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Abstract: Traditional Re-Identification (Re-ID) schemes often rely on multiple cameras from the same
perspective to search for targets. However, the collaboration between fixed cameras and unmanned
aerial vehicles (UAVs) is gradually becoming a new trend in the surveillance field. Facing the
significant perspective differences between fixed cameras and UAV cameras, the task of Re-ID is facing
unprecedented challenges. In the setting of a single perspective, although significant advancements
have been made in person Re-ID models, their performance markedly deteriorates when confronted
with drastic viewpoint changes, such as transitions from aerial to ground-level perspectives. This
degradation in performance is primarily attributed to the stark variations between viewpoints and
the significant differences in subject posture and background across various perspectives. Existing
methods focusing on learning local features have proven to be suboptimal in cross-perspective Re-ID
tasks. The reason lies in the perspective distortion caused by the top-down viewpoint of drones, and
the richer and more detailed texture information observed from a ground-level perspective, which
leads to notable discrepancies in local features. To address this issue, the present study introduces
a Multi-scale Across View Model (MAVM) that extracts features at various scales to generate a
richer and more robust feature representation. Furthermore, we incorporate a Cross-View Alignment
Module (AVAM) that fine-tunes the attention weights, optimizing the model’s response to critical
areas such as the silhouette, attire textures, and other key features. This enhancement ensures
high recognition accuracy even when subjects change posture and lighting conditions. Extensive
experiments conducted on the public dataset AG-RelD have demonstrated the superiority of our
proposed method, which significantly outperforms existing state-of-the-art techniques.

Keywords: re-identification; Across Views; multi-scale network
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1. Introduction

Re-ID is designed to locate the queried object across multiple cameras, with re-
identifiable objects including people, vehicles, ships, animals, and so on. Traditional Re-ID
schemes typically rely on multiple cameras from the same viewpoint to search for targets.
Although these schemes exhibit differences in aspects such as background lighting between
their training and test sets, they still do not fully simulate the complexity of the real world.
To make Re-ID more aligned with practical application scenarios, researchers have begun to
explore cross-domain Re-ID technologies where test data originate from different domains.
The collaborative operation of fixed cameras and UAVs is gradually emerging as a new
trend in the surveillance field. Faced with the significant viewpoint differences between
fixed cameras and UAV cameras, the task of Re-ID faces unprecedented challenges.

At present, most of Re-ID’s methods mainly rely on local feature learning. However,
when a person is viewed from a drone’s perspective, the visible features and the way they
are presented are vastly different from those captured by a fixed camera at the ground level.
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This is because the drone’s view is often top-down, which provides a different point and
captures different parts of the body or clothing. Next, the top-down view from a drone
can capture features that are not as visible from a fixed camera’s perspective. For example,
the top of a person’s head, the pattern on the back of their clothing, or the arrangement
of objects they are carrying might be more discernible from above. Conversely, features
that are prominent in a frontal or side view, such as facial features or the front of clothing,
might be less visible or entirely obscured in a drone’s view. Therefore, to address these
challenges, Re-ID needs to learn the differences between various perspectives, including
the drone perspective and the fixed camera perspective. This involves training models to
understand and account for the changes in appearance that occur when the viewing angle
changes. The learning process aims to capture a richer scale of features and details that are
invariant to these perspective changes, and more discriminating.

To solve these problems, we propose a multi-scale scheme for ground-air cross-viewing
angles that aims to address these challenges. To simulate a cross-perspective Re-ID training
scheme, a cross-perspective multi-scale feature extraction network is proposed. By fusing
multi-scale features, the impact of information loss is reduced, the network’s ability is
improved, and global and local information is utilized at different levels at the same time, so
as to better understand the image content. In addition, to maintain the spatial consistency
of features, we propose a cross-perspective alignment module to enhance the consistency
of attention when the model faces different perspectives. Through the above scheme, we
obtain a lightweight but efficient model architecture called multi-scale cross-view network.

Our contributions are as follows:

*  We introduce a new type of MAVNet network designed to address the challenge of
redefining characters across air and ground perspectives. MAVNet effectively solves
problems related to large variations in viewing angles and scales, thereby enhancing
robust feature extraction. Through a large number of experiments, our method shows
better performance than the SOTA method in ground-air cross-perspective character
recognition tasks, affirming its effectiveness in challenging cross-perspective tasks.

*  Our proposed Multi-scale Across View Model (MAVM) uses a multi-scale convolution
structure to learn features at different scales. This modular design facilitates compre-
hensive feature interaction, reduces loss of accuracy due to changes in viewing angles,
and facilitates more differentiated feature extraction from different viewing angles.

¢ Our proposed AVAM optimizes the model’s response to key parts by fine-tuning the
attention weight, maintaining high recognition accuracy even under different heights
of perspective.

2. Related Work
2.1. Multi-Scale Convolutional Networks

Early explorations of multi-scale convolutional networks focused on improving fea-
ture extraction capabilities by designing deeper or wider network structures. For exam-
ple, VGGNet [1] captures richer layers of features by increasing network depth, while
GoogleNet [2] introduces the Inception module to capture features at different scales in
parallel. These networks have achieved remarkable success in image classification tasks. In
recent years, an important development has been the introduction of the feature pyramid
network (FPN) [3], which is particularly important in object detection and segmentation
tasks. FPN [3] builds rich multi-scale feature representations through top-down paths and
horizontal connections. In rerecognition tasks, image pixels differ greatly, so different levels
of feature interaction are required. Res2Net [4] starts with the most basic common units
in convolutional neural networks. The residual bottleneck structure widely existing in
mainstream convolutional neural networks is enhanced in multi-scale. To solve the problem
of image redundancy, OctaveConv [5] reduces the resolution of the low-frequency feature
map; that is, the spatial dimension of the low-frequency feature map. This approach not
only saves computing power and storage, but also helps each layer gain a larger receptive
field to capture more contextual information. MixConv [6] is designed to design direct
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replacements for a single deep convolution, with the aim of easily taking advantage of
different convolution kernel sizes without changing the network structure. They have
achieved excellent performance in different visual tasks. These networks improve the
model’s ability to recognize objects at different scales by capturing and fusing features at
different levels.

However, when current multi-scale networks are applied to cross-perspective Re-ID
tasks, multi-scale networks may pay too much attention to details on small targets, while
ignoring global context information, which is bad for cross-perspective generalization.

2.2. Different Perspectives on Re-ID Tasks

Re-ID is an important research direction in the field of computer vision, which aims to
identify and track specific pedestrians from images or videos captured by different cameras.
With the popularization of the monitoring system and the development of UAV technology,
the research status of the Re-ID task can be summarized from three aspects: Re-ID of a
fixed camera, Re-ID of UAV camera, and Re-ID task of cross-scene.

Fixed camera for Re-ID task. The Re-ID task of fixed cameras is one of the hot
spots of research because they are widely deployed in urban surveillance, shopping malls,
airports, and other situations. In this field, scholars mainly focus on how to improve
the recognition accuracy of pedestrians and the robustness of the system. Typical work
includes a deep learning-based pedestrian feature extraction method; for example, Mining
Discriminative Features with Multi-Scale Contextual Attention (MSCAN) [7] proposed
by Wang et al. MSCAN uses a multi-scale context attention mechanism to extract the
distinguishing features of pedestrians. The main problems facing Re-ID’s research include
the influence of factors such as changes in viewing angle, lighting conditions, occlusion,
and changes in pedestrian posture. In addition, the viewing angle limitations of fixed
cameras also pose challenges for pedestrian tracking.

Drone camera for Re-ID task. The Re-ID task of drone cameras has been an emerging
research direction in recent years. Compared to fixed cameras, drones provide more
flexible viewing angles and wider coverage. However, this also brings new challenges,
such as dynamic backgrounds, camera shake, and pedestrian size changes. Representative
studies include Unsupervised Person Re-ID [8], which solves the Re-ID problem from
the perspective of drones through unsupervised learning. The key problems that Re-ID’s
research needs to solve include how to adapt to the dynamic environment and improve the
recognition accuracy of small target pedestrians.

Re-ID task across perspectives. The cross-view Re-ID task refers to the task of
identifying the same pedestrian from different viewing angles, such as from a fixed camera
to a drone camera. The challenge of this task lies in the differences in perspective, resolution,
and background between different scenes. At present, the research on Re-ID in this aspect is
relatively scarce. However, cross-perspective person datasets like AG-RelD have emerged,
and our work will further promote the study of cross-perspective Re-ID.

3. Proposed Method

We proposed MAVM and the AVAM, two innovative components aimed at boosting
cross-perspective Re-ID performance. The MAVM tackles the issue of angular variations
in pedestrian imagery by integrating features across perspectives and managing network
depth and width to avoid gradient problems, comprising four MAVs and two MAVDs
for dimensionality reduction and feature enhancement. The AVAM aligns features amidst
changes in viewpoint, lighting, and background, using an attention mechanism with
query and key branches to target key features like silhouettes and textures. It includes
three attention enhancement (AE) cycles and leverages convolutional operations to derive
attention weights, which are adjusted for precise focus on critical features, maintaining
accuracy under varying conditions.

To provide a comprehensive understanding of how these components synergize within
our framework, we present the overall network architecture in Figure 1. This illustration
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delineates the structural composition of both the MAVM and AVAM, showcasing their
integration and interaction within the broader system. The figure elucidates the flow of
information and the functional interplay between these modules, which are pivotal to
enhancing feature expressiveness and robustness.

3.1. Multi-Scale Across View Module

Our proposed MAVM, as depicted in Figure 1, is designed to address the challenge of
angular variations in pedestrian imagery captured by different cameras, including UAV
and fixed cameras. The significant angular changes can greatly alter the appearance and
shape of pedestrians under different angles, complicating recognition tasks. To counteract
this, MAVM is meticulously designed to balance network depth and width, avoiding issues
of vanishing or exploding gradients.

f& Operation | | MAV [+ MAVD |+ MAV |4 MAVD |-{ MAVX2 ]
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Figure 1. Multi-Scale Across View Module. The MAVM consists of four duplicate MAVs and
two duplicate MAVD modules. The MAV is represented by the dark green area and the MAVD is
represented by the blue area.

The MAVM is a sophisticated construct that integrates Multi-scale Across View (MAV)
modules and Multi-scale Across View Downsampling (MAVD) modules. The input feature
to the MAVM is denoted as x € REXH/4xW/4 and the output feature is x € RC*H/16xW/16
where C represents the number of channels, and H and W represent the height and width
of the feature maps, respectively. The MAVM consists of six modules, four duplicate
MAVs, and two duplicate MAVD modules. The design choice of incorporating both
MAVs and MAVD:s is to ensure that our model can effectively capture and integrate
features across different perspectives. The original feature maps are first entered into
the MAV. After the two identical original feature maps undergo a 1 x 1 convolution, the
two branches undergo two 3 x 3 convolutions and eight 3 x 3 convolutions, respectively,
to extract features of different depths of the feature maps. Shallow feature maps usually
contain more spatial details, while deep feature maps contain more abstract high-level
semantic information. Secondly, the fusion of feature maps with different depths can
form a richer and more comprehensive feature representation, which helps the model
to better understand the appearance and attributes of pedestrians. Finally, a residual
connection is added to the fused features after a 1 x 1 convolution to improve the utilization
efficiency of the features. Following the MAYV, a residual connection is introduced after
a 1 x 1 convolution on the fused features. This design choice is intended to improve
feature utilization efficiency. Residual connections are known to facilitate the training of
deeper networks by mitigating the vanishing gradient problem and promoting the flow of
information across the network, which is essential for feature expressiveness. The MAVD
modules are introduced to downsample the feature maps, reducing spatial dimensions
and computational load through 1 x 1 convolutions and average pooling. Average pooling
is specifically chosen for its ability to improve spatial invariance, making the model less
sensitive to minor input image changes such as translations and rotations. The output
entering the MAVD for the first time is x € RC*H/8xW/8_ After entering the same MAV and
MAVD again, the output feature map is x € RC*H/16xW/16 The final output is obtained
after entering the same two MAVs. The inclusion of residual connections after the 1 x 1
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convolution on fused features is a deliberate design choice to enhance feature utilization
efficiency. The MAVM, with its multi-scale fusion, residual structure, and downsampling
makes the features more expressive, thereby improving the model’s performance in cross-
perspective Re-1D tasks.

3.2. Across View Alignment Model

Our proposed AVAM is shown in Figure 2. In the task of Re-ID, the images captured
by different cameras have differences in angle of view, illumination, background, etc., and
the change in posture during the movement of characters will affect the degree of matching
between different images. To solve this problem, we propose AVAM to align features to
increase their expressiveness. By inputting the original feature x € R©*"*W into AVAM,
we can obtain the output score as the similarity measure.

""""""""""""""" N =
V& (O AVAM
! jb]
. Positive | |2 Score
P E CX AW
E=IN . 0L HWXC
g Attention Enhancement < 3 ]9[3 CXITW
SN =
Negative | | 2 AE)
-5 >
i S, g AvPool ] Conv P Sigmod ]’9?—)
t\ A )
S - Z \_ J

Figure 2. Across View Alignment Model. It mainly consists of Attention Enhancement and
two branches: query and key. Score is the similarity measure of the output result obtained.

AVAM is composed of three repeated Attention Enhancement (AE) and query and
key. First, AE is a residual structure composed of convolution, average pooling, and
Sigmoid, which aims to enable the network to learn richer features to enhance feature
representation. Too few cycles of AE will not have enough power to capture complex
feature transformations, and too many cycles will lead to overfitting, making the model
too complex. According to the Section 4.4.4 ablation experiment, three cycles is the best
number. We will go through the AE method with A,(.). As an indication, the original
feature passes through AE as follows:

PlAc(x)] = &, Ae(x) = B. ©)

where P[] is permute, the obtained &« € RW*C and the obtained g € R&*HW.

Second, the two branches of query and key can be represented as follows: the terms
“query” and “key” are integral to the attention mechanism that we employ to enhance
feature representation. These components are derived from the original feature maps
through a series of convolutional operations, as detailed below:

Query Branch: The query is generated by applying a permutation operation (P[.])
to the output of a convolution (Conv(x)). This operation rearranges the dimensions
of the feature maps to facilitate the attention calculation. The query is represented as
Query = P[Conv(x)], where Conv(x) denotes the convolution operation applied to the
input feature x. The resulting query, Query € RH"W*C is a matrix that will be used to
compute the attention weights.

Key Branch: Similarly, the key is also derived from the convolutional output but is
not subjected to the permutation operation. It is directly used as Key = Conv(x). The key,
Key € RE*HW is another matrix that, when combined with the query, allows the model to
focus on the most relevant features for the task at hand.
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Query = P[Conv(x)], Key = Conv(x). 2)

where Conv represents the convolution operation. The final learned similarity measure will
be expressed as follows:

Score = (aQuery) x (BKey), 3)

where X is expressed as matrix multiplication.

The query and key branches are derived from the original feature maps through a series
of convolutional operations. The query is generated by applying a permutation operation
to the output of a convolution, which rearranges the dimensions of the feature maps to
facilitate the attention calculation. The key is derived directly from the convolutional
output without permutation. This design allows the model to focus on the most relevant
features for the task at hand, optimizing the model’s response to key parts such as the
silhouette of a person or the texture of clothing.

The final learned similarity measure is expressed as a matrix multiplication of the
query and key. The attention mechanism adaptively adjusts to the salient features of
individuals under varying imaging conditions, enhancing the robustness of local features
while maintaining feature discrimination.

After several steps, our method can adaptively adjust the attention to the salient
features of the people under different imaging conditions, thus enhancing the robustness
of the local features while maintaining the feature discrimination. Specifically, AVAM
optimizes the model’s response to key parts (such as the silhouette of a person, the texture
of clothing, etc.) by fine-tuning the attention weights, maintaining high recognition accuracy
even when pose and illumination change.

4. Analysis and Experiments
4.1. Datasets

After an exhaustive review and comparison of available datasets, we have identified
that the AG-RelD dataset stands out as the only one currently available that addresses
cross-view Re-ID challenges. This highlights a significant gap in the field of cross-view
Re-ID, where the scarcity of such datasets is a notable limitation. Our research underscores
the importance of the AG-RelD dataset, as it provides a unique perspective in the domain of
unmanned aerial vehicles (UAVs) and ground-based platforms. The comparative analysis of
existing Re-ID datasets with AG-RelD, as detailed in Table 1, accentuates the distinctiveness
of this dataset and underscores the need for further development in this area.

Table 1. Comparison of AG-RelD dataset with other publicly available person Re-ID datasets.

Ground-Ground Aerial-Aerial Ground-Aerial
Datasets Market Duke PRAI UAV AG
1501 9] MTMC 101 1581 (11 Human [12] RelD (131
IDs 1501 1404 1581 1144 388
Images 32,668 36,411 39,461 41,290 21,983
Views fixed fixed mobile mobile fixed & mobile
Platforms CCTV CCTV UAV UAV UAV & Phone
Altitude <10 m <10 m 20-60 m 2-8 m 15-45 m

We will modify the AG-RelD [13] dataset to accommodate the conditions set for
cross-perspective requirements, thereby demonstrating and discussing the performance of
cross-perspective Re-ID.

4.1.1. AG-RelD

The AG-RelD dataset was captured using a DJI XT 2 drone, which was flown at various
altitudes ranging from 15 to 45 m to provide a diverse range of viewpoints and background
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contexts. Comprising 21,893 images across 388 unique identities, the dataset is divided
into a training set featuring 199 identities with 11,554 images, and a testing set encom-
passing 189 identities with 12,464 images. The test set consists of 2033 query images and
10,429 gallery images, with the query images split into 1701 aerial and 962 ground-level im-
ages, complemented by 7204 aerial and 3255 ground-level gallery images. This arrangement
facilitates the study of Re-ID across both ground and aerial vantage points.

4.1.2. Dataset Settings for Different Tests

In most Re-ID training Settings, the training set contains all the cameras, but this
does not fit the reality, where the training and testing data sources are often separate. We
separate the perspectives in the dataset, so that the perspectives in the training set and
the test set in the separated data set will no longer coincide, so as to test the performance
of the algorithm for cross-perspective tasks. We have innovatively processed the dataset
as follows:

Train the ground and test query the data set AG1 in the air. This setting will remove
the drone view from the training set, leaving only the fixed camera view, while query
and gallery will both be set to images taken from the drone view. The specific dataset
configuration is shown in Table 2.

Table 2. The number of scenes and Train images, Query images, and Gallery images in the AG1 and
AG2 datasets.

Datasets Scenarios Train Images Query Images Gallery Images
AG1 Train_Ground 3400 1071 7204
AG2 Train_Aerial 8154 962 3255

Train the air, test query the ground dataset AG2. This setting will remove the fixed
camera view from the training set, leaving only the drone camera view, while query and
gallery will both be set to images taken from the fixed camera, as shown in Figure 3.

Test
Figure 3. Legend for datasets AG1 and AG2.

Following the changes, we crafted a cross-view dataset that distinctly categorizes
ground-level and aerial perspectives. The composition of this dataset, including the count
of images for each category, is detailed in Table 2. This curated collection is specifically
engineered to evaluate the proficiency of our proposed algorithm in handling substantial
angular variations, thereby offering a more authentic testbed for its performance.
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4.1.3. Evaluation Metrics

To comprehensively evaluate the performance of the proposed methods, two generally
accepted evaluation indicators were adopted in this study: mean Average Precision (mAP)
and Cumulative Matching Characteristics (CMC-k), or Rank-k matching accuracy. The
mAP index is calculated by averaging the search performance across multiple real tags,
providing a comprehensive evaluation of the overall performance of the search system.
CMC-K, on the other hand, focuses on the probability of identifying the correct match in
the first k search results, which provides a probability measure to evaluate the recognition
ability of the system in the first k rankings. Specifically, the Rank-1 matching accuracy
reported in this study is that for CMC-k, and we set k = 1, which reflects the ability of the
system to identify the correct match in the first search result. This kind of evaluation is
critical to understanding the performance of the system on the most likely matches and is
especially critical for the evaluator to re-identify the system. Through these two indices,
we can comprehensively understand the accuracy and reliability of the proposed method
in the task of target recognition.

4.2. Implementation Details

We performed our experimental evaluation utilizing AG1 and AG2 datasets. The
model parameters were optimized using stochastic gradient descent (SGD) with an initial
learning rate set to 0.025, over the course of 350 epochs. A warm-up phase was implemented
for the initial 10 epochs, after which the learning rate was decremented by 0.1 at the
150th, 225th, and 300th epochs. For the refinement of architectural parameters, the Adam
optimizer [14] was engaged, and initialized with a learning rate of 0.002. The images were
processed at a resolution of 128 by 256 pixels.

4.3. Comparison with State of the Art

Tables 3 and 4 give a comparison of the performance of the AG1 and AG2 datasets
with our proposed MAVNet. Overall, MAVNet performed better than other methods.

Table 3. Comparison of different methods on AG1(%).

Models mAP Rank1
CAL [15] 12.0 53.5
MSINet [16] 50.4 90.6
Strong-baseline [17] 52.3 95.8
Generalizing [18] 54.2 96.0
Ours 58.2 96.9

Table 4. Comparison of different methods on AG2(%).

Models mAP Rank1
CAL [15] 7.4 30.4
Strong-baseline [17] 33.9 80.8
MSINet [16] 34.1 81.1
Generalizing [18] 35.2 82.1
Ours 45.8 85.2

4.3.1. Experiments on AG1

On the AGI dataset, the comparison methods include [15,17,18]. Table 3 compares
our proposed MAVNet with other methods for conducting trials in AG1 datasets. Causal
inference-based counterfactual attention learning (CAL) [15] analyzes the effects of learned
visual attention on network prediction through a counterfactual intervention to encourage
fine-grained image recognition for network learning attention. Cross-perspective Re-ID
involves significant changes in characters from different perspectives, and it is necessary to
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capture key features from different perspectives. CAL [15] quantifies the quality of attention
by comparing the effect of facts (learned attention) and counterfacts (uncorrected attention)
on the final prediction. When the learned attention is too focused on some local features, it
may not cover the comprehensive features required for cross-perspective Re-ID, resulting
in poor performance in cross-perspective datasets. In the cross-view Re-ID task, Strong-
baseline achieved better results than CAL. Strong-baseline proposes a novel neck structure
named batch normalization neck (BNNeck). Strong-baseline [17] uses tricks to improve Re-
ID’s ability model and only use the global features extracted by the model. Compared with
CAL, BNNeck helps to solve the inconsistency of measurement loss and classification loss
in the same embedded space and helps to learn more differentiated feature representations,
which is especially important for cross-perspective Re-ID. Compared to CAL [15], MAVNet
introduced AVAM, which helps the model maintain consistency of attention when faced
with images from different perspectives, better learn distinguishing features from limited
data, and reduce misjudgments due to changes in perspective. In this section, we conducted
a series of ablation studies to assess the individual contributions and overall performance
of our proposed MAVNet framework. The results, as delineated in Table 3, demonstrate the
robust performance of MAVNet. Enhancements over the generalizing model are evident,
with improvements of 4.0% in mAP. These gains underscore MAVNet's adept integration
of multi-level and multi-granularity features, culminating in more comprehensive feature
representations and superior accuracy.

4.3.2. Experiments on AG2

On the AG2 dataset, the comparison methods include [15,17,18]. Table 4 compares
our proposed MAVNet with other methods in the AG2 dataset. Generalizing RelD [18]
proposed a novel cross-domain mixup scheme. It alleviates the abrupt transfer by intro-
ducing the interpolation between the two domains as a transition state. Compared to
CAL [15] and Strong-baseline, Generalizing RelD performed better, 1.9% higher on mAP,
because Generalizing RelD [18] imposed constraints on matching under the same camera
and matching under different cameras. To reduce the retrieval bias caused by camera
differences, improve the ability of cross-view retrieval. Table 4 shows that, compared to
MAVNet, mAP is 10.6% taller than Generalizing RelD. This is because MAVNet can focus
on feature information at different scales, and can capture richer feature representations,
which is better for Re-ID with large differences in perspective. In contrast, Generalizing
RelD relies more on focusing on finite-scale features and cannot make full use of multi-scale
feature information. Through the multi-scale feature network, MAVNet can learn a wider
range of features, allowing the model to focus on more discriminative features from the
aerial view of the drone and the fixed camera view. This flexibility can help the model
adapt to different camera angles and improve the generalization ability of the model.

4.4. Ablation Experiment and Analysis

In this section, we conducted a series of ablation studies aimed at assessing the efficacy
of the proposed MAVNet. The experiments were structured to evaluate various components
of our model, including: (1) the Role of Multi-scale Across View Module and Across View
Alignment Module, (2) The Effectiveness on Multi-scale Across View, (3) The Effectiveness
on Different Scales in Multi-scale Across View, (4) The Effectiveness on Different Depths
Across View Alignment Model, and (5) Visualization of Model Retrieval Results.

4.4.1. The Role of Multi-Scale Across View Module and Across View Alignment Module

In Figure 4, we present an assessment of the efficacy of various components within our
MAVNet architecture when applied to a dataset derived from AG1. This figure provides a
comparative analysis of the performance outcomes utilizing solely the AVAM module, the
MAVM module, and the combined effect of both, as well as the baseline structure which
does not include either the AVAM or MAVM modules. Our analysis led to the following
key observations:
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A. First, the results show that, after adding AVAM to the baseline, mAP, and Rank1 results
improved by 0.8% and 0.4% compared to the baseline. AVAM is able to improve the
accuracy of recognition by explicitly aligning spatial attention between images from
across perspectives, helping models correctly and consistently focus on specific parts
of differentiated people from different perspectives. The results show that AVAM can
indeed improve the performance of the model.

B. Second, by adding MAVM alone to the baseline, the improvement for mAP was of 1.2%
and for Rankl it was of 1.8% over the baseline. In the AG1 dataset, the main training
is the character pictures from the fixed camera perspective, and the character features
are rich and extensive compared with the UAV perspective. Multi-scale networks can
generate more robust feature representations, which helps to identify and distinguish
objects from different viewing angles.

C. Third, by adding the combination of MAVM and AVAM to the baseline, we can
find improvements of 2.4% and 2.9% for Rank-1 and MAP, respectively. MAVM can
accommodate images with different resolutions and viewing angles, which is ideal
for processing images taken from the air and the ground. Changes in perspective can
cause significant changes in the appearance of an object, and multi-scale networks can
reduce this effect by capturing multi-scale features. Alignment helps to maintain the
feature differentiation in multi-scale feature fusion and enables the model to adapt to
different data distributions, thus improving the retrieval accuracy in the retrieval task.
Thus, MAVNet outperforms MAVM and AVAM alone.
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Figure 4. The performance of different modules of MAVNet on AGl-based datasets, with blue
representing mAP and red representing Rank1.

4.4.2. The Effectiveness on Multi-Scale Across View

As shown in Figure 5, the MAV is divided into two Multi-Scale Models and two Oper-
ation regions. We designed a set of experiments to explore the optimal setting of the MAV
at each stage by discussing different strategies in the Operation area of the MAV. There
are six MAVs in the entire MAVNet for a total of 12 operations. The red arrow in Figure 5
indicates that no operation is used, and the green arrow indicates that the features of the
two branches are exchanged at this stage.
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Figure 5. In the specific structure diagram of the MAV, the dark green area is defined as the Multi-Scale
Model, and the area framed by gray is defined as the operation.

In the experiments of whether features were exchanged in 12 operations, Rank1 and
mAP obtained by different operations are shown in Figure 6. These results demonstrate
the effectiveness of the MAV setup. Specifically, Rankl and mAP, obtained by analyzing
12 operations without exchanging features according to the bar chart, are the highest, and
far higher than the MAV of any exchanging features. In the AG1 dataset, the character
pose changes, the noise is large, and the resolution is low. Multi-scale feature exchange will
make the consistency between features not high, which may cause the model to learn the
wrong association, which will reduce the performance. Feature swapping can make the
model too sensitive to specific details in the training data, increasing the risk of overfitting
and being unsuitable for the task at hand. The results show that the performance of MAV
is better without feature exchange.

B None M Exchange M 4none&8exc H None M Exchange B 4none&8exc

- M 6none&bexc M Bnone&dexc M 10none&2exc o M 6none&b6exc M 8none&dexc M 10none&2exc
5
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Figure 6. (a) Rank1 from different operations. (b) mAP from different operations.

4.4.3. The Effectiveness on Different Scales in Multi-Scale Across View

As shown in Figure 5, the MAV is divided into two Multi-Scale Models and two Oper-
ation regions. We designed a set of experiments to explore the optimal setting of the MAV
by discussing the different scales used in the Multi-Scale Model area highlighted in dark
green in the figure.

The mAP and Rank1 of different scales in the Multi-Scale Model area are shown
in Table 5. Convl & 2 indicates that the two branches of MSM in the figure use one
convolution and two convolution respectively, and Conv1l & 2 & 3 indicates that the MSM
will be divided into three branches using 1, 2, and 3 convolutions, respectively. The effect
of MSM using two branches is generally better than that of using three branches. First of
all, the two-branch model is sufficient to meet the requirements of the task of cross-ground
and air-view Re-ID, while the three-branch model may lead to overfitting due to too many
parameters. Secondly, compared with the two-branch model, the three-branch model will
distract attention, resulting in the learned features not being concentrated enough, and
cannot be concentrated on discriminating features, resulting in performance degradation.
From the experimental results in the table, it can be seen that the effect of using one and
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four convolution of two branches is the best, and mAP and Rank1 are 1.8% and 1.2% higher
than the baseline, respectively.

Table 5. The Multi-Scale Model areas highlighted in dark green in the figure use different scales to
explore the optimal setting of the MAV.

Scales mAP Rank1
Convl & 2 56.4 94.4
Convl & 3 56.9 94.7
Convl & 4 57.6 95.2
Convl & 5 57.1 94.4
Conv2 & 3 54.8 93.2
Conv2 & 4 56.1 93.7
Conv2 & 5 53.8 934

Convl &2 &3 53.9 92.3
Convl &2 &4 54.2 93.8
Convl &3 &4 50.7 91.0

4.4.4. The Effectiveness on Different Depths Across View Alignment Model

We analyzed in detail the effect of different iteration depths of AE on model per-
formance in AVAM. The experimental results, as shown in Table 6, reveal a remarkable
phenomenon: when AE is iterated three times, the model achieves optimal performance on
mAP and Rank1 (R1), which is of 58.2% and 96.9%, respectively. This result shows that the
model can effectively capture complex transformations in image features with appropriate
AE iteration depth, thus improving the performance of recognition tasks. However, if
the number of AE iterations is insufficient, the model may lack sufficient representational
power to cope with the diversity and complexity of features, resulting in limited perfor-
mance. On the contrary, excessive iteration can cause the model to fall into the dilemma of
overfitting, making the model too sensitive to the noise and outliers in the training data,
and ignoring the importance of generalization ability.

Table 6. Effect of different iteration depth of AE on model performance in AVAM.

Depths mAP Rank1
1 55.7 94.6
2 57.6 95.2
3 58.2 96.9
4 55.7 93.2

In addition, we observed that, with the increase in the number of AE iterations, the
model performance first improves and then becomes stable, which may eventually damage
the generalization of the model due to the increase in model complexity. According to
experiments, the optimal number of iterations of AE in AVAM is three, which provides
important experience and guidance for designing and optimizing attention enhancement
mechanisms in similar tasks in the future. Our research highlights finding the right depth
of iteration in model design to achieve the best balance between feature capture capabilities
and generalization capabilities.

4.4.5. Visualization of Model Retrieval Results

To underscore the enhanced performance of our model, Figure 7 presents a compara-
tive visualization of the baseline and our approach’s retrieval outcomes on the AG1 dataset,
focusing on the R1, Rank5 (R5), and R10 metrics. The initial row corresponds to the results
yielded by the baseline technique, whereas the subsequent row depicts the results of our
model. Correctly identified samples are denoted by a green-bordered image, whereas
erroneously retrieved samples are indicated with a red border. Discrepancies between the
mistaken samples and the query image are highlighted using a red circular marker.
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Baseline
Baseline

Figure 7. Visualization of baseline and R1, R5, R10 retrieval results on AG1 datasets. The major errors
in the picture are circled in red.

As can be observed from Figure 7, the baseline attention is usually focused on the
appearance of the character, such as clothing color, body type, etc. As a result, there are
some negative matches due to similarities in posture and lighting. For example, the shoes
worn by the second character in the first row. The Query image will be misjudged as a
white shoe due to the reflection in sunlight, resulting in a negative sample. Our proposed
MAVNet increases the diversity of features and makes it easier to distinguish between
similar-looking characters. In addition, MAVNet uses a feature alignment module to
enhance the alignment of focus on key areas of different perspectives, so that the model has
better performance in distinguishing characters. Overall, MAVNet improves the model’s
ability to capture different detailed features of a person, thereby improving the accuracy
and robustness of ground-to-air cross-perspective Re-ID.

5. Conclusions

In this paper, we propose a new ground-air cross-perspective Re-ID task. To address
challenges such as scale variation and perspective differences, we first propose a new
MAVNet for extracting distinguishing features that are robust to perspective changes.
Secondly, in order to make use of multi-scale features reasonably and flexibly, we propose
a multi-scale module with cross-view. Finally, we improve the ability of the model to
distinguish positive and negative samples by using the alignment module to maintain the
feature differentiation in the multi-scale feature fusion. Our proposed MAVNet can achieve
SOTA performance.
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