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Abstract: This research paper attempts to describe the transmission dynamic of zoonotic visceral
leishmaniasis with the aid of a mathematical model by considering the asymptomatic stages in
humans and animals. The disease is endemic in several countries. Data used in the research are
obtained from the literature while some are assumed based on the disease dynamic. The consideration
of both asymptomatic and the symptomatic infected individuals is incorporated in both humans and
animals (reservoir), as well as lines of treatment for the human population. It is found that the model
has two fixed points; the VL-free fixed point and the VL-endemic fixed point. Stability analysis of
the fixed points shows that the VL-free fixed point is globally asymptotically stable whenever the
basic reproduction number is less than one and the VL-endemic fixed point is globally asymptotically
stable whenever the basic reproduction number is greater than one. Sensitivity analysis is conducted
for the parameters in the basic reproduction number, and the profile of each state variable is also
depicted using the data obtained from the literature and those assumed. The transmission probability
from infected sandflies to animals, transmission probability from infected animals to sandflies, per
capita biting rate of sandflies of animals, and rate of transfer from symptomatic infected animals to
the recovered class are among the most sensitive parameters that have the greatest influence on the
basic reproduction number. Moreover, the value of the basic reproduction number is obtained to
be 0.98951, which may require further study, as the margin between potential disease control and
outbreak is thin.

Keywords: visceral leishmaniasis; basic reproductive number; non-linear differential equations;
mathematical model; sensitivity analysis

MSC: 34A34; 92B05; 37N25; 37M05

1. Introduction

Visceral leishmaniasis (VL) is one of the Neglected Tropical Diseases (NTDs). The
protozoan parasites that cause leishmaniasis are spread by the bite of infected female
phlebotomine sandflies. The disease has a connection to poverty and is linked to malnu-
trition, substandard housing, armed conflict, population displacement, illiteracy, gender
discrimination, a weakened immune system, and a lack of resources [1,2].

Over 88 countries in the world have some areas where leishmaniasis is present. In
these regions, there are about 350 million residents. In the tropics and subtropics are
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where most of the countries impacted by leishmaniasis can be found. Leishmaniasis can
be found in rain forests in Central and South America as well as in deserts in West Asia.
India, Bangladesh, Nepal, Sudan, and Brazil account for more than 90% of the global cases
of visceral leishmaniasis. Mexico, Central America, and South America, from northern
Argentina to Texas (but not in Uruguay, Chile, or Canada); Asia (but not Southeast Asia);
the Middle East; and Africa (mainly East and North Africa, with some cases elsewhere) are
the regions where leishmaniasis is found [3].

The primary reservoir of the parasite in these places is the domestic dog, which is
spread by the phlebotomine sandfly, Lutzomyia longipalpis [4,5]. Upon introduction into a
community, the parasite sustains a dog–insect–dog peri-domestic transmission cycle [6],
wherein infected flies sporadically bite humans, resulting in zoonotic visceral leishmaniasis
(ZVL). Because of this, the incidence and prevalence of ZVL are crucial epidemiological
factors for limiting transmission [7], and the estimates of these parameters rely on the
accurate identification of dogs that are affected [8]. Dogs that are affected are therefore
frequently eliminated as part of ZVL control operations.

In the Mediterranean, ZVL is a veterinary and medical issue, where dogs are valued
as “valuable” animals [9]. Human cases of ZVL are common in Brazil, where 90% of cases
reported are in humans, dogs are viewed as “less valuable”, and ZVL is primarily regarded
as a medical issue. Because of this, 850,000 dogs in Brazil undergo screening each year,
and 20,000–25,000 [9,10] of those canines are put to death after receiving a positive test.
This official position that dogs are undervalued is held by some governments, such as the
Brazilian Health Authorities, which prohibit treating infected dogs with drugs intended for
human use and mandate the mandatory elimination of dogs that test positive for drugs.
Thousands of dogs are euthanized each year without a counterproof diagnosis because
health officials threaten to fine dog owners severely if they refuse to have their animals’
serabiological analyses performed. Therefore, rather than having their dogs submitted
to serological screening, owners either forbid health agents from entering their houses or
move their pets to locations without serological screening. Some proprietors even avoid
taking their dogs to veterinary doctors, fearing an examination could result in a death
sentence for their animals [11].

The two parts of ethics that need to be stressed as regards leishmanisis are those
pertaining to animals and human relations, where human health is at stake and animals
and their link with human society are valued more. It is important that these ethic issues
are addressed so that they do not impede the effort towards the control of leishmaniasis.

During World War II, leishmaniasis and sandfly fever were highly prevalent among
soldiers stationed in the Persian Gulf region. This region saw the deployment of some
697,000 US troops during the Gulf War (1990–1991). In this cohort, only 12 cases of visceral
and 19 cases of cutaneous leishmaniasis were found to be diagnosed. The application of
insecticides and repellents, reduced summertime transmission rates, and increased urban-
ization all contributed to the improvement [5,6]. It is estimated that in 2003, approximately
150 American soldiers fighting in Iraq were diagnosed with leishmaniasis, and additional
cases are anticipated. Preliminary information on 22 instances of leishmaniasis treated
at Walter Reed Army Medical Center that were contracted by US troops in Afghanistan,
Kuwait, and Iraq between August 2002 and September 2003 was recently released.

In order to effectively combat visceral leishmaniasis, early detection and proper treat-
ment are essential. Visceral leishmaniasis symptoms and signs are non-specific; thus, a
diagnosis is only made by combining clinical symptoms and laboratory testing that are
specific to Leishmania. The level of the health system determines the diagnostic approach
for medical services in endemic areas. For application in the field in the majority of en-
demic locations, two serological tests—the Direct Agglutination Test (DAT) and the rK39
antigen-based immunochromatographic tests—have been developed [12]. A Recombinant
DNA Technology (RDT) for visceral leishmaniasis is an easy test that may be used both
peripherally and centrally. It identifies antibodies. According to a scientific evaluation
of published data, the sensitivity of RDTs varies with the eco-epidemiological regions,
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particularly in East Africa, where it is low. The drawbacks of all serological tests include
their inability to reliably diagnose relapse and the fact that a sizable portion of healthy indi-
viduals living in endemic regions without a history of visceral leishmaniasis are positive
for antileishmanial antibodies as a result of asymptomatic infections. These limitations are
caused by the persistence of antibodies for prolonged periods after cure. Because of this, it
is necessary to diagnose visceral leishmaniasis by combining antibody-based testing with a
consistent clinical case definition.

Pentavalent antimonials have been the first-line treatment for VL for more than
70 years, although there are currently four medications available for the condition. This
treatment takes 20 to 30 days, is toxic (3–5% deaths due to treatment), and is accompa-
nied by increasing failure rates as noted in [13]. The first oral medication against VL is
miltefosine, which has been recommended as a first-line medication in the VL elimination
initiative; however, because of its long half-life, it is teratogenic and may quickly lead to
resistance. Amphotericin B is used in two formulations: “Conventional” amphotericin B
and “Liposomal” amphotericin B (AmBisome), and finally, paromomycin (PMM), which
was registered in India in 2006, and is currently being tested in a phase IV trial [8,14].

An in vitro point-of-care test is necessary to confirm or rule out active cases for
early diagnosis since untreated cases operate as reservoirs for infection and endanger the
community to contracting leishmaniasis. Comparably, to ascertain whether therapy for
visceral leishmaniasis has been successful, a laboratory test is necessary [15].

Despite the fact that model projections are predicated on precise parameter estimations
and scenarios, actual conditions vary greatly, contributing a variable complexity that is
difficult to measure. Numerous features of VL disease remain poorly understood, and its
elimination has been identified as a public health concern [16]. Specifically, the progression
of the disease through many stages, including PKDL and asymptomatic infection, remains
unclear, particularly with respect to infectivity and diagnosis. Since recent efforts to manage
VL appear to be working, the 2020 deadline for ending VL as a public health concern was
rescheduled to 2017 [4,16]. However, modeling and studies of gearbox have indicated a
likely scenario. However, modeling and transmission studies have raised the conceivable
potential that those who are asymptomatic could obstruct the removal of the infection or
hide the true number of leishmaniasis infections. Leishmaniasis infections are a major
worry for any group in societies worldwide. Many studies have presented models to
understand the disease, as well as the importance of eliminating VL infection independent
of population-level asymptomatic infection classifications.

Using ordinary differential equations, a compartment-based mathematical model of
zoonotic visceral leishmaniasis transmission and its control across three distinct popula-
tions—human, animal, and sandfly—was created in [17]. Asymptomatic, symptomatic,
post-kala-azar cutaneous leishmaniasis, and transiently infected individuals made up the
human population. The study examined the effects of the asymptomatic stages, but it did
not address the treatment phases for the infected human population.

The treatment approach for VL is centered on managing patients who have manifested
symptoms of the disease. This implies that since laboratory testing is the only method
available to identify those who are infected but have not yet displayed any symptoms,
asymptomatic individuals will continue to transmit the disease unchecked. This indicates
that the current treatment approach might not be enough on its own to bring the condition
under control and sufficiently lower its occurrence. The ratio of symptomatic transmission
to sandflies that receive medical attention is the main focus of the argument on disease
transmission. If affected people are the main agent transmitting the disease, then treatment
will have a major effect on additional transmission. Primary indirect evidence for this
disease comes from the long-term cycles seen in many regions and the spatial clustering
of leishmaniasis cases; both of these are best explained if Kala-Azar cases are the source
of transmission. On the other hand, if asymptomatic infections account for most of the
transmission, this means that early treatment of leishmaniasis may not significantly reduce
transmission. Currently, there is less evidence to support this scenario, but it is not im-
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plausible if multiple asymptomatic infections propagate slowly to sandflies, increasing the
rate of transmission to humans and animals. This emphasizes the necessity of conducting
additional study and gathering precise data on the VL history and infectiousness relativity
of various infection stages in order to enhance control strategies.

This work therefore will contribute to the methodology of vector control in the man-
agement of VL disease. Through this research, it is hoped that maximal benefits and new
strategies will be developed, especially given that our model considers the critical states of
infectiousness of the disease.

Furthermore, the study will lessen the lack of models and data available to address VL
disease. It will also be very helpful in understanding how the population of asymptomatic
animals, which typically impedes management of the disease, interacts with sandfly popu-
lations, which appear to be crucial to the eradication effort. Furthermore, it will advance
our knowledge of the biology of sandflies and how transmission might alter over the course
of a year. Future studies could make use of the fundamental frameworks established by
those who have already studied the seasonality of sandflies in VL and the broader body of
knowledge on the seasonal dynamics of other disease vectors.

In this paper, therefore, a comprehensive compartment-based mathematical model
that examines the transmission process of VL in three different populations (humans and
animals acting as hosts, and sandflies acting as the vector) is considered, taking into ac-
count the precise categorization of the human infected population into three distinct clinical
classes (symptomatic, asymptomatic, and PKDL infected) and subdividing asymptomatic
classes into early and late asymptomatic classes, and considering classes of lines of treat-
ment. The model includes a total of 20 compartments (represented as variables) with regard
to various demographic categories, and it represents the rate of disease transmission as a
flow from one compartment to another. For this big system, the model is examined both
analytically and numerically in order to determine the potential control mechanism and
show the impact of the disease transmission amongst the different populations.

The paper is organized in this order: In Section 2, we formulate the model together
with the description of the parameters defined in the model. In Section 3, we discuss the
basic properties of the model. In Section 4, we obtain the fixed points, compute the basic
reproduction number, analyze the local and global stability of the fixed points obtained, and
conduct sensitivity analysis on some key parameters. In Section 5, we present the numerical
analysis vis-à-vis sensitivity analysis and numerical simulation. Finally, in Section 6, we
discuss the results and conclusion.

2. Model Formulation

In this research paper, a model of zoonotic visceral leishmaniasis disease incorporating
lines of treatment for the infected human population is considered. Let NH(t) stand for the
total human population, NA(t) for the total animal population (reservoir), and NF(t) for
the total sandfly population (vectors). In order to represent a biologically realistic complex
scenario among populations, the total human population is further divided into twelve
compartments: susceptible SH(t), exposed EH(t), early asymptomatic infected IE

H(t), late
asymptomatic infected IL

H(t), early recovered stage who are DAT-positive and not yet
LST-positive RE

H(t), late recovered stage who are DAT-negative but still LST-positive RL
H(t),

symptomatic infected IS
H(t), infected individuals who are receiving first-line treatment

I1
H(t), infected individuals who are receiving second-line treatment I2

H(t), PKDL-infected
IP
H(t), recovered humans who have cleared the parasite R1

H(t), and putative recovered
human R2

H(t). The first and second lines of treatment, which aim to reduce the parasite
population within each host, are the only ones that helped the people in this class recover.
Similarly, the animal or reservoir populations are divided into five compartments: suscepti-
ble animal SA(t), exposed animal EA(t), asymptomatic infected animal IA

A (t), symptomatic
infected animal IS

A(t), and recovered asymptomatic infected animal RA(t). The sandfly
(vector) population is divided into three compartments: susceptible sandflies SF(t), ex-
posed sandflies EF(t), and infected sandflies IF(t). The regular SEIR model is used to
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simulate the flow of infection between these compartments in the human and animal popu-
lations, whereas the SEI carrier-type model is used to simulate the flow of infection through
the vector. Each arrow between the compartments in the model Figure 1 below indicates the
passage of infection from one compartment to the next and illustrates the model structure
incorporating the numerous components considered in the model. The arrows entering
each susceptible population represent the birth rates of humans, animals, and sandflies
(ΠH , ΠA, ΠF), respectively, while the arrows moving out from each compartment that
do not enter any compartment represent the death rates (µH , µA, µF) of each individual
compartment considered in the model. Using a standard incidence function as defined
by [18] the interactions of susceptible humans and animals with the sandfly populations
are modeled, considering the likelihood that an infected sandfly may spread infection to
a susceptible human or animal host (λF, ηF) and also that the sandfly populations can
contract infection by an infected animal with incidence functions (ρA, ξA), respectively. A
fraction of exposed humans (θ1) become asymptomatic first at an early stage before late
stage at a rate of θ2. After infection, exposed humans enter the early asymptomatic stage
IE
H(t) and become PCR-positive in peripheral blood. As the specific antibodies develop in

the blood serum due to the infection, the fraction of humans in the early asymptomatic
stage move to the late asymptomatic stage IL

H(t), which is characterized by the onset of
DAT-positivity. If not dying, humans remain in this asymptomatic stage. Infection with
Leishmania parasites proceeds in most cases asymptomatically, with only a minor fraction
of cases subsequently developing KA. A major fraction τ1ψ1 does not develop disease,
becomes PCR-negative in the early recovered stage RE

H(t), and develops LST positivity
RL

H(t) at a rate of ε. A remaining fraction of τ2ψ1 asymptomatic infections become symp-
tomatic IS

H(t), and a tiny fraction τ3ψ1 of putatively recovering humans develop a state
of PCR-negativity in peripheral blood, while still harboring a non-detectable number of
parasites; this is denoted as R2

H(t), from where relapse to PKDL (IP
H(t)) follows. A fraction

τ2ψ1 develops symptomatic KA (IS
H) whilst staying PCR-positive. Those developing symp-

toms are eligible for treatment. If not dying, these patients receive first-line treatment (I1
H).

A proportion ω1 of patients clear parasites under first-line treatment, recover (R1
H), and

finally become LST-positive (RL
H) like those with asymptomatic infections. A fraction φ of

the LST-positive (RL
H) patients become susceptible. The remaining proportion of patients

represent the treatment failures that are split into a PCR-positive proportion of ω3 patients
receiving second-line treatment (I2

H) and a proportion of ω2 patients putatively recovering
into a state of PCR-negativity. The second proportion still harbors a non-detectable number
of parasites (R2

H , from where relapse to PKDL will follow). For second-line treatment
(in state I2

H), as with first-line treatment, a proportion γ2 of patients under second-line
treatment recover (R1

H) and become LST-positive (RL
H). The remaining proportion of γ1

patients recover putatively into a state of PCR-negativity (R2
H) from which, again, relapse

to PCR-positivity and PKDL (IP
H) follows for those who do not die. All PKDL patients (IP

H)
are treated until full recovery (R1

H).
The sandfly population is considered in the susceptible (SF), exposed (EF), or infectious

(IF),) stage. Sandflies can become infected by blood meals taken from an infectious animal
through a certain interaction. The infection rate of sandflies is determined by the following;
the biting rate, the infection probabilities of sandflies dependent on the infection status
of the hosts, and the number of infectious hosts. We assume that each blood meal of a
susceptible sandfly leads to a sandfly infection if taken from either an asymptomatic or
symptomatic infected animal.

The following assumptions are considered in the formulation of the model:

i. Entire human infected class includes PKDL-infected people as well as early asymp-
tomatic infected, late asymptomatic infected, and symptomatic infected people.

ii. According to each person’s immunogenic potential, both early and late asymptomatic
humans may eventually show symptoms and join the symptomatic infected group,
and the symptomatic infected group may eventually become PKDL-infected, or they
may gradually recover [19].
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iii. The case where humans from the early asymptomatic class recover is not considered
in this model.

iv. The capacity of the population of human, animals, and sandflies to fend off infection also
plays a role in how smoothly the population moves from one compartment to another.

v. Humans acquire the disease but do not transmit.
vi. Transmission between animals and sandflies is assumed to be indirect.
vii. A fraction of late asymptomatic infected humans that are developing symptoms will

receive first treatment.

Through the schematic diagram depicted in Figure 1, a system of non-linear differential
equations is obtained and presented below:

dSH
dt

= ΠH − λFSH − µHSH ,

dEH
dt

= λFSH − (θ1 + µH)EH ,

dIE
H

dt
= θ1EH − (θ2 + µH)IE

H ,

dIL
H

dt
= θ2 IE

H − (ψ1 + µH)IL
H ,

dRE
H

dt
= τ1ψ1 IL

H − (ε + µH)RE
H ,

dRL
H

dt
= εRE

H + ϱ1ψ4R1
H − µH RL

H ,

dIS
H

dt
= τ2ψ1 IL

H − (σ + µH)IS
H ,

dI1
H

dt
= σIS

H − (ψ2 + µH)I1
H ,

dI2
H

dt
= ω3ψ2 I1

H − (ψ3 + µH)I2
H ,

dIP
H

dt
= δR2

H − (ϕ + µH)IP
H , (1)

dR1
H

dt
= ω1ψ2 I1

H + ϕIP
H + γ2ψ3 I2

H − (ϱ1ψ4 + µH)R1
H ,

dR2
H

dt
= τ3ψ1 IL

H + ω2ψ2 I1
H + γ1ψ3 I2

H − (δ + µH)R2
H ,

dSA
dt

= ΠA − ηFSA − µASA,

dEA
dt

= ηFSA − (ζ1 + µA)EA,

dIA
A

dt
= ϖ1ζ1EA − (ζ2 + µA)IA

A ,

dIS
A

dt
= ϖ2ζ1EA + ν2ζ2 IA

A − (κ + µA)IS
A,

dRA
dt

= ν1ζ2 IA
A + κ IS

A − µARA,

dSF
dt

= ΠF − (ρA + ξA + χA)SF − µFSF,

dEF
dt

= (ρA + ξA + χA)SF − (π + µF)EF,

dIF
dt

= πEF − µF IF,
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subject to the following initial conditions:

SH(0) = SH0 > 0, EH(0) = EH0 ≥ 0, IE
H(0) = IE

H0
≥ 0, IL

H(0) = IL
H0

≥ 0,
RE

H(0) = RE
H0

≥ 0, RL
H(0) = RL

H0
≥ 0, IS

H(0) = IS
H0

≥ 0, I1
H(0) = I1

H0
≥ 0,

I2
H(0) = I2

H0
≥ 0, IP

H(0) = IP
H0

≥ 0, R1
H(0) = R1

H0
≥ 0, R2

H(0) = R2
H0

≥ 0,
SA(0) = SA0 > 0, EA(0) = EA0 ≥ 0, IA

A (0) = IA
A0

≥ 0, IS
A(0) = IS

A0
≥ 0,

RA(0) = RA0 ≥ 0, SF(0) = SF0 > 0, EF(0) = EF0 ≥ 0, IF(0) = IF0 ≥ 0.

where:

λF =
βH gH IF

NH + NA
, ηF =

βAgA IF
NH + NA

, ρA =
βFgA IA

A
NH + NA

, ξA =
βFgA IS

A
NH + NA

, χA =
βFgAhAEA
NH + NA

τ1 + τ2 + τ3 = 1, ω1 + ω2 + ω3 = 1, γ1 + γ2 = 1, ϖ1 + φ2 = 1, ν1 + ν2 = 1.

Figure 1. Schematic diagram of the VL model with early and late asymptomatic infected classes.

3. Basic Properties of the Integer Model

Here, we explore the basic properties of the model. All state variables are dependent
on time, t. The total populations of humans (NH), sandflies (NF), and animals (NA) are
given by

NH
dt

= ΠH − µH NH ,

NA
dt

= ΠA − µANA, (2)

NF
dt

= ΠF − µF NF,

with the initial conditions

SH(0) = SH0 > 0, EH(0) = EH0 ≥ 0, IE
H(0) = IE

H0
≥ 0, IL

H(0) = IL
H0

≥ 0,
RE

H(0) = RE
H0

≥ 0, RL
H(0) = RL

H0
≥ 0, IS

H(0) = IS
H0

≥ 0, I1
H(0) = I1

H0
≥ 0,

I2
H(0) = I2

H0
≥ 0, IP

H(0) = IP
H0

≥ 0, R1
H(0) = R1

H0
≥ 0, R2

H(0) = R2
H0

≥ 0,
SA(0) = SA0 > 0, EA(0) = EA0 ≥ 0, IA

A (0) = IA
A0

≥ 0, IS
A(0) = IS

A0
> 0,

RA(0) = RA0 ≥ 0, SF(0) = SF0 ≥ 0, EF(0) = EF0 ≥ 0, IF(0) = IF0 ≥ 0.
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Therefore, in order for the solutions to the model (1) with non-negative initial data to
have biological significance, it is necessary to demonstrate that they will always remain
non-negative t > 0.

Positivity of Solution

Since the model (1) describes the human population, here, we show that all the state
variables that are non-negative for all t ≥ 0 solutions are all bounded. Before analyzing the
model, it is important to show that the state variables of the model remain non-negative for
all non-negative initial conditions. We claim the following result.

Theorem 1. Let SH > 0, EH ≥ 0, ..., IF ≥ 0. The solutions SH , EH , ..., IF of the model system (1)
for t ≥ 0 are positive. For the model system (1), the region Ω is positively invariant and all solutions
starting in Ω approach, enter, or stay in Ω, where Ω = ΩH ∪ ΩA ∪ ΩF ∈ R12

+ ×R5
+ ×R3

F+:

ΩH = (SH , EH , IE
H , IL

H , IS
H , RE

H , RL
H , I1

H , I2
H , IP

H , R1
H , R2

H) ∈ R12
H+,

ΩA = (SA, EA, IA
A , IS

A, EA, RA) ∈ R5
A+,

ΩF = (SF, EF, IF) ∈ R3
F+.

Proof. We use the method of contradiction as in [20] to prove Theorem (1). Under the given
initial conditions, it is straightforward to prove that the components of the solutions of
the model system (1) are always positive; otherwise, we assume a contradiction. We claim
there exists a first time, t1

t1: SH(t1) = 0, dSH
dt1

< 0, EH(t) > 0, IE
H(t) > 0, ..., IF(t) > 0 for 0 < t < t2 or claim ∃

t2: EH(t2) = 0, dEH
dt2

< 0, SH(t) > 0, IE
H(t) > 0, ..., IF(t) > 0 for 0 < t < t3 or claim ∃

t3: IE
H(t3) = 0, dIE

H
dt3

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t1 or claim ∃

t4: IL
H(t4) = 0, dIL

H
dt4

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t4 or claim ∃

t5: RE
H(t5) = 0, dRE

H
dt5

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t5 or claim ∃

t6: RL
H(t6) = 0, dRL

H
dt6

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t6 or claim ∃

t7: IS
H(t7) = 0, dIS

H
dt7

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t7 or claim ∃

t8: I1
H(t8) = 0, dI1

H
dt1

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t8 or claim ∃

t9: I2
H(t9) = 0, dI2

H
dt8

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t9 or or claim ∃

t10: IP
H(t10) = 0, dIP

H
dt10

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t10 or claim ∃

t11: R1
H(t11) = 0, dR1

H
dt11

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t11 or claim ∃

t12: R2
H(t12) = 0, dR2

H
dt12

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t12 or claim ∃
t13: SA(t13) = 0, dSA

dt13
< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t13 or claim ∃

t14: EA(t14) = 0, dEA
dt14

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t14 or claim ∃

t15: IA
A (t15) = 0, dIA

A
dt15

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t15 or claim ∃

t16: IS
A(t16) = 0, dIS

A
dt16

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t16 or claim ∃
t17: RA(t17) = 0, dRA

dt17
< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t17 or claim ∃

t18: SF(t18) = 0, dSF
dt18

< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t18 or claim ∃
t19: EF(t19) = 0, dEA

dt19
< 0, SH(t) > 0, EH(t) > 0, ..., IF(t) > 0 for 0 < t < t19 or claim ∃

t20: IF(t20) = 0, dIA
dt20

< 0, SH(t) > 0, EH(t) > 0, ..., EF(t) > 0 for 0 < t < t20.

In the first claim, we have
SH
dt1

= ΠH > 0, (3)
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which is a contradiction to the assumption. That is, SH remains positive.
In the second claim, we have

dEH
dt2

= λFSH > 0, (4)

which is a contradiction to the assumption. That is, EH remains positive.
In the third claim, we have

dIE
H

dt3
= θ1EH > 0, (5)

which is a contradiction to the assumption. That is, IE
H remains positive.

In the fourth claim, we have

dIL
H

dt4
= θ2 IE

H > 0, (6)

which is a contradiction to the assumption. That is, IL
H remains positive.

In the fifth claim, we have

dRE
H

dt5
= τ1ψ1 IL

H > 0, (7)

which is a contradiction to the assumption. That is, RE
H remains positive.

In the sixth claim, we have

dRL
H

dt6
= εRE

H + ϱ1ψ4R1
H > 0, (8)

which is a contradiction to the assumption. That is, RL
H remains positive.

In the seventh claim, we have

dIS
H

dt7
= τ2ψ1 IL

H > 0, (9)

which is a contradiction to the assumption. That is, IS
H remains positive.

In the eighth claim, we have

dI1
H

dt8
= σIS

H > 0, (10)

which is a contradiction to the assumption. That is, I1
H remains positive.

In the ninth claim, we have

dI2
H

dt9
= ω3ψ2 I1

H > 0, (11)

which is a contradiction to the assumption. That is, I2
H remains positive.

In the tenth claim, we have

dIP
H

dt10
= δR2

H > 0, (12)

which is a contradiction to the assumption. That is, IP
H remains positive.
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In the eleventh claim, we have

dR1
H

dt11
= ω1ψ2 I1

H + ϕIP
H + γ2ψ3 I2

H > 0, (13)

which is a contradiction to the assumption. That is, R1
H remains positive.

In the twelfth claim, we have

dR2
H

dt12
= τ3ψ1 IL

H + ω2ψ2 I1
H + γ1ψ3 I2

H > 0, (14)

which is a contradiction to the assumption. That is, R2
H remains positive.

In the thirteenth claim, we have

dSA
dt13

= ΠA > 0, (15)

which is a contradiction to the assumption. That is, SA remains positive.
In the fourteenth claim, we have

dEA
dt14

= ηFSA > 0, (16)

which is a contradiction to the assumption. That is, EA remains positive.
In the fifteenth claim, we have

dIA
A

dt15
= ϖ1ζ1EA > 0, (17)

which is a contradiction to the assumption. That is, IA
A remains positive.

In the sixteenth claim, we have

dIS
A

dt16
= ϖ2ζ1EA + ν2ζ2 IA

A > 0, (18)

which is a contradiction to the assumption. That is, IS
A remains positive.

In the seventeenth claim, we have

dRA
dt17

= ν1ζ2 IA
A + κ IS

A > 0, (19)

which is a contradiction to the assumption. That is, RA remains positive.
In the eighteenth claim, we have

dSF
dt18

= ΠF, (20)

which is a contradiction to the assumption. That is, SF remains positive.
In the nineteenth claim, we have

dEF
dt19

= (ρA + ξA + χA)SF > 0, (21)

which is a contradiction to the assumption. That is, EF remains positive.
In the twentieth claim, we have

dIF
dt20

= πEF > 0, (22)

which is a contradiction to the assumption. That is, IF remains positive.
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Therefore, all solutions of the model (1) remain positive for all non-negative initial
conditions as required.

Also, since dNH
dt = ΠH − µH NH , dNA

dt = ΠA − µANA, dNF
dt = ΠF − µF NF, this means

that NH −→ ΠH
µH

, NA −→ ΠA
µA

and NF −→ ΠF
µF

are bounded. Based on biological considera-
tions, the model system (1) is studied in the following feasible region:

Ω = {(SH , EH , IE
H , IL

H , RE
H , RL

H , IS
H , I1

H , I2
H , IP

H , R1
H , R2

H , SA, EA,

IA
A , IS

A, RA, SF, EF, IF)

∈ R20
+ = R12

H+ ×R5
A+ ×R3

F+ : NH(t) ≤
ΠH
µH

, NA(t) ≤
ΠA
µA

, NF(t) ≤
ΠF
µF

}. (23)

This region is positively invariant with respect to the model system (1). This also mean
that, all solutions of the model (1), with initial conditions in Ω, will remain in Ω for all t ≥ 0.
We can conveniently consider the solutions of the model in Ω. (see also, [21]). Combining
this result and Theorem (1), we have the following lemma:

Lemma 1. The region Ω is positively-invariant for the model 1 with initial conditions in R20
+ =

R12
H+ ×R5

A+ ×R3
F+.

Additionally, it is easy to see that each of the differential equations of the model
system (1) is Lipschitz continuous with the given initial conditions and has solutions.
Moreover, the solution is unique and since Ω is a positively invariant region, the solution
exist for any time t ≥ 0 (see, [22]).

4. Fixed Points of the Model and Their Stability Analysis

In this section, we explore the existence and stability of fixed points of the model (1).

4.1. VL-Free Fixed Point

Let x = x∗ be the VL-free fixed point for the system (1). Then, f (x∗) = 0, dx
dt = f (x),

x = (x1, x2, . . . , x20)
T , x1 = SH , x2 = EH , . . . , x20 = IF in order of the model variables. This

implies that dx∗
dt = f (x∗), x∗ = (x∗1 , x∗2 , . . . , x∗20)

T , x∗1 = S∗
H , x∗2 = E∗

H , . . . , x∗20 = I∗F .
Thus, at fixed point f (x∗) = 0, implies

ΠH − λFS∗
H − µHS∗

H = 0, (24)

λFS∗
H − (θ1 + µH)E∗

H = 0, (25)

θ1E∗
H − (θ2 + µH)IE∗

H = 0, (26)

θ2 IE∗
H − (ψ1 + µH)IL∗

H = 0, (27)

τ1ψ1 IL∗
H − (ε + µH)RE∗

H = 0, (28)

εRE∗
H + ϱ1ψ4R1∗

H − µH RL∗
H = 0, (29)

τ2ψ1 IL∗
H − (σ + µH)IS∗

H = 0, (30)

σIS∗
H − (ψ2 + µH)I1∗

H = 0, (31)

ω3ψ2 I1∗
H − (ψ3 + µH)I2∗

H = 0, (32)

δR2∗
H − (ϕ + µH)IP∗

H = 0, (33)

ω1ψ2 I1∗
H + ϕIP∗

H + γ2ψ3 I2∗
H − (ϱ1ψ4 + µH)R1∗

H = 0, (34)

τ3ψ1 IL∗
H + ω2ψ2 I1∗

H + γ1ψ3 I2∗
H − (δ + µH)R2∗

H = 0, (35)

ΠA − ηFS∗
A − µAS∗

A = 0, (36)

ηFS∗
A − (ζ1 + µA)E∗

A = 0, (37)

ϖ1ζ1E∗
A − (ζ2 + µA)IA∗

A = 0, (38)
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ϖ2ζ1E∗
A + ν2ζ2 IA∗

A − (κ + µA)IS∗
A = 0, (39)

ν1ζ2 IA∗
A + κ IS∗

A − µAR∗
A = 0, (40)

ΠF − (ρA + ξA + χA)S∗
F − µFS∗

F = 0, (41)

(ρA + ξA + χA)S∗
F − (π + µF)E∗

F = 0, (42)

πE∗
F − µF I∗F = 0. (43)

At the VL-free fixed point, it means there is no presence of the disease, meaning
EH = 0, IE

H = 0, IL
H = 0, RE

H = 0, RL
H = 0, IS

H = 0, I1
H = 0, I2

H = 0, IP
H = 0, R1

H = 0, R2
H = 0,

EA = 0, IA
A = 0, IS

A = 0, RA = 0, EF = 0, IF = 0.
Thus, we have

ΠH − µHS∗
H = 0 ⇐⇒ S∗

H = ΠH
µH

,

ΠA − µAS∗
A = 0 ⇐⇒ S∗

A = ΠA
µA

,

ΠF − µFS∗
F = 0 ⇐⇒ S∗

F = ΠF
µF

.

Therefore, the VL-free fixed point is given by

x∗ = (x∗1 , x∗2 , . . . , x∗20)
T ,

= (S∗
H , E∗

H , . . . , I∗F)
T .

Hence, the VL-free fixed point, denoted by E0, is given by

E0 =

(
ΠH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
ΠA
µA

, 0, 0, 0, 0,
ΠF
µF

, 0, 0
)

. (44)

4.2. Basic Reproduction Number R0

The number of secondary infections caused by a single infectious individual over
the course of their whole infectious period is known as the basic reproduction number.
The basic reproduction number can be expressed mathematically as a spectral radius.
The number of new infections caused by a single infected person in a community that is
totally susceptible is defined by the spectral radius R0, a threshold parameter for disease
control [23]. The number of VL infections caused by an active VL case is what we refer to
as the basic reproduction number, or R0, in this instance. To ascertain the model system’s
basic reproductive number, we employ the method of next generation matrix described
in [23] to determine the basic reproductive number of the system (1). The matrices F and
V , for the new infection terms and the remaining transfer terms, are, respectively, given by

F =



λFSH
0
0
0
0
0
0

ηFSA
0
0

(ρA + ξA + χA)SF
0



,V =



(θ1 + µH)EH
−θ1EH + (θ2 + µH)IE

H
−θ2 IE

H + (ψ1 + µH)IL
H

−τ2ψ1 IL
H + (σ + µH)IS

H
−σIS

H + (ψ2 + µH)I1
H

−ω3ψ2 I1
H + (ψ3 + µH)I2

H
−δR2

H + (ϕ + µH)IP
H

(ζ1 + µA)EA
−ϖ1ζ1EA + (ζ2 + µA)IA

A ,
−ϖ2ζ1EA − ν2ζ2 IA

A + (κ + µA)IS
A

(π + µF)EF
−πEF + µF IF



.
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We then obtain the matrices F and V at the VL-free fixed point, E0. Thus, we have

F =



0 0 0 0 0 0 0 0 0 0 0 b1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 b3 b4 b4 0 0
0 0 0 0 0 0 0 0 0 0 0 0



, (45)

b1 = βH gHΠHµA
ΠHµA+ΠAµH

, b2 = βAgAΠAµH
ΠHµA+ΠAµH

, b3 = βF gAΠFµAµH
µF(ΠHµA+ΠAµH)

, b4 = βF gAhAΠFµAµH
µF(ΠHµA+ΠAµH)

V =



a11 0 0 0 0 0 0 0 0 0 0 0
−θ1 a12 0 0 0 0 0 0 0 0 0 0

0 −θ2 a13 0 0 0 0 0 0 0 0 0
0 0 −a22 a14 0 0 0 0 0 0 0 0
0 0 0 −σ a15 0 0 0 0 0 0 0
0 0 0 0 −a23 a16 0 0 0 0 0 0
0 0 0 0 0 0 a17 0 0 0 0 0
0 0 0 0 0 0 0 a18 0 0 0
0 0 0 0 0 0 0 −a24 a19 0 0 0
0 0 0 0 0 0 0 −a25 −a26 a20 0 0
0 0 0 0 0 0 0 0 0 0 a21 0
0 0 0 0 0 0 0 0 0 0 −π µF



, (46)

where

a11 = θ1 + µH , a12 = θ2 + µH , a13 = ψ1 + µH , a14 = σ + µH , a15 = ψ2 + µH ,

a16 = ψ3 + µH , a17 = ϕ + µH , a18 = ζ1 + µA, a19 = ζ2 + µA, a20 = κ + µA,

a21 = π + µA, a22 = τ2ψ1, a23 = ω2ψ2, a24 = ϖ1ζ1, a25 = ϖ2ζ1, a26 = ν2ζ2.

the determinant of V is obtained to be

det(V) = a11a12a13a14a15a16a17a18a19a20a21µF.

V−1 =



1
a11

0 0 0 0 0 0 0 0 0 0 0
A1

1
a12

0 0 0 0 0 0 0 0 0 0
A2 A3

1
a13

0 0 0 0 0 0 0 0 0
A4 A5 A6

1
a14

0 0 0 0 0 0 0 0
A7 A8 A9 A10 −a15 0 0 0 0 0 0 0
A11 A12 A13 A14 A15

1
a16

0 0 0 0 0 0
0 0 0 0 0 0 1

a17
0 0 0 0 0

0 0 0 0 0 0 0 1
a18

0 0 0 0
0 0 0 0 0 0 0 A16

1
a19

0 0 0
0 0 0 0 0 0 0 A17 A18

1
a20

0 0
0 0 0 0 0 0 0 0 0 0 1

a21
0

0 0 0 0 0 0 0 0 0 0 A19
1

µF



(47)
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A1 = θ1
a11a12

, A2 = θ1θ2
a11a12a13

, A3 = θ2
a12a13

, A4 = θ1θ2a22
a11a12a13a14

, A5 = θ2a22
a12a13a14

,
A6 = a22

a13a14
, A7 = θ1θ2σa22

a11a12a13a14a15
, A8 = θ2σa22

a12a13a14
, A9 = σa22

a13a14
, A10 = σ

a14
,

A11 = θ1θ2σa22a22
a11a12a13a14a16

, A12 = θ2σa22a29
a12a13a14a16

, A13 = σa22a23
a13a14a16

, A14 = σa23
a14a16

, A15 = a29
a16

,
A16 = a24

a18a25
, A17 = a19a25+a24a26

a18a15a20
, A18 = a26

a25a20
, A19 = π

µFa21
.

Thus, we have

FV−1 =



0 0 0 0 0 0 0 0 0 0 πb1
µFa21

b1
µF

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 πb2

µFa21

b2
µF

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 B1 B2

b4
a20

0 0
0 0 0 0 0 0 0 0 0 0 0 0



, (48)

where

B1 =
b4a24(a20 + a26) + a25b4(a20 + a25)

a18a25a20
, B2 =

a20 + a26

a25a20
.

The spectral radius ρ(FV−1) = R0, the basic reproduction number to the system,
which is the dominant eigenvalue, after simplifying, is given as

R0 =

√
π(a20b3 + b2b4a24a25) + πb4a24(a26 + a20b2)

µFa18a20a21a25
. (49)

4.3. Local Stability Analysis of VL-Free Fixed Point

To analyze the stability of the VL-free fixed point, we linearize the non-linear system (1)
by taking a small perturbation about the fixed points.

Since the decomposed matrices F and V exist, which satisfy conditions (A1)–(A5)
in [23], it follows from Theorem 2 of the same [23] that we have the following.

Lemma 2. The VL-free E0 of the model given by (1) is locally asymptotically stable (LAS) whenever
R0 < 1, and unstable when R0 > 1.

The epidemiological implication of Lemma 2 is that a small influx of infectious individ-
uals will not generate large outbreaks in the population if R0 < 1. Basically, R0 calculates
the typical number of secondary cases in a population that is fully susceptible that are
caused by a single infectious individual. According to Lemma 2, if R0 < 1, then a modest
excess of infectious individuals will not cause significant outbreaks in the community. For
the VL-free E0 of the model when R0 < 1, a global asymptotic stability (GAS) property
needs to be provided for the disease elimination to be independent of the initial sizes of the
populations of the model. We examine now the global asymptotic stability (GAS) of the
VL-free fixed point, E0.

4.4. Global Stability Analysis of the VL-Free Fixed Point

The basic reproduction number of the model is the threshold quantity R0 as obtained
in (49). It measures how many new infected cells, on average, are produced [21,23]. It is
implied by Lemma 1 that the disease may die out when R0 < 1 and the initial sizes of the
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model’s subpopulations are within Ω. It is crucial to demonstrate that the VL-free fixed
point is globally asymptotically stable to guarantee the independence of disease elimination
when R0 < 1.

We explore the global asymptotic stability of the VL-free fixed point E0 of the model
using a Lyapunov functional.

Theorem 2. Suppose that µFa18a19a20a21 ≥ πβAβFg2
A[a24(a20 + a26) + a19(a20hA + a25)] and

πa24b2b4 > µFa18a20a21, the VL-free fixed point (E0) is globally asymptotically stable in the region
Ω whenever R0 < 1.

Proof. Consider the Lyapunov function

V = g1EH + IE
H + IL

H + I1
H + I2

H + IS
H + g2 IP

H + g3EA + g4 IA
A + g5 IS

A + g6EF + g7 IF, (50)

where

g1 =
µFa18a19a20a21−πβA βF g2

A [a24(a20+a26)+a19(a20hA+a25)]
a18πβH gH

,
g2 = πa20b3 + πa24a26b4 + πa20a24b2b4 + a25(πa24b2b4 − µFa18a20a21),
g3 = βF gA [a24(a20+a26)+a19(a20hA+a25)]

a18
,

g4 = βFgA(a20 + a26),
g5 = a19βFgA,
g6 = a19a20,
g7 = a19a20a21

π ,

with the Lyapunov derivative along the solution curve

V̇ = g1ĖH + ˙IE
H + ˙IL

H + ˙I1
H + ˙I2

H + ˙IS
H + g2

˙IP
H + g3ĖA + g4

˙IA
A + g5

˙IS
A + g6ĖF + g7 İF,

ĖH = dEH
dt , İE

H =
dIE

H
dt , İL

H =
dIL

H
dt İ1

H =
dI1

H
dt , İ2

H =
dI2

H
dt , İS

H =
dIS

H
dt , İP

H =
dIP

H
dt ,

ĖA = dEA
dt , İA

A =
dIA

A
dt , İS

A =
dIS

A
dt , ĖF = dEF

dt İF = dIF
dt .

Substituting the derivatives of each from the system (1) in V̇, we have

V̇ = g1[λFSH − (θ1 + µH)EH ] + [θ1EH − (θ2 + µH)IE
H ] + [θ2 IE

H − (ψ1 + µH)IL
H ]

+ [σIS
H − (ψ2 + µH)I1

H ] + [ω3ψ2 I1
H − (ψ3 + µH)I2

H ] + [τ2ψ1 IL
H − (σ + µH)IS

H ]

+ g2[δR2
H − (ϕ + µH)IP

H ] + g3[ηFSA − (ζ1 + µA)EA] + g4[ϖ1ζ1EA − (ζ2 + µA)IA
A ]

+ g5[ϖ2ζ1EA + ν2ζ2 IA
A − (κ + µA)IS

A] + g6[(ρA + ξA + χA)SF − (π + µF)EF]

+ g7[πEF − µF IF],

= g1λFSH + g3ηFSA + g6(ρA + ξA + χA)SF + [θ1 − (θ1 + µH)]EH + [θ2

− (θ2 + µH)]IE
H + [τ2ψ1 − (ψ1 + µH)]IL

H + [σ − (σ + µH)]IS
H + [ω3ψ2

− (ψ2 + µH)]I1
H − (ψ3 + µH)I2

H − g2(ϕ + µH)IP
H + g2δR2

H + [g4ϖ1ζ1

− g3(ζ1 + µA) + g5ϖ2ζ1]EA + [g5ν2ζ2 − g4(ζ2 + µA)]IA
A − g5(κ + µA)IS

A

+ [g7π − g6(π + µF)]EF − g7µF IF. (51)

Now,

g1λFSH = g1βH gH IF
NH+NA

SH < g1βH gH IF,

g3ηFSA = g3βAgA IF
NH+NA

SA < g3βAgA IF,

g6(ρA + ξA + χA)SF =
g6(βF gA IA

A+βF gA IS
A+βF gAhAEA)

NH+NA
SF < g6(βFgA IA

A + βFgA IS
A + βFgAhAEA).
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Also, using the fact that if a, b, c > 0, then a + b − c < a + b, dropping g2(ϕ + µH)IP
H ,

and simplifying the term according to the variable, (51) becomes

≤ [θ1 − (θ1 + µH)]EH + [θ2 − (θ2 + µH)]IE
H + [τ2ψ1 − (ψ1 + µH)]IL

H + [σ − (σ + µH)]IS
H

+ [ω3ψ2 − (psi2 + µH)]I1
H − (ψ3 + µH)I2

H + g2δR2
H + [g4ϖ1ζ1 − g3(ζ1 + µA) + g5ϖ2ζ1

+ g6βFgAhA]EA + [g5ν2ζ2 − g4(ζ2 + µA) + g6βFgA]IA
A + [g6βFgA − g5(κ + µA)IS

A

+ [g7π − g6(π + µF)]EF + [g1βH gH + g3βAgA − g7µF]IF,

= −µHEH − µH IE
H − (τ1ψ1 + τ3ψ1 + µH)IL

H − µH IS
H − (ω1ψ2 + ω2ψ2 + µH)I1

H

− (ψ3 + µH)I2
H + g2δR2

H + [g4ϖ1ζ1 − g3(ζ1 + µA) + g5ϖ2ζ1 + g6βFgAhA]EA

+ [g5ν2ζ2 − g4(ζ2 + µA) + g6βFgA]IA
A + [g6βFgA − g5(κ + µA)IS

A + [g7π − g6(π + µF)]EF

+ [g1βH gH + g3βAgA − g7µF]IF. (52)

Substituting g1, g2, g3, g4, g5, g6, g7 in (52), we have

[g4ϖ1ζ1 − g3(ζ1 + µA) + g5ϖ2ζ1 + g6βFgAhA]EA = 0,
[g5ν2ζ2 − g4(ζ2 + µA) + g6βFgA]IA

A = 0,
[g6βFgA − g5(κ + µA)IS

A = 0,
[g7π − g6(π + µF)]EF = 0,

[g1βH gH + g3βAgA − g7µF]IF = 0 and (52) becomes

= −µHEH − µH IE
H − (a27 + a32 + µH)IL

H − µH IS
H − (ω1ψ2 + a23 + µH)I1

H

− (ψ3 + µH)I2
H + [πa20b3 + πa24a26b4 + πa20a24b2b4 + a25(πa24b2b4

− µFa18a20a21)]δR2
H ,

= −µHEH − µH IE
H − (a27 + a32 + µH)IL

H − µH IS
H − (ω1ψ2 + a23 + µH)I1

H

− (ψ3 + µH)I2
H + [π(a20b3 + a24a25) + πa24b4(a26 + a20b2)− µFa18a20a21a25)]δR2

H ,

= −µHEH − µH IE
H − (a27 + a32 + µH)IL

H − µH IS
H − (ω1ψ2 + a23 + µH)I1

H

− (ψ3 + µH)I2
H +

(
π(a20b3 + a24a25) + πa24b4(a26 + a20b2)

µFa18a20a21a25
− 1
)

δµFa18a20a21a25R2
H ,

= −µHEH − µH IE
H − (a27 + a32 + µH)IL

H − µH IS
H − (ω1ψ2 + a23 + µH)I1

H

− (ψ3 + µH)I2
H + (R2

0 − 1)δµFa18a20a21a25R2
H ,

< 0.

Clearly, V̇ ≤ 0 for R0 < 1 with V = 0 only at the VL-free fixed point, E0. Thus, it
follows that by LaSalle’s invariance principle (as stated in [22]), E0 is globally asymptoti-
cally stable.

Theorem 2 holds biological significance, as it states that VL can be eliminated from
an infected individual whenever R0 < 1. Specifically, for the system (1), R0 < 1 is both
necessary and sufficient for VL elimination. Additionally, in a large population, the disease
dies out.

4.5. Existence of VL Endemic Fixed Point

In order to determine the presence of a non-zero (endemic) model fixed point, we let

E∗∗ = (S∗∗
H , E∗∗

H , IE∗∗
H , IL∗∗

H , RE∗∗
H , RL∗∗

H , IS∗∗
H , I1∗∗

H , I2∗∗
H , IP∗∗

H , R1∗∗
H , R2∗∗

H , S∗∗
A ,

E∗∗
A , IA∗∗

A , IS∗∗
A , R∗∗

A , S∗∗
F , E∗∗

F , I∗∗F ). (53)
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denote any arbitrary fixed point of the model. We then solve the equations of the model in
terms of the associated forces of infection (λF, ηF, ρA, ζA, ξA). It follows from (24)–(43), that
the system has a unique endemic fixed point, E∗∗, where

S∗∗
H =

ΠH
λ∗∗

F + µH
,

E∗∗
H =

ΠHλ∗∗
F

a11(λ
∗∗
F + µH)

,

IE∗∗
H =

θ1ΠHλ∗∗
F

a11a12(λ
∗∗
F + µH)

,

IL∗∗
H =

θ1θ2ΠHλ∗∗
F

a11a12a13(λ
∗∗
F + µH)

,

RE∗∗
H =

a27θ1θ2ΠHλ∗∗
F

a11a12a13a35(λ∗∗
F + µH)

,

I1∗∗
H =

a22θ1θ2σΠHλ∗∗
F

a11a12a13a14a15(λ
∗∗
F + µH)

,

I2∗∗
H =

a22a23θ1θ2σΠHλ∗∗
F

a11a12a13a14a15a16(λ
∗∗
F + µH)

,

R2∗∗
H =

c1ψ1θ1θ2ΠHλ∗∗
F

a11a12a13a14a15a16a38(λ∗∗
F + µH)

,

IS∗∗
H =

a22θ1θ2ΠHλ∗∗
F

a11a12a13a14(λ
∗∗
F + µH)

,

IP∗∗
H =

c1δψθ1θ2ΠHλF
a11a12a13a14a15a16a17a38(λ∗∗

F + µH)
, (54)

R1∗∗
H =

(c2 + c1δϕ + c3)ψ1θ1θ2ΠHλ∗∗
F

a11a12a13a14a15a16a17a37a38(λ∗∗
F + µH)

,

RL∗∗
H =

c4λ∗∗
F + c5λ∗∗

F (c2 + c1δϕ + c3)

µHa11a12a13a14a15a16a17a37a38(λ∗∗
F + µH)

,

S∗∗
A =

ΠA
η∗∗

F + µA

E∗∗
A =

ΠAη∗∗
F

a18(η
∗∗
F + µA)

,

IA∗∗
A =

b14ΠAη∗∗
F

a18a19(η
∗∗
F + µA)

,

IS∗∗
A =

(a19b15 + b14b16)ΠAη∗∗
F

a18a19a20(η∗∗
F + µA)

,

R∗∗
A =

[a20a24b19 + κ(a19b15 + b14b16)]ΠAη∗∗
F

a18a19a20µA(η
∗∗
F + µA)

,

S∗∗
F =

ΠF
ρ∗∗A + ζ∗∗A + ξ∗∗A − µF

,

E∗∗
F =

(ρ∗∗A + ζ∗∗A + ξ∗∗A )ΠF

a21(ρ
∗∗
A + ζ∗∗A + ξ∗∗A − µF)

,

I∗∗F =
(ρ∗∗A + ζ∗∗A + ξ∗∗A )πΠF

µFa21(ρ
∗∗
A + ζ∗∗A + ξ∗∗A − µF)

,
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where,

a27 = τ1ψ1, a28 = ϱ1ψ4, a29 = ω3ψ2, a30 = ω1ψ1, a31 = γ2ψ3,
a32 = τ3ψ1, a33 = γ1ψ3, a34 = ν1ζ1, a35 = ϵ + µH , a36 = ϕ + µH ,
a37 = ϱ1 + µH , a38 = δ + µH
c1 = τ3a14a15a16 + a23τ2σ + a23a33τ2σ,
c2 = ψ2σa16a17a22a38,
c3 = a23a31τ2σ.
c4 = ϵψ1θ1θ2a14a15a16a17a37a38ΠH ,
c5 = a28ψ1θ1θ2ΠH .

4.6. Local Stability Analysis of VL Endemic Fixed Point

We rely on the linearization approach to establish the local asymptotic stability of the
VL endemic fixed point, that is, finding the eigenvalues of the linearized system around
the fixed point.

Theorem 3. If R0 > 1, then the VL endemic fixed point E∗∗ of system (1) is locally asymptotically
stable (LAS).

Proof. Linearize the model system around the VL endemic fixed point. Also, to contain
the elements of the matrix of the Jacobian, we redefine the parameter representations. Thus,
we have the Jacobian matrix at the endemic fixed point E∗∗ denoted by JE∗∗ as

JE∗∗ =



e1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e11
λ∗∗

F e2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m4
0 θ1 e3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 θ2 e4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 a27 e5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ϵ e6 0 0 0 a28 0 0 0 0 0 0 0 0 0 0
0 0 0 a22 0 0 e7 0 0 0 a28 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 σ e8 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a29 e9 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 e10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a30 a31 ϕ e12 0 0 0 0 0 0 0 0 0 0
0 0 0 a32 0 0 0 a23 a32 0 0 e13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 e14 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 η∗∗

F e15 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 a24 e16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 a33 a26 e17 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 a34 κ e18 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 e22 e23 e23 0 e19 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 b3 b2 b2 0 0 e20 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 π e21



, (55)

where

e1 = −m1, e2 = −a11, e3 = −a12, e4 = −a13, e5 = −a35, e6 = −µH , e7 = −a14,
e8 = −a15, e9 = −a16, e10 = −a17, e11 = −m4, e12 = −a37, e13 = −a38,
e14 = −m2, e15 = −a18, e16 = −a19, e17 = −a20, e18 = −µA, e19 = −m3,
e20 = −a21, e21 = −µF, e22 = −b3, e23 = −b2.

The characteristic equation associated with the model system (1) is given by |JE∗∗ −
λI| = 0, where λ(= λi, i = 1, 2, 3, . . . , 20) denotes the eigenvalues of the JE∗∗, I = I20×20
identity matrix.
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This implies
|JE∗∗ − λI| = 0. (56)

Thus,

(e1 − λ1)(e2 − λ2)(e3 − λ3)(e4 − λ4)(e5 − λ5)(e6 − λ6)(e7 − λ7)(e8 − λ8)(e9 − λ9)(e10 − λ10)
(e12 − λ11)(e13 − λ12)(e14 − λ13)(e15 − λ14)(e16 − λ15)(e17 − λ16)(e18 − λ17)(e19 − λ18)
(e20 − λ19)(e21 − λ20) = 0.

This implies

λ1 = e1 = −m1 = −(λ∗∗
F + µH) < 0,

λ2 = e2 = −a11 = −(θ1 + µH) < 0,
λ3 = e3 = −a12 = −(θ2 + µH) < 0,
λ4 = e4 = −a13 = −(ψ1 + µH) < 0,
λ5 = e5 = −a35 = −(ϵ + µH) < 0,
λ6 = e6 = −µH < 0,
λ7 = e7 = −a14 = −(σ + µH) < 0,
λ8 = e8 = −a15 = −(ψ2 + µH) < 0,
λ9 = e9 = −a16 = −(ψ3 + µH) < 0,
λ10 = e10 = −a17 = −(ϕ + µH) < 0,

λ11 = e12 = −a37 = −(ϱ1ψ4 + µH) < 0,
λ12 = e13 = −a38 = −(δ + µH) < 0,
λ13 = e14 = −m2 = −(η∗∗

F + µH) < 0,
λ14 = e15 = −a18 = −(ζ1 + µA) < 0,
λ15 = e16 = −a19 = −(ζ2 + µA) < 0,
λ16 = e17 = −a20 = −(κ + µA) < 0,
λ17 = e18 = −µA < 0,
λ18 = e19 = −m3 < 0,
λ19 = e20 = −a21 = −(π + µA) < 0,
λ20 = e21 = −µF < 0,

λi, i = 1, 2, 3, . . . , 20 are all negative.
We therefore conclude that the VL endemic fixed point E∗∗ is locally asymptotically

stable. Hence, the proof is complete.

This result indicates that the VL disease is likely to spread quickly and the number of
infected individuals may rise exponentially if R0 remains greater than unity for some time
t > 0.

4.7. Global Stability Analysis of VL Endemic Fixed Point

Here, we explore the global stability of the VL endemic fixed point E∗∗ to help under-
stand the spread of the VL disease in a population.

Theorem 4. There is no periodic orbit for the system (1).

Proof. Applying the Dulac’s criterion as used in [24], let

X = (SH , EH , IE
H , IL

H , RE
H , RL

H , IS
H , I1

H , I2
H , IP

H , R1
H , R2

H , SA, EA, IA
A , IS

A, RA, SF, EF, IF).

Taking the Dulac’s function as

G =
1
IF

,

from the system (1) equations, we have

G
dSH
dt

=
ΠH
IF

− λF
SH
IF

− µH
SH
IF

,

G
dEH
dt

= λF
SH
IF

− (θ1 + µH)
EH
IF

,

G
dIE

H
dt

= θ1
EH
IF

− (θ2 + µH)
IE
H

IF
,

G
dIL

H
dt

= θ2
IE
H

IF
− (ψ1 + µH)

IL
H

IF
,

G
dRE

H
dt

= τ1ψ1
IL
H

IF
− (ε + µH)

RE
H

IF
,
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G
dRL

H
dt

= ε
RE

H
IF

+ ϱ1ψ4
R1

H
IF

− µH
RL

H
IF

,

G
dIS

H
dt

= τ2ψ1
IL
H

IF
− (σ + µH)

IS
H

IF
,

G
dI1

H
dt

= σ
IS
H

IF
− (ψ2 + µH)

I1
H

IF
,

G
dI2

H
dt

= ω3ψ2
I1
H

IF
− (ψ3 + µH)

I2
H

IF
,

G
dIP

H
dt

= δ
R2

H
IF

− (ϕ + µH)
IP
H

IF
,

G
dR1

H
dt

= ω1ψ2
I1
H

IF
+ ϕ

IP
H

IF
+ γ2ψ3

I2
H

IF
− (ϱ1ψ4 + µH)

R1
H

IF
,

G
dR2

H
dt

= τ3ψ1
IL
H

IF
+ ω2ψ2

I1
H

IF
+ γ1ψ3

I2
H

IF
− (δ + µH)

R2
H

IF
,

G
dSA
dt

=
ΠA
IF

− ηF
SA
IF

− µA
SA
IF

,

G
dEA
dt

= ηF
SA
IF

− (ζ1 + µA)
EA
IF

,

G
dIA

A
dt

= ϖ1ζ1
EA
IF

− (ζ2 + µA)
IA
A

IF
,

G
dIS

A
dt

= ϖ2ζ1
EA
IF

+ ν2ζ2
IA
A

IF
− (κ + µA)

IS
A

IF
,

G
dRA

dt
= ν1ζ2

IA
A

IF
+ κ

IS
A

IF
− µA

RA
IF

,

G
dSF
dt

=
ΠF
IF

− (ρA + ξA + χA)
SF
IF

− µF
SF
IF

,

G
dEF
dt

= (ρA + ξA + χA)
SF
IF

− (π + µF)
EF
IF

,

G
dIF
dt

= π
EF
IF

− µF.

Thus,

dGX
dt

=
∂

dSH

(
G

dSH
dt

)
+

∂

dEH

(
G

dEH
dt

)
+

∂

dIE
H

(
G

dIE
H

dt

)
+

∂

ddIL
H

(
G

dIL
H

dt

)

+
∂

dRE
H

(
G

dRE
H

dt

)
+

∂

dRL
H

(
G

dRL
H

dt

)
+

∂

dIS
H

(
G

dIS
H

dt

)
+

∂

dI1
H

(
G

dI1
H

dt

)

+
∂

dI2
H

(
G

dI2
H

dt

)
+

∂

dIP
H

(
G

dIP
H

dt

)
+

∂

dR1
H

(
G

dR1
H

dt

)
+

∂

dR2
H

(
G

dR2
H

dt

)

+
∂

dSA

(
G

dSA
dt

)
+

∂

dEA

(
G

dEA
dt

)
+

∂

dIA
A

(
G

dIA
A

dt

)
+

∂

dIS
A

(
G

dIS
A

dt

)

+
∂

dRA

(
G

dRA
dt

)
+

∂

dSF

(
G

dSF
dt

)
+

∂

dEF

(
G

dEF
dt

)
+

∂

dIF

(
G

dIF
dt

)
,

=
∂

dSH

(
ΠH
IF

− λF
SH
IF

− µH
SH
IF

)
+

∂

dEH

(
λF

SH
IF

− (θ1 + µH)
EH
IF

)
+

∂

dIE
H

(
θ1

EH
IF

− (θ2 + µH)
IE
H

IF

)
+

∂

dIL
H

(
θ2

IE
H

IF
− (ψ1 + µH)

IL
H

IF

)
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+
∂

dRE
H

(
τ1ψ1

IL
H

IF
− (ε + µH)

RE
H

IF

)
+

∂

dRL
H

(
ε

RE
H

IF
+ ϱ1ψ4

R1
H

IF
− µH

RL
H

IF

)

+
∂

dIS
H

(
τ2ψ1

IL
H

IF
− (σ + µH)

IS
H

IF

)
+

∂

dI1
H

(
σ

IS
H

IF
− (ψ2 + µH)

I1
H

IF

)

+
∂

dI2
H

(
ω3ψ2

I1
H

IF
− (ψ3 + µH)

I2
H

IF

)
+

∂

dIP
H

(
δ

R2
H

IF
− (ϕ + µH)

IP
H

IF

)

+
∂

dR1
H

(
ω1ψ2

I1
H

IF
+ ϕ

IP
H

IF
+ γ2ψ3

I2
H

IF
− (ϱ1ψ4 + µH)

R1
H

IF

)

+
∂

dR2
H

(
τ3ψ1

IL
H

IF
+ ω2ψ2

I1
H

IF
+ γ1ψ3

I2
H

IF
− (δ + µH)

R2
H

IF

)

+
∂

dSA

(
ΠA
IF

− ηF
SA
IF

− µA
SA
IF

)
+

∂

dEA

(
ηF

SA
IF

− (ζ1 + µA)
EA
IF

)
+

∂

dIA
A

(
ϖ1ζ1

EA
IF

− (ζ2 + µA)
IA
A

IF

)
+

∂

dIS
A

(
ϖ2ζ1

EA
IF

+ ν2ζ2
IA
A

IF
− (κ + µA)

IS
A

IF

)

+
∂

dRA

(
ν1ζ2

IA
A

IF
+ κ

IS
A

IF
− µA

RA
IF

)
+

∂

dSF

(
ΠF
IF

− (ρA + ξA + χA)
SF
IF

− µF
SF
IF

)
+

∂

dEF

(
(ρA + ξA + χA)

SF
IF

− (π + µF)
EF
IF

)
+

∂

dIF

(
π

EF
IF

− µF

)
,

=

(
−λF

1
IF

− µH
1
IF

)
+

(
−(θ1 + µH)

1
IF

)
+

(
−(θ2 + µH)

1
IF

)
+

(
−(ψ1 + µH)

1
IF

)
+

(
−(ε + µH)

1
IF

)
+

(
−µH

1
IF

)
+

(
−(σ + µH)

1
IF

)
+

(
−(ψ2 + µH)

1
IF

)
+

(
−(ψ3 + µH)

1
IF

)
+

(
−(ϕ + µH)

1
IF

)
+

(
−(ϱ1ψ4 + µH)

1
IF

)
+

(
−(δ + µH)

1
IF

)
+

(
−ηF

1
IF

− µA
1
IF

)
+

(
−(ζ1 + µA)

1
IF

)
+

(
−(ζ2 + µA)

1
IF

)
+

(
−(κ + µA)

1
IF

)
+

(
−µA

1
IF

)
+

(
−(ρA + ξA + χA)

1
IF

− µF
1
IF

)
+

(
−(π + µF)

1
IF

)
+
(
−πEF I−2

F

)
,

= −(λF + ηF + ρA + ξA + χA + δ + κ + 12µH + 5µA + 2µF + θ1 + θ2

+ π + ψ1 + ψ2 + ψ3 + ρ1ψ4 + ε + σ + ϕ + ζ1 + ζ2)
1
IF

− π
EF

I2
F

,

< 0.

Hence, there exists no periodic solution for the system (1).

With Ω being positively invariant, all solutions to the system (1) originate and remain
in Ω for all t. This is supported by the Poincaré–Bendixson theorem. Consequently, the
theorem follows.

Theorem 5. The VL endemic fixed point E∗∗ for the system (1) is globally asymptotically stable
whenever R0 > 1.

This result indicates that the disease may not die out whenever the threshold R0 > 1.
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4.8. Sensitivity Analysis

This subsection presents the analytical sensitivity analysis of some of the important
parameters in R0 (i.e., βA, βF, gA, and κ) using the differential approach as applied by [25]
to quantify their impact on the model dynamic. Moreover, the R0 important parameters’
numerical and analytical values are produced using precise assumptions based on pa-
rameter values. Some insight on tracking the model’s onset at variant places is given by
the analytical expressions produced. By reducing the value to less than unity, the thresh-
old value R0 is acknowledged as the primary method of stopping the disease’s progress.
Positively signed parameters are considered highly and proportionally sensitive to R0,
whereas negatively signed parameters are not declining R0. This is obtained using partial
derivatives of R0 with respect to the key parameter. The following are valid based on the
expression for R0 provided D8D10 < D9D11:

∂R0

∂βA
=

D1
√
(βAD1 + D2)D3D4

2(βAD1 + D2)D3D4
> 0,

∂R0

∂βF
=

D5
√

βFD3D4D5

2βFD3D4
> 0, (57)

∂R0

∂gA
=

(D6 + 2gAD7)
√
(gAD6 + g2

AD7)D3D4

2D3D4(gAD6 + g2
AD7)

> 0,

∂R0

∂κ
=

k(D8D10 − D9D11)
√

D3(κD9 + D10)(κD8 + D11)

(κD8 + D11)(κD9 + D10)
< 0.

D1 = βFg2
AµAµ2

HΠAPiF,

D2 = βFgAhAκµAΠF(ζ1µFΠH + ζ1µHΠA + mu2
AΠH + µAµHΠA)

+ βFgAhAµ3
AµFΠFΠHζ1 + βFgAhAµ3

AµHΠAΠFζ1 + βFgAhAµ4
AµFΠFΠH

+ βFgAhAµ3
AµFµHΠAΠFζ1 + βFgAµ2

Aµ2
Hν2ΠFϱ1ζ1ζ2,

D3 = µ2
AµFΠ2

H + 2µAµFµHΠAΠH + µFµH ,

D4 = κµFπζ1ζ2 + κµAµFζ1ζ2 + κµAµFπζ1 + κµ2
AµFζ1 + κµAπζ2 + κµ2

AµFζ2

+ κµ2
AµFπ + κµ3

AµF + µAµFπζ1ζ2 + µ2
AµFζ1ζ2 + µ2

AµFπζ1 + µ3
AµFζ1ζ2

+ µ2
AµFπζ2 + µ3

AµFζ2 + µ3
AµFπ + µ4

AµF,

D5 = κgAhAµAµFΠFΠHζ1 + κgAhAµAµFΠAΠFζ1 + βFκgHhAµ3
AΠFΠH

+ κgAhAµ2
AµHΠAΠF + gAhAµ3

AµFΠFΠHζ1 + βFgAhAµ3
AµHΠAΠFζ1

+ gAhAµ4
AµFΠFΠH + gAhAµ3

AµFµHΠAΠF + βAg2
AµAµ2

HΠAΠF

+ gAµ2
Aµ2

Hν2ΠFϱ1ζ1ζ2 + gAµAµ2
Hν2ΠFϱ1ζ1ζ2,

D6 = βFκhAµAµFΠFΠHζ1 + βFκhAµAµFΠAΠFζ1 + βFκhAµ2
AΠAΠF

+ βFκhAµ3
AΠFΠH + βFhAµ4

AµFΠFΠH + βFhAµ3
AµFµHΠAΠF

+ βFhAµ3
AµFµHΠAΠFζ1 + βFhAµ2

AµFµHΠAΠFζ1

+ βFµ2
Aµ2

Hν2ΠFϱ1ζ1ζ2 + βFµAµ2
Hν2ΠFϱ1ζ1ζ2,

D7 = βAβFµAµ2
HΠAΠF,

D8 = βFgAhAµAµFΠFΠHζ1 + βFgAhAµAµHΠAΠFζ1 + βFgAhAµ3
AΠFΠH

+ βFgAhAµ2
AµHΠAΠH ,

D9 = µFπζ1ζ2 + µAµFζ1ζ2 + µAµFπζ1 + µ2
AµFζ1 + µAπζ2 + µ2

AµFζ2

+ µ2
AµFπ + µ3

AµF,

D10 = µAµFπζ1ζ2 + µ2
AµFζ1ζ2 + µ2

AµFζ1 + µ3
AµFζ1ζ2 + µ2

AµFπζ2 + µ3
AµFζ2
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+ µ3
AµFπ + µ4

AµF,

D11 = βFgAhAµ3
AµFΠFΠHζ1 + βFgAhAµ3

AµHΠAΠFζ1 + βFgAhAµ4
AµFΠFΠH

+ βFgAhAµ4
AµHΠAΠF + βAβFg2

AµAµ2
HΠAΠF + βFgAµ2

Aµ2
Hν2ΠFϱ1ζ1ζ2

+ βFgAµAµ2
Hν2ΠFϱ1ζ1ζ2.

The equations in (57) show that decreasing the transmission probability from infected
sandflies to susceptible animals (βA), the transmission probability from infected animals to
susceptible sandflies (βF), and the per capita biting rate of sandflies of animals (gA) will
help reduce the transmission of VL infection. Again, from (57), increasing the fraction of
rate of transfer of symptomatic infected animals to the recovered class (κ) will also reduce
the transmission of VL disease in a population.

The elasticity indices for all the R0 parameters which is given by

γR0
q =

∂R0

∂q
.

q
R0

. (58)

where R0 denotes the basic reproduction ratio and q is a parameter are analyzed numeri-
cally using Variable Precision Arithmetic (VPA) in MATLAB in the section for numerical
simulation.

5. Numerical Simulation

In this section, the numerical outcomes of the various compartments of the model are
observed using parameter values from the literature and some assumptions. All values of
the parameters in Table 1 are given in Table 2. This is to gain insight into the behavior of
the numerical solutions of the model.

Table 1. The description of parameters in the ZVL model.

Parameter Description

ΠH Recruitment rate of humans
ΠA Recruitment rate of animals
ΠF Recruitment rate of sandflies
θ1 Transfer rate of exposed humans to early VL infection stage
θ2 Transfer rate of early asymptomatic VL-infected humans to late VL infection stage
τ1 Proportion of late asymptomatic VL-infected humans moving to RE

H
τ2 Proportion of late asymptomatic VL-infected humans moving to IS

H
τ3 Proportion of late asymptomatic VL-infected humans moving to R2

Hclasses
ψ1 Rate of transfer of late asymptomatic infected humans to symptomatic infected class
ψ2 Rate of transfer of infected humans receiving first-line treatment to second-line

treatment, to recovered humans who have cleared the parasite and
to putative recovered human classes

ψ3 Rate of transfer of infected humans receiving second-line treatment to recovered
humans who have cleared the parasite and to putative recovered human classes

ω1 Proportions of infected humans receiving first-line treatment moving to
recovered class who have cleared the parasite

ω2 Proportions of infected humans receiving first-line treatment moving to
putative recovered class

ω3 Proportions of infected humans receiving first-line treatment moving to infected
class receiving second-line treatment after first-line treatment failure

γ1 Proportion of infected humans receiving second-line treatment moving to
putative recovered class

γ2 Proportion of infected humans receiving second-line treatment moving to
recovered class who have cleared the parasite

ϱ1 Proportion of recovered humans who have cleared the parasite moving to
recovered class who are DAT-positive and LST-positive
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Table 1. Cont.

Parameter Description

ϱ2 Proportion of recovered humans who have cleared the parasite moving to
putative recovered class

µH Natural death rates of humans
µA Natural death rates of animals
µF Natural death rates of sandflies
δ Rate of transfer from putative recovered humans to PKDL-infected class
ε Rate of transfer from recovered humans who are DAT-positive and not yet

LST-positive to recovered humans who are DAT-positive and
still LST-positive

ϕ Rate of transfer of PKDL-infected humans to putative recovered class
φ Rate of transfer from recovered humans who are DAT-positive and but still

LST-positive susceptible humans
σ Rate of transfer of humans from symptomatic infected class to infected humans

receiving first-line treatment class
ϖ1 Proportion of exposed animals moving to asymptomatic infected class
ϖ2 Proportion of exposed animals moving to symptomatic infected class
ζ1 Rate of transfer of exposed animals to asymptomatic infected class

and symptomatic infected class
ζ2 Rate of transfer of asymptomatic infected animals to symptomatic infected

class and recovered class
ν1 Proportion of asymptomatic infected animals moving to symptomatic

infected class
ν2 Proportion of asymptomatic infected animals moving to recovered class
κ Rate of transfer from symptomatic infected animals to recovered class
π Rate of transfer of exposed sandflies to infected sandflies
βH Transmission probability from infected sandflies to susceptible humans
βA Transmission probability from infected sandflies to susceptible animals
βF Transmission probability from infected animal to susceptible sandflies

(kept constant for both asymptomatic and symptomatic infected class)
gH Per capita biting rate of sandflies of humans
gA Per capita biting rate of sandflies of animals (kept constant for both

asymptomatic and symptomatic infected classes)
hA Modification parameter for the relative infectiousness of an animal

Table 2. Parameter values used for the simulation result.

Parameter Value Unit Source

ΠH 19.5 day−1 [17]
ΠA 8.33 day−1 [26]
ΠF 210.62 day−1 Assumed
θ1 0.0111 day−1 [27]
θ2 0.01667 day−1 [19]
τ1 0.001 day−1 Assumed
τ2 0.699 day−1 1 − (τ1 + τ3)

τ3 0.3 day−1 [28,29]
ψ1 0.083 day−1 [19]
ψ2 0.033 day−1 [19]
ψ3 0.333 day−1 [19]
ω1 0.92 day−1 1 − (ω2 + ω3)

ω2 0.03 day−1 [19]
ω3 0.05 day−1 [19]
γ1 0.03 day−1 [19]
γ2 0.97 day−1 1 − γ2
ϱ1 0.0135 day−1 [19]
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Table 2. Cont.

Parameter Value Unit Source

µH 0.00795 day−1 Assumed
µA 0.0169 day−1 [17]
µF 0.14 day−1 Assumed
δ 0.00397 day−1 [19]
ε 0.0135 day−1 [19]
ϕ 0.00556 day−1 [19]
σ 1 day−1 [19]

ϖ1 0.79 day−1 Assumed
ϖ2 0.21 day−1 Assumed
ζ1 0.69 day−1 Assumed
ζ2 0.211 day−1 Assumed
ν1 0.97 day−1 Assumed
ν2 0.03 day−1 1 − ν1
κ 0.115 day−1 [17]
π 0.2 day−1 [17]

βH 1 day−1 [19]
βA 1 day−1 [19]
βF 1 day−1 [19]
gH 0.02856 day−1 [30,31]
gA 0.2856 day−1 [17]
hA 1.39 day−1 [18]

The initial states considered for the model variables given in Table 3 are SH = 250, 000,
EH = 3000 IE

H = 2000 IL
H = 1000IS

H = 900, RE
H = 200, RL

H = 150, I1
H = 150I2

H = 200,
IP
H = 120, R1

H = 100, R2
H = 110, SA = 2500, EA = 700, IA

A = 200, IS
A = 190, RA = 180,

SF = 10, 000 EF = 3500, IF = 2000. The elasticity indices of the parameters of R0 are
obtained numerically in MATLAB2014a using Variable Precision Arithmetic (VPA) for
precision. By employing high-precision arithmetic to reduce errors in the crucial computa-
tions, this will ensure precise assessment of the basic reproduction number’s sensitivity
to changes in a particular parameter. It is adjudged that VPA makes the computations
more precise, which is important when little adjustments to the parameters have a big
impact on R0. The elasticity index is computed more precisely using the VPA than using the
standard floating-point arithmetic [32–34]. This is required because normal floating-point
arithmetic may not be accurate enough to handle the model’s numerous parameters and
intricate relationships, which could result in errors that may happen during computation.
Additionally, the Variable Precision Arithmetic (VPA) used for the sensitivity analysis is a
global sensitivity analysis method, as it considers the entire input space, making it more
robust for complex, multi-dimensional models like in this study. Table 4 provides the
numerical values indicating R0’s relative significance. It is discovered that some parameters
have a negative elasticity index, while others are positive, and a few zero. When the param-
eters show a positive relationship, it means that raising the values of that parameter will
significantly impact how frequently the disease spreads. Conversely, if there is a negative
relationship, raising these parameters would aid in slowing the disease’s spread.

The numerical values from Table 4, provides a comprehensive overview of which
parameters are critical for controlling the disease; that is the impact of parameter changes
on R0. Understanding the elasticity indices helps in strategic planning for disease control,
allowing public health officials to focus on the most influential parameters. This targeted
approach can optimize resource allocation and improve the effectiveness of intervention
strategies, ultimately contributing to better disease management and control efforts.

To gain more insight, the contribution of some of the parameters in R0, some ex-
periments were conducted by varying the values of the key parameters (using the basic
reproduction number R0 as response function). The transmission probability from in-
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fected sandflies to animals (βA), transmission probability from infected animals to sandflies
(βF), per capita biting rate of sandflies of animals (gA), and rate of transfer from symp-
tomatic infected animals to the recovered class (κ) are among the parameters that have
greatest influence on R0. In particular, the range of R0 ∈ (0.98951, 1.1138) as the values
of the critical parameters (βA, βF, gA and κ) are varied from (0.8, 0.8, 0.01856, 0.115) to
(1.3, 1.3, 0.02856, 0.415), respectively. These numerical results corroborate the analytical
results obtained for the critical parameters. It is worth mentioning that attention should be
given to the most sensitive parameters identified so that the value of R0 remains less than
one, to avoid disease outbreak.

Table 3. The description of variables in the VL model.

Variable Description

SH Population of susceptible humans
EH Population of exposed humans
IE
H Population of infected humans at early asymptomatic stage

IL
H Population of infected humans at late asymptomatic stage

IS
H Population of symptomatic infected humans

RE
H Population of recovered humans who are DAT-positive and not yet LST-positive

RL
H Population of recovered humans who are DAT-positive and but still LST-positive

IP
H Population of infected humans at the PKDL stage

I1
H Population of infected humans who are receiving first-line treatment

I2
H Population of infected humans who are receiving second-line treatment

R1
H Population of recovered humans who have cleared the parasite

R2
H Population of putative recovered humans

SA Population of susceptible animals
EA Population of exposed animals
IA
A Population of asymptomatic infected animals

IS
A Population of symptomatic infected animals

RA Population of recovered animals
SF Population of susceptible sandflies (vector)
EF Population of exposed sandflies
IF Population of infected sandflies

Table 4. Elasticity indices of R0 = 0.98951 to the parameters of the model.

Parameter Value Elasticity Index

ΠH 19.5 −0.58423
ΠA 8.33 −0.11367
ΠF 210.62 0.6979
µH 0.00795 0.58423
µA 0.0169 0.03997
µF 0.14 −1.3958
ϖ1 0.79 0.029476
ϖ2 0.21 −0.69521
ζ1 0.69 −1.3472
ζ2 0.211 0.024342
ν2 0.03 0.024342
κ 0.115 −0.023604
π 0.2 −0.39048

βH 1 0
βA 1 0.0051338
βF 1 0.6979
gH 0.02856 0
gA 0.02856 0.70304
hA 1.39 0.029476
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Thus, this study shows that effective disease control entails a multi-faceted approach
based on minimizing the transmission probability from infected sandflies to animals,
transmission probability from infected animals to sandflies, and per capita biting rate of
sandflies of animals; increasing the rate of transfer from symptomatic infected animals to the
recovered class; and the early diagnosis of ZVL cases in animals (reservoirs), among others.

The simulations also show that ZVL modeling studies in communities may require the
implementation of an insecticide-based treatment strategy of infected animals (reservoirs)
to reduce disease transmission and burden, and increase sandfly mortality, which is the
main source of ZVL transmission.

The profiles of the state variables are given in Figure 2a–t:

(a) Profile of SH
(b) Profile of EH

(c) Profile of IE
H (d) Profile of IL

H

(e) Profile of IS
H (f) Profile of RE

H

Figure 2. Cont.
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(g) Profile of RL
H (h) Profile of I1

H

(i) Profile of I2
H (j) Profile of IP

H

(k) Profile of R1
H (l) Profile of R2

H

(m) Profile of SA (n) Profile of EA

Figure 2. Cont.
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(o) Profile of IA
A (p) Profile of IS

A

(q) Profile of RA (r) Profile of SF

(s) Profile of EF (t) Profile of IF

Figure 2. Profiles for behavior of each state variable of the model.

6. Conclusions

In this paper, a mathematical model of the transmission dynamic of ZVL incorporat-
ing several additional complexities was considered. These complexities include lines of
treatment (first and second lines of treatment) to reflect the healthcare interventions for
visceral leishmaniasis, depending on the progression of the disease and the response to
initial treatments, and asymptomatic and symptomatic stages in animals to differentiate
between asymptomatic and symptomatic stages in animal hosts, which is crucial because
animals, particularly canines, play a significant role in the transmission cycle of zoonotic
visceral leishmaniasis. Asymptomatic animals can still be infectious, which complicates
control efforts.

Providing precise instructions for disease control, the stability analysis demonstrates
that the stability of the VL-endemic and VL-free fixed points globally will make the de-
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velopment of strategies for the eradication of the disease easy. Public health actions can
be made simpler by emphasizing the necessity of maintaining R0 below one in order to
eradicate the disease.

Furthermore, the research’s findings are consistent with the previous findings in
the literature, particularly regarding the significance of an integrated strategy that ad-
dresses several elements of transmission, prioritizes vector (sandfly) control, and regulates
reservoirs (animals). The research’s other distinctive features include an emphasis on the
targeted increase in sandfly mortality as determined by the analysis, the recommendation
for insecticide-based treatment specifically for infected animals, and a clear understanding
of the various stages of infection in both humans and animals. These elements reflect new
approaches to resource optimization, even though they are in line with more general ZVL
management techniques.

The model can be used for forecasting the disease outcomes and directing management
methods because of its analytical and numerical consistency, which increases its credibility.
This is further improved by the sensitivity analysis, which identifies crucial variables
that have a major impact on ZVL dynamics and helps to come up with more successful
intervention plans.
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