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Abstract: The status (or transmission) of a vertex in a connected graph is the sum of distances between
the vertex and all other vertices. The minimum status (or minimum transmission) of a connected
graph is the minimum of the statuses of all vertices in the graph. Previously, sharp lower and upper
bounds have been obtained on the minimum status of connected graphs with a fixed maximum
degree k and order n. Moreover, for 2 ≤ k ≤ n

2 , the following theorem about graphs attaining the
maximum on the minimum status has also been proposed without proof. The theorem is as follows:
Let G be a connected graph of order n with △(G) = k, where 2 ≤ k ≤ n

2 . Then, the minimum status
of G attains the maximum if and only if one of the following holds. (1) G is a path or a cycle, where
k = 2; (2) Gk,n is a spanning subgraph of G and G is a spanning subgraph of Hk,n, where 3 ≤ k < n

2 ;
and (3) either G n

2 ,n is a spanning subgraph of G and G is a spanning subgraph of H n
2 ,n or G n

2 ,n is a
spanning subgraph of G and G is a spanning subgraph of Hn, where k = n

2 for even n ≥ 6. For the
integers n, k with 2 ≤ k ≤ n − 1, the graph Gk,n has the vertex set V(Gk,n) = {x1, x2, · · · , xn} and the
edge set E(Gk,n) = {xixi+1 : i = 1, 2, · · · , n − k} ∪ {xn−k+1xj : j = n − k + 2, n − k + 3, · · · , n}; the
graph Hk,n is obtained from Gk,n by adding all the edges xixj, where n − k + 2 ≤ i < j ≤ n; and for
even n ≥ 6 the graph Hn is obtained from G n

2 ,n by adding the edge x n
2 −1x n

2 +2 and all the edges xixj,
where n

2 + 3 ≤ i < j ≤ n. This study provides the proof to complete the above theorem.

Keywords: status; transmission; minimum status; proximity

MSC: 05C12; 05C35

1. Introduction and Preliminaries

All graphs considered in this study are finite, simple, loopless, and unweighted. For a
vertex x in a connected graph G, the status or transmission [1–32] of x, denoted sG(x), is
defined by sG(x) = ∑y∈V(G) dG(x, y), where dG(x, y) is the distance between the vertices
x and y in G. The concept of status was introduced by Harary in 1959 [13]. Slater [29]
mentioned that the status of a vertex calculates the total transportation cost from this vertex
to all other vertices in the graph. Vukičević and Caporossi [32] thought the status can be
interpreted as a vertex’s contribution to a network’s communication cost. Let G be of order
n and σ(v) denote the average distance from a vertex v in G to all other vertices in G. That
is, σ(v) = sG(v)

n−1 . For complex network analysis, one major concern is centrality, which
measures how central a vertex is in a network. Golbeck [33] mentioned that σ(v) is used to
measure the closeness centrality for vertices in a network. And Krnc and Škrekovski [15]
studied the centralization of transmission in networks.

The minimum status or minimum transmission of G, denoted ms(G), is defined
by ms(G) = minx∈V(G) sG(x). The following theorem is about the upper bound on the
minimum status of a connected graph with a fixed order and the graphs that attain the
upper bound, which will be used in the main theorem later.
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Theorem 1 ( Proposition 2.1 in [34]). Let G be a connected graph of order n ≥ 3. Then,

ms(G) ≤
{

n2−1
4 if n is odd,

n2

4 if n is even.

The upper bound is attained if and only if G is either a path or a cycle.

Bounds on minimum status with several invariants of graphs are widely studied.
Aouchiche and Hansen [34] gave a sharp lower bound on the minimum status of a
graph with a fixed diameter and order. Lin et al. [18] obtained sharp lower and upper
bounds on the minimum status of a graph with a fixed maximum degree and order. They
characterized the extremal graphs for the lower bound and gave a necessary condition
for graphs attaining the upper bound. Using another method, Rissner and Burkard [24]
proved the same result for minimum status as in [18]. For graphs with a fixed matching
number (or domination number) and order, Liang et al. [16] proposed a sharp upper
bound on the minimum status and characterized the unique trees achieving the bound;
they also determined the unique tree, so that its minimum status is as small as possible.
Peng and Zhou [21] established sharp lower and upper bounds for the minimum status
of trees with the following parameters: the diameter, the number of pendant vertices, the
number of odd vertices, and the number of vertices of degree two, and characterized the
extremal cases. Cheng et al. [7] determined the largest values for the minimum status of
the series-reduced trees with the following fixed parameters: maximum degree, number of
pendant vertices, diameter, matching number, and domination number, and characterized
the unique extremal trees. For the aforementioned average distance σ(v), the proximity of
G is defined as minv∈V(G) σ(v), and the remoteness of G is defined as maxv∈V(G) σ(v). It is

seen that the proximity of G is equal to ms(G)
n−1 . Similarly, the topic of bounds on proximity

and remoteness with several invariants of graphs also attracts attention [1,8,9,25,34].
Lin et al. [18] provided a sharp lower bound and a sharp upper bound on the minimum

status of connected graphs with a fixed maximum degree and order. Moreover, all graphs
that attain the lower bound are obtained, and a necessary condition is determined for those
that attain the upper bound. The following two types of graphs are needed to describe
the result.

A rooted tree is a tree with a specific vertex designated as the root. Let T be a
nontrivial rooted tree with root z. The height h(T) of the tree T is defined by h(T) =
maxx∈V(T) dT(x, z), and the degree of a vertex x in T is denoted by degT(x). For h(T) ≥ 2
and k ≥ 2, if degT(x) = k whenever x is a vertex with dT(x, z) ≤ h(T)− 2, and degT(x) ≤ k
whenever x is a vertex with dT(x, z) = h(T)− 1, then T is called a balanced k-tree [18].
A balanced k-tree of order n is denoted by Bk,n. We note that Bk,n may not be unique,
but ms(Bk,n) is a fixed number for the given k and n. This value ms(Bk,n) is denoted by
bk,n. Next is another type of graph. For the integers n, k with n − 1 ≥ k ≥ 2, let Gk,n
denote a graph with the vertex set V(Gk,n) = {x1, x2, · · · , xn} and the edge set E(Gk,n) =
{xixi+1 : i = 1, 2, · · · , n − k} ∪ {xn−k+1xj : j = n − k + 2, n − k + 3, · · · , n}. Figure 1
exhibits G6,9 [18]. The graph Gk,n is a tree and degGk,n(xn−k+1) = k. Obviously, G2,n is a
path and Gn−1,n is a star. We call Gk,n the k-grass of order n, or simply a grass, and use gk,n
to denote the value ms(Gk,n).

The following theorem is provided by Lin et al. [18], which will be used in the
main theorem.

Theorem 2 ( Theorem 2.10 in [18]). Suppose that G is a connected graph of order n with
△(G) = k, where k ≥ 2. Then, we have bk,n ≤ ms(G) ≤ gk,n. Furthermore, the lower bound is
attained if and only if G contains some balanced k-tree Bk,n as a spanning subgraph; if the upper
bound is attained, then G contains the k-grass Gk,n as a spanning subgraph.
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Fig. 1. Grass G6,9
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For k ≤ n
2 , Theorem 2.11 in [18] also proposes necessary and sufficient conditions for

those graphs that attain the upper bound on the minimum status without proof. In recent
decades, there have been various studies on the status, minimum status, or distance-related
topics of graphs. The following research papers all cite [18]: [2,5–8,11,12,16,19–21,24,31].
However, this theorem is still without proof. Hence, our study aims to provide proof to
complete this theorem.

To state the main theorem, we first illustrate two types of graphs which are defined
in [18]. For integers k and n with 2 ≤ k ≤ n − 1, let Hk,n denote the graph obtained from the
grass Gk,n by adding all the edges xixj, where n − k + 2 ≤ i < j ≤ n. For an even integer
n ≥ 6, let Hn denote the graph obtained from the grass G n

2 ,n by adding the edge x n
2 −1x n

2 +2
and all the edges xixj, where n

2 + 3 ≤ i < j ≤ n. Figure 2 exhibits H5,10 and H10.
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Figure 2. Examples of Hk,n and Hn for n = 10 and k = 5.

Let F, G and H be graphs. The graph G is said to be between F and H if F is a spanning
subgraph of G and G is a spanning subgraph of H.

The main result of this study is as follows:

Theorem 3 ( Theorem 2.11 in [18]). Let G be a connected graph of order n with △(G) = k, where
2 ≤ k ≤ n

2 . Then ms(G) = gk,n if and only if one of the following holds.

(1) G is a path or a cycle, where k = 2.
(2) G is between Gk,n and Hk,n, where 3 ≤ k < n

2 .
(3) G is either between G n

2 ,n and H n
2 ,n or between G n

2 ,n and Hn, where k = n
2 for even n ≥ 6.

The detailed proof will be presented in the following section.

2. Proof of the Main Result

This section begins with several propositions, which will be used to prove lemmas.
The main theorem follows directly from the lemmas.

The median of a graph G is the set: {x ∈ V(G) : sG(x) = ms(G)}. The following
proposition is used to determine the median of a tree.

Proposition 1 ([14,18]). Let T be a tree and x be a vertex of T. Then, x is in the median of T if and
only if |V(T′)| ≤ 1

2 |V(T)| holds for every component T′ of T − x.
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For a grass Gk,n, when we consider the case 2 ≤ k ≤ n
2 , from Proposition 1 it is evident

that the median of Gk,n is the set {x⌊ n
2 ⌋+1} if n is odd and the set {x⌊ n

2 ⌋, x⌊ n
2 ⌋+1} if n is even.

Proposition 2. Let H be a connected graph and G be a connected spanning subgraph of H. Let
u be a vertex in the median of G. If there exists a vertex x in G with xu ∈ E(H) and xu /∈ E(G),
then ms(H) < ms(G).

Proof. By assumption, dH(x, u) < dG(x, u) and dH(v, u) ≤ dG(v, u) for all v ∈ V(G)−{x}.
Then ms(H) ≤ sH(u) < sG(u) = ms(G). That is, ms(H) < ms(G).

Proposition 3. Let F, G, and H be connected graphs. If G is between F and H and ms(H) =
ms(F), then ms(G) = ms(F).

Proof. As F ⊆ G ⊆ H, we have sF(x) ≥ sG(x) ≥ sH(x) for all x ∈ V(G). Then, ms(F) ≥
ms(G) ≥ ms(H). As ms(H) = ms(F), we have ms(G) = ms(F).

The following propositions are trivial. We omit the proofs.

Proposition 4. Let G be a connected graph. If x, y ∈ V(G), xy ∈ E(G), and |{v ∈ V(G) :
dG(v, x) < dG(v, y)}| < |{v ∈ V(G) : dG(v, y) < dG(v, x)}|, then sG(y) < sG(x).

Proposition 5. Let C be the only cycle in a connected graph G. Then ∑v∈V(C) dG(v, p) =

∑v∈V(C) dG(v, q) for any two vertices p, q ∈ V(C).

Next are the lemmas for the main theorem.

Lemma 1. Let G be a connected graph of order n ≥ 3. Then ms(G) = g2,n if and only if G is a
path or a cycle.

Proof. According to Theorem 1, it suffices to show that

g2,n =

{
n2−1

4 if n is odd,
n2

4 if n is even.

Here, g2,n = ms(G2,n), and the grass G2,n is in fact a path P : x1x2 · · · xn. By Proposition 1,

g2,n = sG2,n(x⌊ n
2 ⌋+1)

=

{
2(1 + 2 + · · ·+ ⌊ n

2 ⌋) if n is odd,
(1 + 2 + · · ·+ ⌊ n

2 ⌋) + (1 + 2 + · · ·+ (⌊ n
2 ⌋ − 1)) if n is even.

=

{
⌊ n

2 ⌋
2 + ⌊ n

2 ⌋ if n is odd,
⌊ n

2 ⌋
2 if n is even.

=

{
n2−1

4 if n is odd,
n2

4 if n is even.

Lemma 2. Let G be a connected graph of order n with △(G) = k, where 3 ≤ k ≤ n
2 . Then

ms(G) = gk,n if and only if one of the following holds.

(1) G is between Gk,n and Hk,n, where 3 ≤ k < n
2 .

(2) G is either between G n
2 ,n and H n

2 ,n or between G n
2 ,n and Hn, where k = n

2 for even n ≥ 6.

Proof. We first prove the sufficiency.
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(1) Let G be between Gk,n and Hk,n, where 3 ≤ k < n
2 . We note that any graph between Gk,n

and Hk,n has the maximum degree k and the order n. From Proposition 3, it suffices to show
that ms(Hk,n) = ms(Gk,n). It is evident that sHk,n(xi) = sGk,n(xi) for 1 ≤ i ≤ n − k + 1. By
Proposition 4, sHk,n(xi) > sHk,n(xn−k+1) for n − k + 2 ≤ i ≤ n. As ms(Gk,n) = sGk,n(x⌊ n

2 ⌋+1),
where ⌊ n

2 ⌋ + 1 < n − k + 1, we have ms(Hk,n) = sHk,n(x⌊ n
2 ⌋+1). That is, ms(Hk,n) =

ms(Gk,n).

(2) We note that any graph between G n
2 ,n and H n

2 ,n, or between G n
2 ,n and Hn, has the

maximum degree k = n
2 and the order n, where n is even and n ≥ 6. First, let G be between

G n
2 ,n and H n

2 ,n, the proof is the same as in (1) except that we have ⌊ n
2 ⌋+ 1 = n − k + 1 in

this case. Next, let G be between G n
2 ,n and Hn. By Proposition 3, it suffices to show that

ms(Hn) = ms(G n
2 ,n). By applying Proposition 4, we can see that

sHn(x n
2 −1) = sHn(x n

2
) = sHn(x n

2 +1) = sHn(x n
2 +2),

sHn(x n
2 −1) < sHn(x n

2 −2) < · · · < sHn(x1), and

sHn(x n
2 +1) < sHn(v) for all v ∈ {x n

2 +3, x n
2 +4, · · · , xn}.

Thus, ms(Hn) = sHn(x n
2 +1). Since ms(G n

2 ,n) = sG n
2 ,n

(x n
2 +1) and clearly sHn(x n

2 +1) =

sG n
2 ,n

(x n
2 +1), we have ms(Hn) = ms(G n

2 ,n).

Next, we prove the necessity. Assume that ms(G) = gk,n, where △(G) = k and
3 ≤ k ≤ n

2 . By Theorem 2, G contains Gk,n as a spanning subgraph. Distinguish between
the following two cases. Case 1: 3 ≤ k < n

2 , and Case 2: 3 ≤ k = n
2 .

Case 1: 3 ≤ k < n
2 . We claim that E(G)− E(Hk,n) = ∅, and this implies that G is between

Gk,n and Hk,n. Suppose, to the contrary, that there exists an edge xixj ∈ E(G)− E(Hk,n),
where 1 ≤ i < j ≤ n. As xixj /∈ E(Hk,n), we note that there is at most one of the two
numbers i and j that is in {n − k + 1, n − k + 2, · · · , n}. Let G′ = Gk,n + xixj and C be a
cycle in G′. It is clear that G′ ⊆ G and then ms(G) ≤ ms(G′), and C is the only cycle in G′.
Distinguish two subcases. Case 1.1: n is even, and Case 1.2: n is odd.

Case 1.1: n is even. In this case, the median of Gk,n is {x n
2
, x n

2 +1}, where n
2 + 1 < n − k + 1.

As Gk,n is a spanning subgraph of G′, if i ∈ { n
2 , n

2 + 1} or j ∈ { n
2 , n

2 + 1}, then by Proposition
2, we see that ms(G′) < ms(Gk,n) = gk,n. Then, ms(G) < gk,n. Which contradicts the
assumption that ms(G) = gk,n. Therefore, we have i, j /∈ { n

2 , n
2 + 1}. Without loss of

generality, we distinguish two cases: (i) 1 ≤ i < j ≤ n
2 − 1 or n

2 + 2 ≤ i < j ≤ n − k + 2,
and (ii) 1 ≤ i ≤ n

2 − 1 and n
2 + 2 ≤ j ≤ n − k + 2.

(i) 1 ≤ i < j ≤ n
2 − 1 or n

2 + 2 ≤ i < j ≤ n − k + 2. First, we consider the case 1 ≤
i < j ≤ n

2 − 1. As dG′(xi, x n
2
) < dGk,n(xi, x n

2
) and dG′(xt, x n

2
) ≤ dGk,n(xt, x n

2
) for t ̸= i,

we have sG′(x n
2
) < sGk,n(x n

2
). This implies that ms(G′) ≤ sG′(x n

2
) < sGk,n(x n

2
) = gk,n.

Then, ms(G) < gk,n, which is a contradiction. Next is the case n
2 + 2 ≤ i < j ≤ n − k + 2.

Similarly, dG′(xj, x n
2
) < dGk,n(xj, x n

2
) and dG′(xt, x n

2
) ≤ dGk,n(xt, x n

2
) for t ̸= j, we have

sG′(x n
2
) < sGk,n(x n

2
). And then, ms(G) ≤ ms(G′) ≤ sG′(x n

2
) < sGk,n(x n

2
) = gk,n, which is a

contradiction.

(ii) 1 ≤ i ≤ n
2 − 1 and n

2 + 2 ≤ j ≤ n − k + 2. First, we see that dG′(v, xj) ≤ dG′(v, x n
2
)

for v ∈ {x1, x2, · · · , xi−1}. Next, by Proposition 5, ∑v∈V(C) dG′(v, xj) = ∑v∈V(C) dG′(v, x n
2
),

as xj, x n
2
∈ V(C), where C is the aforementioned only cycle of G′. And dG′(v, xj) <

dG′(v, x n
2
) for v ∈ V(G′) − {x1, x2, · · · , xi−1} − V(C) = {xj+1, xj+2, · · · , xn}. Note that

{x1, x2, · · · , xi−1} = ∅ if i = 1.
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Then

ms(G) ≤ ms(G′)

≤ sG′(xj)

= ∑
v∈V(G′)

dG′(v, xj)

= ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, xj) + ∑
v∈V(C)

dG′(v, xj) + ∑
v∈{xj+1,xj+2,··· ,xn}

dG′(v, xj)

< ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, x n
2
) + ∑

v∈V(C)
dG′(v, x n

2
) + ∑

v∈{xj+1,xj+2,··· ,xn}
dG′(v, x n

2
)

= ∑
v∈V(G′)

dG′(v, x n
2
)

= sG′(x n
2
)

≤ sGk,n(x n
2
)

= gk,n.

Thus, ms(G) < gk,n, which is a contradiction.

Case 1.2: n is odd. In this case, the median of Gk,n is {x n+1
2
}, where n+1

2 < n − k + 1.

As Gk,n is a spanning subgraph of G′, by Proposition 2, if i = n+1
2 or j = n+1

2 , then
ms(G) ≤ ms(G′) < ms(Gk,n) = gk,n, which is a contradiction. Thus, we have i, j ̸= n+1

2 .
Recall that xixj /∈ E(Hk,n), hence there is at most one of the two numbers i and j that is
in {n − k + 1, n − k + 2, · · · , n}. Without loss of generality, we distinguish three cases:
(i) 1 ≤ i < j ≤ n−1

2 or n+3
2 ≤ i < j ≤ n − k + 2, (ii) 1 ≤ i < n+1

2 < j ≤ n − k + 1, and
(iii) 1 ≤ i < n+1

2 and j = n − k + 2.

(i) 1 ≤ i < j ≤ n−1
2 or n+3

2 ≤ i < j ≤ n − k + 2. The arguments are similar to those
presented in Case 1.1(i).

(ii) 1 ≤ i < n+1
2 < j ≤ n − k + 1. In this case, dG′(v, xj) ≤ dG′(v, x n+1

2
) for v ∈

{x1, x2, · · · , xi−1}. By Proposition 5, ∑v∈V(C) dG′(v, xj) = ∑v∈V(C) dG′(v, x n+1
2
), as xj, x n+1

2
∈ V(C). And dG′(v, xj) < dG′(v, x n+1

2
) for v ∈ V(G′) − {x1, x2, · · · , xi−1} − V(C) =

{xj+1, xj+2, · · · , xn}.

Then

ms(G) ≤ ms(G′)

≤ sG′(xj)

= ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, xj) + ∑
v∈V(C)

dG′(v, xj) + ∑
v∈{xj+1,xj+2,··· ,xn}

dG′(v, xj)

< ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, x n+1
2
) + ∑

v∈V(C)
dG′(v, x n+1

2
) + ∑

v∈{xj+1,xj+2,··· ,xn}
dG′(v, x n+1

2
)

= sG′(x n+1
2
)

≤ sGk,n(x n+1
2
)

= gk,n.

Thus, ms(G) < gk,n, which is a contradiction.

(iii) 1 ≤ i < n+1
2 and j = n − k + 2. For k < n

2 and n is odd, we have k ≤ n−1
2 . Then,

n+1
2 ≤ n − k. Now, consider the three cases: (a) n+1

2 = n − k, i = n−1
2 , (b) n+1

2 = n − k,
1 ≤ i < n−1

2 , and (c) n+1
2 < n − k.
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(a) n+1
2 = n − k, i = n−1

2 . In this case, the vertex xi = x n−1
2

is adjacent to xn−k = x n+1
2

, and

xn−k+1 = x n+1
2 +1 is the vertex of degree k in G′. We see that

|{v ∈ V(G′) : dG′(v, xi) < dG′(v, x n+1
2
)}| = |{x1, x2, · · · , xi−1, xn−k+2}| = i = n−1

2 , and

|{v ∈ V(G′) : dG′(v, x n+1
2
) < dG′(v, xi)}| = |{xn−k+1}

⋃{xn−k+3, xn−k+4 · · · , xn}| = k − 1.

As k = n − n+1
2 = n−1

2 , we have k − 1 < n−1
2 , by Proposition 4, sG′(xi) < sG′(x n+1

2
). Then

ms(G) ≤ ms(G′) ≤ sG′(xi) < sG′(x n+1
2
) ≤ sGk,n(x n+1

2
) = gk,n, that is, ms(G) < gk,n, which

is a contradiction.

(b) n+1
2 = n − k, 1 ≤ i < n−1

2 . In this case, dG′(v, xn−k+1) ≤ dG′(v, x n+1
2
) for v ∈

{x1, x2, · · · , xi−1}. Recall that C is the only cycle in G′. By Proposition 5,
∑v∈V(C) dG′(v, xn−k+1) = ∑v∈V(C) dG′(v, x n+1

2
), as xn−k+1, x n+1

2
∈ V(C). And dG′(v, xn−k+1)

< dG′(v, x n+1
2
) for v ∈ V(G′)− {x1, x2, · · · , xi−1} − V(C) = {xn−k+3, xn−k+4, · · · , xn}.

Then

ms(G) ≤ ms(G′)

≤ sG′(xn−k+1)

= ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, xn−k+1) + ∑
v∈V(C)

dG′(v, xn−k+1) + ∑
v∈{xn−k+3,xn−k+4,··· ,xn}

dG′(v, xn−k+1)

< ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, x n+1
2
) + ∑

v∈V(C)
dG′(v, x n+1

2
) + ∑

v∈{xn−k+3,xn−k+4,··· ,xn}
dG′(v, x n+1

2
)

= sG′(x n+1
2
)

≤ sGk,n(x n+1
2
)

= gk,n.

Thus, ms(G) < gk,n, which is a contradiction.

(c) n+1
2 < n − k. In this case, dG′(v, xn−k+2) ≤ dG′(v, x n+1

2
) for v ∈ {x1, x2, · · · , xi−1}.

By Proposition 5, ∑v∈V(C) dG′(v, xn−k+2) = ∑v∈V(C) dG′(v, x n+1
2
), as xn−k+2, x n+1

2
∈ V(C).

And dG′(v, xn−k+2) < dG′(v, x n+1
2
) for v ∈ V(G′)− {x1, x2, · · · , xi−1} − V(C) = {xn−k+3,

xn−k+4, · · · , xn}.

Then

ms(G) ≤ ms(G′)

≤ sG′(xn−k+2)

= ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, xn−k+2) + ∑
v∈V(C)

dG′(v, xn−k+2) + ∑
v∈{xn−k+3,xn−k+4,··· ,xn}

dG′(v, xn−k+2)

< ∑
v∈{x1,x2,··· ,xi−1}

dG′(v, x n+1
2
) + ∑

v∈V(C)
dG′(v, x n+1

2
) + ∑

v∈{xn−k+3,xn−k+4,··· ,xn}
dG′(v, x n+1

2
)

= sG′(x n+1
2
)

≤ sGk,n(x n+1
2
)

= gk,n.

Thus, ms(G) < gk,n, which is a contradiction.
From the above contradictions, we see that E(G)− E(Hk,n) = ∅. That is, G is between

Gk,n and Hk,n.

Case 2: 3 ≤ k = n
2 . In this case, the median of G n

2 ,n is {x n
2
, x n

2 +1}. Distinguish between the
following two subcases. Case 2.1: x n

2 −1xt ∈ E(G) for some t ∈ { n
2 + 2, n

2 + 3, · · · , n}, and
Case 2.2: x n

2 −1xt /∈ E(G) for all t ∈ { n
2 + 2, n

2 + 3, · · · , n}.
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Case 2.1: x n
2 −1xt ∈ E(G) for some t ∈ { n

2 + 2, n
2 + 3, · · · , n}. In this case we show that G

is between G n
2 ,n and Hn. Without loss of generality, it is assumed that x n

2 −1x n
2 +2 ∈ E(G).

We claim that E(G)− E(Hn) = ∅, and this implies that G is between G n
2 ,n and Hn. On the

contrary, suppose that there exists an edge xixj ∈ E(G)− E(Hn), where 1 ≤ i < j ≤ n.
Let G′ = G n

2 ,n + x n
2 −1x n

2 +2 and G′′ = G′ + xixj. By Proposition 4, it is evident that
sG′(x n

2 −1) = sG′(x n
2
) = sG′(x n

2 +1) = sG′(x n
2 +2) = ms(G′). And since sG′(x n

2 +1) = g n
2 ,n,

we have ms(G′) = g n
2 ,n. As G′ is a spanning subgraph of G′′, and the median of G′

is {x n
2 −1, x n

2
, x n

2 +1, x n
2 +2}, by Proposition 2, if i or j is in { n

2 − 1, n
2 , n

2 + 1, n
2 + 2}, then

ms(G) ≤ ms(G′′) < ms(G′) = g n
2 ,n, which is a contradiction. Therefore, we have i, j /∈

{ n
2 − 1, n

2 , n
2 + 1, n

2 + 2}. Distinguish the following two cases. (i) 1 ≤ i < j ≤ n
2 − 2, and (ii)

1 ≤ i ≤ n
2 − 2, n

2 + 3 ≤ j ≤ n.

(i) 1 ≤ i < j ≤ n
2 − 2. As dG′′(xi, x n

2 −1) < dG′(xi, x n
2 −1), and dG′′(xt, x n

2 −1) ≤ dG′(xt, x n
2 −1)

for all t ̸= i, we have sG′′(x n
2 −1) < sG′(x n

2 −1). Thus, ms(G) ≤ ms(G′′) ≤ sG′′(x n
2 −1) <

sG′(x n
2 −1) = g n

2 ,n, which is a contradiction.

(ii) 1 ≤ i ≤ n
2 − 2, n

2 + 3 ≤ j ≤ n. In this case, dG′′(xi, x n
2 +1) < dG′(xi, x n

2 +1), and
dG′′(xt, x n

2 +1) ≤ dG′(xt, x n
2 +1) for all t ̸= i, we have sG′′(x n

2 +1) < sG′(x n
2 +1). Thus,

ms(G) ≤ ms(G′′) ≤ sG′′(x n
2 +1) < sG′(x n

2 +1) = g n
2 ,n, which is a contradiction.

Thus, E(G)− E(Hn) = ∅ and G is between G n
2 ,n and Hn.

Case 2.2: x n
2 −1xt /∈ E(G) for all t ∈ { n

2 + 2, n
2 + 3, · · · , n}. In this case we show that G is

between G n
2 ,n and H n

2 ,n. It suffices to show that E(G)− E(H n
2 ,n) = ∅ holds. On the contrary,

suppose that there exists an edge xixj ∈ E(G)− E(H n
2 ,n). Let G′ = G n

2 ,n + xixj. The median
of G n

2 ,n is {x n
2
, x n

2 +1}, we have i, j /∈ { n
2 , n

2 + 1}. As if this is not true, by Proposition 2,
we have ms(G) ≤ ms(G′) < ms(G n

2 ,n) = g n
2 ,n, which is a contradiction. Distinguish the

following two cases. (i) 1 ≤ i < j ≤ n
2 − 1, and (ii) 1 ≤ i ≤ n

2 − 2, n
2 + 2 ≤ j ≤ n.

(i) 1 ≤ i < j ≤ n
2 − 1. As dG′(xi, x n

2
) < dG n

2 ,n
(xi, x n

2
), and dG′(xt, x n

2
) ≤ dG n

2 ,n
(xt, x n

2
)for all

t ̸= i, we have sG′(x n
2
) < sG n

2 ,n
(x n

2
). Thus, ms(G) ≤ ms(G′) ≤ sG′(x n

2
) < sG n

2 ,n
(x n

2
) = g n

2 ,n,

which is a contradiction.

(ii) 1 ≤ i ≤ n
2 − 2, n

2 + 2 ≤ j ≤ n. In this case, dG′(xi, x n
2 +1) < dG n

2 ,n
(xi, x n

2 +1), and

dG′(xt, x n
2 +1) ≤ dG n

2 ,n
(xt, x n

2 +1) for all t ̸= i, we have sG′(x n
2 +1) < sG n

2 ,n
(x n

2 +1). Thus,

ms(G) ≤ ms(G′) ≤ sG′(x n
2 +1) < sG n

2 ,n
(x n

2 +1) = g n
2 ,n, which is a contradiction.

Thus, E(G)− E(H n
2 ,n) = ∅ and G is between G n

2 ,n and H n
2 ,n.

We see that the necessity holds.

Theorem 3, the main result of this study, follows from Lemmas 1 and 2.
The graph H in Figure 3 has order 10 and △(H) = 5. It is easily seen that sH(x6) =

g5,10. Since it is neither between G5,10 and H5,10 nor between G5,10 and H10, by applying
Theorem 3, we have ms(H) < g5,10. By Proposition 4, we can see that sH(x7) < sH(x6).

Version November 6, 2024 submitted to Journal Not Specified 9 of 10
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Fig. 3. Graph H of order 10 and △(H) = 5, but ms(H) < g5,10 252

We conclude this study with the following future work: For graphs of order n with 253

maximum degree k where n
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We conclude this study with the following future work: For connected graphs of order
n with maximum degree k where n

2 < k, find the necessary and sufficient conditions for
attaining the upper bound gk,n on minimum status.
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5. Bielak, H.; Powroźnik, K. Statuses and double branch weights of quadrangular outerplanar graphs. Ann. Univ. Mariae

Curie-Skłodowska Sect. A 2015, 69, 5–21.
6. Cheng, M.; Zhou, B. Minimum and maximum resistance status of unicyclic graphs. J. Math. Res. Appl. 2022, 42, 463–475.
7. Cheng, M.; Lin, H.; Zhou, B. Minimum status of series-reduced trees with given parameters. Bull. Braz. Math. Soc. 2022, 53, 701–720.

[CrossRef]
8. Dankelmann, P.; Mafunda, S. On the difference between proximity and other distance parameters in triangle-free graphs and

C4-free graphs. Discret. Appl. Math. 2022, 321, 295–307. [CrossRef]
9. Dankelmann, P. Proximity, remoteness and minimum degree. Discret. Appl. Math. 2015, 184, 223–228. [CrossRef]
10. Entringer, R.C.; Jackson, D.E.; Snyder, D.A. Distance in graphs. Czechoslov. Math. J. 1976, 26, 283–296. [CrossRef]
11. Guo, H.; Zhou, B. On extremal leaf status and internal status. RAIRO Oper. Res. 2022, 56, 415–430. [CrossRef]
12. Guo, H.; Zhou, B. Minimum status of trees with a given degree sequence. Acta Inform. 2023, 60, 1–10. [CrossRef]
13. Harary, F. Status and contrastatus. Sociometry 1959, 22, 23–43. [CrossRef]
14. Kang, A.; Ault, D. Some properties of a centroid of a free tree. Inf. Process. Lett. 1975, 4, 18–20. [CrossRef]
15. Krnc, M.; Škrekovski, R. Centralization of transmission in networks. Discret. Math. 2015, 338, 2412–2420. [CrossRef]
16. Liang, C.; Zhou, B.; Guo, H. Minimum status, matching and domination of graphs. Comput. J. 2021, 64, 1384–1392. [CrossRef]
17. Lin, C.; Shang, J.-L. Statuses and branch-weights of weighted trees. Czechoslov. Math. J. 2009, 59, 1019–1025. [CrossRef]
18. Lin, C.; Tsai, W.-H.; Shang, J.-L.; Zhang, Y.-J. Minimum statuses of connected graphs with fixed maximum degree and order. J.

Comb. Optim. 2012, 24, 147–161. [CrossRef]
19. Lin, C.; Tsai, W.-H.; Shang, J.-L.; Lee, M.-J. Maximum variances and minimum statuses of connected weighted graphs. Util. Math.

2017, 104, 277–293.
20. Lin, H.; Zhou, B. Which numbers are status differences? Appl. Math. Comput. 2021, 399, 126004. [CrossRef]
21. Peng, Z.; Zhou, B. Minimum status of trees with given parameters. RAIRO Oper. Res. 2021, 55, S765–S785. [CrossRef]
22. Pachter, L. Constructing status injective graphs. Discret. Appl. Math. 1997, 80, 107–113. [CrossRef]
23. Qiao, P.; Zhan, X. Pairs of a tree and a nontree graph with the same status sequence. Discret. Math. 2020, 343, 111662. [CrossRef]
24. Rissner, R.; Burkard, R.E. Bounds on the radius and status of graphs. Networks 2014, 64, 76–83. [CrossRef]
25. Sedlar, J. Remoteness, proximity and few other distance invariants in graphs. Filomat 2013, 27, 1425–1435. [CrossRef]
26. Shang, J.-L.; Lin, C. Spiders are status unique in trees. Discret. Math. 2011, 311, 785–791. [CrossRef]
27. Shang, J.-L. On constructing graphs with the same status sequence. Ars Combin. 2014, 113, 429–433.
28. Shang, J.-L.; Shyu, T.-W.; Lin, C. Weakly status injective trees are status unique in trees. Ars Combin. 2018, 139, 133–143.
29. Slater, P.J. Maximin facility location. J. Res. Natl. Bur. Stand. B Math. Sci. 1975, 79B, 107–115. [CrossRef]
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