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Abstract: The status (or transmission) of a vertex in a connected graph is the sum of distances between
the vertex and all other vertices. The minimum status (or minimum transmission) of a connected
graph is the minimum of the statuses of all vertices in the graph. Previously, sharp lower and upper
bounds have been obtained on the minimum status of connected graphs with a fixed maximum
degree k and order n. Moreover, for 2 < k < 4, the following theorem about graphs attaining the
maximum on the minimum status has also been proposed without proof. The theorem is as follows:
Let G be a connected graph of order n with A(G) = k, where 2 < k < 7. Then, the minimum status
of G attains the maximum if and only if one of the following holds. (1) G is a path or a cycle, where
k = 2; (2) Gy, is a spanning subgraph of G and G is a spanning subgraph of Hy ,,, where 3 < k < 7;
and (3) either Gy ,, is a spanning subgraph of G and G is a spanning subgraph of Hy , or Gy , is a
spanning subgraph of G and G is a spanning subgraph of Hy,, where k = 4 for even n > 6. For the
integers 1,k with 2 < k < n — 1, the graph Gy ,, has the vertex set V(G ,) = {x1,x2,- - , ¥, } and the
edgeset E(Gy,) = {xixjy1:i=12,-- ,n—k}U{x, p1xj: j=n—k+2,n—k+3,--- ,n}; the
graph Hy , is obtained from Gy , by adding all the edges x;x;, where n —k +2 <i < j < n; and for
even n > 6 the graph H,, is obtained from Gup by adding the edge Xz _1X149 and all the edges x;x;,
where 4 43 < i < j < n. This study provides the proof to complete the above theorem.

Keywords: status; transmission; minimum status; proximity

MSC: 05C12; 05C35

1. Introduction and Preliminaries

All graphs considered in this study are finite, simple, loopless, and unweighted. For a
vertex x in a connected graph G, the status or transmission [1-32] of x, denoted sg(x), is
defined by sg(x) = Lycv(c) dc(x,y), where dg(x, y) is the distance between the vertices
x and y in G. The concept of status was introduced by Harary in 1959 [13]. Slater [29]
mentioned that the status of a vertex calculates the total transportation cost from this vertex
to all other vertices in the graph. Vukicevi¢ and Caporossi [32] thought the status can be
interpreted as a vertex’s contribution to a network’s communication cost. Let G be of order
n and o(v) denote the average distance from a vertex v in G to all other vertices in G. That
is, 0(v) = % For complex network analysis, one major concern is centrality, which
measures how central a vertex is in a network. Golbeck [33] mentioned that (v) is used to
measure the closeness centrality for vertices in a network. And Krnc and Skrekovski [15]
studied the centralization of transmission in networks.

The minimum status or minimum transmission of G, denoted ms(G), is defined
by ms(G) = min,cy(g)Sc(x). The following theorem is about the upper bound on the
minimum status of a connected graph with a fixed order and the graphs that attain the
upper bound, which will be used in the main theorem later.
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Theorem 1 ( Proposition 2.1 in [34]). Let G be a connected graph of order n > 3. Then,

ms(G) <

= n2

nZ_l . .
{ 7 if nis odd,
T if n is even.

The upper bound is attained if and only if G is either a path or a cycle.

Bounds on minimum status with several invariants of graphs are widely studied.
Aouchiche and Hansen [34] gave a sharp lower bound on the minimum status of a
graph with a fixed diameter and order. Lin et al. [18] obtained sharp lower and upper
bounds on the minimum status of a graph with a fixed maximum degree and order. They
characterized the extremal graphs for the lower bound and gave a necessary condition
for graphs attaining the upper bound. Using another method, Rissner and Burkard [24]
proved the same result for minimum status as in [18]. For graphs with a fixed matching
number (or domination number) and order, Liang et al. [16] proposed a sharp upper
bound on the minimum status and characterized the unique trees achieving the bound;
they also determined the unique tree, so that its minimum status is as small as possible.
Peng and Zhou [21] established sharp lower and upper bounds for the minimum status
of trees with the following parameters: the diameter, the number of pendant vertices, the
number of odd vertices, and the number of vertices of degree two, and characterized the
extremal cases. Cheng et al. [7] determined the largest values for the minimum status of
the series-reduced trees with the following fixed parameters: maximum degree, number of
pendant vertices, diameter, matching number, and domination number, and characterized
the unique extremal trees. For the aforementioned average distance o (v), the proximity of
G is defined as min ¢y () 0'(v), and the remoteness of G is defined as max,cy () o (v). Itis

seen that the proximity of G is equal to mnsg) . Similarly, the topic of bounds on proximity

and remoteness with several invariants of graphs also attracts attention [1,8,9,25,34].

Lin et al. [18] provided a sharp lower bound and a sharp upper bound on the minimum
status of connected graphs with a fixed maximum degree and order. Moreover, all graphs
that attain the lower bound are obtained, and a necessary condition is determined for those
that attain the upper bound. The following two types of graphs are needed to describe
the result.

A rooted tree is a tree with a specific vertex designated as the root. Let T be a
nontrivial rooted tree with root z. The height h(T) of the tree T is defined by h(T) =
max,cy(7) d7(x,z), and the degree of a vertex x in T is denoted by degr(x). For h(T) > 2
and k > 2, if degr(x) = k whenever x is a vertex with dr(x,z) < h(T) — 2, and degr(x) <k
whenever x is a vertex with dr(x,z) = h(T) — 1, then T is called a balanced k-tree [18].
A balanced k-tree of order n is denoted by By ,. We note that By, may not be unique,
but ms(By ) is a fixed number for the given k and n. This value ms(By ) is denoted by
brn. Next is another type of graph. For the integers n,k withn —1 > k > 2, let G,
denote a graph with the vertex set V(G ;) = {x1,x2,- - , x,} and the edge set E(Gy ;) =
{xixip1 : i =12, n—k}U{x, gp1xj : j=n—-k+2,n—k+3,--- n}. Figure 1
exhibits Gey [18]. The graph Gy, is a tree and degg, , (X, ¢+1) = k. Obviously, Gy, is a
path and G, , is a star. We call Gy, the k-grass of order n, or simply a grass, and use gj ,,
to denote the value ms(Gy ).

The following theorem is provided by Lin et al. [18], which will be used in the
main theorem.

Theorem 2 ( Theorem 2.10 in [18]). Suppose that G is a connected graph of order n with
A(G) = k, where k > 2. Then, we have by ,, < ms(G) < g . Furthermore, the lower bound is
attained if and only if G contains some balanced k-tree By , as a spanning subgraph; if the upper
bound is attained, then G contains the k-grass Gy, ,, as a spanning subgraph.
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Figure 1. Grass Gg 9.

For k < 7, Theorem 2.11 in [18] also proposes necessary and sufficient conditions for
those graphs that attain the upper bound on the minimum status without proof. In recent
decades, there have been various studies on the status, minimum status, or distance-related
topics of graphs. The following research papers all cite [18]: [2,5-8,11,12,16,19-21,24,31].
However, this theorem is still without proof. Hence, our study aims to provide proof to
complete this theorem.

To state the main theorem, we first illustrate two types of graphs which are defined
in [18]. For integers k and n with 2 < k < n — 1, let Hy ,, denote the graph obtained from the
grass Gy, by adding all the edges x;xj, where n —k +2 < i < j < n. For an even integer
n > 6, let H, denote the graph obtained from the grass G , by adding the edge x»_1x1 4,
and all the edges x;xj, where 5 + 3 < i < j < n. Figure 2 exhibits Hs 19 and Hy.

X7 X7

X1 X2 X3 X4 X5 X X9 X1 X2 X3 X4 X5 X X9

Hs 10 X10 X10

Figure 2. Examples of H , and Hy, for n = 10 and k = 5.

Let F, G and H be graphs. The graph G is said to be between F and H if F is a spanning
subgraph of G and G is a spanning subgraph of H.
The main result of this study is as follows:

Theorem 3 ( Theorem 2.11in [18]). Let G be a connected graph of order n with A\(G) = k, where
2 <k < 5. Then ms(G) = gy, if and only if one of the following holds.

(1) Gisapathora cycle, where k = 2.
(2) G is between Gy, and Hy ,,, where 3 < k < 4.
(3) G is either between G and H 10 OF between G and Hy, where k = 7 for even n > 6.

The detailed proof will be presented in the following section.

2. Proof of the Main Result

This section begins with several propositions, which will be used to prove lemmas.
The main theorem follows directly from the lemmas.

The median of a graph G is the set: {x € V(G) : sg(x) = ms(G)}. The following
proposition is used to determine the median of a tree.

Proposition 1 ([14,18]). Let T be a tree and x be a vertex of T. Then, x is in the median of T if and
only if [V(T')| < 1|V(T)| holds for every component T' of T — x.
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For a grass Gy ,,, when we consider the case 2 < k < 7, from Proposition 1 it is evident
that the median of Gy, is the set {x|x +1} if nis odd and the set {x XL%JH} if nis even.

Proposition 2. Let H be a connected graph and G be a connected spanning subgraph of H. Let
u be a vertex in the median of G. If there exists a vertex x in G with xu € E(H) and xu ¢ E(G),
then ms(H) < ms(G).

Proof. By assumption, dy(x,u) < dg(x,u)and dy(v,u) < dg(v,u) forallv € V(G) — {x}.
Then ms(H) < sy(u) < sg(u) = ms(G). Thatis, ms(H) < ms(G). O

Proposition 3. Let F, G, and H be connected graphs. If G is between F and H and ms(H) =
ms(F), then ms(G) = ms(F).

Proof. As F C G C H, we have sp(x) > sg(x) > sy(x) forall x € V(G). Then, ms(F) >
ms(G) > ms(H). As ms(H) = ms(F), we have ms(G) = ms(F). O

The following propositions are trivial. We omit the proofs.

Proposition 4. Let G be a connected graph. If x,y € V(G), xy € E(G), and |[{v € V(G) :
dg(v,x) <dg(v,y)} < |{v € V(G) :dg(v,y) <dg(v,x) (v) <sg(x).

Proposition 5. Let C be the only cycle in a connected graph G. Then Y,y (c)dc(v,p) =
Yoev(c) dc (v, q) for any two vertices p,q € V(C).

Next are the lemmas for the main theorem.

Lemma 1. Let G be a connected graph of order n > 3. Then ms(G) = o, if and only if G is a
path or a cycle.

Proof. According to Theorem 1, it suffices to show that

p { ”24’1 if nis odd,
2n — 2

& if n is even.

Here, g2, = ms(Gy,,), and the grass G, , is in fact a path P : xx;, - - - x,,. By Proposition 1,

+1)

(x|
(1 +2+ ~+13)) if 1 is odd,
1 418 J) (14+24---+(l5]-1)) ifniseven.

+
J L | ifnisodd,
2

821 = SGy,
{ 2
(

if n is even.

”4’1 if nis odd,
if n is even.

O

Lemma 2. Let G be a connected graph of order n with A(G) = k, where 3 < k < 5. Then
ms(G) = gk, if and only if one of the following holds.

(1) G is between Gy, and Hy ,,, where3 < k < 7.
(2) G is either between G%,n and H 1 OF between G%,n and H,,, where k = % for even n > 6.

Proof. We first prove the sufficiency.
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(1) Let G be between Gy ,, and Hy ,, where 3 < k < 7. We note that any graph between Gy ,
and Hj , has the maximum degree k and the order n. From Proposition 3, it suffices to show
that ms(Hy,,) = ms(Gy,,). Itis evident that sy, , (x;) = s, (x;) for1 <i <n—k+1. By
Proposition 4, s, , (xi) > s, (Xy—ky1) forn —k+2 <i <n. Asms(Gy,) = sg,, (XL%JH)'
where |3] +1 < n—k+1, we have ms(Hy,) = sp,,(x|y41). Thatis, ms(Hg,) =
ms(Gy ).

(2) We note that any graph between Gz, and Hy ,, or between Gy , and Hy, has the
maximum degree k = % and the order 11, where 7 is even and n > 6. First, let G be between
Gy, and Hy ,, the proof is the same as in (1) except that we have |5/ +1=n—k+1in
this case. Next, let G be between G%,n and H,. By Proposition 3, it suffices to show that
ms(Hy) = ms(Gy ,). By applying Proposition 4, we can see that

sH, (g 1) = sn, (x1) = sp, (x341) = sm, (¥542),
SH, (x5 -1) <sm,(x32) <--- <sp,(x1), and

n
2
an(x%H) < sy, (v) forallv € {x%H,xgH, cee Xp ke

Thus, ms(H,) = an(x%H). Since ms(G%/n) = s,

zm(x%ﬂ) and clearly an(x%H) =

SGn (x%H),we have ms(Hy,) = ms(G% n)-
2" ¢

Next, we prove the necessity. Assume that ms(G) = gi,, where A(G) = k and
3 <k < 5. By Theorem 2, G contains Gy, as a spanning subgraph. Distinguish between
the following two cases. Case 1: 3 < k < %, and Case2: 3 < k = %

Case 1: 3 <k < 5. We claim that E(G) — E(Hy,,) = @, and this implies that G is between
Gy,n and Hy ,,. Suppose, to the contrary, that there exists an edge x;x; € E(G) — E(Hy ),
wherel <i < j<n As XiXj ¢ E(Hk,n), we note that there is at most one of the two
numbers i and j thatis in {n —k+1,n —k+2,--- ,n}. Let G' = Gy, + x;x; and C be a
cycle in G'. It is clear that G’ C G and then ms(G) < ms(G’), and C is the only cycle in G'.
Distinguish two subcases. Case 1.1: n is even, and Case 1.2: n is odd.

Case 1.1: nis even. In this case, the median of Gy, is {x%, Xgﬂ}, where 5 +1 <n—k+1.
As Gy, is a spanning subgraph of G',if i € {5, 5 41} orj € {4, 5 + 1}, then by Proposition
2, we see that ms(G') < ms(Gy,) = gkn. Then, ms(G) < g,. Which contradicts the
assumption that ms(G) = gi,. Therefore, we have i,j ¢ {5, 5 + 1}. Without loss of
generality, we distinguish two cases: (i) 1 <i < j < % —1or % +2<i<j<n—k+2,
and ()1 <i<g—-land5+2<j<n—k+2

@D1<i<j<gfg—-lorg+2<i<j<n—k+2 First, we consider the case 1 <
i<j< %— 1. As dc/(xi,x%) < de,n(x,»,x%) and dG/(xt,x%) < deln(xt,x%) for t # i,
we have sg(x3) < sg, (xz). This implies that ms(G') < sg/(xz) < sg,,(x2) = &kn-
Then, ms(G) < gk, which is a contradiction. Next is the case 5 +2 <i <j<n—k+2.
Similarly, dg/ (xj,x%) < deln(xj,x%) and dG/(xt,x%) < dck,,,(xt,xg) for t # j, we have
sG/(x%) < SGk,n(x%)‘ And then, ms(G) < ms(G') < sG/(x%) < sGk’n(x%) = Qkn, Whichis a
contradiction.

Gi) 1 <i< 5—1and 5 +2 < j < n—k+ 2. First, we see that dG/(v,xj) < dG/(v,x%)
forv € {x1,x2,- -+, x;_1}. Next, by Proposition 5, Ycv(c) dor (v, %) = Loev(c) dG/(v,x%),
as xj,xy € V(C), where C is the aforementioned only cycle of G'. And dg/(v,xj) <
dG/(U,X%) forv € V(G/) — {Xl,XQ,‘ ‘e ,Xl'_l} — V(C) = {x]-+1,x]-+2,- .. ,Xn}. Note that
{xl,xz,- . ,xi_l} =Qifi=1.
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Then

ms(G) ms(G")
sG/(x]-)

= Y., dg(vx))
veV(G)

Z dG/(U,X]')+ 2 dG/(ZJ,X]‘)-l- 2 dcl(v,x]-)

ve{xy,x2, " Xi_1} veV(C) vE{Xj1,Xj 12, Xn}

< Z dG/(U,x%)+ Z dG/(U,X%)—F Z dG/(U,X%)

ve{x1,x, X1} veV(C) 0E{Xj 11, %42, Xn}

Y, do(vxy)

veV(G')
sG/(x%)
sGk,n (x% )
= &kn-

IN A

IN

Thus, ms(G) < gk », which is a contradiction.

Case 1.2: n is odd. In this case, the median of G, is {x% }, where L < n—k+ 1.
As Gy, is a spanning subgraph of G, by Proposition 2, if i = 5! or j = “F, then
ms(G) < ms(G') < ms(Gg,) = gk, which is a contradiction. Thus, we have i,j # "L
Recall that x;x; ¢ E(Hy,), hence there is at most one of the two numbers i and j that is
in{n—k+1,n—k+2,---,n}. Without loss of generality, we distinguish three cases:
M1<i<j<SlorPB <i<j<n—k+2,({1<i< <j<n-k+1, and
()1 <i<andj=n—k+2.

MH1<i<j< "T_l or "TH <i < j < n—k+2 The arguments are similar to those
presented in Case 1.1(i).

)1 <i < <j<n—k+1 Inthis case dg(v,x) < dg(o, xup) for o €
{x1,x2,-+ ,xi_1}. By Proposition 5, Yy (c) dor (v, %) = Loev(c) de (0, xn+1) as Xj, X g1
€ V(C). And dg/(v,xj) < dc/(U,X%) for v e V(G) {xl,xg,-- xl_l} -V(C) =
{xj+1/xj+2r te /x‘rl}'

Then

ms(G) ms(G')
SG'(xj)
Z dG’ 0, x] Z dG/ 0, X Z dG’(U/xj)

ve{x1,x, X1} veV(C) ve{xj+1,xj+2,--<,xn}

Z dG/(U % + Z dG’ 0, Xn+1) + Z dcr( %)
Ue{x1'x2l‘”lxi—l} UGV(C) Ue{xj+1’xj+2,.“,x }

sG/(x,,zj)

IA A

A

IN

SGy (¥ug1)
Skn-

Thus, ms(G) < g », which is a contradiction.

Gii) 1 <i < ”erl and j = n —k+2. For k < % and n is odd, we have k < ”T_l Then,
”+1 < n — k. Now, consider the three cases: (a) ”42“1 =n—ki= ”2;1, (b) ”TH =n-—k,

1§1< 121 and (¢) 5L < n—k.
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(a) ”%1 =n—ki= ”T_l In this case, the vertex x; = an4 is adjacent to x,,_j = anH, and
Xp—kt1 = Xngd g is the vertex of degree k in G’. We see that
{v e V(G) :dg(v,x;) < dG/(v,x%)}\ = |{x1, %2, ,Xi_1,Xy_gi2}| =i= "5, and
H{o e V(G :dg(v,xup) <de(v,xi)} = {xn—ki1} Uln ki Xnkra - xn} =k = 1.
Ask=n—"51 = 151 wehave k — 1 < “51, by Proposition 4, s¢/ (x;) < sG/(anH). Then
ms(G) < ms(G') < sgr(x;) < sG/(anH) <SGy, (anH) = gk, thatis, ms(G) < gx,, which
is a contradiction.
b) " =n—k1 < i< "5 In this case, dg (v, %, k1) < do(v,x %) for v €
{x1,x2,+ -+, x;_1}. Recall that C is the only cycle in G’. By Proposition 5,
Yoev(c dcf(v Yn—kt1) = Loev(c) 4 (0, Xu) a8 Xy g1, Xupp € V(C). Anddr (0, %, 41)
< dG/(v,anH) foro e V(G') - {xlfxzw wxic1} = V(C) = {Xy k43, Xn—kiar 0 Xn )

Then
ms(G) < ms(G)
< SG’(xn7k+1)
= Z der (v, Xy k1) + 2 der (v, Xp—ky1) + Z der (0, X —k41)
ve{xy X, X1} veV(C) VE{Xy 43 Xn—kar X}
< Z dG’ % 2 dG’ % E dG’( %)
ve{xy,xp, X1} veV(C) VE{ Xy kg3 X ks X}
= SG’(anH)
<SG, (x%)
= &kn-
Thus, ms(G) < g, which is a contradiction.
(© 5 < n—k In this case, dg/(v,x,_y2) < doi(o, xn#) forv € {x1,x2,---,xi_1}.
By Propos1t10n5 Yoev(c) 4o (0 Xn—k12) = Loev(c)do (v, xn+1) as Xy k2, ¥up1 € V(C).
And dg/ (v, X, ky2) < dG/(v,anﬂ) forv € V(G') — {xllxzf o xim1} = V(C) = {xp—ksis
Xp—k+dr " o Xn}-
Then
ms(G) < ms(G)
< se(Xn—k42)
= Y Ao (v, %p—42) + Y, dor (v, %y gi2) + Y. der (v, Xy —k+2)
ve{xy,xp, X1} veV(C) 0E{ Xy k3 Xy —kpdr e Xn }
ve{xy,xp, X1} veV(C) Ue{xn—k+3/xn—k+4r"'rxn}
= sG/(x%)
<

5Gy (¥n1)

= Skn-

Thus, ms(G) < g, which is a contradiction.
From the above contradictions, we see that E(G) — E(Hy,,) = @. That is, G is between
Gy, and Hy .

Case 2: 3 < k = 5. In this case, the median of Gy ,, is {x%, Xy 41} Distinguish between the
following two subcases Case 2.1: Xn_1Xt € E(G) forsomet € {4 +2,5+3,---,n},and
Case22: x5 _1x; ¢ E(G) forallt € {2 +2,5+3,---,n}.
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Case2.1: xy yx¢ € E(G) forsomet € {5 +2,5 +3,---,n}. In this case we show that G
is between Gy ,, and H,,. Without loss of generality, it is assumed that X X149 € E(G).
We claim that E(G) — E(H,) = @, and this implies that G is between Gy, and Hy. On the
contrary, suppose that there exists an edge x;x; € E(G) — E(Hy), where 1 <i < j < n.
Let G' = Gun, +x1_1x1,, and G” = G’ + x;x;. By Proposition 4, it is evident that

21 7717342 ]
so/(x1 1) = sg(x1) = sgr(xz11) = so/ (x5 42) = ms(G’). And since so/(X541) = g s
we have ms(G') = gu,. As G is a spanning subgraph of G”, and the median of G’
is {x%,l,x%,x%ﬂ,x%ﬂ}, by Proposition 2, if i or jisin {§ —1,%,5 + 1,5 + 2}, then
ms(G) < ms(G") < ms(G') = gu ,, which is a contradiction. Therefore, we have i,j ¢

s—153,5+1,5+ 2}. Distinguish the following two cases. (1) 1 <i < j < 7 —2,and (ii)

i<ilonis<j<a

—_

(1) 1 S i< ] S % —2. As dGu(xi,x%,l) < dG/(xi,x%,l), and dG//(xt,x%,l) S dG/(xt,x%,l)
forall t # i, we have sgn(xs 1) < sgi(xs_q). Thus, ms(G) < ms(G") < sgn(xz_;) <
Sqr (x%,l) =81 which is a contradiction.

G) 1 <i<5-2%543 < j < n In this case, dcu(xi,x%H) < dG/(xi,x%_H), and

dor(xt,xn 1) < dg(xt,xy4q) for all t # i, we have sgr(xs,1) < sg(xz4q). Thus,
ms(G) < ms(G") <sgn(xyq) <sg(xy41) = &y, which is a contradiction.
Thus, E(G) — E(H,) = @ and G is between Gy and Hy.

Case2.2: xy qx¢ ¢ E(G) forallt € {5 +2,5+3,---,n}. In this case we show that G is
between Gy , and Hy ;. It suffices to show that E (G)—E(H %,n) = @ holds. On the contrary,
suppose that there exists an edge x;x; € E(G) — E(H%,n). LetG' = Gy » + xixj. The median
of Gy , is {x%,x%ﬂ}, we have i,j ¢ {%,5 +1}. As if this is not true, by Proposition 2,
we have ms(G) < ms(G') < ms(Gy ,) = &y ,, which is a contradiction. Distinguish the
following twocases. (i) 1 <i<j< 7 —Tl,and(ii)1 <i<75-2,7+2<j<n

G 1<i< ] < % —1. As dG/(xi,x%) < dG,, (xi,x%), and dG/(Xt,x%) < dG,, (xt,x%)for all
oM oM
t #i,wehavesg/(xz) <sg, (xz). Thus, ms(G) < ms(G') < so/(xn) <sg, ,(xz) =gx
oM /M
which is a contradiction.

Gi) 1 <i< 5-25+2 < j < n Inthis case, dG/(xi,x%H) < dcg,n(xi’x%ﬂ)’ and

de(xt,x441) < dgy
ms(G) < ms(G') < s (x%ﬂ) < sG, n(x%ﬂ) = &1 »» which is a contradiction.
7/

Thus, E(G) — E(H%In) = @ and G is between Gy , and Hy ,.
We see that the necessity holds. [

n

(xt,x%ﬂ) for all ¢ # i, we have SG/(X%+1) < SG%,n(x%H). Thus,

Theorem 3, the main result of this study, follows from Lemmas 1 and 2.

The graph H in Figure 3 has order 10 and A(H) = 5. It is easily seen that sy (xg) =
g5,10- Since it is neither between Gs 19 and Hs 19 nor between Gs 19 and Hyg, by applying
Theorem 3, we have ms(H) < gs51¢. By Proposition 4, we can see that sy (x7) < sg(xe).

X7

X8

X1 X2 X3 X4 X5 X6 X9

X10
Figure 3. Graph H of order 10 and A(H) = 5 with ms(H) < gs10.
We conclude this study with the following future work: For connected graphs of order

n with maximum degree k where 4 < k, find the necessary and sufficient conditions for
attaining the upper bound g ,, on minimum status.



Mathematics 2024, 12, 3600 90f9

Author Contributions: Conceptualization, W.-H.T. and C.L.; Methodology, W.-H.T. and C.L.; Validation,
J.-L.S.; Investigation, W.-H.T., J.-L.S. and C.L.; Writing—original draft, W.-H.T. and C.L.; Writing—review
and editing, J.-L.S.; Funding acquisition, J.-L.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan and the
National Science and Technology Council of Taiwan under grants MOST 107-2115-M-424-001 and
NSTC 113-2635-M-424-001-MY?2, respectively.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Aouchiche, M.; Hansen, P. Proximity, remoteness and girth in graphs. Discret. Appl. Math. 2017, 222, 31-39. [CrossRef]

2. Abiad, A,; Brimkov, B.; Grigoriev, A. On the status sequences of trees. Theoret. Comput. Sci. 2021, 856, 110-120. [CrossRef]

3.  Buckley, E; Harary, F. Distance in Graphs; Addison-Wesley Publishing Company: Boston, MA, USA, 1990.

4. Buckley, F; Harary, F. Unsolved problems on distance in graphs. Electron. Notes Discret. Math. 2002, 11, 89-97. [CrossRef]

5. Bielak, H.; Powroznik, K. Statuses and double branch weights of quadrangular outerplanar graphs. Ann. Univ. Mariae
Curie-Sktodowska Sect. A 2015, 69, 5-21.

6. Cheng, M.; Zhou, B. Minimum and maximum resistance status of unicyclic graphs. J. Math. Res. Appl. 2022, 42, 463-475.

7. Cheng, M,; Lin, H,; Zhou, B. Minimum status of series-reduced trees with given parameters. Bull. Braz. Math. Soc. 2022, 53, 701-720.
[CrossRef]

8.  Dankelmann, P; Mafunda, S. On the difference between proximity and other distance parameters in triangle-free graphs and
Cy-free graphs. Discret. Appl. Math. 2022, 321, 295-307. [CrossRef]

9.  Dankelmann, P. Proximity, remoteness and minimum degree. Discret. Appl. Math. 2015, 184, 223-228. [CrossRef]

10. Entringer, R.C.; Jackson, D.E.; Snyder, D.A. Distance in graphs. Czechoslov. Math. ]. 1976, 26, 283-296. [CrossRef]

11. Guo, H.; Zhou, B. On extremal leaf status and internal status. RAIRO Oper. Res. 2022, 56, 415-430. [CrossRef]

12.  Guo, H.; Zhou, B. Minimum status of trees with a given degree sequence. Acta Inform. 2023, 60, 1-10. [CrossRef]

13. Harary, F. Status and contrastatus. Sociometry 1959, 22, 23-43. [CrossRef]

14. Kang, A.; Ault, D. Some properties of a centroid of a free tree. Inf. Process. Lett. 1975, 4, 18-20. [CrossRef]

15. Krnc, M.; Skrekovski, R. Centralization of transmission in networks. Discret. Math. 2015, 338, 2412-2420. [CrossRef]

16. Liang, C.; Zhou, B.; Guo, H. Minimum status, matching and domination of graphs. Comput. J. 2021, 64, 1384-1392. [CrossRef]

17.  Lin, C; Shang, J.-L. Statuses and branch-weights of weighted trees. Czechoslov. Math. ]. 2009, 59, 1019-1025. [CrossRef]

18. Lin, C.; Tsai, W.-H.; Shang, ].-L.; Zhang, Y.-J. Minimum statuses of connected graphs with fixed maximum degree and order. J.
Comb. Optim. 2012, 24, 147-161. [CrossRef]

19. Lin, C,; Tsai, W.-H.; Shang, ].-L.; Lee, M.-]. Maximum variances and minimum statuses of connected weighted graphs. Util. Math.
2017, 104, 277-293.

20. Lin, H.; Zhou, B. Which numbers are status differences? Appl. Math. Comput. 2021, 399, 126004. [CrossRef]

21. Peng, Z.; Zhou, B. Minimum status of trees with given parameters. RAIRO Oper. Res. 2021, 55, S765-5785. [CrossRef]

22. Pachter, L. Constructing status injective graphs. Discret. Appl. Math. 1997, 80, 107-113. [CrossRef]

23.  Qiao, P.; Zhan, X. Pairs of a tree and a nontree graph with the same status sequence. Discret. Math. 2020, 343, 111662. [CrossRef]

24. Rissner, R.; Burkard, R.E. Bounds on the radius and status of graphs. Networks 2014, 64, 76-83. [CrossRef]

25. Sedlar, ]. Remoteness, proximity and few other distance invariants in graphs. Filomat 2013, 27, 1425-1435. [CrossRef]

26. Shang, ].-L.; Lin, C. Spiders are status unique in trees. Discret. Math. 2011, 311, 785-791. [CrossRef]

27. Shang, ].-L. On constructing graphs with the same status sequence. Ars Combin. 2014, 113, 429-433.

28. Shang, ].-L.; Shyu, T.-W.; Lin, C. Weakly status injective trees are status unique in trees. Ars Combin. 2018, 139, 133-143.

29. Slater, PJ. Maximin facility location. |. Res. Natl. Bur. Stand. B Math. Sci. 1975, 79B, 107-115. [CrossRef]

30. Slater, PJ. Counterexamples to Randi¢’s conjecture on distance degree sequences for trees. J. Graph Theory 1982, 6, 89-92. [CrossRef]

31. Subhamathi, A.R.; Changat, M. Upperbound for maximum remoteness in arbitrary graph. Int. ]. Pure Appl. Math. 2015, 101, 719-727.

32.  Vukicevi¢, D.; Caporossi, G. Network descriptors based on betweenness centrality and transmission and their extremal values.
Discret. Appl. Math. 2013, 161, 2678-2686. [CrossRef]

33. Golbeck, J. Analyzing the Social Web; Morgan Kaufmann: Burlington, MA, USA, 2013.

34. Aouchiche, M.; Hansen, P. Proximity and remoteness in graphs: Results and conjectures. Nefworks 2011, 58, 95-102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/j.dam.2017.01.025
http://dx.doi.org/10.1016/j.tcs.2020.12.030
http://dx.doi.org/10.1016/S1571-0653(04)00057-5
http://dx.doi.org/10.1007/s00574-021-00278-1
http://dx.doi.org/10.1016/j.dam.2022.06.037
http://dx.doi.org/10.1016/j.dam.2014.11.012
http://dx.doi.org/10.21136/CMJ.1976.101401
http://dx.doi.org/10.1051/ro/2022010
http://dx.doi.org/10.1007/s00236-022-00416-2
http://dx.doi.org/10.2307/2785610
http://dx.doi.org/10.1016/0020-0190(75)90055-1
http://dx.doi.org/10.1016/j.disc.2015.06.011
http://dx.doi.org/10.1093/comjnl/bxaa057
http://dx.doi.org/10.1007/s10587-009-0071-x
http://dx.doi.org/10.1007/s10878-011-9412-4
http://dx.doi.org/10.1016/j.amc.2021.126004
http://dx.doi.org/10.1051/ro/2020015
http://dx.doi.org/10.1016/S0166-218X(97)00073-5
http://dx.doi.org/10.1016/j.disc.2019.111662
http://dx.doi.org/10.1002/net.21558
http://dx.doi.org/10.2298/FIL1308425S
http://dx.doi.org/10.1016/j.disc.2011.01.020
http://dx.doi.org/10.6028/jres.079B.011
http://dx.doi.org/10.1002/jgt.3190060111
http://dx.doi.org/10.1016/j.dam.2013.04.005
http://dx.doi.org/10.1002/net.20450

	Introduction and Preliminaries
	Proof of the Main Result
	References

