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Abstract: The paper studies a nonlinear equation including both fractional and ordinary derivatives.
The singular Cauchy problem is considered. The theorem of the existence of uniqueness of a solution
in the neighborhood of a fixed singular point of algebraic type is proved. An analytical approximate
solution is built, an a priori estimate is obtained. A formula for calculating the area where the proven
theorem works is obtained. The theoretical results are confirmed by a numerical experiment in both
digital and graphical versions. The technology of optimizing an a priori error using an a posteriori
error is demonstrated.
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1. Introduction

A large number of problems in various fields lead to mathematical models based on
differential equations. Thus, we encounter linear ordinary differential equations when
solving the problem of body motion around a fixed point (Euler’s dynamic equation) [1],
in describing the dependence of a body’s acceleration on the resultant of all applied forces
(Newton’s equations on a straight line), and when finding a curve of uniform descent (Jacob
Bernoulli equation) [2]. Problems in fields such as control and optimization theory [3],
quantum field theory [4], as well as the simplest liquid nonlinear oscillations, lead to the
nonlinear differential equations of Ricatti. Abel’s equations arise in problems of nonlinear
optics when describing a superradiant avalanche [5], the theory of finite elasticity [6],
nonlinear diffusion [7], and the nonlinear thermal conductivity of a steady state [8].

Moving algebraic-type singular points play an important role in nonlinear differential
equations. Such equations belong to the class of equations that are generally not solvable
in quadratures. The solution region is approached in two domains, the neighborhood of
singular points and the analyticity area.

At the moment, based on publications, two approaches to solving nonlinear differential
equations can be noted.

The first approach involves special substitutions of variables that, with certain param-
eter values, allow for the resolution of nonlinear differential equations in quadratures. This
approach allows us to resolve nonlinear differential equations only in special cases [9–19].

The second approach is related to the search for an analytical approximate solution
presented in the author’s works. Theorems of existence and uniqueness of solutions are
proved both in the area of analyticity and in the neighborhood of moving singular points.
Analytical approximate solutions are constructed in these specified regions, with techniques
presented for optimizing a priori estimates through the use of a posteriori estimates [20–25].
The proposed idea has been successfully implemented for other classes of nonlinear
differential equations [26–28].
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Up to now, only linear equations have been considered for equations with fractional
derivatives and the features of methods for solving explicit and implicit schemes combining
types of Riemann–Liouville and Caputo derivatives have been investigated.

At the moment, there are no works devoted to the study of nonlinear differential
equations with fractional derivative. It is necessary to note the features of the theory for
ordinary differential equations (ODE) and equations with a fractional derivative (EFD).
The theorem of the existence and uniqueness of the solution to the ODE has a local character,
and for the EFD—a global character.

In this work, the idea of the author’s analytical approximate solution method [25] for
a nonlinear equation with a fractional derivative is implemented.

Taking into account Fuchs’ classification of singular points into fixed and moving [29],
the problem of solving a nonlinear differential equation divides the search area for a
solution into two parts. The first part concerns the analyticity region of the solution, and the
second part concerns the neighborhood of singular points.

It should be noted that the classical theory of existence and uniqueness of solutions to
linear equations with fractional derivatives does not work in this case.

The article contains a review of sources on the topic under consideration with an
analysis of research solution options. The research methods section includes the imple-
mentation of the author’s approach to finding an analytical approximate solution in the
neighborhood of a fixed singular point [25] for a nonlinear differential equation with frac-
tional derivatives for the case of an equation with fractional derivatives. The theorem of
the existence and uniqueness of a solution in the neighborhood of a fixed singular point of
the equation under consideration is proved. At the first stage of the proof, the uniqueness
of the solution structure is substantiated, and at the second stage, the convergence of the
correct part of the constructed series is proved. An analytical approximate solution in the
neighborhood of a fixed singular point is built. A formula for calculating the region in
which the theorem works is obtained. A numerical experiment is presented in the results
discussion section. The calculation results are presented both numerically and graphically.
The calculations were performed in Excel. The conclusion lists the obtained results and
prospective problems for subsequent research.

2. Research Method: Statement of the Singular Cauchy Problem

The movement of fluid in fractured reservoirs is described by the following for-
mula [30]:

∇P =
µ

k
· v +

µβν

k
· v, (1)

here, ∇P—is the pressure gradient; µ—dynamic viscosity of the liquid; v—filtration rate,
k—permeability of the medium; β—coefficient depending on the geometry of the fractured
medium and on the micro roughness, which is determined empirically [31].

A continuity equation for an incompressible fluid, with radial filtration to a vertical
cylindrical well, can be written as follows:

divv = 0. (2)

Equation (2) in a cylindrical coordinate system has the following form:

1
r
· ∂(rvr)

∂r
+

1
r

∂(rvθ)

∂θ
+

∂(vz)

∂z
= 0, (3)

where r ≥ 0.
For an axisymmetric and planar problem, Equation (3) takes the following form:

1
r
· ∂(rvr)

∂r
= 0. (4)
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Expressing v from Equation (1), we obtain

v =

√
1 + 4βk|∇P|/µ − 1

2β
. (5)

Substituting Equation (5) into Equation (4), we obtain

d
dr

[
r

(√
1 +

4βk|∇P|
µ

− 1

)]
= 0.

Obviously, there exists a constant C1 such that

r

(√
1 +

4βk|∇P|
µ

− 1

)
= C1.

We find the integration constant C1 under the condition |∇P| < |∇P|crit and, knowing
the flow rate of a well with a radius of rc, we open a layer with a thickness of H:

Q = 2π(rHv)r=rc . (6)

Substituting expression (5) into (6), we obtain Q, the value of the volume of liquid
over a certain period of time. The flow goes in one direction:

Q =
πrH

β

(√
1 +

4βk
µ

|∇P| − 1

)
. (7)

In the work [32] a plane axisymmetric problem of steady fluid flow in the vicinity of a
well was considered, revealing a purely fractured dependence of the effective thickness of
the formation on the pressure gradient and was approximated by the following dependence:

H = hDα P
(|∇P|crit)

α , 0 < α < 1. (8)

where H is the thickness of the formation, h—is the thickness of the formation at |∇P|crit;
|∇P|crit is a pressure gradient; α—is an empirical coefficient characterizing the change in
the effective thickness of the formation from the pressure gradient.

If we substitute expression (8) into relation (7), we obtain√
1 +

4βk
µ

|∇P| − 1 =
Qβ|∇P|αcrit

πrhDαP
. (9)

Having performed a number of transformations in Equation (9), we arrive at the
following form:

[DαP]2|∇P| = a(r)DαP + b(r), 0 ≤ α < 1,

where

a(r) =
µQ|∇P|αcrit

2πrhk
; b(r) =

µβ

k

(
Q|∇P|αcrit

2πrh

)2

.

r ∈ [rc, rk], rc is the well radius, rk is the supply contour radius (formation boundary).
Let us introduce the following notations:

a(r) = A1
1
r

, b(r) = B1
1
r2 ,
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where A1 and B1 are constants, respectively, are equal to the expressions:

A1 =
µQ|∇P|αcrit

2πhk
, B1 =

µβ

k

(
Q|∇P|αcrit

2πh

)2

.

Let us consider the singular Cauchy problem:

∣∣P′(r)
∣∣[DαP(r)]2 = A1

1
r

DαP(r) + B1
1
r2 . (10)

P(0) = ∞. (11)

We proceed to search for a solution to problem (10), (11) in the way

P(r) = rρ
∞

∑
n=0

mnrn/10 =m0rρ1 + rρ2
∞

∑
n=1

mnrn/10, (12)

where n = 0, 1, 2, 3. . . , ρ1, ρ2, are the parameters to be determined.
Let us determine P′(r):

P′(r) = m0ρ1rρ1−1 +
∞

∑
n=1

mn(n/10 + ρ2)rn/10+ρ2−1 = (13)

m0ρ1rρ1−1 +
8

∑
n=1

mn(n/10 + ρ2)rn/10+ρ2−1 +
∞

∑
n=9

mn(n/10 + ρ2)rn/10+ρ2−1.

For a fractional derivative we will have the following:

DαP(r) = m0Dαrρ1 +
∞

∑
n=1

mnDαrn/10+ρ2 =

m0
Γ(ρ1 + 1)

Γ(ρ1 + 1 − α)
rρ1−α +

∞

∑
n=1

mn
Γ(n/10 + ρ2 + 1)

Γ(n/10 + ρ2 + 1 − α)
rn/10+ρ2−α = (14)

m0g0rρ1−α +
∞

∑
n=1

mngnrn/10+ρ2−α,

where
Γ(ρ1 + 1)

Γ(ρ1 + 1 − α)
= g0,

Γ(n/10 + ρ2 + 1)
Γ(n/10 + ρ2 + 1 − α)

= gn.

Let us define
Cn = mngn. (15)

Then, from (14) for [DαP(r)]2 we obtain

[DαP(r)]2 = C2
0r2(ρ1−α) + 2C0

∞

∑
n=1

Cnrn/10+ρ1+ρ2−2α+
∞

∑
n=1

C∗
nrn/10+ρ2−α (16)

where

C∗
n =

n

∑
i=1

CiCn−i.

Taking into account (13) and (16), the left side of Equation (10) will have the follow-
ing form:
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∣∣P′(r)
∣∣[DαP(r)]2 = C2

0m0ρ1r3ρ1−2α−1 − C2
0

∞

∑
n=1

mn(
n
10

+ ρ2)rn/10+2ρ1+ρ2−2α−1+

2m0C0ρ1

∞

∑
n=1

Cnrn/10+2ρ1+ρ2−2α−1 − 2C0r2ρ2+ρ1−2α−1
∞

∑
n=1

Cnrn/10
∞

∑
n=1

mn(
n
10

+ ρ2)rn/10+ (17)

m0ρ1r2ρ2+ρ1−2α−1
∞

∑
n=1

C∗
nrn/10 − r3ρ2−2α−1

∞

∑
n=1

C∗
nrn/10

∞

∑
n=1

mn(
n
10

+ ρ2)rn/10.

Let us expand the right side of Equation (10):

A1
1
r

DαP(r) + B1
1
r2 = A1

∞

∑
n=0

Cnrn/10−ρ1−α−1 + B1r−2. (18)

Taking into account (17) and (18), Equation (10) in its expanded form has the follow-
ing form:

−C2
0m0ρ1r3ρ1−2α−1 − C2

0

∞

∑
n=1

mn(
n
10

+ ρ2)rn/10+2ρ1+ρ2−2α−1+

2m0C0ρ1

∞

∑
n=1

Cnrn/10+2ρ1+ρ2−2α−1 − 2C0r2ρ2+ρ1−2α−1
∞

∑
n=1

Cnrn/10
∞

∑
n=1

mn(
n
10

+ ρ2)rn/10+

m0ρ1r2ρ2+ρ1−2α−1
∞

∑
n=1

C∗
nrn/10 − r3ρ2−2α−1

∞

∑
n=1

C∗
nrn/10

∞

∑
n=1

mn(
n
10

+ ρ2)rn/10 = (19)

A1(m0g0rρ1−α−1 + rρ2−α−1
∞

∑
n=1

mngnrn/10) + B1r−2.

For the identity in the obtained Equation (19), equality of coefficients at the same
powers «r» is necessary.

When n = 0, the equality of degrees on the left and right sides is fulfilled when

3ρ1 − 2α − 1 = −2

ρ1 =
2α − 1

3
Since the structure of solution (12) implies ρ1 < 0, therefore

0 < α < 0.5.

When α = 0.2, we will have ρ1 = −0.2. When n = 1, 2, 3. . . the equality of degrees «r»
on the left and right sides is (19) determined by a ratio

3ρ2 − 2α − 1 = ρ2 − α − 1,

from which we obtain
ρ2 =

α

2
.

Assuming α = 0.2, then ρ2 = 0.1. Thus, for ρ we obtain

ρ =

{
ρ1 = 2α−1

3 , where n = 0,
ρ2 = α

2 , where n = 1, 2. . . .
.

The requirement of identity in equality (19) implies the equality of the coefficients
at the corresponding powers. Due to the complexity of the structure of relation (19), all
subsequent stages of the proof require fixing the values of α, ρ1, ρ2. Let us carry out the
subsequent steps with the specified values of the parameters α = 0.2, ρ1 = −0.2, ρ2 = 0.1
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For the specified values of the parameters, relation (19) is reduced to a form in which
the expressions of the sums contain powers of «r» of the same sign for the simplicity of
obtaining recurrence relations for finding mn

C2
0m00.2r−2 − C2

0

8

∑
n=1

mn(
n + 1

10
)rn/10−1.7 − C2

0

∞

∑
n=9

mn(
n + 1

10
)rn/10−1.7+

2m0C00.2
∞

∑
n=1

Cnrn/10−1.7 − 2C0r−0.4
∞

∑
n=1

Cnr(n−1)/10
∞

∑
n=9

mn(
n + 1

10
)r(n−9)/10+

0.2m0r−1.2
∞

∑
n=1

C∗
nr(n−1)/10 − 2C0

∞

∑
n=1

Cnr(n−1)/10
8

∑
n=1

mn(
n + 1

10
)rn/10−1.3−

∞

∑
n=9

mn(
n + 1

10
)r(n−9)/10

∞

∑
n=1

C∗
nr(n−1)/10 −

∞

∑
n=1

C∗
nr(n−1)/10

8

∑
n=1

mn(
n + 1

10
)r(n−9)/10 =

A1(m0g0r−1.4 +
∞

∑
n=1

mngnrn/10−1.1) + B1r−2. (20)

With the least degree r−2 of the left and the right side of the Equation (20) we obtain

0.2m3
0g2

0 = B1,

from which we obtain

m0 = 3

√
B1

0.2g2
0

.

Analysis of the left-hand side of expression (20) indicates the following degree r−1.6.
Taking into account this degree in the right-hand side of Equation (20), we obtain

(0.2m02C0C1 − 0.2C2
0m1 = 0.

Or, after transforming the expression, we have

0.2m2
0m1g0(2g1 − g0) = 0.

From the latter, it follows that m1 = 0. Similarly, for the degree r−1.5we obtain from (20)

0.2m02C0C2 − 0.3C2
0m2 = 0,

or
m2(0.4m2

0g0g2 − 0.3m2
0g2

0) = 0.

The last one implies m2 = 0.
We continue this process for subsequent degrees «r» and find expressions for the

coefficients mn. We present non-zero expressions for the coefficients mn:

m3 =
A1

2m0g2
3 − 0.4

, m9 =
m3g3(A1 − 0.2m0m3(g3 − 8g0))

m2
0g0(0.4g9 − g0)

,

m15 =
m9(A1g9 − 0.4m3m0g9g3 + 0.8m3m0g9g0 + 2m3m0g3g0) + 0.4m2

3g2
3

0.4m2
0g0(g15 − 4g0)

,

m21 =
m15(A1g15 − 0.4m3m0g3 + 0.8m3m0g0 + 3.2m0g0g3)

0.2m2
0g0(g21 − g0)

− (21)

−m9g9(0.2m9m0g9 − 2m9m0g0 − 0.8m2
3g3)− 2m2

3g2
3

0.2m2
0g0(g21 − g0)

,
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m27 =
m21g21(5A1 + 4m3m0g0) + m15g15(8m2

3g3 + 10m9m0g0 + 4m15m3g3 − 2m9m0g9)

2m2
0g0(g27 − 7g0)

+

m9g9(4m3m9g9 + 16m15m0g0) + 10m9m3g3

2m2
0g0(g27 − 7g0)

,

m33 =
1

m2
0g0(2g33 − 17g0)

(m27(5A1g27 − 2m0g27m3g3 + 4g27m3m0g0+

28m3g3m0g0) + m21(10m0m9g0 − 2m0m9g9 + 2m2
3g3 + 11m2

3g2
3 + 22m0g0)+

m15(4m3m9g9 + 16m0m15g0 − m0m15g15 + 16m3m9g9) + m3
9g2

9).

Thus, we obtain unambiguous expressions of the coefficients mn.
Table 1 provides information on the values of the coefficients mn.
Non-zero values of the coefficients mn are indicated in Table 1 (third line). The arrow,

line 3, points to the next non-zero coefficient mn in the second line of Table 1. Table 1 clearly
illustrates the pattern of non-zero values.

Table 1. Degrees «r» and numbers of coefficients mn.

Degree «r» −0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Number mn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number mn in the
right side of the

Equation (20)
↑
B1

- - ↑
0

- - - - - ↑
3

- - - - -

Degree «r» 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Number mn 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Number mn in the
right side of the

Equation (20)
↑
9

- - - - - ↑
15

- - - - - ↑
21

- -

Degree «r» 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

Number mn 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Number mn in the
right side of the

Equation (20)
- - -

↑
21 - - - - - ↑

33
- - - - -

Based on the analysis of the expressions of the coefficients mn, the expression (21),
an assessment hypothesis is constructed:

∣∣∣m6(n−1)+3

∣∣∣ ≤ 5n A1(A1 + B1 + 1)n−1g6(n−2)+3

B2n−1
1 |g3 − g0|2n−1 . (22)

To prove the estimate in the general case, it is necessary to compile a recurrence
relation for the coefficient m6n+3 according to Equation (20). To perform this, we determine
the degree «r» by the index of the coefficient (6m + 3) and then, according to the value of
this degree from Equation (20), we assemble an expression for determining m6n+3. Thus
we obtain

0.4m0C0C6m+3 + 0.2m0C∗
6n−1 − 2C0(C6n+1m10.2 + C6nm20.3 + C6n−1m30.4 + C6n−2m40.5+

C6n−3m50.6 + C6n−4m60.7 + C6n−5m70.8 + C6n−6m80.9)− C2
0m6n+3(0.6n + 0.4)−

2C0C6nm9 − m9C∗
6n−4 − (0.9m8C∗

6n−5 + 0.8m7C∗
6n−4 + 0.7m6C∗

6n−3 + 0.6m5C∗
6n−2+

0.5m4C∗
6n−1 + 0.4m3C∗

6n + 0.3m2C6n+1 + 0.2m1C∗
6n+2) = A1m6n−3g6n−3. (23)
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At the next stage, we discard expressions with zero values mn, including even index
values. Equation (23) is simplified:

0.4m0C0C6m+3 + 0.2m0C∗
6n−1 − C2

0m6n+3(0.6n + 0.4)− m9C∗
6n−4 = A1m6n−3g6n−3. (24)

We transform (24), solve with respect to a m6n+3 and write out C∗
6n−1, C∗

6n−4:

m6n+3m2
0g0(0.4g6n+3 − (0.6n + 0.4)g0) = A1m6n−3g6n−3 − 0.2m0(2C1C6n−1 + 2C2C6n−2+

2C3C6n−3 + 2C4C6n−4 + 2C5C6n−5 + . . . + 2C9C6n−9 + . . . + 2C6n/2C(6n−1)/2)+

m9(2C1C6n−4 + 2C2C6n−5 + 2C3C6n−6 + . . . + C2
3n−2).

Or, after removing the zero values of the terms on the right side of the last equation,
we obtain

m6n+3m2
0g0(0.4g6n+3 − (0.6n + 0.4)g0) = A1m6n−3g6n−3 − 0.2m0(2C3C6n−3 + 2C9C6n−9+

2C15C6n−15 + 2C21C6n−21 + 2C33C6n−33 + . . . + 2C6n/2C(6n−1)/2). (25)

An extended expression of the Formula (24) is presented afterwards. Taking into
consideration the rules established in Table 1 as well as the number of zero and non-zero
coefficients, the number of terms in the right side of the Equation (25) in the expression
under round brackets will contain no more than (n − 1)/2 terms. Taking into consideration
that each term will contain the expression (A1 + B1 + 1) is raised to the power (n − 2).

|g3 − g0| ≤ |0.4g6n+3 − (0.6n + 0.4)g0|.

This estimate can be verified using Formula (15) for calculating gn, given above. So
from (25), taking into account (22) and the value m0 we will have

|m6n+3| ≤
5n+1 A1(A1 + B1 + 1)ng6(n−1)+3

B2n+1
1 |g3 − g0|2n+1 = V6n+3. (26)

Let us consider the series

rρ2
∞

∑
n=1

Vnrn/10, (27)

which, by virtue of (26), is a majorant for the regular part of the series (12).
Based on the sufficient criterion for the convergence of power series, we obtain the

region of convergence for the series (27)

r <

(
(g3 − g0)

2B2
1

5(A1 + B1 + 1)

)5/3

= ρ3 . (28)

Therefore, the correct part of the series (12) also converges in this region.
Thus, we complete the proof of Theorem 1, the existence and uniqueness of the solution

in the neighborhood of a fixed singular point.

Theorem 1. For the singular problem (10), (11) there is a unique solution in the form (12) in
the domain

r <

(
(g3 − g0)

2B2
1

5(A1 + B1 + 1)

)5/3

= ρ3

when A1 < B1, B1 > 1, 0 < α < 0.5,

ρ =

{
ρ1 = 2α−1

3 , where n = 0 ,
ρ2 = α

2 , where n = 1, 2. . .
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The proven theorem allows us to construct an analytical approximate solution to
problem (10) and (11) in the form

PN(r) = m0rρ1 + rρ2
N

∑
n=1

mnrn/10. (29)

and obtain its a priori error estimate.

Theorem 2. When the conditions of Theorem 1 are met for the analytical approximate solution (29)
of problem (10) and (11) and the selected parameters α = 0.2 and ρ2 = 0.1, the error estimate
is valid

∆PN(r) ≤
5N+1 A1(A1 + B1 + 1)N g6N−3r0.6N+0.4

B2N
1 (g3 − g0)2N+1

(
1

(1 − (5(A1 + B1 + 1)r0.6/(B2
1(g3 − g0)2)))

)

in the region r < ρ3, where

ρ3 =

(
(g3 − g0)

2B2
1

5(A1 + B1 + 1)

)5/3

.

Proof. The estimates for mn in Theorem 1 allow us to obtain an a priori estimate of the
analyticity of the approximate solution (29)

∆Pn(r) = |P(r)− PN(r)| =
∣∣∣∣∣ ∞

∑
n=N+1

m6(n−1)+3r0.6n−0.2

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞

∑
n=N+1

V6(n−1)+3r0.6n−0.2

∣∣∣∣∣ =
|

5N+1 A1(A1 + B1 + 1)N g6(N−1)+3r0.6N+0.4

B2N+1
1 (g3 − g0)2N+1

+
5N+2 A1(A1 + B1 + 1)N+1g6(N−1)+3r0.6N+1

B2N+3
1 (g3 − g0)2N+3

+ . . .+

5N+k A1(A1 + B1 + 1)N+k−1g6(N+k)−3r0.6(N+k)−0.2

B2(N+k)−1
1 (g3 − g0)2(N+k)−1

+ . . . | ≤

5N+1 A1(A1 + B1 + 1)N g6N−3r0.6N+0.4

B2N
1 (g3 − g0)2N+1

(
1
B1

+
5(A1 + B1 + 1)g6N+3r0.6

B3
1(g3 − g0)2g6N−3

+

52(A1 + B1 + 1)2g6N+9r1.2

B5
1(g3 − g0)4g6N−3

+ . . . +
5k−1(A1 + B1 + 1)k−1g6(N+k)−3r0.6k−0.6

B2k+1
1 (g3 − g0)2kg6N−3

+ . . . ). (30)

Taking into account the condition

B1g6N−3

g6(N+k)−3
> 1

for k = 2, 3. . . , from (30) we obtain

∆PN(r) ≤
5N+1 A1(A1 + B1 + 1)N g6N−3r0.6N+0.4

B2N
1 (g3 − g0)2N+1

(1 +
5(A1 + B1 + 1)r0.6

B2
1(g3 − g0)2

+

52(A1 + B1 + 1)2r1.2

B4
1(g3 − g0)4

+ . . . +
5k(A1 + B1 + 1)kr0.6k

B2k
1 (g3 − g0)2k

+ . . . ) ≤

5N+1 A1(A1 + B1 + 1)N g6N−3r0.6N+0.4

B2N
1 (g3 − g0)2N+1

(
1

(1 − (5(A1 + B1 + 1)r0.6/(B2
1(g3 − g0)2)))

)

in the region

r <

(
B2

1(g3 − g0)
2

5(A1 + B1 + 1)

)5/3

= ρ3.
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Thus, we complete the proof of Theorem 2.

3. Results Discussion

Let us consider problem (10) and (11), where A1 = 0.0000003, B1 = 737.12.
According to Formula (28), we determine ρ3, ρ3 = 0.76618, r1 = 0.4 falls within the

domain for Theorem 2.
The analytical approximate solution (29) takes the form as follows

P27(r) = 16.691428474r−0.2 + 5.90354928 × 10−7r0.4 − 6.20530236 × 10−14r1+

6.6 × 10−21r1.6 − 7.28 × 10−28r2.2 + 1.64 × 10−28r2.8. (31)

The calculations are given in Table 2.

Table 2. Numerical experiment calculations.

r1, m. P27(r1), Pa. ∆P27(r1) ∆

0.4 20.0484829874667 1.231285 × 10−11 1.1138 × 10−12

In this case, P27(r1) is an analytical approximate solution (29); ∆P27(r1) is an a priori
estimate of the error P27(r1); ∆—is an a posteriori estimate of the error P27(r1).

For the ∆ an analytical approximate solution specified in the structure (29) is required
N = 33. The sum from the 27th to the 33rd terms in the structure (29) does not exceed the
value 1.1138 × 10−12. Therefore, the a priori error estimate P27(r1) does not exceed the
value ∆ = 1.1138 × 10−12.

A graphical interpretation of the analytical approximate solution (29) in the vicinity of
a fixed singular point is given in Figure 1.

Figure 1. Graphical interpretation of the analytical approximate solution (31).

4. Conclusions

The paper presents a proof of the existence and uniqueness theorem for a solution to
the singular Cauchy problem (10) and (11) for a nonlinear fractional differential equation
in the neighborhood of a fixed singular point. An analytical approximate solution is
constructed, and an a priori error estimate is obtained. A formula is obtained for calculating
the region in which the proven theorem 1 works. A technology for optimizing an a priori
error using an a posteriori error is demonstrated. The results presented in the paper are
the first stage of the study of nonlinear differential equations with fractional derivative.
The next stage involves the study of an analytical approximate solution in the region of
analyticity of the solution, and then in the vicinity of a moving singular point.
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