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Abstract: The susceptible–infected–recovered/removed–vaccinated (SIRV) epidemic model is an
important generalization of the SIR epidemic model, as it accounts quantitatively for the effects
of vaccination campaigns on the temporal evolution of epidemic outbreaks. Additional to the
time-dependent infection (a(t)) and recovery (µ(t)) rates, regulating the transitions between the
compartments S → I and I → R, respectively, the time-dependent vaccination rate v(t) accounts for
the transition between the compartments S → V of susceptible to vaccinated fractions. An accurate
analytical approximation is derived for arbitrary and different temporal dependencies of the rates,
which is valid for all times after the start of the epidemics for which the cumulative fraction of
new infections J(t) ≪ 1. As vaccination campaigns automatically reduce the rate of new infections
by transferring persons from susceptible to vaccinated, the limit J(t) ≪ 1 is even better fulfilled
than in the SIR-epidemic model. The comparison of the analytical approximation for the temporal
dependence of the rate of new infections J̊(t) = a(t)S(t)I(t), the corresponding cumulative fraction
J(t), and V(t), respectively, with the exact numerical solution of the SIRV-equations for different
illustrative examples proves the accuracy of our approach. The considered illustrative examples
include the cases of stationary ratios with a delayed start of vaccinations, and an oscillating ratio
of recovery to infection rate with a delayed vaccination at constant rate. The proposed analytical
approximation is self-regulating as the final analytical expression for the cumulative fraction J∞ after
infinite time allows us to check the validity of the original assumption J(t) ≤ J∞ ≪ 1.

Keywords: nonlinear differential equations; analytic solution; vaccination; pandemic spreading;
infinite sums

MSC: 34A34; 34A45

1. Introduction

Vaccination campaigns on a considered population, subject to pandemic and epidemic
outbursts, have a profound influence on the temporal evolution of the rate of infected
persons. The necessity to calculate quantitatively this influence has prompted the de-
velopment of the susceptible–infected–recovered/removed–vaccinated (SIRV) epidemic
model [1–22]. The compartmental SIRV model generalizes the simpler susceptible–infected–
recovered/removed (SIR) epidemic model [23–26]. Three time-dependent rates, namely the
infection (a(t)), recovery (µ(t)) and vaccination (v(t)) rates, regulate the transitions between
the compartments S → I, I → R and S → V, respectively. The ratios k(t) = µ(t)/a(t) of
the recovery to infection rate and b(t) = v(t)/a(t) of the vaccination to infection rate are
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the important key parameters of the SIRV pandemic model. Existing analytical solutions
to the SIRV equations available in the literature [1,2] have adopted originally stationary
values of the ratios k(t) = k0 and b(t) = b0, allowing for arbitrary time-dependent infection
rates a(t) so that the recovery and vaccination rates have the same time dependence as the
infection rate.

Here, we apply the recently developed analytical approach towards the solution of
the compartmental SIR model [27] to the SIRV-epidemic model. For all times after the
start of the epidemic, for which the cumulative fraction of infected persons J(t) ≪ 1 is
much less then unity, an accurate analytical approximate solution of the SIRV equations
is possible for general and arbitrary time dependencies of the infection (a(t)), recovery
(µ(t)) and vaccination (v(t)) rates. As vaccination campaigns automatically reduce the
rate of new infections by transferring susceptible persons directly to vaccinated persons,
who then no longer can get infected, the limit J ≪ 1 is even better fulfilled than in the
SIR-epidemic model.

A number of numerical studies to quantify the effect of vaccination campaigns are
available in the literature [28–32] using generalized SIRV-model equations with additional
compartments. In these works, the time dependence of individual compartment quantities
such as I(t) and R(t) have been derived, but these quantities are not regularly observed
and monitored during pandemic waves. Of higher interest, especially from the medical and
public health care points of view, are the rate of new infections J̊(t) and its corresponding
cumulative number J(t), defined by

J̊(t) = a(t)S(t)I(t), J(t) = J(t0) +
∫ t

t0

dξ J̊(ξ), (1)

respectively, after the start of the pandemic outburst at time t0, as the hospitalization and
death rates are directly proportional to J̊(t). Forecasts of the hospitalization and death
rates are essential in order to prepare a community for an upcoming pandemic outburst
by introducing non-pharmaceutical interventions and/or vaccination campaigns at an
optimized time.

The organization of the manuscript is as follows. In Section 2, we introduce the
starting SIRV-model equations both in terms of the real time t and the reduced time
τ =

∫ t
t0

dξa(ξ). It is beneficial for the analysis to express the SIRV-equations in a form
directly involving the observable quantities, such as rate of new infections j(τ) = S(τ)I(τ),
the cumulative fraction of infections J(τ) = J(0) +

∫ τ
0 dx j(x) = η +

∫ τ
0 dx j(x) = 1 −

S(τ) − V(τ) = R(τ) + I(τ), and the cumulative fraction of vaccinated persons V(τ).
As shown in Section 3 the SIRV-equations in this form allow an approximate analytical
solution in the limit of small cumulative fractions J ≪ 1. The approximate solution can be
written both as function of the real and the reduced time. In Section 4, the approximate
solutions are compared with the earlier obtained analytical results for the special case of
stationary ratios between the recovery to infection rate and the vaccination to infection rate,
respectively. In Sections 5 and 6, we investigate two applications which were inaccessible
to analytical treatment before. The considered applications include the cases of stationary
ratios with a delayed start of vaccinations (Section 5), and an oscillating ratio of recovery to
infection rate with a delayed vaccination at constant rate (Section 6). Here, the analytical
approximations are compared with the exact numerical solution of the SIRV-equations for
these two applications in order to test the accuracy of the analytical approach. A summary
and conclusion (Section 7) completes the manuscript.

2. SIRV Model

The original SIRV-equations read [1]:
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dS
dt

= −a(t)SI − v(t)S, (2)

dI
dt

= a(t)SI − µ(t)I, (3)

dR
dt

= µ(t)I, (4)

dV
dt

= v(t)S, (5)

obeying the sum constraint

S(t) + I(t) + R(t) + V(t) = 1 (6)

at all times t ≥ t0 after the start of the wave at time t0 with the initial conditions

I(t0) = η, S(t0) = 1 − η, R(t0) = 0, V(t0) = 0, (7)

where η is positive and usually very small, η ≪ 1. We refer to this case as the semi-time
case [25].

Recently, it has been demonstrated [33] that the SIRV Equations (2)–(5) can be ex-
pressed as

b(τ) =
dV
dτ

1 − V(τ)− J(τ)
, (8)

I(τ) =
j(τ)

1 − V(τ)− J(τ)
, (9)

and

k(τ) = 1 − V(τ)− J(τ)− d
dτ

ln
[

j(τ)
1 − V(τ)− J(τ)

]
(10)

in terms of the reduced time

τ =
∫ t

t0

dξ a(ξ), (11)

and the ratios

k(τ) =
µ(τ(t))
a(τ(t))

, b(τ) =
v(τ(t))
a(τ(t))

. (12)

The great advantage of the SIRV equations written in the form (8)–(10) is the di-
rect involvement of observable and monitored quantities, such as the rate of new infec-
tions j(τ) = S(τ)I(τ), the cumulative fraction of new infections J(t) = J(τ) = J(0) +∫ τ

0 dxj(x) = η +
∫ τ

0 dxj(x) = 1 − S(τ)− V(τ) = R(τ) + I(τ), and the cumulative fraction
of vaccinated persons V(t) = V(τ). This has enabled the determination [33] of the time
variation of the ratios k(t) and b(t) from past COVID-19 mutant waves. For completeness,
we note the SIRV Equations (2)–(6) in terms of the reduced time (11)

dS
dτ

= −SI − b(τ)S, (13)

dI
dτ

= SI − k(τ)I, (14)

dR
dτ

= k(τ)I, (15)

dV
dτ

= b(τ)S, (16)

1 = S(τ) + I(τ) + R(τ) + V(τ). (17)
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In the following, we will derive approximate analytical solutions of the four nonlinear
differential Equations (13)–(16) in the limit of small J(τ) ≪ 1 and prove its accuracy
by comparing with the exact numerical solutions of these equations for a number of
illustrative examples of the reduced time dependence of the ratios k(τ) and b(τ). As will
be demonstrated, the proposed analytical approximation is self-regulating as the final
analytical expression for the cumulative fraction J∞ = limt→∞ J(t) after infinite time allows
us to check the validity of the original assumption J(t) = J(τ) ≤ J∞ ≪ 1.

3. Approximate Analytical Solutions

J(t) = J(τ) denotes the cumulative fraction of new infections. In the semi-time case
considered here, this fraction starts with very small values J(t0) = η ≃ O(10−5) at the
start for all pandemic outbreaks and approaches J∞ after infinite time. In Table 1 we have
collected the monitored values for the COVID-19 outbreaks in different countries. As can
be seen, these are smaller than 0.62 and, in many countries, smaller than 0.1. Especially for
the countries with values J∞ < 0.2, the assumption J ≪ 1 is well justified.

Table 1. Reported data as of 12 Jan 2024 for final values J∞ and D∞ for several countries with more
than P = 107 inhabitants. Here, P denotes the total population size, PJ∞ and PD∞ the reported total
number of infections and fatalities, and J∞ and D∞ the population fractions at the declared end of the
pandemics. The table is sorted by ascending J∞. The data were collected from the following github
repository: https://pomber.github.io/covid19/timeseries.json (accessed on 20 December 2023).

Country P/106 PJ∞/106 J∞ PD∞/106 D∞

France 64.88 39.867 0.6145 0.166 0.0026
Korea South 51.63 30.616 0.5930 0.034 0.0007
Portugal 10.33 5.570 0.5395 0.026 0.0025
Greece 10.75 5.548 0.5163 0.035 0.0032
Netherlands 17.02 8.713 0.5120 0.024 0.0014
Australia 24.13 11.399 0.4725 0.020 0.0008
Germany 84.08 38.249 0.4549 0.169 0.0020
Czechia 10.56 4.618 0.4373 0.042 0.0040
Italy 60.60 25.604 0.4225 0.188 0.0031
Belgium 11.35 4.739 0.4176 0.034 0.0030
United Kingdom 65.64 24.659 0.3757 0.221 0.0034
United States 323.13 103.803 0.3212 1.124 0.0035
Spain 46.44 13.770 0.2965 0.119 0.0026
Chile 17.91 5.192 0.2899 0.064 0.0036
Japan 126.99 33.320 0.2624 0.073 0.0006
Argentina 43.85 10.045 0.2291 0.130 0.0030
Turkey 79.51 17.043 0.2143 0.101 0.0013
Brazil 207.65 37.076 0.1785 0.699 0.0034
Romania 19.71 3.346 0.1698 0.068 0.0034
Poland 37.95 6.445 0.1698 0.119 0.0031
Malaysia 31.18 5.045 0.1618 0.037 0.0012
Russia 144.34 22.076 0.1529 0.388 0.0027
Peru 31.77 4.488 0.1412 0.220 0.0069
Colombia 48.65 6.359 0.1307 0.142 0.0029
Canada 36.28 4.617 0.1272 0.052 0.0014
Ukraine 45.01 5.712 0.1269 0.119 0.0027
Vietnam 92.70 11.527 0.1243 0.043 0.0005
Bolivia 10.89 1.194 0.1097 0.022 0.0021
Cuba 11.48 1.113 0.0970 0.009 0.0007
Iran 80.27 7.572 0.0943 0.145 0.0018
Guatemala 16.58 1.238 0.0747 0.020 0.0012
South Africa 55.91 4.067 0.0727 0.103 0.0018
Thailand 68.86 4.728 0.0687 0.034 0.0005
Iraq 37.20 2.466 0.0663 0.025 0.0007

https://pomber.github.io/covid19/timeseries.json
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Table 1. Cont.

Country P/106 PJ∞/106 J∞ PD∞/106 D∞

Ecuador 16.38 1.057 0.0645 0.036 0.0022
Dominican Republic 10.65 0.661 0.0621 0.004 0.0004
Mexico 127.54 7.483 0.0587 0.333 0.0026
Philippines 103.32 4.077 0.0395 0.066 0.0006
Morocco 35.27 1.272 0.0361 0.016 0.0005
India 1420.00 44.691 0.0315 0.531 0.0004
Indonesia 261.12 6.738 0.0258 0.161 0.0006
Saudi Arabia 32.28 0.830 0.0257 0.010 0.0003
Venezuela 31.57 0.552 0.0175 0.006 0.0002
Algeria 40.61 0.271 0.0067 0.007 0.0002
Senegal 15.41 0.089 0.0058 0.002 0.0001
Egypt 95.69 0.516 0.0054 0.025 0.0003
China 1410.00 4.904 0.0035 0.101 0.0001

3.1. Solution in the Limit of Small J ≪ 1

Initially at reduced time τ = 0, the cumulative number of new infections is extremely
small. In the limit J(τ) ≤ J∞ ≪ 1, where J∞ = J(τ = ∞), and also at later times, we use
the approximations 1 − J(τ) ≃ 1 − J∞ to obtain for Equation (8)

b(τ) ≃
dV
dτ

1 − J∞ − V(τ)
=

d
dτ

ln[1 − J∞ − V(τ)]−1. (18)

With the initial condition V(0) = 0 for arbitrary but given dependencies b(τ), Equa-
tion (18) immediately integrates to

V(τ) ≃ (1 − J∞)[1 − e−
∫ τ

0 dx b(x)], (19)

which approaches V∞ = V(∞) = 1 − J∞ after infinite time. Likewise, in the same limit
J ≤ J∞ ≪ 1, Equation (10) becomes

k(τ) ≃ 1 − J∞ − V(τ)− d
dτ

ln
[

j(τ)
1 − J∞ − V(τ)

]
= (1 − J∞)e−

∫ τ
0 dx b(x) − d

dτ
ln

[
j(τ)e

∫ τ
0 dx b(x)

1 − J∞

]
, (20)

where we inserted Equation (19). With the initial condition j(0) = η(1 − η) Equation (20)
integrates to

j(τ) ≃ η(1 − η) exp
∫ τ

0
dx
[
(1 − J∞)e−

∫ x
0 dy b(y) − k(x)− b(x)

]
. (21)

Because of the adopted smallness J∞ ≪ 1, we simplify the approximative solution (21)
in the following as

j(τ) ≃ η(1 − η) exp
∫ τ

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− b(x)
]
. (22)

but we keep the J∞ in the solution (19) in order not to violate the restriction J(τ) + V(τ) ≤
J∞ + V∞ ≤ 1. In terms of the real time the approximative solutions, (19) and (22) read

V(t) ≃ (1 − J∞)[1 − e−
∫ t

t0
dξ v(ξ)

], (23)
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and

J̊(t) ≃ a(t)η(1 − η) exp
[∫ t

t0

dξ[a(ξ)e−
∫ ξ

t0
dyv(y) − µ(ξ)− v(ξ)]

]
, (24)

respectively.

3.2. Comparison with the SIR Model Limit

The SIR model corresponds to the limit of no vaccinations v = b = 0, corresponding
to V = 0. In this limit, the solutions (22) and (24) reduce to

jSIR(τ) ≃ η(1 − η)e
∫ τ

0 dx [1−k(x)] (25)

and
J̊SIR(t) ≃ a(t)η(1 − η)e

∫ t
t0

dξ[a(ξ)−µ(ξ], (26)

respectively, in perfect agreement with the earlier derived Equations (12) and (15) of ref. [27].

3.3. Properties of the Approximate Solution (22)

The approximate solution (22) is predominantly determined by the reduced time
variation of the ratios k(τ) and b(τ). For the first and second time derivatives of the
solution (22) we obtain

dj
dτ

= η(1−η)
[
e−
∫ τ

0 dyb(y)−k(τ)−b(τ)
]

exp
∫ τ

0
dx
[
e−
∫ x

0 dy b(y)−k(x)−b(x)
]
, (27)

d2 j
dτ2 = η(1−η)

(
[e−

∫ τ
0 dyb(y)−k(τ)−b(τ)]2 − dk

dτ
− db

dτ
− b(τ)e−

∫ τ
0 dyb(y)

)
×

exp
∫ τ

0
dx
[
e−
∫ x

0 dy b(y) −k(x)−b(x)
]
. (28)

Consequently, extrema of the rate of new infections occur at reduced times τE deter-
mined by

k(τE) + b(τE) = e−
∫ τE

0 dy b(y). (29)

As the right-hand side of this Equation is smaller than or equal to unity, no extrema of
infections occur for a sum of variations

k(τ) + b(τ) > 1 (30)

greater than unity at all times. As both rates are semi-positive the condition (30) for no
extrema in the rate of new infections is fulfilled if either the vaccination rate v(t) > a(t)
is greater than the infection rate and/or the recovery rate µ(t) > a(t) is greater than the
infection rate. For large enough values of k and b, so that k(τ) + b(τ) > 1, we have thus
shown in Equation (27) that no extrema of the rate of new infections j(τ) occur at any
reduced time τ ≥ 0. According to Equation (27), then, this rate continually decreases from
its original positive initial value j(τ = 0) = η(1 − η) to even smaller values at later times.
As j(τ) = S(τ)I(τ) and S(τ), as well as I(τ), are originally positive for τ = 0, they will
remain positive. With I(τ) and S(τ) positive, it is clear from Equations (15) and (16) that
R(τ) and V(τ) are also positively valued at all times.

In the case of reduced time intervals, where

k(τ) + b(τ) < 1, (31)

we obtain

[
d2 j
dτ2 ]τE = −η(1 − η)

(
[
dk
dτ

]τE + [
db
dτ

]τE + b2(τE) + b(τE)k(τE)
)
×

exp
[∫ τE

0
dx
(

e−
∫ x

0 dy b(y) − k(x)− b(x)
)]

, (32)
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so that the extrema are maxima if

[
dk
dτ

]τE + [
db
dτ

]τE + b2(τE) + b(τE)k(τE) > 0 (33)

is positive. Alternatively, the extrema are minima if

[
dk
dτ

]τE + [
db
dτ

]τE + b2(τE) + b(τE)k(τE) < 0 (34)

is negative. Note that there can be multiple minima and maxima depending on the reduced
time variation of the ratios k(τ) and b(τ). The extreme values of the rate of new infections
are given by

jE(τE) = η(1 − η)e
∫ τE

0 dx
[
e−
∫ x

0 dy b(y)− k(x)−b(x)
]
. (35)

3.4. Cumulative Fraction

Integrating the rate of new infections (22) provides us with the corresponding cumula-
tive fraction

J(τ) = η + η(1 − η)
∫ τ

0
dz exp

[∫ z

0
dx (e−

∫ x
0 dy b(y) − k(x)− b(x))

]
. (36)

For general reduced time variations k(τ) and b(τ), the integral in Equation (36) can be
reasonably well approximated and evaluated using the method of steepest descent [34,35]
by expanding the argument in the exponential function in Equation (36) to second order in
z around its (possible multiple) minimum values τm

h(z) = −
∫ z

0
dx (e−

∫ x
0 dy b(y) − k(x)− b(x)) ≃ h(τm) +

(z − τm)2h
′′
m

2
, (37)

where

h′′m = [
d2h(z)

dz2 ]τm . (38)

With this expansion, we obtain for the cumulative fraction (36)

J(τ) ≃ η + η(1 − η)∑
m

√
π

2h′′
m

e−h(τm)

erf

√ h′′
m
2
(τ − τm)

+ erf

√ h′′
m
2

τm

, (39)

where the sum of m accounts for possible multiple minima and

h(τm) =
∫ τm

0
dx
[
k(x) + b(x)− e−

∫ x
0 dy b(y)

]
,

h′′m = [
dk
dτ

]τm + [
db
dτ

]τm + b2(τm) + b(τm)k(τm). (40)

For a minimum, the second derivative h′′m > 0 has to be positive. The minima occur at
times given by

k(τm) + b(τm) = e−
∫ τm

0 dy b(y), (41)

and, as discussed before (see Equations (29)–(31)), only for reduced time intervals where
the sum k(τ) + b(τ) < 1 is less than unity.
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4. Special Case: Stationary Ratios

We first consider the approximative solutions (19) and (22) in the special case of
stationary ratios

k(τ) = k0,

b(τ) = b0, (42)

considered before [1]. We readily obtain

V(τ) = (1 − J∞)[1 − e−b0τ ], (43)

and

j(τ) = η(1 − η) exp

[
1 − e−b0τ

b0
− (k0 + b0)τ

]
. (44)

Provided k0 + b0 < 1, the rate of new infections (44) attains its maximum value at the
reduced time

τm = − ln(k0 + b0)

b0
. (45)

The maximum rate of new infections, then, is

jmax = j(τm) = η(1 − η)(k0 + b0)
k0+b0

b0 e
1−(k0+b0)

b0 . (46)

Equations (45) and (46) agree exactly with Equations (98) and (100) derived before [1].

4.1. Cumulative Fraction

Integrating Equation (44) yields for the cumulative fraction

J(τ) = η + η(1 − η)H(τ), (47)

with the integral

H(τ) =
∫ τ

0
dx exp

[
1 − e−b0x

b0
− (k0 + b0)x

]
= b

k0
b0
0 e

1
b0

∫ 1
b0

e−b0τ

b0

dy y
k0
b0 e−y, (48)

where we substituted y = e−b0x/b0. The integral (48) can be expressed as the difference of
two lower incomplete gamma functions

γ(s, x) =
∫ x

0
ts−1e−tdt = Γ(s)− Γ(s, x), (49)

yielding

H(τ) = b
k0
b0
0 e

1
b0

[
γ

(
1 +

k0

b0
,

1
b0

)
− γ

(
1 +

k0

b0
,

e−b0τ

b0

)]
, (50)

so that the cumulative fraction (47) is given by

J(τ) = η + η(1 − η)b
k0
b0
0 e

1
b0

[
γ

(
1 +

k0

b0
,

1
b0

)
− γ

(
1 +

k0

b0
,

e−b0τ

b0

)]
. (51)

For infinitely large times, the fraction (51) approaches the final value

J∞ = J(τ = ∞) = η + η(1 − η)b
k0
b0
0 e

1
b0 γ

(
1 +

k0

b0
,

1
b0

)
. (52)
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Equations (51) and (52) agree exactly with the earlier derived Equations (A10) and
(102) of ref. [1], using a different approach.

Because the analytical approximations were derived in the limit J ≤ J∞ ≪ 1, for con-
sistency, we have to require J∞ < 1 for the values of k0 and b0 for which our approximation
holds. In Figure 1, we calculate the required values of k0 and b0 fulfilling J∞ < 1 using
Equation (52). The required values depend on the initial condition encoded by η, and
are located above the line shown in this figure. For sufficiently large k0, J∞ < 1, for any
ratio b0, while at low recovery to infection ratios k0, the vaccination to infection rate must
be significant to ensure J∞ < 1. The regime of b0 close to zero is numerically difficult to
evaluate using Equation (52).

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

Figure 1. Required lower limiting values of b0 versus k0, fulfilling J∞ ≤ 1 using Equation (52),
for various initial η (solid lines). Within the (k0, b0) region above a certain solid line, J∞ < 1, while
the exact numerical solution features J∞ ≤ 1 for any choice of k0 and b0. The regime b0 ≪ 1 is
numerically difficult to evaluate using Equation (52); beyond k0 > 1/2 (marked by black dots), we
use the explicit Equation (58). For k0 < 1/2, Equation (58) is shown as dashed line, highlighting the
region of k0 where Equation (58) cannot be used.

4.2. Limit b0 ≪ 1

In the limit of small b0 ≪ 1, we use relation (49) and the asymptotic expansion
(Equation 6.5.32 in [36]) of the upper incomplete gamma function for large arguments
x ≫ 1

Γ(s, x ≫ 1) ≃ xs−1e−x
[

1 +
s − 1

x
+

(s − 1)(s − 2)
x2 + . . .

]
, (53)

to obtain for

γ

(
1 +

k0

b0
,

1
b0

)
≃ Γ

(
1 +

k0

b0

)
− b

k0
b0
0 e−

1
b0 [1 + k0 + k0(k0 − 1) + . . .]; (54)

the fraction (52) then becomes

J∞(b0 ≪ 1) ≃ η + η(1 − η)

[
Γ
(

1 +
k0

b0

)
b

k0
b0
0 e

1
b0 − [1 + k0 + k0(k0 − 1) + . . .]

]
. (55)

Using Stirling’s formula (Equation 6.1.37 in [36]) for the gamma function Γ(x + 1) ∼√
2πx(x/e)x[1 + (12x)−1] for large x, Equation (55) becomes,

J∞(b0 ≪ 1) ≃ η+η(1−η)

[√
2πk0

b0
k

k0
b0
0 e

1−k0
b0

(
1+

b0

12k0

)
−[1+k0+k0(k0−1)+. . .]

]
. (56)
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For values of b0 < k0 < 1, the fraction (56) to leading orders is given by

J∞(b0 ≪ 1) ≃ η + η(1 − η)
[√

2πk0/b0 e(1−k0)/b0 kk0/b0
0 − 1

]
. (57)

Because one has to require J∞ ≤ 1, or equivalently, ln(J∞) ≤ 0, Equation (57) turns into
an inequality for b0, which can be written in terms of the principal branch W0 of Lambert’s
W-function, because (x/b0) − ln b0 = ln y is solved for any x ≥ 0 and y by x/W0(xy),
leading to

b0 ≥ 2(1 − k0 + k0 ln k0)

W0

(
(1+η)2[1−k0+k0 ln(k0)]

πk0η2

) . (58)

This inequality (58) ensures J∞ ≤ 1. Along with the information contained in Equa-
tion (52), it is visualized in Figure 1.

5. Stationary Ratios with Delayed Start of Vaccinations

As first new application of our results, we discuss the case of stationary ratio k(τ) = k0
for all reduced times and the influence of a stationary ratio b(τ) starting at the delayed
reduced time τv > 0, i.e.,

k(τ) = k0,

b(τ) = b0Θ(τ − τv) (59)

where Θ(x < 0) = 0 and Θ(x ≥ 0) = 1 denotes the step function. We then obtain for
Equation (19), i.e., in the limit J ≪ 1, V = 0 for τ < τV and

V(τ ≥ τv) = (1 − J∞)[1 − e−b0(τ−τv)]. (60)

Likewise, the rate (22) becomes the SIR-rate [27]

j(0 ≤ τ < τv) = η(1 − η)e(1−k0)τ (61)

at times without vaccination, and

j(τ ≥ τv) = η(1 − η) exp

[
(1 − k0)τv +

1 − e−b0(τ−τv)

b0
− (k0 + b0)(τ − τv)

]
(62)

at later times. While the SIR-rate (61) is exponentially increasing in reduced time, the rate
(62) has a maximum value

jmax = j(τm) = η(1−η) exp

[
(1−k0)τv +

1 − e−b0(τm−τv)

b0
− (k0+b0)(τm−τv)

]

= η(1−η)(k0+b0)
k0+b0

b0 exp
[
(1−k0)τv +

1−(k0 + b0)

b0

]
, (63)

provided k0 + b0 < 1, the rate of new infections attains its maximum at the reduced time

τm = τv −
ln(k0 + b0)

b0
. (64)

We first note that for τv = 0, the rates (62) and (63) correctly reproduce the earlier
results (44) and (46). We emphasize that the delayed start of the vaccinations increases
both the maximum time of the rate of infections and the maximum rate of new infections.
Compared to the case of no delay in the start of vaccinations (τv = 0), we introduce the
enhancement factor for the maximum rate
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E(τv) =
jmax(τv)

jmax(τv = 0)
= e(1−k0)τv , (65)

shown in Figure 2, which is independent of the vaccination rate and determined by the
values of k0 and τv. Apparently, this exponential enhancement solely results from the
new infections before the vaccinations start. While the enhancement factor increases
exponentially over a wide range of k0τv, in accord with Equation (65), it numerically
reaches a plateau as k0τv approaches infinity, whose height increases with decreasing η.
This is a clear indication that for large values of the enhancement factor, a regime is reached
where J(τm) is no longer much smaller than unity, so that the analytical approximation no
longer holds. This explanation is supported by the cumulative fraction at large times (68)
(see below) being directly proportional to the enhancement factor (65).

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Figure 2. The enhancement factor E(τv) as function of k0τv for various k0. Analytical result (65)
(colored) compared with the numerical result (black) for b0 = 0.5 and η = 10−5. Note the double-
logarithmic representation. The dashed parts of the analytic results highlight the regimes for which
Equation (65) cannot be used anymore, as J∞ (68) exceeds unity.

Integrating the rates of new injections (61) and (63) yields for the cumulative fraction

J(0 ≤ τ < τv) = η +
η(1 − η)

1 − k0
[e(1−k0)τ − 1], (66)

and

J(τ ≥ τv) = η +
η(1 − η)

1 − k0

[
e(1−k0)τv − 1

]
+ η(1 − η)b

k0
b0
0 e(1−k0)τv+

1
b0 ×[

γ

(
1 +

k0

b0
,

1
b0

)
− γ

(
1 +

k0

b0
,

e−b0(τ−τv)

b0

)]
. (67)

For infinitely large times, the fraction (67) approaches the final value J∞ = J(τ = ∞) with

J∞ = η +
η(1 − η)

1 − k0

[
e(1−k0)τv − 1

]
+ η(1 − η)b

k0
b0
0 e(1−k0)τv+

1
b0 γ

(
1 +

k0

b0
,

1
b0

)
=

η(1 − η)

1 − k0
E(τv)

[
1 + (1 − k0)b

k0
b0
0 e

1
b0 γ

(
1 +

k0

b0
,

1
b0

)]
+

η(η − k0)

1 − k0
. (68)

An example showing all quantities calculated analytically in this section, along with
the numerical solution for a case with J∞ ≪ 1, is given in Figure 3.
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Figure 3. Example for Section 5 using k0 = 0.7, b0 = 0.1, τv = 10, and η = 10−5. Numerical solution
(solid black curve) for (a) j(τ) and (b) J(τ). In (a), the analytical expressions (61) (blue) and (62)
(red) had been added. The vertical lines are at τ = τv (dashed) and τ = τm (solid), according to
Equation (64). The filled red circle corresponds to Equation (63). In (b), the analytical expressions are
taken from Equations (66) (blue) and (67) (red), while the red circle marks the analytical expression
for J∞ according to Equation (68).

6. Oscillating Ratio k with Delayed Vaccinations at Constant Rate b0

As a second application, we investigate the influence of delayed vaccinations with
constant rate on the earlier discussed SIR-application [27] with an oscillating k ratio and
delayed vaccination ratio b,

k(τ) = 1 + α sin(βτ), (69)

b(t) = b0Θ(τ − τv), (70)

with constant values α and β. As noted before [27] the oscillating ratio (69) represents a
series of repeating pandemic outbursts with equal amplitudes in the rate of new infections.
We then obtain for Equation (19) V = 0 for τ < τV and

V(τ ≥ τv) = 1 − e−b0(τ−τv). (71)

Likewise, the rate (22) becomes the SIR-rate [27]

j(0 ≤ τ ≤ τv) = η(1 − η)e
α
β [cos(βτ)−1] (72)

at times without vaccination, and

j(τ ≥ τv) = η(1 − η) exp
{ α

β
[cos(βτ)− 1] +

1 − e−b0(τ−τv)

b0
− (1 + b0)(τ − τv)

}
(73)

at later times. In Figure 4a, we show the rate of new infections (72)–(73) in the case α = 0.8
and β = 0.5 for several values of the starting time of vaccinations τv and the vaccination
rate b0 = 0.2. We also compare, in each case, the analytical approximations with the exact
rates of new infections from solving the SIRV equations numerically.
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Figure 4. (a) Perfect agreement between the analytical solutions (72) and (73) (colored) with the
numerical solutions (black) for different values of τv = 1, 5, 10, 20, 30 (see figure legends) at α = 0.8,
β = 0.5, b0 = 0.2, and η = 10−5. For times τ < τv, the analytical solution is insensitive to τv,
and branches from this curve at τ = τv. The vertical black lines are at τ = τv (dashed) and τ = 2π/β

(solid), and τ = τv + b−1
0 (dot-dashed). (b) Corresponding cumulative J(τ). Numerical solution

(black) together with the analytical Equations (74) and (89)–(90) (colored).

For the corresponding cumulative fractions, one finds [27]

J(τ ≤ τv) = η + η(1 − η)e−
α
β

[
τ I0

(
α

β

)
+ 2

∞

∑
n=1

In(
α
β )

nβ
sin(nβτ)

]
(74)

in terms of an infinite series of the modified Bessel function of the first kind In(z), and

J(τ ≥ τv) = η + η(1 − η)e−
α
β

{
M(τ) + τv I0(

α

β
) + 2

∞

∑
n=1

In(
α
β )

nβ
sin(nβτv)

}
, (75)

with the integral

M(τ) =
∫ τ

τv
dx e

α
β cos(βx)−(1+b0)(x−τv)+

1−e−b0(x−τv)
b0 =

∫ τ−τv

0
dy e

α
β cos[β(y+τv)]+g(y), (76)

where we substituted y = x − τ and introduced the function

g(y) =
1 − e−b0y

b0
− (1 + b0)y. (77)

This function (77) has the following asymptotic behaviors for small and large values of b0y,
i.e.,

g(y) ≃
{

−b0y(1 + y
2 ), for y ≪ b−1

0 ,
1
b0
− (1 + b0)y, for y ≫ b−1

0 .
(78)

In the following, we therefore approximate the function (77) as g(y) ≃ gA(y) with

gA(y) = −b0y
(

1 +
y
2

)
Θ
[
b−1

0 − y
]
+

[
1

2b0
− (1 + b0)y]Θ[y − b−1

0

]
. (79)
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With this approximation, we calculate the integral (76). For values of τ ≤ τv + b−1
0 we

obtain

M(τ − τv ≤ b−1
0 ) ≃

∫ τ−τv

0
dye

α
β cos[β(y+τv)]−b0y(1+ y

2 )

=
∫ τ−τv

0
dy

[
I0

(
α

β

)
+2

∞

∑
n=1

In

(
α

β

)
cos[nβ(y+τv)]

]
e−b0y(1+ y

2 )

=

√
π

2b0
e

b0
2

{
I0

(
α

β

)[
erf

(√
b0

2
(τ−τv+1)

)
− erf

√
b0

2

]

+2
∞

∑
n=1

In

(
α

β

)
e−

n2β2
2b0 Wn(τ)

}
, (80)

with

Wn(τ) =

√
2b0

π
e−b0/2e

n2β2
2b0

∫ τ−τv

0
dy cos[nβ(y + τv)]e−b0y(1+ y

2 )

= ℜ
[

eınβ(τv−1)

[
erf

(√
b0

2
(τ−τv + 1)− ınβ√

2b0

)
−erf

(√
b0

2
− ınβ√

2b0

)]]
(81)

in terms of error functions with complex arguments. The real part in Equation (81) is
calculated in detail in Appendix A, providing

Wn(τ) = cos[nβ(τv − 1)]

[
erf

(√
b0

2
(τ − τv + 1)

)
− erf

√
b0

2

]

+
e−

b0
2 (τ−τv+1)2

π
√

2b0(τ − τv + 1)
{cos[nβ(τv − 1)]− cos nβτ}

− e−
b0
2

π
√

2b0
{cos[nβ(τv − 1)]− cos nβτv}

+
2e−

b0
2 (τ−τv+1)2

π

∞

∑
m=1

e−
m2
4 An,m(τ)

m2 + 2b0(τ − τv + 1)2

−2e−
b0
2

π

∞

∑
m=1

e−
m2
4 Bn,m(τ)

m2 + 2b0
(82)

with

An,m(τ) =
√

2b0(τ − τv + 1)
[

cos[nβ(τv − 1)]− cosh
(

mnβ√
2b0

)
cos nβτ

]
,

+m sinh
(

mnβ√
2b0

)
sin nβτ, (83)

Bn,m(τ) =
√

2b0

[
cos[nβ(τv − 1)]− cosh

(
mnβ√

2b0

)
cos nβτv

]
+m sinh

(
mnβ√

2b0

)
sin nβτv. (84)
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Likewise, in the alternative case τ ≥ τv + b−1
0 , we find

M(τ − τv ≥ b−1
0 ) ≃

∫ b−1
0

0
dy e

α
β cos[β(y+τv)]−b0y(1+ y

2 )

+e
1

2b0

∫ τ−τv

b−1
0

dy e
α
β cos[β(y+τv)]−(1+b0)y

= e
1

2b0

∫ τ−τv

b−1
0

dy

[
I0

(
α

β

)
+2

∞

∑
n=1

In

(
α

β

)
ℜeınβ(y+τv)

]
e−(1+b0)y

+

√
π

2b0
e

b0
2

{
I0

(
α

β

)[
erf

(√
b0

2
(1 + b−1

0 )

)
− erf

√
b0

2

]

+2
∞

∑
n=1

In

(
α

β

)
e−

n2β2
2b0 Wn

(
τv + b−1

0

)}
. (85)

The remaining integrals can be evaluated with the help of

∫ τ−τv

b−1
0

dye−(1+b0)y =
e−

1+b0
b0 − e−(1+b0)(τ−τv)

1 + b0
, (86)

and

ℜ
∫ τ−τv

b−1
0

dy eınβ(y+τv)−(1+b0)y =

1
n2β2 + (1 + b0)2

[(
nβ sin nβτ − (1 + b0) cos nβτ

)
e−(1+b0)(τ−τv)

−
(

nβ sin nβ(τv + b−1
0 )− (1 + b0) cos nβ(τv + b−1

0 )
)

e−
1+b0

b0

]
. (87)

Consequently, Equation (85) becomes

M(τ−τv ≥ b−1
0 ) ≃

√
π

2b0
e

b0
2

{
I0

(
α

β

)[
erf

(√
b0

2
(

1
b0

+ 1)

)
− erf

√
b0

2

]

+2
∞

∑
n=1

In

(
α

β

)
e−

n2β2
2b0 Wn(τv + b−1

0 )

}

+e
1

2b0 I0

(
α

β

)
e−

1+b0
b0 −e−(1+b0)(τ−τv)

1 + b0
+ 2e

1
2b0

∞

∑
n=1

In(
α
β )

n2β2+(1+b0)2 ×[(
nβ sin nβτ − (1 + b0) cos nβτ

)
e−(1+b0)(τ−τv)

−
(
nβ sin[nβ(τv + b−1

0 )]− (1 + b0) cos[nβ(τv + b−1
0 )]

)
e−

1+b0
b0

]
. (88)

For the cumulative fraction (75), we obtain

J(τv ≤ τ ≤ τv + b−1
0 ) = η+η(1−η)e−

α
β ×[

τv I0

(
α

β

)
+M(τ−τv ≤ b−1

0 )+2
∞

∑
n=1

In(
α
β )

nβ
sin(nβτv)

]
, (89)

and

J(τ ≥ τv + b−1
0 ) = η + η(1 − η)e−

α
β ×[

τv I0

(
α

β

)
+ M(τ − τv ≥ b−1

0 ) + 2
∞

∑
n=1

In(
α
β )

nβ
sin(nβτv)

]
, (90)
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by inserting Equation (85) and (88), respectively. Hence, the cumulative fraction after
infinite time is given by

J∞ = η + η(1 − η)e−
α
β

{
τv I0

(
α

β

)
+ 2

∞

∑
n=1

In(
α
β )

nβ
sin(nβτv)

+

√
π

2b0
e

b0
2

[
I0

(
α

β

)[
erf

(√
b0

2
(1 + b−1

0 )

)
− erf

√
b0

2

]

+2
∞

∑
n=1

In

(
α

β

)
e−

n2β2
2b0 Wn(τv + b−1

0 )

]

+e
1

2b0 I0

(
α

β

)
e−

1+b0
b0

1 + b0
+ 2e−

1+2b0
2b0

∞

∑
n=1

In(
α
β )

n2β2 + (1 + b0)2 ×[
(1 + b0) cos[nβ(τv + b−1

0 )]− nβ sin[nβ(τv + b−1
0 )]

]}
, (91)

which is compared in Figure 5 with the numerical values. It is sufficient to evaluate the
sums up to n = m = 50; with this setting, the calculation of a J∞ value lasts only a fraction
of a second.
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Figure 5. J∞ as function of b0 and τv. Remaining parameters as in Figure 4, i.e., α = 0.8, β = 0.5,
and η = 10−5. (a) The numerical result, (b) the analytic result using Equation (91).

7. Summary and Conclusions

The dynamical equations of the susceptible–infected–recovered/removed–vaccinated
(SIRV) epidemic model play an important role in predicting and/or analyzing the temporal
evolution of epidemic outbreaks accounting quantitatively for the influence of vaccination
campaigns. Additional to the time-dependent infection (a(t)) and recovery (µ(t)) rates,
regulating the transitions between the compartments S → I and I → R, respectively,
the time-dependent vaccination (v(t) accounts for the transition between the compartments
S → V of susceptible to vaccinated fractions. Here, apparently for the first time a new
approximate analytical solution is derived for arbitrary and different but given temporal
dependencies of the infection, recovery and vaccination rates, which is valid for all times
after the start of the epidemic for which the cumulative fraction of new infections J(t) ≪ 1
is much less than unity. As vaccination campaigns automatically reduce the rate of new
infections by transferring susceptible persons to vaccinated persons, who then no longer
can get infected, the limit J ≪ 1 is even better fulfilled than in the SIR-epidemic model,
which does not account for vaccinations. The proposed analytical approximation is self-
regulating, as the final analytical expression for the cumulative fraction J∞ after infinite time
allows us to check the validity of the original assumption J(t) ≤ J∞ ≪ 1, thus indicating
the allowed range of parameter values describing the temporal dependence of the ratios
k(t) = µ(t)/a(t) and b(t) = v(t)/a(t).

The comparison of the analytical approximation for the temporal dependence of the
rate of new infections J̊(t) = a(t)S(t)I(t), the corresponding cumulative fraction of new in-
fections J(t) = J(t0) +

∫ t
t0

dξ J̊(ξ), and the fraction of vaccinated persons V(t), respectively,
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with the exact numerical solution of the SIRV-equations for two different and interesting
applications proves the accuracy of the analytical approach. These two applications were
not accessible to analytical treatment before. The considered applications include the cases
of stationary ratios with a delayed start of vaccinations, and an oscillating ratio of recovery
to infection rate with a delayed vaccination at constant rate. The excellent agreement of
the analytical approximations with the exact numerical solution of the SIRV-equations for
these two applications proves the accuracy of the analytical approach. In the first case, the
effect of a delayed start of vaccinations on the maximum rate of new infections and on the
final cumulative fraction of infected persons is quantitatively calculated, demonstrating
the importance of an early start of vaccinations during a new epidemic outburst. Moreover,
the new analytical approximation agrees favorably well with the earlier obtained analytical
approximation [1] for the case of stationary ratios between the recovery to infection rate
and the vaccination to infection rate, respectively, implying that the time dependence of
the three rates a(t), µ(t), and v(t) is the same.

This work has calculated approximately the temporal dependence of the rate of new
infections and its corresponding cumulative fraction for a given population size using
the SIRV-epidemic model equations for spatially integrated quantities. No attempt has
been made to include any spatial spread by diffusion. Future work will be concerned with
finding analytical approximations for the more complex set of equations including spatial
diffusion [19,37–43].
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Appendix A. Reduction of the Function Wn(τ)

In order to reduce the function Wn(τ) introduced in Equation (81), we use their
infinite series representation (Equation 7.1.29 in [36]) for the error function with a complex
argument

erf (X + ıY) = erf (X) +
e−X2

2πX
[1 − cos(2XY) + ı sin(2XY)]

+
2
π

e−X2
∞

∑
m=1

[ fm(X, Y) + ıgm(X, Y)]e−
m2
4

m2 + 4X2 , (A1)

with

fm(X, Y) = 2X − 2X cosh(mY) cos(2XY) + m sinh(mY) sin(2XY),

gm(X, Y) = 2X cosh(mY) sin(2XY) + m sinh(mY) cos(2XY) (A2)

and the properties fm(X,−Y) = fm(X, Y) and gm(X,−Y) = −gm(X, Y). After straightfor-
ward but tedious algebra, one obtains for general real values of A, B and C for
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ℜ
[
eıAerf (C − ıB)

]
= cos(A) erf (C) +

e−C2

2πC
[(1 − cos(2BC)) cos A + sin(2BC) sin A]

+
2e−C2

π

∞

∑
m=1

e−
m2
4

m2 + 4C2 [ fm(C, B) cos A + gm(C, B) sin A]

= cos(A) erf (C) +
e−C2

2πC
[cos(A)− cos(A + 2BC)]

+
2e−C2

π

∞

∑
m=1

e−
m2
4

m2 + 4C2 {2C[cos(A)− cosh(mB) cos(A + 2BC)]

+m sinh(mB) sin(A + 2BC)}. (A3)

Applying Equation (A3) to the two error functions in Equation (81) then yields
Equation (82). For A, B, C equally distributed in the range [0, 10], the first term cos(A)erf(C)
in Equation (A3) contributes on average about 97% to the full expression. This feature can
be used to write down a simplified expression for Wn(τ).
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