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Abstract: The traditional model training approach based on negative sampling randomly samples a
portion of negative samples for training, which can easily overlook important negative samples and
adversely affect the training of knowledge graph embedding models. Some researchers have explored
non-sampling model training frameworks that use all unobserved triples as negative samples to
improve model training performance. However, both training methods inevitably introduce false
negative samples and easy-to-separate negative samples that are far from the model’s decision
boundary, and they do not consider the adverse effects of long-tail entities and relations during
training, thus limiting the improvement of model training performance. To address this issue,
we propose a universal knowledge graph embedding framework based on high-quality negative
sampling and weighting, called HNSW-KGE. First, we conduct pre-training based on the NS-KGE
non-sampling training framework to quickly obtain an initial set of relatively high-quality embedding
vector representations for all entities and relations. Second, we design a candidate negative sample
set construction strategy that samples a certain number of negative samples that are neither false
negatives nor easy-to-separate negatives for all positive triples, based on the embedding vectors
obtained from pre-training. This ensures the provision of high-quality negative samples for model
training. Finally, we apply weighting to the loss function based on the frequency of the entities and
relations appearing in the triples to mitigate the adverse effects of long-tail entities and relations
on model training. Experiments conducted on benchmark datasets FB15K237 and WN18RR using
various knowledge graph embedding models demonstrate that our proposed framework HNSW-
KGE, based on high-quality negative sampling and weighting, achieves better training performance
and exhibits versatility, making it applicable to various types of knowledge embedding models.

Keywords: knowledge graph; high-quality negative sampling; universal embedding

MSC: 05C62

1. Introduction

Currently, knowledge graphs (KGs) serve as important carriers for storing and process-
ing structured data, and, as advanced knowledge interconnection solutions, they provide
extensive intelligent system capabilities for many applications, garnering significant at-
tention from both academia and industry. Knowledge graph embedding (KGE) involves
embedding entities and relations from KGs into continuous vector spaces, enabling ef-
ficient computation of semantic information while preserving the inherent structure of
the knowledge graph. This makes large-scale applications of knowledge graphs a reality.
Consequently, in recent years, knowledge graph embeddings have been widely applied
in scenarios such as information retrieval [1], recommendation systems [2], and question-
answering systems [3].
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In recent years, researchers have proposed various KGE models, with classic models
including TransE [4], DistMult [5], SimplE [6], and ComplEx [7], among others. To better
extract useful information from the dataset for improved knowledge embeddings, KGE
models typically adopt traditional negative sampling methods for training, as shown in
Figure 1. ‘Neg’ denotes negative samples. Initially, negative samples are sampled based on
certain strategies from the positive samples in the dataset. Afterwards, the model’s scoring
function is used to compute the loss function for both positive and negative samples, which
is optimized during training to obtain embedding representations of entities and relations
in the knowledge graph. Traditional knowledge graph embedding models predominantly
depend on negative sampling, which constructs a candidate negative sample set relative
to the positive sample set based on certain strategies and selects a portion of negative
samples for the training process. Common negative sampling strategies include random
negative sampling, adversarial negative sampling, and negative sampling that incorporates
additional information. However, knowledge graphs face the challenge of data sparsity.
The traditional negative sampling training approach even exacerbates the data sparsity by
only sampling a subset of negative samples for training, leading to insufficient training
samples and potentially overlooking important negative samples, thus impacting the
performance of model training.
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Figure 1. Traditional negative sampling training method.
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Researchers have explored non-sampling training methods, which involve using all
non-positive triples from the knowledge graph—comprising all entities and relations—as
negative samples for training. This approach aims to resolve the issues associated with
traditional negative sampling methods by skipping the sampling process. However, this
training method has several shortcomings. First, by considering all unobserved triples as
negative samples, it can easily introduce false negative samples, that is, these factual triples
that have not been included in the knowledge graph dataset due to data sparsity, which can
affect the accuracy of model training. Second, this method introduces a large number of
easy-to-separate negative samples that are far from the model’s decision boundary. Studies
such as those in references [8,9] have shown that most negative triples are easy-to-separate
negatives, which contribute little to the gradient update direction during model training.
This can negatively impact the convergence speed and accuracy of the model.

In summary, an analysis of these two traditional training methods reveals a common
problem: neither ensures the participation of high-quality negative samples in training.
According to reference [10], a high-quality negative sample is defined as one that is difficult
to judge as true or false without referencing the true value; it is semantically meaningful
but factually incorrect. In other words, high-quality negative samples are neither false
negatives nor easy-to-separate negatives. Traditional negative sampling methods randomly
sample unobserved samples as negative samples for training while non-sampling methods
include all unobserved samples as negatives. Neither approach guarantees the quality of
the negative samples used in training, thereby limiting the improvement of model training
performance. As shown in Figure 2, reference [7] presents link prediction experiments of
the ComplEx model on the FB15K dataset, exploring the impact of the number of negative
samples sampled for each positive sample on model performance. The results indicate that,
as the number of negative samples increases, there is a threshold beyond which further
increases in negative sample quantity actually lead to a decline in model performance. This
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experimental outcome suggests that focusing solely on increasing the quantity of negative
samples without regard for their quality can adversely affect model training performance
due to the large introduction of false negatives and easy-to-separate negatives.
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Figure 2. Experimental results of the impact of negative sampling number on model training.

Additionally, existing knowledge graphs face the problem of data imbalance, where
entities and relations follow a long-tail distribution. A small number of entities and relations
frequently appear in the knowledge graph, while the vast majority appear in only a limited
number of triples. In current knowledge graph embedding training, there is no distinction
made between the frequencies of different entities and relations, leading to a model training
process that focuses more on high-frequency entities and relations, while low-frequency
long-tail entities and relations receive relatively less attention. This results in insufficient
training for long-tail entities and relations, which also adversely affects the improvement
of model training performance. For example, reference [11] found that, in link prediction
tasks using the TransE model on the benchmark dataset FB15K-237, the high-frequency
entity “UK”, appearing 1953 times, achieved a mean reciprocal rank (MRR) score of 0.408,
while the low-frequency entity “pizza”, appearing only 8 times, received an MRR score
of just 0.194. This experiment demonstrates the negative impact of long-tail entities and
relations on model training performance.

To address this issue, we propose a universal knowledge graph embedding framework
based on high-quality negative sampling and weighting, called HNSW-KGE. First, we
select the non-sampling framework NS-KGE [11] model for pre-training. This allows us to
quickly learn a relatively high-quality initial embedding vector for entities and relations
in the knowledge graph based on the global features of the dataset, providing support
for the subsequent construction of a high-quality candidate negative sample set. Next,
we design a strategy for constructing a high-quality candidate negative sample set. To
overcome the common problem faced by both traditional negative sampling and non-
sampling training methods of including low-quality negative samples in training, we use
the embedding vectors obtained from pre-training to sample a certain number of negative
samples—neither false negatives nor easy-to-separate negatives—for all positive triples.
This forms a candidate negative sample set that guarantees high-quality negative samples
for the subsequent model training. Finally, we adopt a loss function weighting strategy
based on the frequency of triples. Weighting the loss function has been proven to be an
effective method for alleviating the impact of long-tail entities on training. Therefore, we
apply a weighting factor based on the frequency of triples to the loss function to adjust for
the negative impacts of long-tail entities and relations on model training. To evaluate the
performance of the HNSW-KGE training framework, experiments were conducted on four
KGE models—TransE [4], DistMult [5], SimplE [6], and ComplEx [7]—demonstrating the
effectiveness of the HNSW-KGE framework.



Mathematics 2024, 12, 3489

4 0f 22

The main contributions of this paper can be summarized as follows.

*  We propose a new knowledge graph embedding training framework, HNSW-KGE,
which enhances the quality of negative sampling through pre-training based on the
NS-KGE model and a high-quality negative sampling strategy. By weighting the loss
function, we alleviate the adverse effects of long-tail entities and relations on model
training, thereby improving model performance.

¢  The proposed HNSW-KGE training framework is universal for negative-sampling-
based KGE models, making it applicable to various types of knowledge embedding
models. We demonstrate the application of this training framework using four KGE
models, i.e., TransE [4], DistMult [5], SimplE [6], and ComplEx [7]

*  We conduct validation experiments using multiple knowledge embedding models on
two benchmark datasets, proving the effectiveness of the proposed model framework.

2. Related Work

In this section, we will outline traditional knowledge graph embedding models,
methods of negative sampling in the field of knowledge graph embeddings, and non-
sampling-based knowledge graph embedding methods.

2.1. Traditional Knowledge Graph Embedding Models

Existing KGE models can be roughly categorized into three types.

Geometric Transformation Methods. These methods model the semantic relations
between entities and relations through geometric transformations. The most classic model,
TransE [4], views relations as a translation transformation between the head and tail entity
vectors in the same space. Models like TransH [12], TransR [13], TransD [14], and RotatE [15]
build upon TransE to handle more complex relations.

Tensor Decomposition Methods. These models construct scoring functions through
tensor decomposition to measure the probability of triple validity. A widely used model,
DistMult [5], models the scoring function as the inner product of the head and tail
entity vectors with a diagonal matrix of relations. Subsequent models such as Com-
plEx [7], HolE [16], ANALOGY [17], and SimplE [6] extend DistMult to achieve better
embedding performance.

Neural Network Methods. This category utilizes deep neural networks like CNNs,
RNNSs, and GNNs to model the complex relations between entities and relations through
nonlinear transformations. Models such as ConvE [18] and ConvKB [19] use CNNs to cap-
ture latent semantics between entities and relations; Gardner et al. [20] used RNNs to model
relation paths to capture longer relation dependencies in KGs; R-GCN [21], RGHAT [22],
and CompGCN [23] leverage GNN s to capture structured information within KGs.

2.2. Negative Sampling Methods in Knowledge Graph Embedding

Negative sampling methods in knowledge embedding models can be categorized
into three types: random negative sampling, adversarial sampling, and additional data-
enhanced sampling. Each will be introduced below.

Random Negative Sampling. This is the most basic and widely used negative sam-
pling method. For instance, TransE [4] randomly selects an entity from the entity set to
replace in a positive triple to generate a negative sample. To improve training effective-
ness, TransH [12] introduces a Bernoulli sampling strategy, sampling negative triples with
probabilities proportional to the relation types in the knowledge graph. However, ran-
dom negative sampling often results in overly simple negative samples (easy-to-separate
negatives), which do not provide useful information for model optimization, leading to
local optima.

Adversarial Negative Sampling. These models are usually based on the GAN frame-
work, where the generator module samples negative triplets and the discriminator module
distinguishes between positive and negative triplets to sample better hard-to-distinguish
negative samples. KBGAN [9] uses policy-gradient-based reinforcement learning for dis-
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crete negative sampling to confuse the discriminator. IGAN [8] uses a two-layer fully
connected neural network as a generator. GraphGAN [24] proposes a new generator, graph
softmax, that uses graph structure information and neighborhood information to overcome
the limitations of the traditional softmax activation function. KSGAN [25] uses an addi-
tional neighborhood aggregator component, namely the neighborhood knowledge selective
adversarial network (NKSGAN), to generate high-quality negative samples. KCGANs [26]
use a game theory framework to enhance the understanding of the underlying knowledge
graph structure. The RUGA [27] method uses labeled triplets, unlabeled triplets, and soft
rules to promote iterative learning of sample information. GN+DN [28] aims to generate
previously unseen but credible samples. However, such models usually have shortcomings,
such as high complexity and unstable training, and cannot solve the problem of false
negative samples well.

These models [8,9,22,29], often based on GAN principles, utilize the semantic infor-
mation of samples in the embedding space to select negative samples, aiming to sample
more difficult-to-separate negatives. However, they suffer from complex frameworks,
unstable training results, and longer training times. To address this, RotatE [15] proposes
a self-adversarial sampling strategy, dynamically adjusting the sampling probabilities of
negative samples during the training process to focus on more challenging negatives.

Additional Data-Enhanced Sampling. This approach incorporates external informa-
tion during negative sampling to increase the sampling probability of difficult-to-separate
negatives. Ref. [30] integrates prior knowledge in the form of type constraints to assist in
generating high-quality negative samples. Ref. [31] uses other new conditional constraints
based on OWL limitations. Ref. [32] incorporates ontology reasoning into the negative
sampling process to enhance embedding accuracy. CAKE [33] selectively filters effective
and high-quality negative samples through the use of common-sense knowledge.

Overall, regardless of the type of negative sampling method used, the variability of
negative samples adopted during different sampling rounds can affect the stability of model
training. Additionally, the inevitable introduction of false negatives can further impact the
accuracy of model training. The HNSW-KGE negative sampling training framework that
we proposed continuously updates the knowledge graph embedding during pre-training
and model training, builds a strategy based on a high-quality candidate negative sample
set, and uses the effective information of the model’s own training process to sample
high-quality negative samples without adding additional sample information. It achieves a
training effect similar to self-adversarial negative sampling and can also effectively alleviate
the adverse effects of false negative samples.

2.3. Non-Sampling-Based Knowledge Graph Embedding Models

To overcome the high training complexity and prediction bias associated with excessive
reliance on negative sample selection, Ref. [34] proposes a training method that adds a
regularization term to the loss function to prevent the model from assigning high scores to
all triples, thereby eliminating the need for negative sampling. Although this approach does
not explicitly use negative sampling, the calculation of the regularization term implicitly
utilizes all possible triples in the knowledge graph, including both positive and negative
triples. KG-NSF [35] proposes a method that does not require negative samples for training,
directly learning knowledge graph embeddings based on the cross-correlation matrix of
the embedding vectors of entities and relations. However, this method has high space
complexity due to the need for matrix multiplication. The non-sampling knowledge graph
embedding framework, NS-KGE [36], uses all non-positive triples (composed of entities
and relations) as negative triples for training, thus addressing the shortcomings of negative
sampling methods by skipping the sampling process. However, this method introduces
false negative samples and a large number of easy-to-separate negatives, which can affect
the accuracy and convergence speed of model training.
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3. Problem Description

In this section, we will formally describe the research problem under investigation.
Table 1 lists the mathematics symbols used.

Table 1. Mathematics symbols in this paper.

Symbol Description

G Knowledge graph

E Set of entities in the knowledge graph

R Set of relations in the knowledge graph

S Set of positive triples

s’ Set of negative triples

(h,r,t) Positive triple

(H,r,t) Corresponding negative triple to (h, 7, t)

h,t Head entity and tail entity of the triple in the knowledge graph
r Relation of the triple in the knowledge graph

h,t Embedding vectors of the head entity and tail entity in the triple

Embedding vector of the relation in the triple
Dimension of the embedding vectors

Weight of the loss function

Scoring function for the triple

Loss function of the model

S
=
\\
N
=

Give a knowledge graph G = (E, R, S), where a triple (h,r,t) € S,h,t € E,r € R.

First, we perform negative sampling. To construct a candidate negative sample set
required for model training, a common approach is to randomly replace the head entity or
tail entity of the triple (h, 7, f) with entities from the entity set E to obtain corresponding
negative triples (I, r,t'). Thus, the candidate negative sample set S’ can be formally
described as S’ € {(I,r,t) | (h,r,t) € SA(W,r,t) ¢ SAh #KW AW € E}yU{(h,r,t) |
(h,r,t) € SA(hrt') & SAt#t At € E}. Based on a specific strategy, such as random
negative sampling or hard negative sampling, a portion of negative triples are sampled
from the candidate negative sample set for training.

Next, we compute the loss. According to the model’s scoring function, we calculate
the scoring function values for the positive triple (h,r,t) and its corresponding negative
triple (W', r,t'), denoted as f(h,r,t) and f(h',r,t'"), respectively. The loss for the triples
is then computed based on these scoring function values, resulting in the model’s loss
function L.

The model’s loss function can generally be divided into two categories: loss functions
based on margin hyperparameters and loss functions based on cross-entropy. The loss
function based on margin hyperparameters is defined as

L=) Y b+flurt)—fH rt), 1)

(rt)es (W rt)es!

The parameter <y is the margin hyperparameter. Translation-based models, such as
TransE and TransH, primarily utilize loss functions based on margin hyperparameters.
The loss function based on cross-entropy is calculated as

L= Z (log(1+exp(—f(h,rt))))+
(h,r,t)eS

Y. (log(1+exp(f(H,r.t))),

(W, rt)es!

()

Models based on semantic matching, such as DistMult, SimplE, and ComplEXx, pre-
dominantly utilize loss functions based on cross-entropy.

Finally, we perform optimization training. Various optimization algorithms, such as
stochastic gradient descent (SGD) and adaptive gradient algorithm (AdaGrad), are used to
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optimize the loss function L. The goal is to obtain the optimal parameters for the model,
including the embedding vectors h, r, t for the entities h, t and the relation r.

4. Proposed Method

In this section, we will provide a detailed introduction to the HNSW-KGE training
framework. We will first introduce the NS-KGE model used for pre-training, followed by
the strategy for constructing high-quality candidate negative sample sets. Next, we will
discuss the weighting strategy for the loss function based on triple frequencies. Finally, we
will explore the application of this training framework across various knowledge graph
embedding models.

4.1. Pre-Training Based on NS-KGE

To provide a basis for constructing the high-quality candidate negative sample set,
we select the non-sampling knowledge graph embedding framework NS-KGE as the
pre-training model. This choice allows us to quickly obtain an initial representation of
knowledge graph embeddings. The non-sampling knowledge graph embedding frame-
work NS-KGE can be applied to knowledge embedding models based on square loss
functions or models that can be converted to square loss. Compared to traditional knowl-
edge graph embedding models, NS-KGE offers relatively higher training efficiency and
some improvement in training accuracy. The fundamental idea behind NS-KGE is based on
the closed-world assumption, where all triples composed of entities and relations present
in the dataset but not included in the dataset are treated as negative samples during model
training. The loss function for optimization is defined as the least squares loss between the
true label values of the positive and negative triples and the predicted values based on the
scoring function.

To address the issue of high model training complexity due to the large dataset size,
the NS-KGE model mathematically derives a way to reduce the complexity of the loss
function. The loss function defined for optimization training in the NS-KGE framework
can be expressed as

L= Y Culfelht) = fr(h, 1), 3)

(h,r,t)eS

In the NS-KGE model, Cy,,; represents the weight associated with the corresponding
triple (h,r,t). The function f,(h, t) denotes the true label value for the triple (I, r, t). Specif-
ically, this is defined as follows. For positive triples (h,,t), we define f,(h,t) = 1. For
negative triples (h,r, t), we define f,(h,t) = 0. fr(h, t) represents the predicted label value
based on the scoring function.

NS-DistMult is a sub-model derived from applying the NS-KGE framework to the
DistMult model. The prediction function for the DistMult model is defined as follows:

d
fr(ht) =Y hi-ri -t (4)

To reduce the time and space complexity of the model, we combine Equation (4) (the
prediction function) with Equation (3) (the loss function) for mathematical derivation. This
results in the least squares loss function for NS-DistMult being defined as follows:

d d
L=LN+CT Y Y (Y b hy)() ri-r)(Ytit), ()
i j heE reR teE

wherein

L=y ¥ ¥ (€D =2£ D f (1) = C frll 1)), ©)

reRheE teEht
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Similarly, NS-TransE is a sub-model derived from applying the NS-KGE framework
to the TransE model. According to the scoring function of TransE,

f(h,?‘, t) = ||h—|—1‘—t”, (7)

By making a transformation, the prediction function of the TransE model can be
expressed as

f,(h,t):1—%f(h,r,t):1—%Hh+r—t|\. ®)

After mathematical derivation and simplification, the least squares loss function for
NS-TransE can be expressed as
£=rPy 4c” ii( |E| Crer 1itj ek titj + |E| Enep hiby Yeer i1+ ) ©)
9 T \IR| Lhee hihy Teep titj = 2Lrer 1itj Lner hi Leer t
where the calculation of £F is shown in Equation (6).

In terms of training performance, NS-KGE generally achieves better results compared
to the original baseline models. For example, on the FB15K237 dataset, the Hit@10 metric
improves from 0.316 for TransE to 0.447 for the NS-TransE model. This improvement is due
to the fact that the original baseline models use negative sampling methods that randomly
sample only a portion of the negative sample information from the dataset, potentially over-
looking some important negative samples. In contrast, the NS-KGE framework involves all
negative samples from the dataset in the training process.

Regarding training efficiency, NS-KGE also shows a significant improvement in train-
ing speed compared to the original baseline models. For instance, when compared to
TransE on the FB15K237 dataset, the training speed of NS-TransE is approximately ten
times faster. This is because the original negative-sampling-based models spend most
of their time on negative sampling, whereas the NS-KGE framework skips the negative
sampling process altogether.

However, NS-KGE has certain limitations. First, its scalability is limited: the model
uses mathematical derivation to reduce the complexity of the loss function, but, due to the
complexity of the derivation process, it is applicable only to a limited number of models,
restricting its range of application. Second, it is prone to introducing false negative samples.
The model treats all unobserved triples in the dataset as negative samples during training,
leading to many factual triples being considered negative samples due to data sparsity,
which affects the accuracy of model training. Third, the non-sampling approach can
introduce a large number of easy-to-separate negative samples during training, impacting
the convergence speed and accuracy of the model.

For these reasons, we use NS-KGE solely for pre-training as a starting point for training
all models, allowing for the quick acquisition of relatively high-quality initial embedding
vectors, which will provide a reference for constructing high-quality candidate negative
sample sets. The high-quality candidate negative sets will remove these false negatives to a
large extent. Additionally, considering both training effectiveness and efficiency, we select
the NS-TransE sub-model from NS-KGE as the pre-training model.

4.2. High-Quality Candidate Negative Sample Set Construction

To provide high-quality negative samples for training based on negative sampling,
we first obtain an initial set of high-quality embedding vectors for entities and relations in
the dataset. Next, we will construct a candidate negative sample set for all positive triples
according to our designed strategy, which will serve as a candidate pool for negative sam-
ples, allowing us to sample high-quality negatives for model training, thereby enhancing
the performance of the training process. The following sections will detail the strategy for
constructing high-quality candidate negative sample sets.
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The candidate negative sample set includes a candidate head entity set, derived from
replacing the head entity, and a candidate tail entity set, derived from replacing the tail
entity. For each triple, we sample a total size of N = Nj, + N for the candidate negative
sample set, where Nj, is the size of the candidate head entity set and N; is the size of the
candidate tail entity set.

When setting Nj, and N;, we consider the type of relation corresponding to the triple,
such as one-to-many or many-to-one relations. Specifically, for triples with a one-to-many
relation type, the uniqueness of the head entity means that negative samples constructed
by replacing the head entity are unlikely to be false negatives. Therefore, we can afford to
include more candidate head entities, resulting in a larger size for the candidate head entity
set compared to the candidate tail entity set. Conversely, for triples with a many-to-one
relation type, we can consider including more candidate tail entities, leading to a larger
size for the candidate tail entity set compared to the candidate head entity set. We define
the size of the candidate head entity set as N}, and the size of the candidate tail entity set
as N, respectively.

tn
N,=N—"_, 10
! Tt + b (10)

hrt
Ny=N—, 11
' e + ten h

where t,;, refers to the average number of tail entities connected to the head entities of all
triples with the relation r in the knowledge graph, and #,; refers to the average number of
head entities connected to the tail entities of all triples with the relation r.

Next, using TransE as an example, we will detail the process of constructing the
candidate head entity set for the triple (h,7,t).

Step 0: Initialization: construct a data structure of the form
{(r,t), {(hy, f(hy,7,1)),... (M, f(hn,, 7,1))}}, where the array has a size of Nj. Initial-
ize hy,...,hy, to be empty. Here, f (W', r,t) represents the corresponding score function
value, and the scoring function for the TransE model is defined as shown in Equation (7).
Initialize the score values to a relatively large number, such as 100.

Step 1: Construct candidate negative triples: randomly select an entity 4’ from the
entity set to replace 1 in (I, 7, t), resulting in the negative triple (W', 7, ).

Step 2: Check if (I, r,t) exists in the dataset. Determine if (1, r, t) is presented in the
dataset. If it is, return to Step 1. If not, proceed to Step 3. This step is necessary to exclude
any candidate negative triples that are known positive samples.

Step 3: Check if (i, 7,t) is a false negative sample:

f(W',rt) < f(hr,t)+u, (12)

Determine whether the condition holds; if it does, this indicates that (1,7, t) may be a
false negative sample, and return to Step 1. Otherwise, proceed to Step 4. Here, u > O is a
hyperparameter. This step aims to exclude the candidate negative sample if it is identified
as a false negative.

Step 4: Filter candidate head entities. Iterate to check if the score function value
f(H,r,t)is smaller than the score function values of all negative triples constructed from
the candidate head entities. If f(h',7,t) < f(h},r,t) for any negative triple (h/,,t) in the
candidate head entity set, it indicates that (/, 7, t) is a more challenging negative triple
than (h},r,t). In this case, replace (h'i, f(h],r,t)) with (i, f(i,r,t)). Otherwise, return to
Step 1. This step aims to select the N}, entities that are the most difficult to distinguish,
ranking them by their score function values from smallest to largest, and using these Nj,
entities as the candidate head entities.

Step 5: Output. Once all entities in the entity set have been iterated through, output
the candidate head entity set of size Nj, for the triple (h, 7, t).

The construction method for the candidate tail entity set for the triple (h,7,t) is
similar. Ultimately, we obtain a candidate negative sample set of size N = Nj, + N; for the
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triple (h,r,t). This process constructs the corresponding candidate negative sample set
for all triples in the dataset, resulting in a high-quality candidate negative sample set for
that dataset.

Additionally, to mitigate the potential quality issues of the candidate negative sample
set due to the performance limitations of the pre-trained model NS-TransE, we will dynam-
ically update the negative sample set multiple times during training. This updating process
is based on the current knowledge graph embedding vectors and follows the aforemen-
tioned steps. This approach ensures that we provide high-quality negative samples for the
subsequent optimization training based on the loss function.

The whole process of dynamically updating the candidate negative sample set is simi-
lar to the process of self-adversarial negative sampling, that is, selecting negative samples
that can fit the data distribution of the current training process, while the hyperparameters
of the model are tuned on the validation set rather than on the training sets. By doing so, it
could avoid over-fitting issues.

4.3. Weighting the Loss Function Based on Triple Frequencies
The loss function L for model training is defined as follows:

L= Y Lrt)+ Y, L(H,rt), (13)

(hrt)es (1t €S

The tuples (h,r,t) and (I, r,t') represent positive and negative triplets, respectively,
while S and S’ denote the sets of positive and negative triplets.

To mitigate the impact of long-tail entities and relations on model training, it is essential
to increase the focus on these long-tail entities and relations, thereby improving the training
performance of knowledge graph embedding models. Therefore, we introduce a weight
factor based on triplet frequency into the loss function. This allows us to assign different
weights to the loss function of triplets according to the frequency of entities and relations
in the dataset. Specifically, we assign lower weights to entities and relations that occur
more frequently while giving higher weights to those that are less frequent. This approach
enhances the training focus on long-tail entities and relations, with the goal of learning
better embeddings. We define the weight factor Wy based on triplet frequency as follows:

1
Wy = g(wh + wy + wy), (14)

fe f fe
wy = , Wy = wy = , 15
AT L N N A (15

In this context, f;, f; and f; represent the frequencies of entities k, t and relation r in
the dataset, which, respectively, represent the median frequency for entities and relations
in the dataset, which is defined according to the Pareto principle (80/20 rule), where we
consider the frequency of the top 20% of entities and relations ranked by frequency.

In the calculation formula for wy, in Equation (15), the denominator includes f; + 1 to
avoid cases where certain entities have a frequency of zero in the dataset when calculating
the frequency weight for entities in negative triplets. The situations for wy, w, are similar.

The weight factor Wy based on triplet frequency can be understood as follows: for
low-frequency triplets—where both entities and the relation in the triplet have frequencies
below the median—the weight assigned to these low-frequency entities or relations will be
greater than 1, according to Equation (15). Consequently, the W, value in the loss function
for low-frequency triplets will also be greater than 1, thereby increasing the model’s focus
on these low-frequency entities and relations during training.

Conversely, for high-frequency triplets—where all entities and relations have frequen-
cies above the median—the weights assigned will be less than 1, following the same logic
in Equation (15). Thus, the Wy in the loss function for high-frequency triplets will also be
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less than 1, reducing the model’s emphasis on these high-frequency entities and relations
during training.

To illustrate this with an analogy related to student learning, consider the knowledge
points that frequently appear in practice exercises, akin to high-frequency triplets. Since
these topics are practiced often, focusing on them may not significantly enhance perfor-
mance, allowing students to allocate less time to them. In contrast, knowledge points that
rarely appear in exercises resemble low-frequency triplets. Because these topics are less
frequently practiced, they require more attention, and focusing on them is key to improving
overall performance.

The weight factor Wy based on the frequency of triplets is applied to Formula (13),
resulting in

L= Y, Wg-Lhrt)+ Y Wp-L(H,1t), (16)
(hr,t)€S (W r, ') €S’

where the calculation of Wy is shown in Formula (14).

4.4. Applications of HNSW-KGE on Different Models

In this section, we will illustrate the application of our proposed HNSW-KGE training
framework on four typical knowledge graph embedding models: TransE, DistMult, SimplE,
and ComplEx. Although we choose HNSW-KGE for pre-training, it will not affect the
choice of other knowledge graph embedding models in the following training steps. We
choose NS-KGE only for pre-training, which constructs a candidate negative sample set. It
will not affect the following phases of the whole framework. During high-quality negative
sample set construction, other knowledge graph embedding models are applied to calculate
the scoring function. There is no limit of the range of knowledge graph embedding models
in this phase.

For TransE, the scoring function for a triplet f (h, r, t) is defined as shown in Formula (7).
The TransE model is a translation-based model, and such models typically use a margin-
based loss function as shown in Formula (1). To facilitate the weighting of the loss function
for positive and negative triplets, we modify the margin-based loss function to

L=—( ) logo(y—f(hrt)+ Y  logo(f(hirt)—7)), (17)

(hrt)es (h}r,t})es’

where 7 is the margin parameter, o is the sigmoid activation function, and (h: L1, tl’) is the cor-
responding negative triplet of (,r,t) used for training. Combining this with Formula (16)
to weight the loss function, we obtain the loss function £ for this type of model as

L=— Y Wy-logoly—flhrt)— Y Wy logo(f(i,r,t) —7). (18)
(hrt)es (W1 H)es!

For DistMult, the scoring function for a triplet f(h, 7, t) is defined as
f(h,r,t) = hT - diag(r) - t. (19)

For SimplE, the scoring function for a triplet f(h, 7, t) is defined as

Flhrt) = f%(hT(rQ A+ (L oh). (20)

For ComplEX, the scoring function for a triplet f(h, r, t) is defined as

hT (Tre O, tre) + h'T (rre ®© tim)
h,r,t) = — e m . 21
firt <+h3;(rim © tim) — i (Fim © tre) v

Models such as DistMult, SimplE, and ComplEx are based on semantic matching. The
loss function for these models is defined based on cross-entropy, as shown in Formula (2).
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Combining this with Formula (16) to weight the loss function, we obtain the loss func-
tion L for these models as

Wy - (log(1+exp(—f(h,1t)))) + Z W - log(1+exp(f (i1 t))). (22)
(W, rt)es’

The overall process of our proposed HNSW-KGE framework is illustrated in Figure 3.
First, based on the pre-trained embedding vectors and the designed high-quality candidate
negative sample set strategy, we sample a high-quality candidate negative sample set for
all positive triplets. Next, depending on the different models, we compute the scoring
function values for the triplets and their corresponding negative triplets. After that, we
gather relevant frequency data from the dataset and apply Formulas (14) and (15) to obtain
the frequency-based weight Wt for each triplet.

Input the training
triplet set
S={(h.r, t)}

Sample a batch of
training triplet set
Skareh € S of size m

Strategy for high-quality
™ negative sample set f—T—
construction

¥

Candidate negative sample
sets '

)
Sample corresponding
negative sample (h', r, t') € &
for triples (h, r, t)

Embedding vectors
based on pre-training

Sample a triplet (h,r,t)
within this batch

!

Calculate scoring
function value f (h, r, t)

Calculate scoring function
value f(h',r, t) of (h', 1, t')

of (h, r, t)
[ |
¥
Embedding vectors According to the scaring function and
during the training weight W, calculate the model loss
process function L, update the parameters

Have all the triples
in the batch been involved
in the training?

ave all the triples in the
training set already been
involved in the trainingZ

Has it been
cycled T times?

Has it
been cycled 1000
times?

>

z

Output the entity

and the relation
embedding vectors

Figure 3. Overall flowchart of the HNSW-KGE framework.

Then, using the scoring function values and Wy, we calculate the loss L for the triplet
set. For translation-based models, the loss is computed according to Formula (18), while,
for semantic matching models, it is computed according to Formula (22), yielding the final
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loss function for the training framework. Finally, we optimize the model’s loss function
using stochastic gradient descent (SGD) to learn the optimal parameters of the model,
including the optimal embedding vectors h, 1, t.

To avoid over-fitting, we enforce a constraint during model training that the 2-norm
of all entities and relations in the dataset is less than or equal to 1, i.e., [|h|]2 <1, |[r]|2 <1,
[t < 1.

5. Experimental Setup

We evaluate the performance of the HNSW-KGE framework through a link prediction
task. In this section, we first introduce the datasets used in the experiments, followed
by the experimental design. Next, we describe the evaluation metrics, then present the
comparison models, and finally discuss the parameter settings.

5.1. Datasets

We will conduct experiments on two benchmark datasets, FB15K237 and WN18RR,
used in the NS-KGE framework [11] to evaluate the training performance of the HNSW-
KGE framework. Both datasets are commonly used benchmarks in knowledge graph
embedding. FB15K237 was created to prevent information leakage during testing by
removing reversible relation triplets from the Freebase subset FB15K. Similarly, WN18RR
was designed to avoid information leakage by deleting reversible relation triplets from the
WordNet subset WN18. The basic statistical information for these two datasets is provided
in Table 2.

Table 2. Dataset statistics.

Datasets FB15K237 WN18RR

#Entities 14,541 40,943
#Relations 237 11

#Triples 292,581 89,969

5.2. Experimental Design

In the link prediction task, the general setup method for the dataset involves dividing
the set of triplets into a training set, a validation set, and a test set, approximately accounting
for 85%, 5%, and 10%, respectively. To avoid over-fitting, the hyperparameters of the model
are tuned on the validation set rather than the training set. The specific experimental steps
for link prediction are as follows.

First, the optimal parameters of the model are obtained through training on the
training set and validation set, including the optimal embedding vectors for all entities
and relations. Then, the link prediction task is performed on the test set to evaluate the
model’s ability to predict the missing head or tail entity in the triples. Specifically, given
(h,r), the model predicts t, or, given (r,t), it predicts h. To illustrate the evaluation of the
model’s ability to predict the tail entity, for a test triple (h, , t), each entity x in the entity set
is used to replace the tail entity t to create a set of candidate triples (h,r, x). The scores of
these candidate triples are calculated based on the scoring function f (h,r,x) defined by the
model. For example, the TransE model uses Formula (7), while the DistMult model uses
Formula (19), etc. The scores are sorted in ascending order, allowing us to determine the
rank of the test triple (h, 7, t) among all candidate triples, denoted as rank(t). Similarly, to
evaluate the model’s ability to predict the head entity, we rank the entity test triple (4,7, t)
among all candidate triples (x, 7, t), denoted as rank(h).

Finally, based on the values of rank(h) and rank(t) for the test triple (h,7,t), the
evaluation metrics are calculated according to the defined formulas. Additionally, a “Filter”
setting is applied. Specifically, before evaluating the ranking of each test triple, the triples
existing in the training, validation, and test sets are removed from the set of candidate
triples. This is because those candidate triples are essentially positive triples, and it is
reasonable for their scores based on the scoring function to rank higher than the original
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test triple. Therefore, it is necessary to exclude these candidate triples before obtaining the
score rankings for each test triple to eliminate the influence of “interference” factors.

5.3. Evaluation Metrics

In the link prediction task, several evaluation metrics are used to assess the quality
of the knowledge graph embeddings learned by the model and to evaluate the model’s
training performance. MR: this is the average rank of all test triples. It is defined as follows:

MR = 1 Y (rank(h) 4 rank(t)), (23)
2|St| h,T,tESt

In this context, S; represents the test tuple set and |S;| denotes the size of the test
tuple set.

MRR is defined as the average of the reciprocal ranks of all test tuples. Specifically, it
can be defined as follows:

1 1 1

MRR = — + .
2|St|h,rrt65t(rank(h) rank(t))

(24)

The Hits@K metric is defined as the ratio of the number of test tuples ranked at
or below K to the total number of test tuples. In this experiment, we utilize metrics
such as Hits@1, Hits@3, and Hits@10. Higher values of MRR and Hits@N, along with
lower values of mean rank (MR), indicate a better training performance of the model;
conversely, lower MRR and Hits@N values, along with higher MR values, suggest a poorer
model performance.

5.4. Baseline Model

We categorize the comparison models into three types.

(1) Original Baseline Models: These are knowledge graph embedding models based on
traditional negative sampling. We selected four classic models—TransE, DistMult, SimplE,
and ComplEx—as comparison models. The experimental results for link prediction from
these models are obtained directly from published papers.

TransE [4]: A translation-based model that models relation vectors as “translation”
operations between head and tail entity vectors in the embedding space. It measures
the authenticity of triples by assessing the distance between the translated head and tail
entity vectors.

DistMult [5]: A semantic matching model that utilizes matrix factorization for knowledge
graph embedding learning. It models all triples in the knowledge graph as a three-dimensional
tensor and derives entity and relation embeddings through tensor decomposition.

SimplE [6]: A semantic matching model that builds on DistMult by incorporating
inverse relations, serving as an interpretable bilinear model.

ComplEx [7]: A semantic matching model that captures the interaction information
between head and tail entities and relations using Hermitian dot products in complex space.

(2) Models Using the NS-KGE Framework: These are versions of the original baseline
models trained using the NS-KGE framework, including NS-TransE, NS-DistMult, NS-
SimplE, and NS-ComplEx. The link prediction experimental results for these models are
also sourced from published papers.

(3) Models Using the HNSW-KGE Framework: These are versions of the original base-
line models trained using the HNSW-KGE framework, including HNSW-TransE, HNSW-
DistMult, HNSW-SimplE, and HNSW-ComplEx.

5.5. Parameter Settings

The learning rate for stochastic gradient descent (SGD) is set to A & {0.0001, 0.001,0.01,
0.1}, the embedding dimension d € {100, 300,500,1000}, the hyperparameter u € {0,0.05,
0.1,0.15,0.2,0.25,0.3}, and the hyperparameter N € {10,30,50,80,100}, v € {0.1,0.2,0.5,1,
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2,4,8,10}. The batch size is set to 128. The model is trained for 1000 iterations on each
dataset. The optimal parameters are determined based on Hits@10 on the validation set,
and the optimal parameter configurations for the two datasets are shown in Table 3.

Table 3. Optimal hyperparameter settings.

Datasets A d u 0% N
FB15K237 0.001 100 0.05 4 50
WN18RR 0.001 100 0.05 4 50

6. Experimental Results and Analysis

In this section, to validate the effectiveness of the model, we first present the compara-
tive experimental results of HNSW-KGE against baseline models on two public datasets,
followed by an analysis. Subsequently, we conduct a parameter analysis, focusing on the
impact of the number of candidate negative samples NN constructed for each positive sam-
ple in the high-quality negative sample set on experimental outcomes. We then introduce
ablation experiments to analyze the influence of each module on the experimental results.
Finally, we present a case study.

6.1. Comparative Experimental Results

The results of the link prediction task comparing the HNSW-KGE model with two
types of baseline models are shown in Table 4, with a more visual comparison presented
in Figure 4. In Table 4, NS-X refers to the version of model X that applies the NS-KGE
framework while HNSW-X refers to the version of model X that applies the HNSW-KGE
framework. An upward arrow () indicates that a higher value is better for the evaluation
metric whereas a downward arrow ({) indicates that a lower value is better.

In the table, bold values represent the best experimental results among the baseline
models while underlined values indicate the second-best results. In the figure, blue rectan-
gles represent the average values of evaluation metrics for the original baseline models, red
rectangles represent the average values for models using the NS-KGE framework, and yel-
low rectangles represent the average values for models using the HNSW-KGE framework.

Table 4. Link prediction experimental results.

Datasets FB15K237 WN18RR
E‘I’\j‘[t:::;’“ MRR1 MR, Hits@101 Hits@31 Hits@l0+ MRRT MR} Hits@l01 Hits@31 Hits@1 1
DistMult 0177  430.15 0.345 0.198 0.010 0320  4019.98 0.461 0371 0.24
NS-DistMult 0227  36L61 0.373 0.248 0.155 0411  7456.29 0.462 0.424 0.384
HNSW-DistMult 0282  267.70 0.449 0.306 0.201 0.409 5141.6 0.465 0.425 0.377
SimplE 0.183 387.9 0.355 0.207 0.099 0329  3950.82 0.463 0.378 0.253
NS-SimplE 0.222 364.31 0.370 0.246 0.159 0406  7418.31 0.459 0.415 0.377
HNSW-SimplE 0.272 314.1 0.427 0.295 0.193 0.416 7504.3 0.451 0.427 0.400
ComplEx 0.240 529.42 0415 0.271 0.151 0.39 4673.35 0.474 0.422 0.339
NS-ComplEx 0.243 326.57 0.390 0.256 0.163 0429  7649.34 0.485 0.449 0.396
HNSW-ComplEx  0.261 365.4 0.419 0.283 0.184 0.431 6626.6 0475 0.444 0.407
TransE 0.178 337.86 0.316 0.192 0.108 0079  2900.32 0.145 0.084 0.044
NS-TransE 0.261 336.71 0.447 0.296 0.167 0156  3948.07 0.437 0.256 0.007
HNSW-TransE 0.316 173.80 0.494 0.350 0.226 0246  3099.30 0.539 0.407 0.050

First, from the overall perspective of the charts, among the three comparative models,
our proposed HNSW-KGE model achieves optimal or near-optimal evaluation results in
most cases, particularly on the FB15K237 dataset. Except for the MR evaluation metric
on HNSW-ComplEx, HNSW-KGE outperforms all other comparative models across all
evaluation metrics. Although in some specific cases, certain comparative models perform
slightly better than HNSW-KGE—such as NS-SimplE being marginally better than HNSW-
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SimplE on the Hit@10 metric in the WN18RR dataset—these results are close. Moreover,
HNSW-SimplE shows average improvements of 2.89% and 6.10% over NS-SimplE on the
Hit@1 and Hit@3 metrics, respectively. The experimental results validate the effectiveness
of the HNSW-KGE framework.
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Figure 4. Comparison of evaluation metrics for three types of link prediction methods.

Secondly, compared to the four original baseline models—TransE, DisMult, SimplE,
and ComplEx—the models utilizing the HNSW-KGE framework demonstrate an average
performance improvement of 58.8% in MRR, 3.2% in MR, 47.2% in Hit@10, 75.1% in
Hit@3, and 285.6% in Hit@1 across two datasets. This indicates that the candidate negative
sample set constructed using the pre-trained initial embedding vectors and high-quality
candidate negative sample set strategy significantly enhances the model training process.
Consequently, models employing the HNSW-KGE framework outperform traditional
knowledge graph embedding models based on negative sampling.

Furthermore, when compared to the knowledge graph embedding models utilizing
the NS-KGE framework, such as NS-TransE, NS-DisMult, NS-SimplE, and NS-ComplEX,
the models using the HNSW-KGE framework show an average performance improvement
of 16.9% in MRR, 9.9% in MR, 9.2% in Hit@10, 16.6% in Hit@3, and 90.1% in Hit@1 across
two datasets. This indicates that, compared to the NS-KGE framework, our proposed
HNSW-KGE framework better enhances model training performance. This is because
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the model training under the NS-KGE framework treats all unobserved samples in the
dataset as negative samples, inevitably introducing a large number of false negatives and
easy-to-separate negative samples during training. In contrast, the HNSW-KGE framework
utilizes relatively high-quality embeddings of entities and relations obtained from pre-
training, along with a high-quality candidate negative sample set construction strategy,
which effectively reduces the involvement of false negatives and numerous easy-to-separate
negative samples in the training process. Consequently, training the model based on these
relatively high-quality negative samples yields better results. Additionally, the HNSW-KGE
framework incorporates a weight factor based on the frequency of triples into the loss
function, allowing long-tail entities and relations to receive more attention during training,
thereby mitigating their adverse impact on model training.

Next, compared to the original baseline models and the NS-KGE framework, models
using the HNSW-KGE framework consistently achieve better performance in the MRR
evaluation metric, although they perform relatively worse in MR, particularly on the
WN18RR dataset. This discrepancy arises because MR is more sensitive to prediction errors;
if some true entities rank low in the predicted candidate entity list, it significantly affects
MR. In contrast, MRR is less influenced due to the reciprocal operation. The superior
performance of the HNSW-KGE framework in MRR suggests that, in most cases, it can
rank true entities higher. However, the relatively poor performance in MR on the WN18RR
dataset is due to the larger number of entities in this dataset compared to FB15K237, making
it easier for true entities to rank lower. Finally, the experimental results indicate that the
HNSW-KGE framework can enhance the training performance of both semantic matching
models (such as DisMult, SimplE, and ComplEx) and translation-based models (like TransE).
This demonstrates the framework’s universality for training negative sampling models and
its potential application to other knowledge graph embedding models.

Finally, the model using the HNSW-KGE framework has the most outstanding average
improvement effect on Hit@1, indicating that our HNSW-KGE framework can improve
the quality of negative samples involved in training through candidate negative sample
set construction and loss function weighting, alleviate the adverse effects of long-tail
entities and relations on model training, and thus learn more accurate embeddings for
most elements in the knowledge graph so that the model’s Hit@1 results in link prediction
tasks are significantly improved. In addition, although HNSW-KGE's performance in MR
is mediocre, its performance in MRR has basically achieved the best results, indicating that
although some real entities rank low in their predicted candidate entity list, making the
MR value more sensitive to prediction errors, in most cases, the real entities can be ranked
higher. It can be considered that the HNSW-KGE framework can improve the training
performance of two types of negative-sampling-based models, such as semantic-matching-
based models (DisMult, SimplE, ComplEx) and translation-based models (TransE), showing
the versatility of the framework for training models based on negative sampling and its
potential for application to other knowledge graph embedding models.

In summary, the comparative experimental results on link prediction tasks indicate that
models utilizing the HNSW-KGE framework perform well in this task. Further analysis
of the results reveals that the HNSW-KGE framework’s approach of using pre-trained
embedding vectors and a high-quality candidate negative sample set construction method
enables the participation of relatively higher-quality negative samples in training. Moreover,
the weighted loss function strategy alleviates the adverse effects of long-tail entities and
relations on model training, ultimately leading to better embeddings for knowledge graphs.
As a result, models employing this framework benefit significantly in link prediction
task experiments.

6.2. Parameter Analysis

Next, this section will explore the impact of the hyperparameter
N € {10,30,50,80,100}, which represents the number of candidate negative samples
constructed for each positive sample, on the training performance of the HNSW-TransE
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model using experiments on the FB15K237 dataset. N is tuned on the validation set. It
is easier to determine the optimal values of these hyperparameters by performing vali-
dation experiments on the validation set. The evaluation metric Hit@K will be used for
quantitative analysis, as shown in Figure 5.

0.622
0.621

——
0.619 Hit@30
. 0617
0.615 s :

_~ Hit@10

/ 022 022

N=10 N=30 N=50 N=80 N=100

Figure 5. The impact of hyperparameter N on Hit@K in link prediction.

From the figure, it can be observed that, before reaching a specific value of N, the
Hit@K values show an increasing trend. However, after reaching that value, as N increases,
the Hit@K values start to decline. This demonstrates the effectiveness of N in controlling the
quality of negative samples sampled for training. When N is too small, the number of high-
quality negative samples sampled is limited. As N increases, the number of high-quality
negative samples also increases. Once N reaches a certain value, further increasing N does
not yield additional high-quality negative samples. Instead, the increased number of
easy-to-separate negative samples can lead to a decrease in model training performance.

The figure also indicates that, during hyperparameter tuning, it is relatively straight-
forward to identify the optimal number of candidate negative samples N for each positive
sample, which is N = 50.

6.3. Ablation Analysis

To further illustrate the impact of the high-quality candidate negative sample set construc-
tion module and the loss function weighting module on our proposed HNSW-KGE framework,
we will present ablation analysis experiments conducted on two datasets: FB15K237 and
WN18RR. The experimental results are shown in Table 5, | means the lower value represents
better performance. 1 means the higher value represents better performance.

Table 5. Ablation study results.

Datasets FB15K237 WN18RR
E‘l’\j‘[t::f::“ MRR + MR, Hits@101 Hits@31 Hits@l0+ MRR4{ MRJ] Hits@l01 Hits@31 Hits@1 1
HN@%T;;“SE 0.301 192.7 0.488 0.334 0.211 0246 32395 0.533 0.404 0.043
HNSW-TransE 0.300 197.2 0.484 0.332 0.209 0.237 3358.6 0.530 0.403 0.034
w/o HNS
HNSW-TransE 0.316 173.8 0.494 0.350 0.226 0.246 3099.3 0.539 0.407 0.050

In the table, “HNSW-TransE w/o Wf” indicates that the HNSW-TransE model uti-
lizes only the high-quality candidate negative sample set construction module without
the loss function weighting module. Conversely, “HNSW-TransE w/o HNS” indicates
that the model uses only the loss function weighting module without the high-quality
candidate negative sample set construction module. Bold data in the table represent the
best experimental results, while underlined data indicate the second best results.
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From the experimental results displayed in the table, it can be observed that using both
modules simultaneously in “HNSW-TransE” achieves relatively better evaluation metric
values compared to using only one of the modules. This demonstrates that the high-quality
candidate negative sample set construction and loss function weighting modules both
contribute to the improvement in knowledge graph embedding training performance,
indicating a cumulative effect. Additionally, when comparing the results of using only the
loss function weighting module to those of using only the high-quality candidate negative
sample set construction module, it is evident that the latter yields better knowledge graph
embeddings. This highlights that the construction of a high-quality candidate negative
sample set contributes more significantly to the model than the loss function weighting
module. The key to enhancing the model’s training performance lies in selecting high-
quality negative samples for training.

Figure 6 also presents the ablation analysis comparison. | means the lower value
represents better performance. T means the higher value represents better performance. It
shows the comparison of the evaluation indicators of the HNSW-KGE model on the link
prediction task without using the high-quality candidate negative sample set construc-
tion module. It can be intuitively seen that the high-quality candidate negative sample
set construction module improves the model performance. The figure below shows the
comparison of the evaluation indicators of the HNSW-KGE model on the link prediction
task without using the loss function weighting module. It can be intuitively seen that the
loss function weighting module improves the model performance.

FB15K237 WN18RR
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0.32
il -
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Figure 6. Ablation analysis comparison.

6.4. Case Analysis

Next, we will conduct a qualitative analysis of the entity ranking results in link
prediction to intuitively demonstrate the effectiveness of the proposed HNSW-KGE model.
We selected the link prediction results of two triples from the experimental outcomes for
comparative analysis, as shown in Table 6. Since the NS-KGE framework shows improved
performance compared to the original baseline models, we will only select the NS-KGE
framework as the comparison method. In the table, HNSW-X refers to the version of model
X that applies the HNSW-KGE framework, while NS-X refers to the version of model X that
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applies the NS-KGE framework. The true entities are highlighted in bold. From the table,
it can be observed that, for a given head entity and relation, the true tail entity receives
a higher ranking in the model utilizing the HNSW-KGE framework. This indicates that
the model applying the HNSW-KGE framework has stronger link prediction capabilities
compared to the model using the NS-KGE framework.

Table 6. Link prediction results for two triples.

Datasets FB15K237
Relation /location/imports_and_exports/exported_to
Head .
Entity Zambia Angola
Model HNSW-TransE NS-TransE HNSW-DistMult NS-DistMult
Tanzania Namibia United States of America New Zealand
Angola Botswana France Germany
Zambia Angola People’s Republic of China India
Top 10 France Zambia Brazil United Kingdom
Entities in Sudan Democratic Republic of the Congo South Africa People’s Republic of China
Link Netherlands Sudan Portugal Canada
Prediction Belgium Malawi United Kingdom Australia
Madagascar Uganda Spain Italy
United States of America Tanzania Egypt United States of America
Germany Burundi Zambia France

7. Conclusions and Future Work

We proposed a universal knowledge graph embedding framework called HNSW-KGE,
which is based on high-quality negative sampling and weighting. First, we utilized the
non-sampling-based NS-TransE model for pre-training, allowing for the rapid learning of
relatively high-quality embedding vectors for entities and relations in the knowledge graph.
Next, we designed a high-quality candidate negative sample set construction strategy
that uses the pre-trained embedding vectors to create high-quality candidate negative
samples for positive triples, thereby providing high-quality negative samples for training
models based on negative sampling. Then, we applied a weight factor based on the
frequency of triples to weight the loss function, mitigating the adverse effects of long-tail
entities and relations on model training and improving training effectiveness. Finally, to
evaluate the performance of the proposed HNSW-KGE, experiments were conducted on
four KGE models—DistMult, SimplE, ComplEx, and TransE—confirming the effectiveness
of HNSW-KGE.

In the future, we will continue to explore several directions: first, we will investigate
other more effective knowledge graph embedding models for pre-training, such as RotatE;
second, we will research methods for enhancing model efficiency, such as attempting to
use more efficient optimization algorithms to accelerate the candidate negative sample
set construction process; third, we will further explore other methods for excluding false
negative samples, such as considering the introduction of external knowledge graphs to
assist in the identification of false negatives; fourth, we will conduct more tasks to verify
the effectiveness of the proposed model, such as question answering or reasoning.
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