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Abstract: Modern developments in data analysis techniques and evolutionary optimization algo-
rithms have made it possible to analyze large amounts of unstructured digital data sets. Based
on the differential evolution algorithm and semiclassical quantum simulations, we have recently
proposed a method for classifying and analyzing the optical properties of organic pigments. In this
paper, we present the results of modeling the absorption spectra of five carotenoids synthesized
during the vital activity of the ascomycetous fungi: neurosporaxanthin, neurosporene, torulene,
γ-carotene, and ζ-carotene. We calculated the absorption spectra for each pigment using the multi-
mode Brownian oscillator theory, which allows us to evaluate the influence of molecular vibrations on
the electronic transitions in the pigment. We applied a generalized spectral density function method
to our modeling, taking into account the contributions of 13 vibrational modes with frequencies
varying between 100 cm−1 and 3000 cm−1. This approach allowed us to gain a deeper understanding
of how molecular vibrations affect the absorption spectra of these organic compounds. Thus, each
absorption spectrum was associated with a unique set of Huang–Rhys factors (which represent the
effective electron–phonon interaction). This set can be considered as a kind of “fingerprint” that
characterizes the optical response of the pigment in the solvent.

Keywords: absorption; neurosporaxanthin; neurosporene; torulene; γ-carotene; ζ-carotene; Fusarium
fungi; optimization; multimode Brownian oscillator model; differential evolution

MSC: 68W50; 81V55; 81Q20

1. Introduction

Assessment of the degree of infection in grain crops at the early stages of disease
development, when external signs are not yet visually manifested, is a primary task of
monitoring product quality [1]. The most practical way to analyze the condition of the
outer surface of grains non-invasively and quickly is through the use of spectroscopic
data in the visible and ultraviolet ranges [2], particularly absorption spectra, which can be
recorded and automated to the maximum extent possible. Photosynthetic membranes of
higher plants, bacteria, and algae [3], as well as fungal hyphae, contain different types of
organic pigments that absorb and emit light quanta in the visible range [4,5]. Therefore,
it seems that using various spectroscopic techniques, such as measurement of absorption,
fluorescence [6,7], and Raman spectra [8,9], can easily solve the problem of identifying
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the samples under study. However, there are several reasons why a straightforward
interpretation of experimental data is not always reliable. Firstly, the pigment composition
of photosynthetic organisms remains stable during development, while most fungi have
a different pigment composition at each stage of growth [10–14]. Secondly, the optical
properties of pigments, especially carotenoids, can vary significantly depending on the
environment, making it difficult to identify them accurately [15,16]. One possible solution
to this problem is to use a numerical simulation to analyze the spectra obtained from
experiments. By comparing theoretical and experimental data, researchers can use the
effective optimization algorithm to distinguish the specific optical response of individual
pigments from the overall signal. This approach would allow for the detection of infections
based on the presence or absence of certain pigments.

The optical activity of biopigments in the visible spectral range is associated with
the singlet electronic transitions from the ground to excited states [17]. For instance, the
absorption spectrum of carotenoids between 350 and 500 nm corresponds to an optically
allowed |S0⟩ → |S2⟩ electronic transition [18,19]. Depending on the strength of the inter-
action between this electronic transition and the vibrations of the molecular skeleton, the
lineshape of the spectra of this transition can vary from a well-defined three-band pattern
to that of a broad one-band [20]. Semiclassical quantum theory [21], which describes the
interaction between radiation and matter, allows us to quantitatively estimate the opti-
cal response of a system based on the two-particle correlation function of the electronic
transition moment [22]. Eventually, the absorption spectrum is determined by a set of
effective parameters that characterize the vibrational modes of a given system [23,24]. Most
importantly, these parameters can be estimated only by simulation of the experimental
data [25].

Obviously, in order to accurately fit the experimental spectra and obtain statistically
significant values for model parameters, optimization algorithms must be used [16,26].
Currently, the most effective algorithms are those that are nature inspired and evolution-
ary [27–29], such as the genetic algorithm (GA) [30], particle swarm optimization [31],
and differential evolution (DE) [32,33]. These algorithms allow us to minimize the target
function with a large number of parameters, regardless of the type of problems being
addressed [34]. A notable example of using the GA to model the optical response of
biomolecules and proteins is the analysis of spectroscopic data obtained from photosyn-
thetic pigment–protein complexes. This includes simulating the dynamics of excited
electronic states in photosystem I [35], studying the triplet states in the reaction center
of photosystem II [36], calculating the characteristics of the linear optical response of the
light-harvesting complex II from higher plants [37], and modeling linear spectroscopy of
monomeric photosystem I from cyanobacteria [38]. The DE algorithm is widely used in
various engineering applications [32,33,39]. However, when compared with the GA, the
DE algorithm may be more suitable for modeling using semiclassical quantum theory. The
classical version of DE includes a set of strategies for estimating mutant vectors, which
allows it to tune for maximum performance without additional modifications to the al-
gorithm for most applied problems. The successful implementation of this algorithm for
optimizing semiclassical quantum calculations has been demonstrated in a series of papers
published by our laboratory on the theoretical investigation of photosynthetic pigment
spectroscopy [1,15,16].

The use of DE to model experimental spectra of organic pigments has demonstrated
that the potential of evolutionary optimization extends beyond simple spectrum fitting [16].
In fact, the combined use of DE optical response simulation procedures allows us to analyze
the physical mechanisms underlying the characteristic intensities of interactions between
electronic excitations and vibrations of pigment molecules at different frequencies. Recently,
we have proposed a method for the modeling of optical responses of the pigments with
DE based on the concept of generalized spectral density [15]. This approach allows us to
calculate the absorption spectra of electronic transitions for any pigment whose optical
response in the visible range can be measured. Furthermore, it is not necessary to know the
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exact set of vibrational modes in advance. The initial function of the generalized spectral
density is evaluated based on a comb of frequencies for which the effective electron–phonon
interactions (Huang–Rhys factors) have not been determined and are adjusted during the
optimization process [15].

In this study, we have further improved our method by modifying the spectral density
formula. Firstly, the damping factor for each vibrational mode was made dependent on
its frequency, so that their values decrease as the mode frequency increases. This means
that the lowest frequency mode (100 cm−1) is strongly overdamped. This type of spectral
density allows us to more accurately take into account the influence of the solvent or
protein environment on the pigment. Secondly, the DE settings were optimized for the
specific problem being solved. Based on our previous experience [15,16], we realized that
even if the minimized function did not actually change, some model parameters could still
remain highly variable for a long time. Therefore, the evolution process was extended to
almost double its original duration in order to ensure a complete stop in the variation in
the model parameters.

Five spectra of neurosporaxanthin, neurosporene, torulene, γ-carotene, and ζ-carotene
in acetone (Figure 1) were used to demonstrate the performance of our method. Experi-
mental data measured at room temperature were taken from a study aiming to trace the
biosynthetic steps of neurosporaxanthin and its precursors [40] in ascomycete fungi since,
in addition to a representative group of polyketides [41–43], carotenoids are also indicators
of certain stages of fungal growth [44,45]. The ability to distinguish their optical responses
in different environments (polar and non-polar solvents, proteins) will make it possible
to develop the methods for the detection of infections in agricultural crops at early stages
of germination.
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Figure 1. Absorption spectra and chemical structures of neurosporaxanthin (A), neurosporene (B),
torulene (C), γ-carotene (D), and ζ-carotene (E). Data taken from [40].

The remainder of this paper is structured as follows: Section 2 provides a brief
overview of the physical theory and optimization algorithms used in the study. Section 3
presents the obtained results. Section 4 discusses the details of the results and their implica-
tions. Finally, Section 5 concludes with a summary of the findings.

2. Materials and Methods
2.1. Theory

To understand the process of light quanta absorption by a system of electronic states
and to simulate the optical response, one can employ the semiclassical theory of interaction
between the matter and electromagnetic field. In this case, the key element of the calcula-
tions is the Hamiltonian of the system, Hsys, which represents the total energy of electronic
and vibrational states. If we consider a two-level system consisting of a ground state and an
excited state that are coupled to a set of vibrational modes, the Hamiltonian for the ground
state Hg and the excited state He can be expressed as follows:

Hsys = Hg + He, (1)

Hg = ∑j

(
p2

j

2mj
+

1
2

mjω
2
j q

2

j

)
, (2)

He = ℏΩ0
eg + ∑j

[
p2

j

2mj
+

1
2

mjω
2
j
(
qj − dj

)2
]

, (3)

where pj, mj, qj,dj are the effective moments, masses, coordinates, and displacements for

each jth mode, respectively. ℏΩ0
eg is the energy gap between the electronic states.

To simulate the absorption spectrum of the system described by (1), it is necessary to
calculate the first order polarization:

P(1)(r, t) =
∫ ∞

0
dt1S(1)(t1)E(r, t − t1) + c.c., (4)
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where c.c. stands for the complex conjugate and S(1)(t1) is the linear response function.
This function can be calculated by evaluating the correlation function of the electronic
transition dipole moment between the ground and excited states:

S(1)(t1) =
i
h̄

θ(t1)(⟨V(t1)V(0)ρ(−∞)⟩ − ⟨V(0)V(t1)ρ(−∞)⟩) (5)

where ρ(−∞) represents the matrix operator of equilibrium density, θ(t1) is the Heaviside
step function, and V(t1) is the interaction dipole operator.

In general, the knowledge of the linear response function is sufficient to calculate the
absorption spectrum for a two-level system:

σabs(ω) =
∫ ∞

−∞
dt S(1)(t1)eiωt, (6)

S(1)(t1) =
i
ℏθ(t1)e−iωegt1−g(t1) + c.c., (7)

g(t) =
∫ t

0
dτ2

∫ τ2

0
dτ1C(τ1), (8)

where g(t) is the lineshape function and C(t) is a generalized expression for the transition
moment correlation function, which contains information about the dynamics of nuclear
eigenstates. It is a complex function, C(t), which can be expressed as C′(t) + iC′′ (t). The
semiclassical approach to estimating correlation functions allows us to avoid the tedious
calculations of nuclear dynamics and fundamentally simplifies the modeling of optical
responses without losing physical significance. However, C(t) itself is not suitable for
numerical simulations, as it does not have a classical analog. To simulate the absorption

spectrum, we need to work with
∼
C(ω) =

∼
C
′
(ω) + i

∼
C

′′
(ω), which is the frequency domain

version of C(t) and is related to C(t) through the Fourier transform. The real
∼
C
′
(ω) and

imaginary
∼
C

′′
(ω) parts of

∼
C(ω) are not independent functions and connected with each

other by the fluctuation–dissipation theorem. All simulations begin with the evaluation of
∼
C

′′
(ω). This function is temperature independent and serves as a basic characteristic of the

bath. Thus, the expression for C(t) in terms of
∼
C

′′
(ω) would be as follows:

C(t) =
∫ ∞

−∞
dω cos(ωt)coth(βℏω/2)

∼
C

′′
(ω) + i

∫ ∞

−∞
dω sin(ωt)

∼
C

′′
(ω) (9)

By plugging the expression (9) into (8), we can derive the formula for the lineshape function,

g(t), in terms of the real function
∼
C

′′
(ω):

g(t) =
1

2π

∫ +∞

−∞
dω

1 − cosωt
ω2 coth

(
βℏω

2

)∼
C

′′
(ω)− i

2π

∫ +∞

−∞
dω

sin(ωt)
ω2

∼
C

′′
(ω), (10)

where β = 1/kT, and T is a temperature. Thus, we obtained expressions (9) and (10) that

depend on
∼
C

′′
(ω). This function is a crucial element in the model, as it allows us to calculate

the correlations of the electronic transition moment using a set of effective parameters that
can be interpreted classically.

All carotenoids exhibit a broad absorption spectrum due to the interaction between
electronic excitation and phonons of the molecular skeleton and protein surrounding.
To account for these effects, one can use the multimode Brownian oscillator model [22].
According to this model, the system Hamiltonian (1) needs to be modified by adding a
bath Hamiltonian:

Hbath = ∑n

[
p2

n
2mn

+
1
2

mnω2
n

(
xn − ∑j

cnjqj

mnω2
n

)2
]

(11)



Mathematics 2024, 12, 3844 6 of 15

This equation describes the interaction between the system’s vibrational modes and
the effective mode of the environment represented by cnj. Without going into the details of
the mathematical manipulations, which can be found in [22], we present the final formula
for calculating the spectral density, in which the microparameters from the Hamiltonians
(2), (3), and (11) are transformed into a set of

{
ωj, Sj, γj

}
:

∼
C

′′

j (ω) = ∑j
ℏ

2mj

Sjωγj(ω)(
ω2

j − ω2
)2

+ ω2γ2
j (ω)

, (12)

where ωj is the frequency, γj is the damping factor and Sj is the Huang–Rhys factor for each
vibrational mode. Thus, the final expression for absorption spectrum is

σabs =
1
π

Re
∫ ∞

0
dtei(ω−Ωeg)te−g(t), (13)

In addition to the electron–phonon coupling, it is necessary to take into account the
effect of inhomogeneous broadening of the band caused by interaction with the protein
environment. To do this, we can evaluate the influence of the lowest vibrational modes by
introducing a search window in the range from 100 to 600 cm−1 with a uniform step size
of 100 cm−1. Finally, to calculate the spectrum, one has to evaluate Equation (12), then (9),
(10), and (13).

2.2. Differential Evolution

The quantitative description of quantum effects in biological systems requires ad-
vanced optimization methods due to their complex structure. One such method is the DE
algorithm designed to find the global optimum of functions with multiple variables. For
this purpose, we considered the minimized function that represents the difference between
the experimentally measured and calculated spectra. This function is given by

f (xi) =
1
N ∑N

n=1(I(ωn)− σabs(ωn, xi))
2, (14)

where I(ωn) is the measured spectrum and σabs

(
ωn, xg

i

)
is the calculated spectrum. xi is a

set of optimization parameters. N is the number of points in the spectra.
The mechanism of the DE search can be explained as follows [32,33]: At the begin-

ning, DE sets the boundaries for the optimized parameters in the mathematical model.
These boundaries can be determined based on the specific requirements of the problem.
The search range for free parameters can be set based on the specifics of the task. In
n-dimensional space, where n is the number of free parameters, a set of vectors are created
to find the best solution that corresponds to the minimum value of the objective function.
Then, through a series of operations such as mutation, crossover, and selection, these
vectors are modified. At each generation, the best vector is selected, which will be used
to create the vectors for the next generation. There are three basic ways to calculate the
mutation vector:

vg
j = xg

r0 + F
(

xg
r1 − xg

r2

)
(15)

vg
j = xg

best + F
(

xg
r1 − xg

r2

)
, (16)

vg
j = xg

r0 + F
(

xg
best − xg

r0

)
+ F

(
xg

r1 − xg
r2

)
, (17)

where F ∈ [0, 1] is a weighting factor that affects the diversity of the mutant vectors. xg
r0,

xg
r1, and xg

r2 are randomly selected vectors from the current population g; xg
best is the best

vector in this population. By performing a crossover operation, some coordinates from the
mutation vector, vg

j , are replaced with the coordinates from one of the previous vectors
with a certain probability Cr ∈ [0, 1]. After that, the best mutant vector is compared with
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the current best vector, and the superior one becomes the new best solution and is added to
the next population.

2.3. Computational Software

To model experimental data, we combined the procedures for calculating the optical
response with the DE procedure in a single software package. The block diagram of the
computational module is shown in Figure 2. The program input consists of files with
DE parameters (strategy, F, Cr, maximum number of generations), as well as parameters
that define the conditions for simulating absorption spectra: the number of points in the
time and frequency arrays, the step sizes in picosecond and inverse centimeters, ambient
temperature, and the boundaries in the frequency domain where the experimental and
theoretical spectra are compared. For the parameters of the semiclassical quantum model of
a two-level electronic transition, the ability to change the status of whether this parameter
is included in the optimization process is provided. Before starting the simulation, the
population size is calculated based on a list of parameters that need to be adjusted.

The module of monomeric pigment optical response simulation comprises four stages,
in which the spectral density (Equation (12)), correlation function (Equation (9)), lineshape
function (Equation (10)), and absorption spectrum (Equation (13)) are calculated sequen-
tially. This module is called by the DE procedure every time the optimization algorithm
evaluates the fitness of a theoretical spectrum calculated for a specific mutant vector vg

j .
Optimization ends when the stopping criterion is met, and either the maximum number of
generations has been reached, or f (xi) become less than a specified value. The algorithm
and software used to model and optimize the spectra are described in detail in our previous
publications [15,16]. All procedures were written in C++; the MKL library was used to
accelerate calculations with matrices and arrays.
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Figure 2. A block diagram of the software used to simulate the optical properties of organic pigments.

3. Results

The results of the optimization are presented in Figures 3–5. In these simulations, we
modified the method of estimating the spectral density. From Equation (12), it follows that
this function depends on the triplets

{
ωj, Sj, γj

}
, which characterize the jth vibrational
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mode. Here, ωj are 13 fixed values determined as follows: low-frequency modes range from
100 cm−1 to 600 cm−1 with a uniform step of 100 cm−1; then there are four effective modes
corresponding to hydrogen bond wagging (ν4), methyl rocking (ν3), and vibrations of single
(ν2) and double (ν1) carbon bonds. Their energies are 965 cm−1, 1006 cm−1, 1158 cm−1,
and 1524 cm−1; there are also three overtones with energies of 2316 cm−1, 2682 cm−1, and
3048 cm−1 which correspond to 2ν2, ν1+ν2, 2ν1.
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Figure 3. Fitting of neurosporaxanthin (A), neurosporene (C), torulene (E), γ-carotene (G), and ζ-
carotene (I) absorption by DE. Color lines are simulated spectra of the first ten generations. The black
line is the experiment. Blue lines with markers are the best spectra obtained after 300 generations.
Dynamics of the corresponding objective functions are shown in (B,D,F,H,J).
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(C), γ-carotene (D), and ζ-carotene (E) absorption spectra. Insets show the contribution of the
low-frequency modes (from 0 cm−1 to 100 cm−1) in the spectral density.

The Sj values are adjusted during the optimization process, and γj are damping factors
that depend on frequency γj = γj(ω). These factors were set as follows: γ2ν2 = 2 cm−1 for
the mode with the highest energy (3048 cm−1); for other frequencies γj were estimated using

the inverse-square relationship γj = γ2ν1

(
ω2ν1 /ωj

)2. These spectral density parameters
are collected in Table 1. In addition to

{
ωj, Sj, γj

}
, the energy of |S0⟩ → |S2⟩ electronic

transition, Ω0
eg, was also a free parameter for optimization. Therefore, the total number of

free parameters was 14. To evaluate Equations (9), (10), and (13), the time and frequency
scales were calculated using 212 points.

These factors were set as follows: for the mode with the highest energy (3048 cm−1)
γ2ν2 = 2 cm−1. For other frequencies, γj were estimated by the inverse-square dependence

γj = γ2ν1

(
ω2ν1 /ωj

)2. All parameters of the spectral density are collected together in
Table 1. In addition to

{
ωj, Sj, γj

}
, the energy of |S0⟩ → |S2⟩ electronic transition Ω0

eg
was also a free parameter for optimization. Thus, the total number of free parameters was
14. To evaluate Equations (9) and (12), the time and frequency scales were calculated with
212 points.

All simulations were conducted with the following settings for DE: DE/best/1/exp
strategy, F = 0.6, and Cr = 0.95, with a population size of 140, and the number of generations
was 300. The best results from 10 independent DE runs for each spectrum are represented
in Figure 3. Table 2 shows the mean values of the free parameters and their standard
deviations from 10 runs. Target function f (xi) characterizes the discrepancy between the
measured and simulated spectra. All data obtained after 10 runs of DE are included in the
Supplementary Materials. The spectral densities of the best fits are displayed in Figure 4,
with an inset for each graph showing the spectral density between 0 and 100 cm−1. It is
evident that the contribution from lower frequencies was limited to approximately 60 cm−1.
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Figure 5. The effect of the electron–phonon interaction on the lineshapes of the absorption spec-
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Table 1. Parameters of the generalized spectral density that are fixed during the optimization of
the spectra.

ωj, cm−1 100 200 300 400 500 600 965 1006 1158 1524 2316 2682 3048
γj, cm−1 1858.1 464.5 206.5 116.1 74.3 51.6 20.0 18.4 13.9 8.0 3.5 2.6 2.0

Table 2. Parameters of the multimode Brownian oscillator model for neurosporaxanthin, neu-
rosporene, torulene, γ-carotene, and ζ-carotene obtained after DE optimization.

Neurosporaxanthin Neurosporene Torulene γ-Carotene ζ-Carotene

Mean SD Mean SD Mean SD Mean SD Mean SD

Ωeg 21,712.6 0.4 23,342.5 4.1 21,221.1 3.1 22,179.2 5.7 25,918.9 3.1
S100 13.26 7.7 × 10−3 4.73 0.02 7.39 0.03 8.30 0.03 6.03 0.01
S200 1.5 × 10−3 2.8 × 10−3 2.6 × 10−3 5.3 × 10−3 2.5 × 10−4 3.0 × 10−4 6.7 × 10−4 1.4 × 10−3 4.8 × 10−4 3.2 × 10−4

S300 1.9 × 10−4 4.3 × 10−4 1.4 × 10−5 1.4 × 10−5 5.0 × 10−5 5.9 × 10−5 2.0 × 10−4 4.4 × 10−4 4.5 × 10−4 8.2 × 10−4

S400 4.4 × 10−5 7.9 × 10−5 1.4 × 10−5 2.1 × 10−5 4.1 × 10−5 6.5 × 10−5 2.8 × 10−5 3.4 × 10−5 7.4 × 10−5 1.1 × 10−4

S500 6.0 × 10−5 9.6 × 10−5 4.1 × 10−5 6.2 × 10−5 5.8 × 10−6 7.5 × 10−6 1.1 × 10−5 1.5 × 10−5 9.8 × 10−5 2.1 × 10−4

S600 6.1 × 10−6 7.1 × 10−6 1.0 × 10−5 1.7 × 10−5 3.7 × 10−5 7.3 × 10−5 1.4 × 10−5 1.6 × 10−5 3.0 × 10−5 4.1 × 10−5

Sν4 4.9 × 10−5 6.5 × 10−5 0.12 0.11 4.5 × 10−5 7.5 × 10−5 3.7 × 10−4 1.1 × 10−3 9.6 × 10−4 2.6 × 10−3

Sν3 8.5 × 10−5 9.7 × 10−5 0.29 0.14 4.2 × 10−4 1.2 × 10−3 2.1 × 10−5 4.1 × 10−5 3.4 × 10−3 9.1 × 10−3

Sν2 0.27 2.5 × 10−3 0.04 0.04 0.65 6.8 × 10−3 0.45 0.01 0.28 0.02
Sν1 0.93 2.1 × 10−3 0.79 0.01 0.60 7.4 × 10−3 0.76 0.01 0.82 7.9 × 10−3

S2ν2 9.9 × 10−6 2.2 × 10−5 0.09 2.1 × 10−3 0.06 0.01 0.02 0.01 0.14 3.5 × 10−3

Sν1+ν2 1.3 × 10−6 1.5 × 10−6 9.7 × 10−5 1.8 × 10−4 0.05 0.02 0.08 0.02 2.0 × 10−5 4.8 × 10−5

S2ν1 0.13 3.1 × 10−4 0.10 1.1 × 10−3 0.06 0.01 0.04 0.01 0.13 1.9 × 10−3

f(x) 2.7 × 10−4 2.3 × 10−4 1.7 × 10−4 1.2 × 10−4 3.4 × 10−4
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It should be noted that during the modeling of the spectra of neurosporene and ζ-
carotene, after 10 runs of the program, we recorded 2–3 cases when the DE algorithm hit
local minima. The values of the model parameters found in these cases were very different
from those obtained in the other runs and did not agree with theoretical expectations.
Additionally, the minimized function f (xi) in these cases was about 10 times higher and
the obtained spectra did not visually correspond well with the experimental data. To obtain
more reliable results, additional runs of the program were conducted for these spectra
in order to avoid getting stuck in local minima. Considering that no further instances of
hitting local minima occurred during the modeling of the remaining three spectra, it can be
concluded that the developed method has sufficient robustness.

4. Discussion

The main feature of the obtained model parameters was the high precision with which
they were determined by the fitting procedure. The specified limit of 300 DE generations
allowed for minimizing the objective function for all five spectra. The objective function
dynamics (Figure 3) show that after 200 generations, the best agreement between the sim-
ulated and experimental data was achieved, but the next 100 generations of evolution
were necessary to stabilize the model parameters. Interestingly, the lineshape of the calcu-
lated spectrum underwent the strongest changes during the first few dozen generations of
evolution; then, the algorithm actually smoothed out some small parts of the profile.

Results in Table 2 show that the proposed semiclassical model converged to essentially
the same final parameters regardless of the random initialization before each DE run.
This was mainly due to the proper choice of the set of vibrational modes on the basis
of which the spectral density was calculated. For example, to take the effects of the
local environment (inhomogeneous broadening) on the optical response into account, six
vibrational modes from 100 to 600 cm−1 were considered when evaluating the spectral
density (Table 1). Hypothetically, each of these modes would contribute to the broadening
of the spectrum having non-zero Sj; however, optimization revealed that only the lowest
mode with ωj = 100 cm−1 contributed to the spectral density. The Huang–Rhys factors
of the other five modes tended to zero. If one compares S100 and the absorption linehapes
for different carotenoids, the following pattern is found. Spectra with a pronounced band
structure (neurosporene and ζ-carotene) have smaller S100 compared with spectra with
less pronounced ones. It is well known that Raman and IR spectroscopy of carotenoids do
not detect signals within the range of 100 to 600 cm−1 [18], which allows us to conclude
that the effectiveness of our optimization method was confirmed through the simulation of
carotenoid absorption spectra.

The modeling revealed that only neurosporene showed a significant contribution
for the four modes associated with the oscillation of specific chemical bonds (ν1, ν2, ν3,
and ν4). Huang–Rhys factors of the double and single carbon bonds, Sν1 and Sν2, proved
to be the key parameters determining the optical response. Each of these parameters is
significantly different from each other; the highest value of Sν1 corresponds to the spectrum
of neurosporaxanthin. It can be unambiguously stated that an increase in Sν1 leads to
a loss of fine structure in the carotenoid spectra. It is also important to note that only
neurosporene turned out to have non-zero for all four modes ν1−4. The contribution of
ν4 and ν3 to the spectral density for all other carotenoids was significantly zero (Table 2,
Figure 5).

It appeared that overtones of the vibrational modes played an essential role in the
modeling. For example, Huang–Rhys factors for 2ν1 overtone were found to be non-zero
for all spectra. Sν1+ν2 is non-zero only for two spectra of torulene and γ-carotene. S2ν1
is, in general, much smaller than Sν1 and Sν2 for all carotenoids, but its contribution to
the spectral density was significant (Table 2). This is due to the fact that in the equation
for spectral density (12), the numerator was the product Sjωγj(ω), which means that

the larger the frequency, the more intense was its contribution to
∼
C

′′

j (ω). Figure 4 shows
the calculated spectral densities for the best fit after optimization. The contribution of
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the ν1 mode and its overtone 2ν1 was dominant for all carotenoids. There was a study
in which the absorption of different carotenoids was modeled using the semiclassical
quantum theory [25]. Only ν1 and ν2 modes of the spectral density were used to calculate
the spectra (without considering overtones), and no optimization of the modeling was
carried out. This resulted in all calculated spectra having the same issue—a discrepancy
with the experimental data in the high-frequency region.

It is interesting to analyze the Huang–Rhys factors of the effective vibrational modes
obtained by modeling the optical response with the peculiarities of the chemical structure
of pigments. In addition to the main structural element, the polyene chain, carotenoids
may contain terminal groups, the functional roles of which are related to stabilization of the
molecule in pigment–protein complexes and lipid membranes, as well as modification of
the linear optical response. Neurosporene and ζ-carotene have no terminal groups and their
spectra differ from the other three carotenoids in our study by the presence of a lineshape
fine structure and narrower spectrum width. The fitting showed that S100 has lower values
for these molecules than for pigments with terminal groups. In any case, it can be argued
that terminal groups lead to broadening and smoothing of the |S0⟩ → |S2⟩ electronic
transition in carotenoids. Moreover, the presence of two different terminal groups (as in
neurosporoxanthin) corresponds to the highest intensity for the vibrational mode with
frequency ωj = 100 cm−1.

5. Conclusions

Considering the modeling of absorption spectra of neurosporaxanthin, neurosporene,
torulene, γ-carotene, and ζ-carotene as an example, it has been shown that the combined
implementation of the differential evolution algorithm and semiclassical quantum simula-
tion allows for the classification and analysis of the optical properties of organic pigments
in solvents. For each pigment, the electronic transition spectrum was modeled within
the framework of the multimode Brownian oscillator theory. As a result, we obtained
spectral density functions that reveal effective electron–phonon interaction energies for
vibrational modes ranging from 100 cm−1 to 3000 cm−1. Analysis of the Huang–Rhys
factors of the best-fitting models indicates that optical responses with weak inhomogeneous
broadening, such as that exhibited by neurosporene, has pronounced contribution of the
methyl rocking (ν3) mode. In contrast, the spectra with strong inhomogeneous broadening
results in a dominant contribution of the double carbon bonds (ν1). Pigments with well-
defined fine structures have lower values of Huang–Rhys factors for the low-frequency
mode (ωj = 100 cm−1). It is noteworthy that the largest value of Sj for ν1 was obtained for
neurosporaxanthin, whose molecular structure has the maximum asymmetry (two different
terminal groups).

By analyzing the spectra of pigments found in pathogenic organisms using the above-
mentioned method of optical response modeling, it is possible to create a database that
includes both the spectra of the pigment in different solvents and the calculated parameters
of the spectral density function. This method will allow us to distinguish vibrational
frequencies in the spectral density of a pigment that do not change significantly in response
to the external environment and those that are specific to a given environment. This
classification of frequencies can then be used to analyze the other spectra not included in
the database, and to determine whether they belong to a particular type of pigment. This
database can be used for early detection of crop infestation, both through remote sensing
and through the examination of samples washed from the surface of the grains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12233844/s1, Tables S1 and S2: The results of DE modeling
for neurosporaxanthin absorption; Tables S3 and S4: The results of DE modeling for neurosporene
absorption; Tables S5 and S6: The results of DE modeling for torulene absorption; Tables S7 and S8:
The results of DE modeling for γ-carotene absorption; Tables S9 and S10: The results of DE modeling
for ζ-carotene absorption.

https://www.mdpi.com/article/10.3390/math12233844/s1
https://www.mdpi.com/article/10.3390/math12233844/s1
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