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Abstract: In the present work, we study a simple mathematical model that describes the competition
of two bacterial species with an obligate one-way beneficial relationship for a limited substrate in a
bioreactor associated with leachate recirculation. The substrate is present into two forms, insoluble
and soluble substrates, where the latter is consumed by the two competing bacteria, which have
two general nonlinear growth rates. The reduction of the model to a 2D one facilitates the study of
the nature of the equilibrium points. The dynamic system admits multiple steady states. We provide
necessary and sufficient conditions on the added insoluble and soluble substrates and the dilution
rate to guarantee the existence, uniqueness, and local and global stability of such steady states. It is
deduced that the coexistence of both bacteria is possible, which contradicts the competitive exclusion
principle. In the second step, we propose an optimal control on the leachate recirculation rate that
reduces the organic matter inside the reactor. Finally, we provide some numerical examples that
corroborate and reinforce the theoretical findings.

Keywords: chemostat; competition; competitive exclusion principle; obligate one-way beneficial
relationship; leachate recirculation; local and global stability; coexistence; optimal control
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1. Introduction

A chemostat is a specific bioreactor used for the bacterial multiplication process for
certain substrates in a controlled environment. In particular, the chemostat was used for
the degradation of some organic matter in a liquid medium and to study the influence
of such nutriment on bacterial growth. The competition between two bacteria types for
a single essential resource has been considered in several theoretical studies. A classical
theory result postulates that the two species cannot coexist. This result is named the
competitive exclusion principle. The competitive exclusion principle was proved in several
mathematical studies [1–5]. Several similar mathematical models were proposed and are
analysed in [6–13], that aim to give an explanation of the coexistence of competing bacteria
in real life through intra- and inter-specific relationships [14–20]. In [13,21], a viral infection
was added to the competition which permits the persistence of both species.

The cooperation between different bacterial species has received great interest in recent
decades since it has a major role in biodiversity [22,23]. In [24], the authors claimed that
obligate intracellular bacteria can be found in all protozoa, plants, and animals, and that
these specific relationships ensure the stable integration of the cell into a biological system,
which is known as the endosymbiosis theory [25,26]. By using real experiments, it was
deduced that in several cases, these relationships between two bacteria are obligatory
and could be either in one or in both directions [27–32]. This would, of course, reflect
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the principle of competitive exclusion and keep the biodiversity in an ecosystem, which
is also relevant from an engineering point of view. In fact, ensuring the presence of a
microorganism inside an ecosystem provides several advantages. Such diversity plays a
major role in several potential applications in agriculture and pollutant treatment.

In this paper, we consider an obligate one-way beneficial relationship between two species,
where one species of which derives a benefit while the other suffers no harm and derives
no advantage. More simply, we consider a relationship between two species in which one
obtains benefits from the other without harming or benefiting it. The species that draws
the benefit can be seen as a commensal, while the other can be seen as the host species [33].
Moreover, several studies have used the leachate recirculation within the waste of a waste
storage center by creating favourable humidity conditions for the biodegradation of the
organic matter contained in the waste [34,35]. Hence, it became possible to observe whether
this technical choice allows for a reduction in the amounts of waste within this environment
in the long term. Several tests were carried out in the laboratory to clarify the influence of
physico-chemical factors and leachate recirculation on the characteristics of organic matter
in household waste [36]. These studies demonstrate that the recirculation of leachates
accelerates the production of biogas and the transfer of matter from the solid compartment
to the liquid compartment [37]. Waste that has been treated with leachate recirculation
shows advanced biodegradation of its organic matter compared to other waste [38]. In [39],
the authors studied the problem of leachates in landfills, while [40] concerns a bioreactor in
batch mode, which is the form most commonly used to model a landfill. Few mathematical
works have modelled the leachate recirculation in a bioreactor [41–43]. In the present work,
we extend the classical chemostat’s model [44] by considering a competition of two bacterial
species that have an obligate one-way beneficial relationship when we recirculate the
leachate inside the chemostat. The dynamics admits three steady states that we characterise
in this work. Furthermore, we design an optimal control of the recirculation of leachate to
optimise the organic matter inside the reactor.

The article is organised as follows: in Section 2, we present a four-dimensional dynami-
cal system describing the competition of two bacterial species that have an obligate one-way
beneficial relationship for an essential nutriment in a chemostat where the existence of
the first biomass depends essentially on the presence of both the substrate and the second
species, while the existence of the second species depends only on the presence of the
substrate. We take into account the leachate recirculation in the reactor. In Section 3, some
hypotheses on the bacterial growth rates are added, the positivity and boundedness of
the solution are proved, and the definition of equilibrium points is provided. In Section 4,
the four-dimensional dynamical system is reduced to planar dynamics. We discuss the
existence and the stability of the equilibria of the reduced dynamics with respect to the
operating parameters (substrates input concentrations and dilution rate) and the bacterial
growth rates. Next, in Section 5, we discuss the global stability for the reduced dynamics
and then for the main dynamics. In Section 6, we propose an optimal control strategy by
minimising the organic matter inside the reactor and keeping an optimal recirculation rate
for the leachate. In Section 7, we provide several numerical tests that validate the main
theoretical results for both the direct and the optimal control problems. We finish the paper
by providing a brief conclusion in Section 8.

2. Mathematical Model

The model proposed in this work is an extension of the classical chemostat model [44]
by adding an obligate benefit relationship in one direction from the first species to the
second one and by taking account of the leachate recirculation inside the reactor (see
Figure 1) as it is applied in some references [39–41,43] with generalised growth functions.
Let us denote by S1(t), S2(t), X1(t), and X2(t) the main variables of the dynamical system
describing the concentrations of insoluble and soluble substrates, species 1 and species 2,
present in the reactor at time t (see Figure 2).



Mathematics 2024, 12, 3819 3 of 19

S1 X1

S2 X2

σ
(r)S

1

f 1(
S 2,

X 2)
X 1

f2(S2)X1

DSin
1

DSin
2

Oblig
ate

ben
efi

t

DS2

DS1 DX1

DX2

Figure 1. Interactions between two competing bacteria associated with an obligate one-way benefit
and recirculation of the leachate [43].
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Figure 2. A classical bioreactor (Chemostat) associated with leachate recirculation [41].

Our model is given by the following four-dimensional dynamics.
Ṡ1 = D(Sin

1 − S1)− σ(r)S1,

Ṡ2 = D(Sin
2 − S2) + σ(r)S1 − f1(S2, X2)

X1

Y1
− f2(S2)

X2

Y2
,

Ẋ1 = ( f1(S2, X2)− D)X1,
Ẋ2 = ( f2(S2)− D)X2,

(1)

where Sin
1 and Sin

2 denote the concentrations of added soluble and insoluble substrates to the
reactor, respectively. Y1 and Y2 are the yield coefficients. D describes the rate of dilution of the
reactor. The constant parameters Sin

1 , Sin
2 , D, Y1, and Y2 are positive. The growth functions

f1 : R2
+ → R+ and f2 : R+ → R+ are of class C1. The hydrolysis rate σ : R+ → R+ is a C1

function on R+. More details on the variables and parameters are given in Table 1.

Table 1. Variables, functions and parameters of the dynamics (1).

Notification Significance

S1 Insoluble substrate
S2 Soluble substrate
X1 Species 1
X2 Species 2
r Leachate recirculation rate

σ(·) Hydrolysis rate
f1(·, ·) Growth function of bacteria 1.
f2(·) Growth function of bacteria 2.
Sin

1 Insoluble substrate input
Sin

2 Soluble substrate input
D Dilution rate

Y1, Y2 Yield coefficients
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A simple transformation of the dynamics (1) can be made through the new notations

as follows: s1 = S1, sin
1 = Sin

1 , s2 = S2, sin
2 = Sin

2 , x1 =
X1

Y1
, x2 =

X2

Y2
, µ1(s2, x2) = f1(S2, X2),

and µ2(s2) = f2(S2). We obtain a more simple system as follows:
ṡ1 = D(sin

1 − s1)− σ(r)s1,
ṡ2 = D(sin

2 − s2) + σ(r)s1 − µ1(s2, x2)x1 − µ2(s2)x2,
ẋ1 = (µ1(s2, x2)− D)x1,
ẋ2 = (µ2(s2)− D)x2,

(2)

where sin
1 > 0, sin

2 > 0, D > 0. The functions µ1 : R2
+ → R+, µ2 : R+ → R+, and

σ : R+ → R+ are of class C1 satisfying:

A1. µ2(0) = 0, µ′2(s2) > 0, ∀ s2 ∈ R+.
A2. µ1(s2, 0) = µ1(0, x2) = 0, ∀ s2, x2 ∈ R+.

A3.
∂µ1

∂s2
(s2, x2) > 0, ∀ (s2, x2) ∈ R2

+.

A4.
∂µ2

∂x2
(s2, x2) > 0, ∀ (s2, x2) ∈ R2

+.

A5. σ(·) is increasing such that σ(0) = 0.

Assumption A1 expresses that no growth can be possible without the presence of
the soluble substrate for bacteria 2, and that bacteria 2 growth increases with the soluble
substrate concentration. Assumption A2 expresses that no growth can be possible without
both soluble substrate and species 2 for species 1. Assumptions A3 and A4 express that
species 1 growth increases with both soluble substrate and species 2. X2 (species 2) favors
the growth of X1 (species 1), while X1 (species 1) has no direct action on X2 (species 2) apart
from competition for substrate. Assumption A5 confirms that no production of soluble
substrate can take place without leachate recirculation associated with the presence of the
insoluble substrate that will be converted into a soluble one.

Remark 1. The function of Holling type II known also as Monod functions [45,46] can express
growth rates that satisfy all previous assumptions: A1 to A4.

µ1(s2, x2) =
µ̄1s2x2

(1 + p1s2)(1 + qx2)
and µ2(s2) =

µ̄2s2

(1 + p2s2)
,

where the constants µ̄1, µ̄2, p1, p2, and q are positive.

3. Basic Properties

Lemma 1. If the function σ : R+ → R+ satisfies Assumption A5, then there exists a unique value
s∗1 ∈ (0, sin

1 ) satisfying
σ(r)s∗1 = D(sin

1 − s∗1), (3)

where s∗1 =
Dsin

1
D + σ(r)

.

Proof. Consider the function τ(s1) = D(sin
1 − s1)− σ(r)s1; thus, τ′(s1) = −D− σ(r) < 0,

τ(0) = Dsin
1 > 0, and τ(sin

1 ) = −σ(r)sin
1 < 0. Then, there exists a unique value s∗1 ∈ (0, sin

1 )
that satisfies (3).

Consider the following assumption on the species 2 growth rate µ2.

A6. µ2(sin
1 + sin

2 − s∗1) > D.

Lemma 2. If µ2 : R+ → R+ satisfies assumptions A1 and A6, then there exists a unique value
s∗2 ∈ (0, sin

1 + sin
2 − s∗1) that satisfies

µ2(s∗2) = D. (4)
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Proof. It is evident because µ2 is an increasing function that satisfies µ2(0) = 0,
µ2(sin

1 + sin
2 − s∗1) > D.

Consider the following assumption on the species 1 growth rate µ1.

A7. µ1(s∗2 , sin
1 + sin

2 − s∗1 − s∗2) > D.

Lemma 3. Under assumptions A2, A4, and A7, then there exists a unique value x∗2 such that
x∗2 ∈

(
0, sin

1 + sin
2 − s∗1 − s∗2

)
satisfying

µ1(s∗2 , x∗2) = D. (5)

Proof. It is evident because µ1(s∗2 , sin
1 + sin

2 − s∗1− s∗2) > D, µ1(s∗2 , 0) = 0 and x2 → µ1(s∗2 , x2)
is an increasing function.

The solution of the dynamics (2) is defined on the non-negative cone [44] and satisfies
the following Proposition.

Proposition 1. 1. All solutions of the dynamics (2) are non-negative and bounded.
2. Ω =

{
(s1, s2, x1, x2) ∈ R4

+ | s1 + s2 + x1 + x2 = sin
1 + sin

2
}

is a positively invariant set
attracting all solutions of the dynamics (2).

Proof. 1. R4
+ is invariant since we have s1(t) = 0 ⇒ ṡ1(t) = Dsin

1 > 0, s2(t) = 0 ⇒
ṡ2(t) = Dsin

2 + σ(r)s1 > 0, xi(t) = 0⇒ ẋi(t) = 0 for i = 1, 2 .
Consider the variable V(t) = s1(t) + s2(t) + x1(t) + x2(t)− sin

1 − sin
2 . The sum of the

four equations of system (2) gives us

V̇(t) = −DV(t). (6)

Thus, s1(t) + s2(t) + x1(t) + x2(t) = sin
1 + sin

2 +V(0)e−Dt with V(0) = s1(0) + s2(0) +
x1(0) + x2(0)− sin

1 − sin
2 . As all components of V(t) are non-negative, thus, we obtain

the boundedness of the solution.
2. It is deduced from Equation (6).

Lemma 4. Let (s1, s2, x1, x2) be a solution of the system (2). Consider

ρ1 = s1− s∗1 and ρ2 = sin
1 + sin

2 − s1− s2− x1− x2 = sin
1 + sin

2 − s∗1 − ρ1− s2− x1− x2. (7)

Then,
ρ̇1 = −[D + σ(r)]ρ1, (8)

ρ̇2 = −Dρ2, (9)

and {
ẋ1 = (µ1(sin

1 + sin
2 − s∗1 − ρ1 − ρ2 − x1 − x2, x2)− D)x1,

ẋ2 = (µ2(sin
1 + sin

2 − s∗1 − ρ1 − ρ2 − x1 − x2)− D)x2.
(10)

Let us now study the nature of the equilibrium points of the system (2).

Theorem 1. Assume that the functions of system (2) verify Assumptions A1 to A7. Then, the
system (2) has three equilibrium points given by

E0 = (s∗1 , sin
1 + sin

2 − s∗1 , 0, 0), E2 = (s∗1 , s∗2 , 0, sin
1 + sin

2 − s∗1 − s∗2) and E∗ = (s∗1 , s∗2 , x∗1 , x∗2),

where s∗1 is defined by Lemma 1, s∗2 is defined by Lemma 2, x∗2 is defined by Lemma 3, and
x∗1 = sin

1 + sin
2 − s∗1 − s∗2 − x∗2 .
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Proof. Assume that the functions of system (2) verify Assumptions A1 to A7. Let
Ee = (se

1, se
2, pe, xe

1, xe
2) be a non-negative equilibrium point of system (2); then, we obtain

σ(r)se
1 = D(sin

1 − se
1),

µ1(se
2, xe

2)xe
1 = Dxe

1,
µ2(se

2)xe
2 = Dxe

2,
se

1 + se
2 + xe

1 + xe
2 = sin

1 + sin
2 .

(11)

If xe
1 = 0, then se

1 = s∗1 , and either xe
2 = 0 and then Ee = E0 or xe

2 ̸= 0 and then se
2 = s∗2

and xe
2 = sin

1 + sin
2 − s∗2 ; therefore, we obtain Ee = E2. The case x1 ̸= 0 and x2 = 0 is

impossible, since µ1(se
2, 0) = 0 ̸= D. Still, there is the case when x1 ̸= 0 and x2 ̸= 0. Then,

we obtain σ(r)se
1 = D(sin

1 − se
1), µ1(se

2, xe
2) = µ2(se

2) = D, and se
1 + se

2 + xe
1 + xe

2 = sin
1 + sin

2 .
From Lemmas 1–3, we deduce that se

1 = s∗1 , se
2 = s∗2 and xe

2 = x∗2 and thus x∗1 = sin
1 +

sin
2 − s∗1 − s∗2 − x∗2 . Therefore, we deduce the uniqueness of the positive equilibrium point,

Ee = E∗.

4. Reduced System

In order to study the stability of model (2), we can restrict system (2) to the invariant
attractor set Ω to obtain the following planar system.{

ẋ1 = ψ1(x1, x2),
ẋ2 = ψ2(x1, x2),

(12)

with (
ψ1(x1, x2)
ψ2(x1, x2)

)
=

(
(µ1(sin

1 + sin
2 − s∗1 − x1 − x2, x2)− D)x1

(µ2(sin
1 + sin

2 − s∗1 − x1 − x2)− D)x2

)
,

and
S =

{
(x1, x2) ∈ (R∗+)2 : 0 < x1 + x2 < sin

1 + sin
2 − s∗1

}
, (13)

as state space. Observe that the dynamics (2) and (10) are equivalent and that the dynamics (12)
is deduced when considering the dynamics (10) such that ρ1 = 0 and ρ2 = 0.

According to Theorem 1, the planar dynamics (12) admits three equilibrium points
given by F0 = (0, 0), F2 = (0, sin

1 + sin
2 − s∗1 − s∗2) and F∗ = (x∗1 , x∗2).

Lemma 5. Assume that Assumptions A1 to A7 are satisfied. Therefore, F0 and F2 are saddle points
and F∗ is a locally exponentially stable equilibrium point for system (12).

Proof. The Jacobian matrix is given by

J(x1, x2) =

 µ1 − D− ∂µ1

∂s2
x1 −∂µ1

∂s2
x1 +

∂µ1

∂x2
x1

−µ′2x2 µ2 − D− µ′2x2

,

such that µ1 is expressed at (sin
1 + sin

2 − s∗1 − x1 − x2, x2) and µ2 is expressed at (sin
1 + sin

2 −
s∗1 − x1 − x2). Let us study the matrices J(F0), J(F2) and J(F∗). Since

J(F0) =

[
−D 0

0 µ2(sin
1 + sin

2 − s∗1)− D

]
,

then the eigenvalues are X1 = −D < 0 and X2 = µ2(sin
1 + sin

2 − s∗1)− D > 0 according to
Assumption A6. Consequently, F0 is a saddle point of (12). The matrix at J(F2) is given by

J(F2) =

[
µ1(s∗2 , sin

2 + sin
1 − s∗1 − s∗2)− D 0

−µ′2(s
∗
2)(s

in
2 + sin

1 − s∗1 − s∗2) −µ′2(s
∗
2)(s

in
2 + sin

1 − s∗1 − s∗2)

]
.



Mathematics 2024, 12, 3819 7 of 19

Their eigenvalues are X1 = µ1(s∗2 , sin
1 + sin

2 − s∗1 − s∗2)− D > 0 by Assumption A7 and
X2 = −µ′2(s

∗
2)(s

in
1 + sin

2 − s∗1 − s∗2) < 0. Consequently, F2 is a saddle point of (12).
The matrix at J(F∗) is given by

J(F∗) =

 −∂µ1(s∗2 , x∗2)
∂s2

x∗1 −∂µ1(s∗2 , x∗2)
∂s2

x∗1 +
∂µ1(s∗2 , x∗2)

∂x2
x∗1

−µ′2(s
∗
2)x∗2 −µ′2(s

∗
2)x∗2

. (14)

Note that

tr(J(F∗)) = −∂µ1(s∗2 , x∗2)
∂s2

x∗1 − µ′2(s
∗
2)x∗2 < 0,

and

det(J(F∗)) = µ′2(s
∗
2)x∗2

∂µ1(s∗2 , x∗2)
∂x2

x∗1 > 0.

Thus, J(F∗) has two eigenvalues with negative real parts, and then the equilibrium
point F∗ is locally exponentially stable.

Theorem 2. Assume that Assumptions A1 to A7 are verified. Therefore, E0 and E2 are saddle
points; however, E∗ is a locally exponentially stable equilibrium point.

Proof. It is evident that the equilibrium points E0, E2 and E∗ have the same nature as the
equilibrium points F0, F2 and F∗, respectively.

5. Global Analysis

We start by studying the global stability of the reduced system (12). Then, we deduce
on the global stability of (2).

5.1. Global Stability of (12)

We start by proving that S and S are positively invariant sets and that system (12) has
no possible periodic orbits inside S .

Lemma 6. Assume that Assumptions A1–A7 hold. The sets S and S are positively invariant sets.
Furthermore, the model (12) admits no periodic solution inside S .

Proof. We can verify that S and S are positively invariant, since we have

ẋ1 + ẋ2 = µ1(sin
1 + sin

2 − s∗1− (x1 + x2), x2)x1 +µ2(sin
1 + sin

2 − s∗1− (x1 + x2))x2−D(x1 + x2).

Now, consider a solution of (12) inside S , and we aim to exclude the possibility of a
periodic solution inside S .

Notice that axis x1 = 0 and x2 = 0 are invariant. By using the change of variables
ζ1 = ln(x1) and ζ2 = ln(x2) for x1, x2 > 0. Thus, we obtain the new dynamics given hereafter:{

ζ̇1 = g1(ζ1, ζ2) := µ1(sin
1 + sin

2 − s∗1 − eζ1 − eζ2 , eζ2)− D ,
ζ̇2 = g2(ζ1, ζ2) := µ2(sin

1 + sin
2 − s∗1 − eζ1 − eζ2)− D.

(15)

Note that for eζ1 + eζ2 < sin
1 + sin

2 − s∗1 , we have
∂g1

∂ζ1
+

∂g2

∂ζ2
= −∂µ1

∂s2
(sin

1 + sin
2 − s∗1 − eζ1 − eζ2 , eζ2)eζ1

−µ′2(s
in
1 + sin

2 − s∗1 − eζ1 − eζ2)eζ2 < 0.
(16)

We consider the criterion of Dulac (see [47], Chapter 6) when applied to (15) for
trajectories belonging to the simply connected region

D =
{
(ζ1, ζ2) ∈ R2 : eζ1 + eζ2 < sin

1 + sin
2 − s∗1

}
.
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Since
∂g1

∂ζ1
+

∂g2

∂ζ2
does not change signs in D, this criterion ensures that the system (15)

has no periodic trajectory inD. Then, the dynamics (12) has no periodic orbit in S . It cannot
have polycycles because there is only one equilibrium point in S . Next, let us proceed
by contradiction to prove that the system (12) has no periodic orbit inside S . Suppose
that there exists in S a periodic solution of (12) that we denote (x1(t), x2(t)). We deduce
easily from the fact that S is positively invariant that necessarily either x1(t) = 0 for all
t ≥ 0 or x2(t) = 0 for all t ≥ 0. If x1(t) = 0 for all t ≥ 0; then, necessarily, for all t ≥ 0,
ẋ2(t) = [µ2(sin

1 + sin
2 − s∗1 − x2(t))−D]x2(t). Thanks to Assumptions A1 to A7, we deduce

that necessarily, x2(t) converges either to 0 or to sin
1 + sin

2 − s∗1 − s∗2 when the time tends to
the infinity. If x2(t) = 0 for all t ≥ 0, then necessarily, for all t ≥ 0, ẋ1(t) = −Dx1(t) and
x1(t) converges to zero when the time tends to the infinity. This concludes the proof.

We are ready to establish a crucial result for planar system (12).

Theorem 3. Suppose that Assumptions A1 to A7 are satisfied and consider system (12). Then, the
point F∗ is a globally asymptotically stable equilibrium point of (12) on S .

Proof. Consider a solution (x1(t), x2(t)) of (12) belonging to S . The system (12) has no
unbounded trajectory in S because S is a positively invariant compact set. Therefore,
(x1(t), x2(t)) is a bounded trajectory. Consequently, it admits a compact ω-limit set, that
we denote ω, which is included in S . According to the Poincaré–Bendixon Theorem [47],
ω either contains an equilibrium point or (12) admits a periodic solution in S . Since
Lemma 6 ensures that there exist no periodic solutions of (12) in S , necessarily ω contains
an equilibrium point of (12). The system (12) admits three equilibrium points F0, F2 and F∗.
F0 and F2 are saddle points, and only F∗ is a stable node. If F∗ ∈ ω, then F∗ = ω because F∗

is locally exponentially stable (see Lemma 5). Next, let us prove that F∗ ∈ ω by proceeding
by contradiction.

Let x1(0) > 0, x2(0) > 0. ω is an invariant compact set and ω ⊂ S̄ . Assume that ω
contains a point M on the x1x2 axis:

• M cannot be F0, because F0 is an unstable node and cannot be a part of the ω-limit set
of (x1(0), x2(0));

• If M ∈]0, sin
1 + sin

2 − s∗1 − s∗2 [×{0}. ω contains γ(M) =]0, sin
1 + sin

2 − s∗1 − s∗2 [×{0}.
Since ω is compact, then it contains the adherence [0, sin

1 + sin
2 − s∗1 − s∗2 ]× {0}; thus,

ω contains F0, which is not possible;
• If M ∈ {0}×]sin

1 + sin
2 − s∗1 − s∗2 , sin

1 + sin
2 − s∗1 ]. As ω is invariant, then γ(M) ⊂ ω,

which is not possible since ω is bounded and γ(M) = {0}×]sin
1 + sin

2 − s∗1 − s∗2 ,+∞[;
• If M ∈ {0}×]0, sin

1 + sin
2 − s∗1 − s∗2 [. ω contains γ(M) = {0}×]0, sin

1 + sin
2 − s∗1 − s∗2 [.

Since ω is compact, then it contains the adherence {0} × [0, sin
1 + sin

2 − s∗1 − s∗2 ] and
then ω contains F0, which is not possible;

• If M = F2, then ω is not reduced to F2. Using the theorem of Butler–McGehee, we
deduce that ω contains a point P of {0} × (0,+∞) other that F2, which is not possible.

Thus, the ω-limit set cannot contain any point from the x1x2 axis. This allows us to
conclude that all the trajectories of the dynamics (12) in S converge asymptotically to F∗.

5.2. Global Analysis of the Main Dynamics (2)

In this section, we aim to prove the main results of this paper.

Theorem 4. Suppose that the dynamics (2) satisfies Assumptions A1 to A7. Therefore, the steady
state E∗ is globally asymptotically stable.

Proof. Theorem 4 will be proved by using an approach applied in [16] since the dynamics of
the system (12) admits only stable and unstable steady states, and there are neither periodic
trajectories nor cyclic chains. By using the results of Theme [48], we deduce the asymptotic
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behaviors of the trajectories of the main dynamics (2) from the asymptotic behaviors of the
trajectories of the reduced dynamics (12). Let (s1(t), s2(t), x1(t), x2(t)) be a solution of (2).
Therefore, (x1(t), x2(t)) is a trajectory of the following non-autonomous system:{

ẋ1 = (µ1(sin
1 + sin

2 − s∗1 − ρ1 − ρ2 − x1 − x2, x2)− D)x1,
ẋ2 = (µ2(sin

1 + sin
2 − s∗1 − ρ1 − ρ2 − x1 − x2)− D)x2,

(17)

where ρ1 and ρ2 are solutions of Equations (8) and (9), which converge asymptotically
to zero. This dynamics (17) is a non-autonomous dynamics which converges to the au-
tonomous dynamics (12). Note that the reduced system (12) admits only locally stable and
unstable steady states, and there are no periodic trajectories nor cyclic chains. Therefore,
by using the theory of Thieme [48], we conclude that the asymptotic behaviours of the
trajectories of the main dynamics (17) from the asymptotic behaviours of the trajectories of
the reduced dynamics (12). This allows us to conclude.

Remark 2. An alternative way to prove Theorem 4 is by considering the new coordinates

ρ1 = s1 − s∗1 , and ρ2 = sin
1 + sin

2 − s1 − s2 − x1 − x2 = sin
1 + sin

2 − s∗1 − ρ1 − s2 − x1 − x2,

which leads us to consider the system
ω̇ = Aω,
ẋ1 = (µ1(sin

1 + sin
2 − s∗1 − ρ1 − ρ2 − x1 − x2, x2)− D)x1,

ẋ2 = (µ2(sin
1 + sin

2 − s∗1 − ρ1 − ρ2 − x1 − x2)− D)x2,
(18)

with ω = (ρ1, ρ2)
⊤, A =

(
−(D + σ(r)) 0

0 −D

)
. Therefore, since the dynamics (18) satisfies

the assumptions given in [44] (Appendix F), we can conclude on the global asymptotic stability of
the equilibrium point E∗.

For the rest of the paper, we assume that σ(r) = σ̄ r with σ̄ > 0 is a constant.

6. Optimal Control on Leachate Recirculation

Assume that the leachate is added to the reactor continuously with a rate r which
is different to the dilution rate, D. The main goal of the optimal strategy is to reduce
the organic matter (s1(t), s2(t)) inside the chemostat through an optimal rate for leachate
recirculation. Therefore, we will assume that the rate r(t) (recirculation costs) is variable
on the time interval [0, T] where T > 0 is a constant. Assume that µ1 and µ2 are glob-
ally Lipschitz having Lipschitz constants L1 and L2, respectively, with upper bounds
µmax

1 = sup
s2,x2>0

µ1(s2, x2) and µmax
2 = sup

s2>0
µ2(s2), respectively. Therefore, the goal is to find

the optimal control function r = r(t) in the admissible set

Pad = {r(t) : 0 ≤ rmin ≤ r(t) ≤ rmax, 0 ≤ t ≤ T, r(t) is Lebesgue measurable}.

minimising the functional given hereafter:

J(r) =
κ1

2

∫ T

0
s2

1(t) dt +
κ2

2

∫ T

0
s2

2(t) dt +
κ3

2

∫ T

0
r2(t) dt.

For appropriate values of the constants κ1 > 0, κ2 > 0 and κ3 > 0, we aim to minimise
the quantity of the organic matter in its two forms and keeping minimal the control cost.
By using the theory in [49], one can easily prove that both the optimal control and the state
exist. For φ = (s1, s2, x1, x2)

t, the model (2) can be written as follows

φ̇ = Bφ + H1(φ) = H2(φ) (19)
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with B =


−D 0 0 0

0 −D 0 0
0 0 −D 0
0 0 0 −D

 and

H1(φ) =


Dsin

1 − σ̄r s1
Dsin

2 + σ̄rs1 − µ1(s2, x2)x1 − µ2(s2)x2
µ1(s2, x2)x1

µ2(s2)x2

.

Theorem 5. The continuous function H2 is uniformly Lipschitz.

Proof. One can see that the continuous function H1 is uniformly Lipschitz once it satisfies∥∥H1(φ′)− H1(φ)
∥∥

1 =
∣∣∣σ̄rs′1 − σ̄rs1

∣∣∣+ ∣∣∣µ1(s′2, x′2)x′1 − µ1(s2, x2)x1

∣∣∣
+
∣∣∣µ2(s′2)x′2 − µ2(s2)x2

∣∣∣+ ∣∣∣σ̄rs′1 − σ̄r s1

−(µ1(s′2, x′2)x′1 − µ1(s2, x2)x1)− (µ2(s′2)x′2 − µ2(s2)x2)
∣∣∣

≤ 2σ̄r
∣∣∣s′1 − s1

∣∣∣+ 2
∣∣∣µ1(s′2, x′2)x′1 − µ1(s2, x2)x1

∣∣∣
+2
∣∣∣µ2(s′2)x′2 − µ2(s2)x2

∣∣∣
≤ 2σ̄rmax|s′1 − s1|+ 2µmax

1 |x′1 − x1|
+2(sin

1 + sin
2 )L1

∣∣∣(s′2, x′2)− (s2, x2)
∣∣∣

+2µmax
2 |x′2 − x2|+ 2(sin

1 + sin
2 )L2

∣∣∣x′2 − x2

∣∣∣
≤ L

∥∥φ1 − φ2
∥∥

1,

where L = max(2σ̄rmax, 2µmax
1 , 2(sin

1 + sin
2 )L1, 2µmax

2 , 2(sin
1 + sin

2 )L2). The matrix B satisfies∥∥Bφ1 − Bφ2
∥∥

1 ≤ D
∥∥φ1 − φ2

∥∥
1,

thus, ∥∥H2(φ1)− H2(φ2)
∥∥

1 ≤ δ
∥∥φ1 − φ2

∥∥
1,

with δ = max(L, D) and thus the continuous function, H2 is uniformly Lipschitz.

Thus, the dynamics (19) has a unique solution. By using Pontryagin’s maximum
principle [49–51], the control problem can be studied using the Hamiltonian function
as follows:

H =
κ1

2
s2

1 +
κ2

2
s2

2 +
κ3

2
r2 + λ1 ṡ1 + λ2 ṡ2 + λ3 ẋ1 + λ4 ẋ2

=
κ1

2
s2

1 +
κ2

2
s2

2 +
κ3

2
r2 + λ1(D(sin

1 − s1)− σ̄rs1) + λ2(D(sin
2 − s2) + σ̄rs1

−µ1(s2, x2)x1 − µ2(s2)x2) + λ3(µ1(s2, x2)x1 − Dx1) + λ4(µ2(s2)x2 − Dx2).

(20)

The adjoint variables λ1, λ2, λ3, and λ4 are solutions of the following adjoint system

λ̇1 = −∂H
∂s1

= −κ1s1 + λ1(D + σ̄r)− λ2σ̄r,

λ̇2 = −∂H
∂s2

= −κ2s2 + λ2(D +
∂µ1(s2, x2)

∂s2
x1 + µ′2(s2)x2)

−λ3
∂µ1(s2, x2)

∂s2
x1 − λ4µ′2(s2)x2,

λ̇3 = − ∂H
∂x1

= (λ2 − λ3)µ1(s2, x2) + Dλ3,

λ̇4 = − ∂H
∂x2

= (λ2 − λ3)
∂µ1(s2, x2)

∂x2
x1 + (λ2 − λ4)µ2(s2) + Dλ4,

(21)
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satisfying λ1(T) = 0, λ2(T) = 0, λ3(T) = 0, and λ4(T) = 0.
The derivatives of the Hamiltonian are given by

∂H
∂r

= κ3r− λ1σ̄s1 + σ̄λ2s1 = κ3r + σ̄(λ2 − λ1)s1.

Therefore,
∂H
∂r

= 0 has a unique solution given by

r∗(t) =
σ̄

κ3
(λ1 − λ2)s1,

provided that κ3 ̸= 0 and 0 < rmin ≤ σ̄

κ3
(λ1 − λ2)s1 ≤ rmax. To summarise, the control

characterisation is:
if

∂H
∂r

< 0 at t, then r(t) = rmax,

if
∂H
∂r

> 0 at t, then r(t) = rmin,

if
∂H
∂r

= 0 at t, then r(t) = r∗(t) =
σ̄

κ3
(λ1 − λ2)s1.

7. Numerical Examples

We confirm the obtained results by some numerical examples by taking Holling’s
functions type II [45,46] (also known as Monod functions) to describe the growth functions
and the hydrolysis function.

µ1(s2, x2) =
µ̄1s2x2

(1 + p1s2)(1 + qx2)
, µ2(s2) =

µ̄2s2

(1 + p2s2)
, and σ(r) = σ̄r,

where the constants µ̄1, µ̄2, p1, p2, q, and σ̄ are positive. The used functions µ1, µ2, and σ
satisfied Assumptions A1 to A7. The values of the parameters are given in Table 2. The nu-
merical method applied to solve the model is the Runge–Kutta–Fehlberg method (RKF45)
under MATLAB R2024a software (ode45).

Table 2. The used parameters values for the numerical simulations. Since we have no biological data,
the parameter values are chosen arbitrarily.

Parameter µ̄1 µ̄2 σ̄ p1 p2 q sin
1 sin

2

Value 25 35 0.1 8 4.75 0.01 2 6

7.1. Numerical Examples for System (2)

We provide several numerical examples for system (2) where the leachate recirculation
rate is fixed; r = 2. We start by three examples satisfying Assumptions A1 to A7 where the
dilution rate D = 5.9, D = 6.8, and D = 6.9, which ensure the global stability of the unique
positive equilibrium point E∗ as it is proved in Theorem 4. The persistence of competing
bacteria can be seen in Figures 3–5 (left). By varying the initial conditions, the solutions
converge to the positive point (Figures 3–5, right).
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Figure 3. Comportment of system (2); the comportment of the components (left) and the x1 − x2

comportment (right) for D = 5.9.The red dot (right) is the equilibrium point in the plane (x1, x2).

Figure 4. Comportment of system (2); the comportment of the components (left) and the x1 − x2

comportment (right) for D = 6.8. The red dot (right) is the equilibrium point in the plane (x1, x2).

Figure 5. Comportment of system (2); the comportment of the components (left) and the x1 − x2

comportment (right) for D = 6.9. The red dot (right) is the equilibrium point in the plane (x1, x2).
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In Figure 6, we chose D = 7 satisfying Assumptions A1 to A6 but not Assumption A7.
As can be seen, species 2 persists; however, species 1 goes to extinction and the global stabil-
ity of the steady state E2 (Figure 6, right). In Figure 7, D = 8 and thus Assumptions A1 and A5
are not verified. Both competing bacteria go to extinction and then the trivial steady state
E0 is globally asymptotically stable. All solutions filling the positive cone converge to the
point (0, 0) (Figure 7, right). By comparing Figures 3–7, one can see that by increasing the
dilution rate (D) values, the equilibrium point E∗ approaches slowly the steady state E2

for a range of values of D; then, the steady state E2 approaches the trivial steady state E0

corresponding to the extinction of both bacteria.

Figure 6. Comportment of system (2); the comportment of the components (left) and the x1 − x2

comportment (right) for D = 7. The red dot (right) is the equilibrium point in the plane (x1, x2).

Figure 7. Comportment of system (2); the comportment of the components (left) and the x1 − x2

comportment (right) for D = 8. The red dot (right) is the equilibrium point in the plane (x1, x2).

7.2. Numerical Examples for the Control Problem

In the following examples, we assume that the control, r, is a time-varying function,
r(t), with bounds given by rmin = 0.01 and rmax = 5 and initial value r(0) = 0.05. We
consider an initial state value x0 = (12, 16, 0.01, 0.01) with final time T = 10. The used
numerical scheme for the control problem is given in Appendix A.
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As it is seen in Figures 8–10, the optimal solution is very smooth. The values of the
control decrease if we increase the κ3 values; however, they increase if we increase the
values of κ1 and κ2. Note that the final values of the organic matter and the biomass are the
same when changing the values of κ1, κ2, and κ3. The optimal strategy allows to decrease
the organic matter and optimise the control values (costs).

Figure 8. Influence of the optimal strategy on the dynamics for κ1 = 1, κ2 = 1, κ3 = 1, D = 5.9.

Figure 9. Influence of the optimal strategy on the dynamics for κ1 = 1, κ2 = 1, κ3 = 10, D = 5.9.

Figure 10. Influence of the optimal strategy on the dynamics for κ1 = 10, κ2 = 10, κ3 = 1, D = 5.9.
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8. Conclusions

We studied a simple four-dimensional mathematical model describing an obligate
one-way beneficial relationship from one species to the other one under perfect mixing
conditions in the presence of the leachate recirculation. We considered a two-component
nutriment whose soluble component is degraded by both competing species and the insolu-
ble nutriment is exposed to a solubilisation process. We reduced the model to a planar one,
we study the local and global stability, and then we applied Thieme’s results [48] to deduce
the persistence of both competing bacteria. This result contradicts the competitive exclusion
principle. Furthermore, we proposed an optimal control on the leachate recirculation with
the aim to reduce the organic matter inside the chemostat with optimal operation costs.
Finally, we provided several numerical tests confirming the obtained results.

The effect of leachate recycling can be considered in several bioreactor configurations,
in particular the membrane bioreactor process for a wastewater treatment. Another possible
extension of this study that can be considered in the future is to investigate the impact of
the periodic dilution rate on increasing bacteria production, which leads to reducing the
organic matter (both insoluble and soluble nutriments).
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Appendix A. Appropriated Scheme for the Control Problem

Consider the subdivision of the interval [0, T] as follows [0, T] =
N−1⋃
i=0

[ti, ti+1],

ti = idt, dt =
T
N

. Let si
1, si

2, xi
1, xi

2, λi
1, λi

2, λi
3, λi

4 and ri approaching s1(t), s2(t), x1(t),

x2(t), λ1(t), λ2(t), λ3(t), λ4(t) and the control r(t) at the time ti. An improvement of the
Gauss–Seidel-like implicit finite-difference scheme will be applied for the state variables
approximation, and a first-order backward-difference scheme will be applied for the adjoint
variables approximation.
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

si+1
1 − si

1
dt

= D(sin
1 − si+1

1 )− σ̄risi+1
1 ,

si+1
2 − si

2
dt

= D(sin
2 − si+1

2 ) + σ̄risi+1
1 −

µ̄1si+1
2 xi

1xi
2

(1 + p1si
2)(1 + qxi

2)
−

µ̄2si+1
2 xi

2

1 + p2si
2

,

xi+1
1 − xi

1
dt

=
µ̄1si+1

2 xi
2xi+1

1

(1 + p1si+1
2 )(1 + qxi

2)
− Dxi+1

1 ,

xi+1
2 − xi

2
dt

=
µ̄2si+1

2 xi+1
2

1 + p2si+1
2

− Dxi+1
2 ,

λN−i
1 − λN−i−1

1
dt

= −κ1si+1
1 + λN−i−1

1
(

D + σ̄ri)− λN−i
2 σ̄ri,

λN−i
2 − λN−i−1

2
dt

= −κ2si+1
2 − λN−i

3
µ̄1xi+1

1 xi+1
2

(1 + p1si+1
2 )2(1 + qxi+1

2 )
− λN−i

4
µ̄2xi+1

2

(1 + p2si+1
2 )2

+λN−i−1
2

(
D +

µ̄1xi+1
1 xi+1

2

(1 + p1si+1
2 )2(1 + qxi+1

2 )
+

µ̄2xi+1
2

(1 + p2si+1
2 )2

)
,

λN−i
3 − λN−i−1

3
dt

= (λN−i−1
2 − λN−i−1

3 )
µ̄1si+1

2 xi+1
2

(1 + p1si+1
2 )(1 + qxi+1

2 )
+ DλN−i−1

3 ,

λN−i
4 − λN−i−1

4
dt

= (λN−i−1
2 − λN−i−1

3 )
µ̄1si+1

2 xi+1
1

(1 + p1si+1
2 )(1 + qxi+1

2 )2
+ DλN−i−1

4

+(λN−i−1
2 − λN−i−1

4 )
µ̄2si+1

2

(1 + p2si+1
2 )

.

Hence, ri+1 will be calculated as follows: ri+1 =
σ̄

κ3
(λN−i−1

1 − λN−i−1
2 )si+1

1 provided

that κ3 ̸= 0 and 0 < rmin ≤ ri+1 ≤ rmax. Thus, we will use the Algorithm A1 given hereafter.
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Algorithm A1: Optimal leachate recirculation strategy procedure

s0
1 ← s1(0), s0

2 ← s2(0), x0
1 ← x1(0), x0

2 ← x2(0), λN
1 ← 0, λN

2 ← 0, λN
3 ← 0, λN

4 ← 0,
r0 ← r(0),

for i = 0 to N − 1 do

si+1
1 ←

si
1 + dtDsin

1
1 + dt

(
D + σ̄ri

) ,

si+1
2 ←

si
2 + dtDsin

2 + dtσ̄risi+1
1

1 + dt

(
D +

µ̄1xi
1xi

2

(1 + p1si
2)(1 + qxi

2)
+

µ̄2xi
2

1 + p2si
2

) ,

xi+1
1 ←

xi
1

1− dt

(
µ̄1si+1

2 xi
2

(1 + p1si+1
2 )(1 + qxi

2)
− D

) ,

xi+1
2 ←

xi
2

1− dt

(
µ̄2si+1

2

1 + p2si+1
2

− D

) ,

λN−i−1
1 ←

λN−i
1 + dt

(
κ1si+1

1 + λN−i
2 σ̄ri

)
1 + dt

(
D + σ̄ri

) ,

λN−i−1
2 ←

λN−i
2 + dt

(
κ2si+1

2 +
λN−i

3 µ̄1xi+1
1 xi+1

2

(1 + p1si+1
2 )2(1 + qxi+1

2 )
+

λN−i
4 µ̄2xi+1

2

(1 + p2si+1
2 )2

)

1 + dt

(
D +

µ̄1xi+1
1 xi+1

2

(1 + p1si+1
2 )2(1 + qxi+1

2 )
+

µ̄2xi+1
2

(1 + p2si+1
2 )2

) ,

λN−i−1
3 ←

λN−i
3 − dtλN−i−1

2
µ̄1si+1

2 xi+1
2

(1 + p1si+1
2 )(1 + qxi+1

2 )

1− dt

(
µ̄1si+1

2 xi+1
2

(1 + p1si+1
2 )(1 + qxi+1

2 )
− D

) ,

λN−i−1
4 ←

λN−i
4 − dt

(
µ̄1si+1

2 xi+1
1 (λN−i−1

2 − λN−i−1
3 )

(1 + p1si+1
2 )(1 + qxi+1

2 )2
+

λN−i−1
2 µ̄2si+1

2

1 + p2si+1
2

)

1− dt

(
µ̄2si+1

2

1 + p2si+1
2

− D

) ,

ri+1 ← max
(

min
(

σ̄

κ3
si+1

1 (λN−i−1
1 − λN−i−1

2 ), rmax
)

, rmin
)

.

end
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