 · · · θ


md×m

where β is a d × d constant square matrix and θ is a d × 1 constant column vector, such that

1. (β, θ) is controllable;
2. the characteristic polynomial of β, the minimal polynomial of β and the minimal polynomial

of Ad are all the same.

Based on Definition 1, an internal model compensator is taken as

ξ̇ = G1ξ + G2e (15)

Differentiating both sides of (14) with respect to t and utilizing system (13) gives

ė = Cc ẋ − η̇d (16)

Introducing x̄T =
[
ẋT ξT eT]T and combining Equations (13), (15) and (16), the

following dynamic equation is acquired:

˙̄x = Āx̄ + B̄ ˙̄v + D̄η̇d (17)

where Ā =

Ac0 0 0
0 G1 G2

Cc 0 0

, B̄ =

Bc
0
0

, D̄ =

 0
0
−I

.

Similar to [9], we take the observation equation as

e = C̄x̄ (18)



Mathematics 2024, 12, 3942 7 of 21

where C̄ =
[
0 0 I

]
.

By combining Equations (17) and (18), the following augmented system is obtained.{
˙̄x = Āx̄ + B̄ ˙̄v + D̄η̇d
e = C̄x̄

(19)

To evaluate the tracking quality, we introduce the following cost function

J =
1
2

∫ ∞

0

[
x̄T Qx̄ + ˙̄vT R ˙̄v

]
dt (20)

where Q =

0 0 0
0 Qξ 0
0 0 Qe

, and Qξ , Qe and R are positive definite matrices.

Let Qe = CT
e Ce, Qξ = CT

ξ Cξ , then we have Q = C̄T C̄, where Q1/2 = C̄ =

0 0 0
0 Cξ 0
0 0 Ce

.

By employing the results of [10,12], the following theorem can immediately hold.

Lemma 1. Suppose that (Ā, B̄) is stabilizable and (Q1/2, Ā) is detectable, then the optimal control
input of system (19) that minimizes quadratic performance index (20) is

˙̄v = −R−1B̄T Px̄ − R−1B̄T z (21)

where P is a positive semi-definite matrix satisfying the algebraic Riccati equation

ĀT P + PĀ − PB̄R−1B̄T P + Q = 0 (22)

and z is determined as follows:

z =
∫ lr

0
exp

(
σĀT

c

)
PD̄η̇d(t + σ)dσ (23)

with Āc = Ā − B̄R−1B̄T P.

Proof. The proof is elementary and is referred to [10,12].

In order to ensure the existence of v̄, we need to derive the conditions that ensure
(Ā, B̄) can be stabilized and (Q1/2, Ā) can be detected. For this purpose, we derive the
following lemmas.

Lemma 2. The pair (Ā, B̄) is stabilizable if and only if the pair (G1, G2) is stabilizable.

Proof. Let C+ denote the right half-plane of the complex plane. If (Ā, B̄) can be stabilized,
then for any s ∈ C+, we have

[
Ā − sI B̄

]
=

Ac0 − sI 0 0 Bc
0 G1 − sI G2 0

Cc 0 0 − sI 0

. (24)

Substituting Ac0 =

[
0 I
0 0

]
, Bc =

[
0
I

]
and Cc =

[
I 0

]
into (24), we obtain
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rank
[
Ā − sI B̄

]
= rank


0 − sI I 0 0 0

0 0 − sI 0 0 I
0 0 G1 − sI G2 0
I 0 0 0 − sI 0

 = 9 + md (full row rank),
(25)

which implies that the pair (G1, G2) is stabilizable, if and only if the pair (Ā, B̄) is stabiliz-
able.

Lemma 3. If Qe and Qξ are positive-definite, then the pair (Q1/2, Ā) is detectable.

Proof. For any s ∈ C+, we have

[
C̄

Ā − sI

]
=



0 0 0
0 Cξ 0
0 0 Ce

Ac0 − sI 0 0
0 G1 − sI G2

Cc 0 0 − sI

. (26)

Substituting Ac0 =

[
0 I
0 0

]
, Bc =

[
0
I

]
and Cc =

[
I 0

]
into (26), we obtain

rank
[

C̄
Ā − sI

]
= rank



0 0 0 0
0 0 0 0
0 0 Cξ 0
0 0 0 Ce

0 − sI I 0 0
0 0 − sI 0 0
0 0 G1 − sI G2
I 0 0 0 − sI


, (27)

which implies that the matrix is full column rank for any s ∈ C+ with Ce and Cξ are
positive-definite, i.e., Qe and Qξ are positive-definite. Then (Q1/2, Ā) can be detectable.

Remark 3. Our study rigorously proves controllability, observability, and stabilizability under the
augmented system framework. Unlike other studies that rely heavily on experimental or heuristic
approaches [30], this paper provides a complete mathematical foundation, ensuring the robustness
and universality of the proposed control strategy.

Let P =
[
Px Pξ Pe

]
. Thus, we obtain the optimal preview controller for the system

(13) according to Theorem 2.

Theorem 2. Suppose that (G1, G2) is stabilizable, and Qe and Qξ are positive-definite, then the
optimal control input of system (13) that minimizes quadratic performance index (20) is

v̄(t) =− R−1B̄T Pxx(t)

− R−1B̄T
∫ t

0
Pξξ(s)ds − R−1B̄T

∫ t

0
Pee(s)ds

− R−1B̄T
∫ t

0

∫ lr

0
exp

(
σĀT

c

)
PD̄η̇d(s + σ)dσds.

(28)
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Proof. It is known from Lemmas 2 and 3 that under the conditions of this Theorem, Lemma
1 holds. The expression of ˙̄v(t) is given in Lemma 1 where P =

[
Pη Pη̇ Pξ Pe

]
.

Therefore we only need to solve for v̄(t) from Lemma 1, which v̄(t) is the optimal control
input of system (13) that minimizes quadratic performance index (20). To do this, setting
v̄(0) = 0 and x(0) = 0, and then integrating both sides of (21) from 0 to t yields v̄(t) given
by (28). This completes the proof of Theorem 1.

Based on the discussion of the above theorem, we give the preview controller of
systems (4).

Theorem 3. Suppose that

1. (G1, G2) is stabilizable;
2. Qξ , Qe and R are positive definite;
3. the dynamical compensator (15) incorporates a minimal m-copy internal model of the

matrix Ad,

then the preview tracking controller can be designed for the systems (4) as follows:

τ = M0(η)[−A1η̇− A0η+ ū] + C0(η, η̇)η̇+ D0(η, η̇)η̇ (29)

where A1 = R−1B̄T Pη̇, A0 = R−1B̄T Pη,

ū = −R−1B̄T
∫ t

0
Pξξ(s)ds − R−1B̄T

∫ t

0
Pee(s)ds − g(t), (30)

g(t) = R−1B̄T
∫ t

0

∫ lr

0
exp

(
σĀT

c

)
PD̄Cd AdWηd(s + σ)dσds, (31)

and W = CT
d
(
CdCT

d
)−1.

Proof. According to Theorem 2, (28) can serve as the preview controller for system (13).
Due to xT =

[
ηT η̇T]T , it is noticed that (28) can be expressed as

v̄ =− R−1B̄T Pηη− R−1B̄T Pη̇ η̇

− R−1B̄T
∫ t

0
Pξξ(s)ds − R−1B̄T

∫ t

0
Pee(s)ds

− R−1B̄T
∫ t

0

∫ lr

0
exp

(
σĀT

c

)
PD̄η̇d(s + σ)dσds.

(32)

On the other hand, designing the control law τ for the higher-order nonlinear system (4)
is equivalent to finding the state feedback gain matrix K and virtual input ū for system (13).

Also, because v̄ = Kx + ū, one can obtain A1 = R−1B̄T Pη̇, A0 = R−1B̄T Pη, and

ū(t) =− R−1B̄T
∫ t

0
Pξ ξ(s)ds − R−1B̄T

∫ t

0
Pee(s)ds

− R−1B̄T
∫ t

0

∫ lr

0
exp

(
σĀT

c

)
PD̄η̇d(s + σ)dσds

(33)

The gain matrix K yields

K =
[
−R−1B̄T Pη −R−1B̄T Pη̇

]
(34)

In addition, based on (5), we have η̇d = Cd Adxd and xd = CT
d
(
CdCT

d
)−1

ηd = Wηd.
Thus,

η̇d = Cd AdWηd (35)
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Substituting (35) into (33) immediately yields (30). To sum up, the proof for Theorem 3
is completed.

4. Illustrative Example

In this section, we conduct numerical simulations to validate the performance of the
proposed preview-based optimal controller for a fully actuated second-order nonlinear
marine vessel system. The dynamic model of the marine vessel is developed based on the
well-known Cybership II model [31], which accurately represents the vessel’s kinematics
and dynamics in three degrees of freedom (DOF). The Table 1 lists key parameters for the
Cybership II model, commonly used in marine vessel control simulations. The parameter
column lists each physical quantity, such as mass, added mass, linear damping, and
dimensions of the marine vessel. The symbol column gives the mathematical notation used
for these parameters. The value column provides the specific numerical values associated
with each parameter.

In actual ship navigation, steady-state motion can be regarded as trajectory tracking
of a step signal, while uniformly accelerated motion corresponds to trajectory tracking of
a ramp signal. To validate the ship’s steering performance, the reference signal is set as
a sinusoidal or cosine signal. Simulations have been conducted for these three types of
reference signals, and the entire physical process has been thoroughly explained.

Table 1. Cybership II parameters [31].

Parameter Symbol Value

Mass of the ship m 23.8 kg

Added mass in surge Xu −0.7225 kg

Added mass in sway Yv −0.8612 kg

Added mass in yaw Nr −0.96 kg·m2

Hydrodynamic damping in surge Xu̇ −2 kg

Hydrodynamic damping in sway Yv̇ −10 kg

Hydrodynamic damping in yaw Nṙ −1 kg·m2

Length of the ship L 1.255 m

Beam of the ship B 0.29 m

We derive a fully actuated second-order dynamic model that focuses on the vessel’s
position (ηx, ηy) and yaw angle φ. The derived model is linearized through a parametric
design approach, enabling the application of optimal control strategies while retaining the
essential characteristics of the original nonlinear system. The initial position and orientation
vector is set as [0.1 m, 0.5 m, 0 rad]. The initial velocity vector is set as [0 m/s, 0 m/s,
0 rad/s]. The feedback gain matrix in (34) is designed as

K =

 −2.031760695097 −0.174719365409678 −0.122161527454826
−2.01449528057939 −0.0674172209077163 −0.0280191549197859
−0.144102351611047 −3.30064751013243 −1.59512096747655

−0.0674172209077163 −2.52951637414648 −0.445305346380209
−0.0586974434885534 −1.03335697318354 −5.77422873890882
−0.0280191549197859 −0.445305346380209 −3.36888342826826


(36)

Assume the reference trajectory is

ηd(t) =

3.005 sin(0.2t − 1.138)
3.008 sin(0.2t + 0.428)

0.06t − 0.6

.
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The control objective of USV dynamic system is to ensure limt→∞ e(t) = 0. Taking the
Laplace transform of ηd(t), Based on Equations (6) and (8), the state-space representation
of the tracking function matrices are given as :

Ad =



0 0.2 0 0 0 0
−0.2 0 0 0 0 0

0 0 0 0.2 0 0
0 0 −0.2 0 0 0
0 0 0 0 1 −2
0 0 0 0 0.5 −1

 Cd =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



From Equation (5), we have ηd = CdeAd(t−t0)xd(0). By substituting the values of Ad and Cd
into this expression, the sin reference position signals and the ramp reference angle signal
can be obtained from the following simulation results.

For the simulation study based on MATLAB R2023a (MathWorks, Natick, MA, USA),
we evaluate the controller’s effectiveness via four scenarios: The preview lengths are given
by lr = 1, lr = 5 and lr = 10, respectively, and no preview control is involved. The results
demonstrate that the proposed controller enables accurate tracking of the target position
simulation in Figures 3–5. For the output curves with lr = 0, the controller operates
without preview compensation. In comparison, for lr = 1, lr = 5 and lr = 10, the controller
uses preview compensation with preview lengths of 1.5 and 10, respectively. As shown
in Figures 3 and 6, the controller with preview compensation enables faster and more
accurate reference signal tracking compared to the controller without it, with the effect
being especially evident in reference tracking scenarios. To further evaluate the controller’s
performance, we simulate the tracking error between the actual position and the desired
trajectory over time. The error simulation results demonstrate the rapid convergence of
the tracking error to zero, indicating the controller’s high precision and fast response in
minimizing deviations from the desired trajectories in Figures 6–8. The simulation results
also show corresponding effects on the surge tracking error, sway tracking error, and
yaw tracking error under these four conditions. When preview control is not applied,
the tracking errors in all three modes are larger. As the preview length increases, the
errors in surge, sway, and yaw tracking decrease, demonstrating improved accuracy and
tracking performance across all degrees of freedom. This highlights the positive impact
of preview control in reducing tracking errors and enhancing overall control precision.
The summation of tracking errors |e1| = |ηx − ηxd|, |e2| = |ηy − ηyd| and |e3| = |φ − φd|
are shown in Figures 9–11. The summations of absolute value on tracking errors show
monotonic behavior, aligning with the theoretical expectations. As the preview length
increases, the sum of the absolute errors decreases. When the preview length becomes
excessively long, the influence of the previewed information in the controller diminishes
because information from farther ahead has a negligible impact on the current operational
state of the system. At simulation time t = 80 s, when the preview length is lr = 5, the sum
of absolute errors is ∑ |e2| = 51.8025, and when the preview length is lr = 10, the sum of
absolute errors is ∑ |e2| = 51.9295. A similar situation is also shown in Figure 11. In the
scenarios lr = 5 and lr = 10, the two curves of ∑ |e3| change in a very similar way, with no
significant difference in their respective variations. However, compared to the cases with
lr = 0 and lr = 1, the sum of the absolute errors shows a noticeable reduction. The settling
times for the four scenarios are 73.5 s, 41.1 s, 8.1 s and 6.7 s. In the case lr = 10, the settling
time costs the least. Meanwhile, the preview length is not considered, the settling time is the
longest during the simulation processes. We analyze the control efforts required to achieve
the desired trajectory. The control input simulation showcases the smoothness and stability
of the control actions, ensuring that the control signals remain within the operational limits
of the vessel’s actuators in Figures 12–14. Additionally, the summation of control inputs is
depicted in Figures 15–17 to show the performance indicators. From the simulation results,
it can be observed that when preview control is not applied, the controller exhibits larger
amplitude responses. As the preview length increases, the amplitude of the controller’s
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response gradually decreases. This indicates that increasing the preview length enhances
the controller’s performance, leading to more stable and efficient control. By examining
both linear velocities (surge, sway) and angular velocities, we gain insights into how
the system stabilizes and responds to the desired motion over time. The plots offer a
clear understanding of how the system controls and reduces velocity errors, providing an
overview of its dynamic performance in Figures 18–20. The entire physical processes are
shown in Figure 21. These trajectories help us visualize the real-world application of the
tracking system and provide a clearer understanding of how the system functions in actual
maritime operations.

Overall, the simulation results validate that the proposed preview-based optimal
control strategy, grounded in the Cybership II model, ensures precise trajectory tracking,
efficient control inputs, and minimal tracking error for the fully actuated marine vessel. The
results highlight the robustness and practicality of the proposed approach in real-world
marine navigation and control applications.

Figure 3. Surge Trajectory Tracking Response.

Figure 4. Sway trajectory tracking response.
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Figure 5. Yaw trajectory tracking response.

Figure 6. Surge tracking error curves.

Figure 7. Sway tracking error curves.
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Figure 8. Yaw tracking error curves.

Figure 9. Sum of surge tracking errors.

Figure 10. Sum of sway tracking errors.
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Figure 11. Sum of yaw tracking errors.

Figure 12. Surge force control effort for trajectory tracking.

Figure 13. Sway force control effort for trajectory tracking.



Mathematics 2024, 12, 3942 16 of 21

Figure 14. Yaw moment control effort for trajectory tracking.

Figure 15. Sum of surge force.

Figure 16. Sum of sway force.
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Figure 17. Sum of yaw moment.

Figure 18. Surge velocity tracking response.

Figure 19. Sway velocity tracking response.
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Figure 20. Yaw angular velocity tracking response.

Figure 21. The entire physical processes.

In the case of the step reference signals ηd(t) = I3, the trajectory tracking matrices Ad
and Cd are chosen as

Ad =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 Cd =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



Then, the step reference signals are generated, and the simulation results are shown
in the following. Given that the preview length lr = 5 and the goal is to simulate the
surge, sway, and yaw trajectory tracking responses under a step input, we can structure the
system to handle these three directions of motion (surge, sway, and yaw). The step input
represents a sudden change in the desired trajectory in each direction. The results for each
motion direction are plotted in separate subplots Figures 22–24 to visualize how the system
responds to the step input.
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Figure 22. Surge response under step input.

Figure 23. Sway response under step input.

Figure 24. Yaw response under step input.
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5. Conclusions

This paper explored the preview optimal control problem for second-order nonlinear
marine vessel systems using a fully actuated dynamic model. We first derived a second-
order dynamic model of a three-degrees-of-freedom marine vessel, focusing on a fully
actuated system design. By applying a parametric design approach, the nonlinear com-
ponents were eliminated, resulting in a parameterized linear system. To improve control
accuracy, an internal model compensator was designed for the reference signal, allowing
the construction of an augmented error system. Leveraging optimal control theory, we
developed a preview-based controller for the fully-actuated system, along with a corre-
sponding feedback parameter matrix, which was then applied to the original nonlinear
system. Numerical simulations confirmed the effectiveness of the proposed controller,
demonstrating its capability for precise trajectory tracking in marine vessels. Further ex-
ploration of adaptive and model predictive control techniques is recommended for more
robust trajectory tracking, particularly under extreme environmental conditions. Extending
the current models and methods to larger, more complex offshore platforms or multi-vessel
systems could provide insights into the scalability of the approach.
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