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Abstract: In the survey Kiryakova: “A Guide to Special Functions in Fractional Calculus” (published
in this same journal in 2021) we proposed an overview of this huge class of special functions, including
the Fox H-functions, the Fox–Wright generalized hypergeometric functions pΨq and a large number
of their representatives. Among these, the Mittag-Leffler-type functions are the most popular and
frequently used in fractional calculus. Naturally, these also include all “Classical Special Functions”
of the class of the Meijer’s G- and pFq-functions, orthogonal polynomials and many elementary
functions. However, it so happened that almost simultaneously with the appearance of the Mittag-
Leffler function, another “fractionalized” variant of the exponential function was introduced by
Le Roy, and in recent years, several authors have extended this special function and mentioned its
applications. Then, we introduced a general class of so-called (multi-index) Le Roy-type functions,
and observed that they fall in an “Extended Class of SF of FC”. This includes the I-functions of Rathie
and, in particular, the H-functions of Inayat-Hussain, studied also by Buschman and Srivastava and
by other authors. These functions initially arose in the theory of the Feynman integrals in statistical
physics, but also include some important special functions that are well known in math, like the
polylogarithms, Riemann Zeta functions, some famous polynomials and number sequences, etc.
The I- and H-functions are introduced by Mellin–Barnes-type integral representations involving
multi-valued fractional order powers of Γ-functions with a lot of singularities that are branch points.
Here, we present briefly some preliminaries on the theory of these functions, and then our ideas and
results as to how the considered Le Roy-type functions can be presented in their terms. Next, we also
introduce Gelfond–Leontiev generalized operators of differentiation and integration for which the Le
Roy-type functions are eigenfunctions. As shown, these “generalized integrations” can be extended
as kinds of generalized operators of fractional integration, and are also compositions of “Le Roy type”
Erdélyi–Kober integrals. A close analogy appears with the Generalized Fractional Calculus with H-
and G-kernel functions, thus leading the way to its further development. Since the theory of the
I- and H-functions still needs clarification of some details, we consider this work as a “Discussion
Survey” and also provide a list of open problems.

Keywords: special functions; Le Roy function; Mittag-Leffler function; extensions of H-functions;
fractional calculus; eigenfunctions

MSC: 30D20; 33E20; 33E12; 30D15; 26A33; 34L10

1. Introduction

“Special functions are particular mathematical functions that have more or less estab-
lished names and notations due to their importance in mathematical analysis, functional
analysis, geometry, physics, or other applications. The term is defined by consensus, and thus
lacks a general formal definition, but the list of mathematical functions contains functions
that are commonly accepted as special . . . ” (see more, in https://en.wikipedia.org/wiki/
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Special_functions, accessed on 16 December 2023). Almost by the end of the 20th century,
under terms such as “Higher Transcendental Functions”, “Special Functions of Mathematical
Physics” or “Named Special functions”, scientists had in mind these appearing as solutions
of differential equations of integer order (usually 2nd order) or as integrals of elementary
functions. One can briefly refer to the variety of all these, like the Bessel and cylindri-
cal functions; the Gauss, Kummer, Tricomi, confluent and generalized hypergeometric
functions; the classical orthogonal polynomials (such as Laguerre, Jacobi, Gegenbauer,
Legendre, Tchebisheff, Hermite, etc.); the incomplete Gamma and Beta functions; the Error
functions; and the Airy, Whittaker, etc., functions. Their definitions, properties and tables
have appeared in many basic handbooks on the topic of that era, but we just give a quick
mention here to the three-volume Bateman project [1] (planned by Bateman as “A Guide to
the Mathematical Functions” but edited posthumously by his collaborators).

In the 1970–1980s, fractional calculus (FC: calculus where the operators of differentiation
and integration can be of arbitrary, i.e., “fractional”, order) enjoyed a revival and fast
development as not only an exotic mathematical theory but also due to its acknowledged
useful applications in mathematical models of various processes and phenomena of the
real physical and social world. Thus, the solutions of differential and integral equations of
(arbitrary) fractional order became unavoidable tools. Incorporating the “classical” special
functions but also much more general ones, the class of so-called “Special Functions of
Fractional Calculus” (SF of FC) has been extensively investigated, and is a topic of many
modern books (such as [2–8], and so on) and a huge number of surveys and articles. One
of these works is our survey, Kiryakova: “A Guide to Special Functions in Fractional Calculus”
(published in this same journal in 2021) whose title is borrowed by Bateman’s plans for
the project, appearing as [1]. As the main representatives of such functions, we consider
the Fox H-functions and the Fox–Wright generalized hypergeometric functions pΨq, which are
extensions of Meijer’s G- and pFq-functions and of other “classical” ones. There is a very
long list of such functions, among which those named after Mittag-Leffler are the most popular
and often used in FC. In the mentioned survey [9], we present an attempt to overview the
definitions, some properties and applications, and the works dedicated to these SF of FC.

However, many other special functions that have not up to now been mentioned
under the scheme of “SF of FC” also appear to be important in the analysis, number
theory, statistics and various branches of applied mathematics and physics. Here, we
pay attention to the so-called I-functions of Rathie [10], and to their specifications, the
H-functions of Inayat-Hussain [11], see also Buschman and Srivastava [12]. These functions
were introduced long ago (at the end of the 20th century) but were somehow neglected
since they looked too complicated or artificial. However, they have appeared in the theory
of the Feynman integrals in statistical physics, the partition of the Gaussian model, etc., and
it so happens that some well-known SF are their particular cases, like the polylogarithms,
Riemann Zeta functions and others.

In recent years, a new direction in the theory of SF has appeared to extend the Le Roy
functions. While studying a general class of the so-called Le Roy-type functions, the authors of
this paper observed that these functions can fall in an “Extended Class of SF of FC”, and after
our publications on the analytical properties of the Le Roy-type functions as important
entire functions ([13–16]), here, we present some ideas about their relations to the I- and
H-functions and their role for the further development of Generalized Fractional Calculus.

As the theory of the I- and H-functions still needs some clarifications and further
development, and in view of the appearing multi-valued fractional order powers of Γ-
functions with a lot of singularities that are branch points, we consider this work to be a
“Discussion Survey” and also discuss a list of Open Problems.

2. Preliminary Definitions

From the Bateman Project [1] (Vol.1, p.49): “. . . Of all integrals which contain Gamma
functions in their integrands the most important ones are the so-called Mellin-Barnes
integrals. Such integrals were first introduced by S. Pincherle ([17], 1888); their theory has
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been developed in 1910 by H. Mellin . . . and they were used for a complete integration of
the hypergeometric differential equation by E.W. Barnes, 1908.” See Mainardi–Pagnini [18].

Definition 1 (Ch. Fox [19], 1961; see books such as [3,4,6–8,20], etc.). The generalized
hypergeometric function, defined by means of the Mellin–Barnes-type contour integral in the
complex plane:

Hm,n
p,q

[
z
∣∣∣∣ (ai, Ai)

p
1

(bj, Bj)
q
1

]
=

1
2πi

∫
L

Hm,n
p,q (s) z−sds, z ̸= 0,

with Hm,n
p,q (s)=

m
∏
j=1

Γ(bj+Bjs)
n
∏
i=1

Γ(1−ai−Ais)

q
∏

j=m+1
Γ(1−bj−Bjs)

p
∏

i=n+1
Γ(ai+Ais)

, (1)

is known as the Fox H-function. The orders (m, n, p, q) are non-negative integers so that 0 ≤ m ≤ q,
0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive, and ai, bj, i = 1, . . . , p; j = 1, . . . , q
are arbitrary complexes such that Ai(bj+l) ̸= Bj(ai−l′−1), l, l′ = 0, 1, 2, . . . ; i = 1, . . . , n; j =
1, . . . , m, and so, the poles of the Gamma functions in the numerator do not coincide. The single-
valued branch of z−s is chosen as z−s = exp[−s{log |z| + i arg z}], |arg z| < π. Note that
L is an infinite contour that separates all the poles of Γ(bj + Bjs) to the left and all the poles of
Γ(1− ai − Ais) to the right of L, and can be one of the three following variants, as described, e.g., in
the book by Kilbas–Saigo [3]:

(i) L = L−∞ is a left loop placed in the horizontal strip starting at the point −∞ + iφ1 and
terminating at the point −∞ + iφ2 with −∞ < φ1 < φ2 < +∞.

(ii) L = L+∞ is a right loop placed in the horizontal strip starting at the point +∞ + iφ1
and terminating at the point +∞ + iφ2 with −∞ < φ1 < φ2 < +∞.

(iii) L = Lic∞ is a contour that starts at the point c − i∞ and terminates at the point c + i∞,
with a suitable abscissa c ∈ (−∞,+∞). Often, it is also denoted as L = (c − i∞, c + i∞).

Note that when the Mellin transform of the H-function exists (see Th.2.2 in [3]), it is equal to
the integrand Hm,n

p,q (s). Moreover, in some books and other works, the term z−s in (1) is taken to be
zs (then the orientation of the contours is changed).

The following parameters are used to characterize the behavior and the properties of
the H-function:

R =
p

∏
i=1

A−Ai
i

q
∏
j=1

B
Bj
j ; ∆ =

q
∑

j=1
Bj −

p
∑

i=1
Ai; δ = m + n − p+q

2 ,

µ =
q
∑

j=1
bj −

p
∑

i=1
ai +

p−q
2 ; a∗ =

n
∑

i=1
Ai −

p
∑

i=n+1
Ai +

m
∑

j=1
Bj −

q
∑

j=m+1
Bj.

(2)

Depending on these, the H-function can be a function analytic in the disks |z| < R or
|z| > R, in some angular sectors or in the whole complex plane. For more details on the
properties of the Fox H-functions, the reader can consult the above-mentioned and other
contemporary handbooks on special functions and their applications.

It is important to know about the behavior of the H-function around the singular
points. This matter is rather complicated and, especially when there is a third singular
point on the circle of convergence (|z| = R), there are known results only in some particular
cases. For more information, the reader can see the work of Karp [21], which comments on
and revisits the old, basic results of Braaksma [22].

The so-called Meijer G-function (C.S. Meijer [23], 1936–1941, etc.) is a simpler and more
popular case of the H-function (1) when Ai =Bj =1, i = 1, . . . , p; j = 1, . . . , q, and details
on its definition, properties and examples appeared in [1] (Vol.1, Ch.5), as well as in the
above-mentioned books:
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Gm,n
p,q

[
z
∣∣∣∣ (ai)

p
1

(bj)
q
1

]
=

1
2πi

∫
L

Gm,n
p,q (s) zsds

=
1

2πi

∫
L

m
∏
j=1

Γ(bj − s)
n
∏
i=1

Γ(1 − ai + s)

q
∏

j=m+1
Γ(1 − bj + s)

p
∏

i=n+1
Γ(ai − s)

zsds, z ̸= 0. (3)

(Hereafter, we prefer denotations by zs instead of z−s, as this is more conventional, which
only yields a change in the orientation of contours.) The values of the characteristic
parameters in (2) for the G-function reduce as follows: R = 1, ∆ = q − p, δ = m + n − p+q

2 ,
and its behavior depends on them. The G-function is simpler than the H-function but yet
is general enough and incorporates most of the Classical Special Functions (known also
as Named SF, SF of Mathematical Physics), many orthogonal polynomials and elementary
functions. Long lists of examples can be found, e.g., in [1] (Vol.1), [20] (Appendix C)
and other recent books.

The following generalized hypergeometric function was introduced and studied by
Sir Edward Maitland (E.-M.) Wright in series of his works such as [24,25], etc., 1933–1940,
see also Fox [26]. It is an example of a H-function that in general (unless ∀Aj, Bk are integer
or rational) does not reduce to a G-function.

Definition 2 (see, e.g., [2,7], [20] (Appendix E), etc.). The Wright generalized hypergeometric
function pΨq(z), also called the Fox–Wright function, is defined by the power series:

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = ∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

zk

k!
, (4)

but is representable also as a H-function:

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣z] = H1,p
p,q+1

[
−z
∣∣∣∣ (1 − a1, A1), . . . , (1 − ap, Ap)
(0, 1), (1 − b1, B1), . . . , (1 − bq, Bq)

]
. (5)

According to the denotations for the corresponding parameters (2), the power series (4) defines
an entire function of z if ∆ > −1; it is absolutely convergent in the disk {|z|< R} for ∆ = −1,
and the same holds for |z|= R if Re (µ)> 1/2. Aside from the numerous handbooks on SF, the
details are summarized in Gorenflo–Luchko–Mainardi [27].

The Wright g.h.f. reduces to the more popular generalized hypergeometric pFq-function,
and thus to a Meijer G-function (3), when A1 = . . . = Ap = 1, B1 = . . . = Bq = 1:

pΨq

[
(a1, 1), . . . , (ap, 1)
(b1, 1), . . . , (bq, 1)

∣∣∣∣z] = c
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!

= c · pFq(a1, . . . , ap; b1, . . . , bq; z) = G1,p
p,q+1

[
−z
∣∣∣∣ 1 − a1, . . . , 1 − ap

0, 1 − b1, . . . , 1 − bq

]
; (6)

where c =

[
p

∏
i=1

Γ(ai) /
q

∏
j=1

Γ(bj)

]
, (a)0 = 1, (a)k = a(a+ 1) . . . (a+ k− 1) = Γ(a+ k)/Γ(a).

Here, it is pertinent to mention that the identity (a)k = Γ(a + k)/Γ(a) holds true only if
(a + k) ̸= −1,−2, . . . .

Details on the theory and examples of the pFq-functions can be found in the old sources
such as [1] (Vol.1, Ch.4). Series (6) converges for all finite z if p ≤ q; for |z| < 1 if p = q + 1;
and diverges for z ̸= 0 if p > q + 1. The simplest (lowest indices) particular cases are
the Gauss hypergeometric function 2F1, the Kummer (confluent hypergeometric) function
1F1 and the Bessel type functions 0F1. Corresponding to these three possible cases for the
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orders p and q, in Kiryakova [20] (Ch.4), see also [9] (Sect.8, Th.7–Th8), we suggested a
classification of the pFq and pΨq functions in three basic groups of SF.

Since in the next sections we often explore the Mittag-Leffler function Eα (introduced
in [28]) and its extensions, let us briefly give a reminder of some definitions.

The Mittag-Leffler (M-L) functions Eα,β (with two indices) are defined by the power
series (details in [2,29–31], etc. )

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0; for β = 1 : Eα(z) =

∞

∑
k=0

zk

Γ(αk + 1)
. (7)

These are entire functions of order ρ = 1/α and type 1, and are also representable as

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣z] = H1,1
1,2

[
−z
∣∣∣∣ (0, 1)
(1 − β, α)

]
.

A three-parameter variant, usually called a Prabhakar function ([32]; see detailed studies,
e.g., in Garra–Garrappa [33], Giusti et al. [34]), has an additional parameter τ > 0, namely:

Eτ
α,β(z) =

∞

∑
k=0

(τ)k
Γ(αk + β)

zk

k!
=

1
Γ(τ)

· 1Ψ1

[
(τ, 1)
(β, α)

∣∣∣∣z] (8)

=
1

Γ(τ)
H1,1

1,2

[
−z
∣∣∣∣ (1 − τ, 1)
(0, 1), (1 − β, α)

]
,

where (τ)0 = 1, (τ)k = Γ(τ+k)/Γ(τ), k = 1, 2, 3, . . .. denotes the Pochhammer symbol. For
τ = 1, we have the M-L function Eα,β, and if, additionally, β = 1, it is Eα.

The following multi-index extensions of the M-L function (7) (also called the vector
index extension) were introduced by Luchko et al. [35,36] and Kiryakova [37], and studied
extensively in our works such as [38–40], etc.

Let m ≥ 1 be an integer, then by means of the sets of the real “multi-indices”: (α1>0,
α2 > 0, . . . , αm > 0) and (β1, β2, . . . , βm), we define the multi-index Mittag-Leffler function
(multi-M-L f.) as follows:

E(αi),(βi)
(z) := E(m)

(αi),(βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
(9)

= 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣z] = H1,1
1,m+1

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1 − βi, αi)

m
1

]
.

Later, Kilbas–Koroleva–Rogosin [41] studied these functions without the restrictions for all
of the αi (or their real parts) to be obligatorily non-negative.

In [42,43], etc., Paneva-Konovska introduced and studied the (3m)-parametric (multi-
index) Mittag-Leffler–Prabhakar functions, similar to (9) but with an additional set of Prabhakar
parameters (τ1 > 0, . . . , τm > 0):

E(τi),m
(αi), (βi)

(z) =
∞

∑
k=0

(τ1)k . . . (τm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m (10)

= T · mΨ2m−1

 (τ1, 1), . . . , (τm, 1)
(β1, α1), . . . , (βm, αm); (1, 1), . . . , (1, 1)︸ ︷︷ ︸

(m−1)− times

∣∣∣∣∣∣∣z


= T · H1,m
m,2m

[
−z
∣∣∣∣ (1 − τi, 1)m

1
(0, 1)m

1 ; (1 − βi, αi)
m
1

]
, where T =

[
m

∏
i=1

Γ(τi)

]−1

.

These are extensions of both the Prabhakar function (8) and the (2m)-multi-index M-L
functions (9). The Prabhakar function appears for m = 1, while for τ1 = . . . = τm = 1,
these are shown in (9). It is proved that the multi-index M-L-type functions (9) and (10) are
entire functions, and their Mellin transforms are proposed in our joint paper [44].

More details and numerous particular cases of the Mittag-Leffler-type functions
(7)–(10), appearing as very important tools in FC, are provided in our recent survey “A



Mathematics 2024, 12, 319 6 of 39

Guide to Special Functions of Fractional Calculus” [9]. A reminder of some of these special
functions are given again in brief in Section 6.

However, it seems that many other SF, that have not been mentioned as of yet under
the scheme of “SF of FC” (in the sense of Kiryakova [9]), also appear to be important in
the analysis, number theory, statistics and various branches of applied mathematics. Such
examples and other extensions of the Fox H-functions, Meijer G-functions, Fox–Wright
pΨq- and pFq-functions were introduced at the end of the 20th century but were somehow
neglected as they looked too complicated or artificial. Next, we pay attention to the so-called
I-functions of Rathie [10], and to their simpler variants, the H-functions of Inayat-Hussain [11],
see also Buschman and Srivastava [12]. These are further extensions of the classes of the
special functions beyond the cases of the Wright generalized hypergeometric functions (4)
and Fox H-functions (1).

Definition 3. The I-function is defined by a kind of Mellin–Barnes-type contour integral (Rathie [10]):

Im,n
p,q

[
z
∣∣∣∣ (aj, Aj, αj)

p
1

(bk, Bk, βk)
q
1

]
=

1
2πi

∫
L

Im,n
p,q (s) zsds, z ̸= 0, (11)

where I(s) stands for

Im,n
p,q (s) =

m
∏

k=1
Γβk (bk − Bks)

n
∏
j=1

Γαj(1 − aj + Ajs)

q
∏

k=m+1
Γβk (1 − bk + Bks)

p
∏

j=n+1
Γαj(aj − Ajs)

(12)

with the power exponents for the Gamma functions: αj, j = 1, . . . , p and βk, k = 1, . . . , q, that in
general, are not positive integers, and the contours L are discussed below.

Clearly, for non-integer values of these “powers” parameters, the I-function (11) is not
expressible as a H-function, nor as other “classical” special functions.

Most of the denotations and some conditions on the orders and parameters in (11) and
(12) are similar to those used for the H-function. Here, aj, j = 1, . . . , p and bk, k = 1, . . . , q can
also be complex numbers such that no singularity of Γβk (bk − Bks), k = 1, . . . , m coincides
with any singularity of Γαj(1 − aj + Ajs), j = 1, . . . , n. Again, we prefer the definition with
term zs so as to be in agreement with the denotations in the initial works on the topic,
and suppose that zs = exp[s{log |z|+ i arg z}], 0 ≤ arg z < 2π.

In general, for non-integer αj and βk, the mentioned singularities are no longer poles
but are converted to branching points of the multi-valued fractional powers of the Gamma
functions. According to Rathie [10], the corresponding branch cuts should be chosen in a
way so that the path of integration can be one of the three type of contours L:

(a) L starts from c − i∞ and goes to c + i∞, where the real abscissa c is chosen so that
the singularities of Γβk (bk − Bks), k = 1, . . . , m, lie to the right of L, and all singularities of
Γαj(1 − aj + Ajs), j = 1, . . . , n, lie to the left of it;

(b) L is a loop that begins and ends at +∞ and encircles all the singularities of
Γβk (bk − Bks), k = 1, . . . , m, once in the clockwise direction, but none of the singularities of
Γαj(1 − aj + Ajs), j = 1, . . . , n;

(c) L is a loop beginning and ending at −∞ and encircling all the singularities of
Γαj(1 − aj + Ajs), j = 1, . . . , n, once in the anti-clockwise direction, but none of the singu-
larities of Γβk (bk − Bks), k = 1, . . . , m.

Rathie [10] noted that contour (a) can be considered as a particular case of contour (c).
In the case of contour (b), the sign of the function is changed with respect to case (c). When
more than one of the above definitions of L make sense, they lead to the same result.

As in the theory of the Fox H-function, the following values related to the parameters
(analogues of these in (2)) are important to characterize the behavior of the I-function:
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∆ =
m
∑

k=1
βkBk −

q
∑

k=m+1
βkBk +

n
∑

j=1
αj Aj −

p
∑

j=n+1
αj Aj;

µ =
q
∑

k=1
βkBk −

p
∑

j=1
αj Aj;

∇ =
p
∑

j=1
αj[Re (aj)− 1/2]−

q
∑

k=1
βk[Re (bk)− 1/2];

R =
q

∏
k=1

Bβk Bk
k /

p
∏
j=1

A
αj Aj
j .

(13)

In terms of (13), it is proved (Rathie [10]) that: the I-function (11) for contour L defined
by (a), converges when | arg z| < ∆π/2, if ∆ > 0; if | arg z| = ∆π/2, ∆ ≥ 0, the integral
(11) converges absolutely when: (i) µ = 0 if ∇ > 1; (ii) µ ̸= 0, if with s = σ + it, σ and
t real, σ chosen so that for |t| → ∞, we have ∇+ σµ > 1. Otherwise, the integral (11) for
contour L defined by (b) converges for q ≥ 1 and either µ > 0, or µ = 0 inside the disk
|z| < R. Alternatively, the integral (11) for contour L defined by (c) converges when p ≥ 1
and either µ < 0, or µ = 0 if |z| > R.

To determine single-valued branches of the multi-valued Γ-functions to the fractional
powers in (11), one needs to draw suitable branch cuts. The details of such a procedure
were proposed in the recent paper by Rogosin and Dubatovskaya [45] (Sect.3), for a similar
function denoted there as (3.1) by HG, with L taken as a contour of the so-called “Slater”
type ([46], see Marichev [5] (Ch.4)): L+∞ starting at +∞ + iφ2 and finishing at +∞ + iφ1,
with suitable φ1 < φ2. However, in the case of the I-functions, the ideas like in the Slater
theorem for the G-functions (see same place) would need to be expanded when we have
ratios of Γ-functions to arbitrary (fractional) powers.

Definition 4. Another generalization of the H-function, denoted by the symbol H and called
the Inayat-Hussain function ([11]) or bar-H-function, appears as a slightly simpler case of the
I-function:

Hm,n
p,q

[
z

∣∣∣∣∣ (aj, Aj, αj)
n
1 , (aj, Aj, 1)p

n+1
(bk, Bk, 1)m

1 , (bk, Bk, βk)
q
m+1

]

=
1

2πi

i∞∫
−i∞

m
∏

k=1
Γ(bk − Bks)

n
∏
j=1

Γαj(1 − aj + Ajs)

q
∏

k=m+1
Γβk (1 − bk + Bks)

p
∏

j=n+1
Γ(aj − Ajs)

zsds. (14)

Compared to the definition of the I-function, part of the powers of the Γ-functions
are taken to be equal to 1, namely: βk = 1, k = 1, . . . , m and αj = 1, j = n + 1, . . . , p, and
the contour L is chosen to be specifically as of type (a) (the imaginary axis, or if necessary
shifted suitably as (c − i∞,+i∞)). In general (again like the I-function), the H-function
does not reduce to a H-function, unless the additional power parameters in the Gamma
functions are positive integers.

For the bar-H-function (14), the values of the parameters in (13) have corresponding
but similar forms.

Definition 5. A particularly important case with m = 1, n = p (see Inayat-Hussain [11] (27))
corresponds to a kind of generalized hypergeometric function, similar to the Fox–Wright function
(4). This is called the extended Fox–Wright function:

H1,p
p,q+1

[
−z
∣∣∣∣ (1 − aj, 1, αj)

p
1

(0, 1), (1 − bk, 1, βk)
q
1

]
:= pΨq

[
(aj, 1; αj)

p
j=1

(bk, 1; βk)
q
k=1

∣∣∣∣∣z
]
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=

p
∏
j=1

Γαj(aj)

q
∏

k=1
Γβk (bk)

∞

∑
n=0

p
∏
j=1

[
(aj)n

]αj

q
∏

k=1
[(bk)n]

βk

zn

n!
, with (a)0 = 1, (a)n := a(a + 1) . . . (a + n − 1). (15)

In this case, there are substantial simplifications for the parameters (13) characterizing
the behavior of the function (15):

∆ = 1 −
q

∑
k=1

βk +
p

∑
j=1

αj; µ =
q

∑
k=1

βk −
p

∑
j=1

αj; R = 1,

that is, under some conditions (if µ = 0), the function (15) is analytic inside |z| < 1, or out-
side it; compare with the discussions in Inayat-Hussain [11], Rathie [10] and Saxena [47].

However, we go further, and introduce an even more general extension of the Fox–
Wright function that we do need and use in our studies.

Definition 6. We define the Generalized Fox–Wright function:

pΨ̃q

[
(aj, Aj, αj)

p
j=1

(bk, Bk, βk)
q
k=1

∣∣∣∣∣z
]

:= H1,p
p,q+1

[
−z
∣∣∣∣ (1 − aj, Aj, αj)

p
1

(0, 1), (1 − bk, Bk, βk)
q
1

]
, (16)

with arbitrary positive parameters Aj, Bk as in the “classical” case (4) (instead of these taken to be 1
in (15)) but again with “fractional” power parameters αj > 0, βk > 0.

Next, for this pΨ̃q-function, the characteristic parameters (13) take the form:

µ = 1 +
q
∑

k=1
βkBk −

p
∑

j=1
αj Aj;

R =
q

∏
k=1

Bβk Bk
k /

p
∏
j=1

A
αj Aj
j (the radius of analycity, if µ = 0).

(17)

We observe (see next Section 4) that these generalized Fox–Wright functions, under
suitable conditions for the singularities of the Gamma functions, sound very similar to
the Le Roy-type functions, including the general multi-index case of the Fm-function (see
Section 3, Definition 7), introduced and studied in our recent works [13–15], and of course,
the original Le Roy function.

To this end, we need to compare the corresponding Mellin–Barnes (M-B)-type integrals
(14) for the H-functions with the M-B-type representations for the Le Roy functions (from
our above-mentioned works), but also to compare the corresponding power series and
their behaviors.

First, we provide a reminder of a general result for the “computational“ representation
of some specific cases of the I-function and H-function in the form of power series. Such a
representation for an I-function with ∀βk = 1, k = 1, . . . , m (named bar-I-function), and
when all the poles of Γ(bk − Bks), k = 1, . . . , m are simple, can be found in Rathie [10] (6.8),
and, resp., in Saxena [47] (3.1), where some techniques resembling the residue theorem
are used. In the simpler case of the bar-H-function, when it is supposed additionally that
∀αj = 1, j = n + 1, . . . , p (see definition (14)), we can cite the following result.

Theorem 1. The function Hm,n
p,q (z) can be represented by means of the power series ([10,47]):

Hm,n
p,q (z) =

∞

∑
r=0

m

∑
h=1

n
∏
j=1

Γαj(1 − aj + Ajξ)

p
∏

j=n+1
Γ1(aj − Ajξ)

·

m
∏

k=1, k ̸=h
Γ1(bk − Bkξ)

q
∏

k=m+1
Γβk (1 − bk + Bkξ)

· (−1)rzξ

Bh r!
. (18)
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Here, for shortness, ξ := bh + r/Bh. Series (18) exists for: 0 < |z| < ∞ if q ≥ 1 and µ > 0; or
for 0 < |z| < R if µ = 0, supposing that βk(Bh + ν1) ̸= βh(Bk + ν2) for k ̸= h; k, h = 1, . . . , m;
ν1, ν2 = 0, 1, 2, . . . .

One can observe an evident analogy of (18) with the power series representation for
the Fox H-function from the handbooks, such as: [7] (§8.3.2: 3. and 4.), [4], etc.

Then, as a particular case, we can derive a series representation for the generalized Fox–
Wright function (16), introduced here. Below, we deliberately add “stars” to the denotations
of parameters and change some summation indices (r → k, but k → i) so as to distinguish
these from the other traditional notations we use in the next sections, as previously adopted
in several of the oldest and some recent works on Mittag-Leffler and Le Roy-type functions.

Theorem 2. For the generalized Fox–Wright function pΨ̃q we have: m = 1, n = p, and assume

parameters b∗0 = 0, B∗
0 = 1, β∗

0 = 1 (taken as the first ones of the q + 1 parameters in the H1,p
p,q+1-

function below). Then, ξ := b∗0 + k/B∗
0 = k, and (−1)kzξ = (−z)k. Thus, from (18), we obtain

the power series representation for (16):

pΨ̃q

[
(a∗j , A∗

j ; α∗j )
p
j=1

(b∗i , B∗
i ; β∗

i )
q
i=1

∣∣∣∣∣z
]
= H1,p

p,q+1

[
−z

∣∣∣∣∣ (1 − a∗j , A∗
j , α∗j )

p
1

(0, 1), (1 − b∗i , B∗
i , β∗

i )
q
1

]

=
∞

∑
k=0

p
∏
j=1

Γα∗j (A∗
j k + a∗j )

q
∏
i=1

Γβ∗i (B∗
i k + b∗i )

· zk

k!
. (19)

The characteristic parameters (13) are written now as:

µ = 1 +
q

∑
i=1

β∗
i B∗

i −
p

∑
j=1

α∗j A∗
j , R =

q

∏
i=1

(B∗
i )

β∗i B∗
i /

p

∏
j=1

(A∗
j )

α∗j A∗
j .

Series (19) defines an entire function (that is, absolutely convergent for all 0 < |z| < ∞) if µ > 0
(the other condition for the H-function, here: q + 1 ≥ 1, is satisfied ad hoc), or analytical one in
0 < |z| < R if µ = 0.

Observe the close analogy with the series representation (4) for the Fox–Wright function.
Here, following the discussions after Definitions 3 and 4, suitable cuts are to be inserted in
C so as to fix single-valued branches for zk and for the included multi-valued fractional
powers of the Γ-functions.

3. Multi-Index M-L-P Functions of Le Roy Type as III- and H̄HH-Functions

The special function F(γ), defined in the whole complex plane C by the power series

F(γ)(z) =
∞

∑
k=0

zk

[k!]γ
=

∞

∑
k=0

zk

[Γ(k + 1)]γ
, z ∈ C, γ > 0, (20)

is known as the Le Roy function. It was introduced by the French mathematician Le
Roy [48,49] who used it to study the asymptotics of the analytic continuation of the sum
of power series. His idea and goals were similar to those of the Swedish mathematician
Mittag-Leffler when introducing the function (7) in [28]. The Mittag-Leffler function is now
very popular, and often called the Queen function of Fractional Calculus, see [2], also [50],

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C, α > 0, β ∈ C.

It is also known as the “fractional” exponential function due to the “fractional” parameter
α in the Γ-function replacing the factorial k! in the exponential series, while, for (20), it
emphasizes that the “fractional” index γ > 0 appears as the power of the factorial k!
(further extended to a Γ-function or to several Γ-functions).
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In recent years, several studies appeared to revitalize the interest in (20) via its ex-
tensions and useful applications in various areas. It is important to mention that even
in the simple case γ = 1/2, the Le Roy function (20) appeared as R(z) in a study by
Kolokoltsov [51] in quantum stochastics and particle systems. As he himself commented,
“the function R(z) plays the same role for stochastic equations as the exponential function
and Mittag-Leffler functions for deterministic equations”.

Among its generalizations, as a starting point, we mention the Mittag-Leffler function of
Le Roy-type (MLR-function) as an extension of both the Le Roy and Mittag-Leffler functions:

F(γ)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]γ
, α > 0, β > 0, γ > 0. (21)

It was introduced by Gerhold [52] and Garra and Polito [53], and studied further by
Garrappa–Rogosin–Mainardi [54] and Garra–Orsingher–Polito [55], and then also by
Gorska–Horzela [56], Simon [57], Mehrez–Das [58] and Mehrez [59]. In [55], it is mentioned
that the Le Roy-type functions (21) are used in probability in the context of the studies of
COM-Poisson distributions (in the sense of Conway and Maxwell), which are special classes
of weighted Poisson distributions. It is shown that as a first probabilistic application, these
functions can also be useful in the construction of a new generalization of the COM-Poisson
distribution that can be interesting for statistical applications and in physics in the case of
generalized coherent states.

Next, a multi-index analogue of (21), inspired by the multi-index Mittag-Leffler func-
tions (9) (Kiryakova [38–40]; Luchko et al. [35,60]), was considered by Rogosin and Duba-
tovskaya [45,61] with αi > 0, βi > 0, γi > 0 (and also under more general conditions):

F(γ)m
(α,β)m

(z) =
∞

∑
k=0

zk

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm . (22)

The following Le Roy-type analogue of the Prabhakar (three-parameter Mittag-Leffler)
function (8), that we call the Prabhakar function of Le Roy type, was introduced by Tomovski
and Mehrez [62], and studied by Paneva-Konovska [15]:

F(γ)
α, β; τ(z) =

∞

∑
k=0

(τ)k

[Γ(αk + β)]γ
zk

k!
, where (τ)k =

Γ(τ + k)
Γ(τ)

, τ > 0. (23)

Further, in our recent works [13,14,16], we introduced and studied a very general Le
Roy-type special function, as a multi-index analogue of the previously mentioned functions.

Definition 7. The function, called the multi-index Mittag-Leffler–Prabhakar function of Le Roy-
type (abbrev. as multi-MLPR), is defined by taking 4m parameters αi, βi, τi, γi, i = 1, . . . , m:

Fm(z) := Fγi ; m
αi ;βi ; τi

(z)

=
∞

∑
k=0

(τ1)k . . . (τm)k

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm · zk

(k!)m (24)

=
1

m
∏
i=1

Γ(τi)
·

∞

∑
k=0

m
∏
i=1

Γ(1.k + τi)

Γm−1(1.k + 1)
m
∏
i=1

Γγi (αi.k + βi)
· zk

k!
(25)

=
∞

∑
k=0

ck zk, with ck =
m

∏
i=1

{
Γ(k + τi)

Γ(k + 1)
· 1

Γ(τi)
· 1
[Γ(αik + βi)]

γi

}
.

Note that in (25), we replaced part of the m factorials from (24) with (k!)m−1 = Γm−1(1.k + 1).

In view of the applications of such kinds of functions and of their particular cases,
here we consider only real positive parameters:

αi > 0, βi > 0, γi > 0, τi > 0, ∀i = 1, . . . , m ⇒ condition
m

∑
i=1

αiγi > 0. (26)
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In [13] (Th.2), we proved that under these conditions, the Fm-function (24) is an entire
function of order ρ and type σ, with, respectively:

ρ =
1

α1γ1 + . . . + αmγm
, σ =

1
ρ

(
m

∏
i=1

(αi)
−αiγi

)ρ

. (27)

The values of ρ and σ were also specified for more general requirements on the parame-
ters, like

αi, βi, γi, τi ∈ C, Re (αi) > 0, Re (γi) > 0, and
m

∑
i=1

Re (αiγi) > 0.

Results for the analytical properties of the multi-MLPR functions (24) are pub-
lished in our recent works [13,14,16], including Mellin–Barnes-type contour integral
representations, images under Laplace transform and Erdélyi–Kober operators of frac-
tional integration, etc. For the case of the functions (22), see the corresponding results
of Rogosin–Dubatovskaya [45,61].

Next, we develop the idea that the Fm-function, and the other mentioned Le Roy-type
functions, can be represented in terms of some special functions generalizing the Fox
H-function and the Fox–Wright function pΨq, namely, as some I-, H- and pΨ̃q-functions.
The following result is derived with a short sketch of the details. For shortness, we further

denote T :=
m
∏
i=1

1/Γ(τi).

Theorem 3. Under the assumptions (26), the multi-index Mittag-Leffler–Prabhakar function of Le
Roy type (24) can be represented in terms of the generalized Fox–Wright function (16), and thus,
also as I-function (11) and H-function (14). Namely,

Fm(z) := Fγi ; m
αi ;βi ; τi

(z)

= T · mΨ̃2m−1

[
(τi, 1, 1)m

1
(1, 1, 1)(m−1)−times , (βi, αi, γi)

m
1

∣∣∣∣z] (28)

= T · H1,m
m,2m

[
− z
∣∣∣∣ (1 − τi, 1, 1)m

1
(0, 1)m−times , (1 − βi, αi, γi)

m
1

]
(29)

= T · I1,m
m,2m

[
− z
∣∣∣∣ (1 − τi, 1, 1)m

1
(0, 1, 1)m−times , (1 − βi, αi, γi)

m
1

]
. (30)

Proof. For the power series representation (24) of the function Fm, we apply Theorem 2.
Here, p = m, q = 2m − 1 and we use the sets of parameters denoted as follows:

a∗j = τj, A∗
j = 1, α∗j = 1, j = 1, . . . , m; bi∗ = 1, B∗

i = 1, β∗
i = 1, i = 1, . . . , m − 1;

bi+m−1∗ = βi, B∗
i+m−1 = αi, β∗

i+m−1 = γi, i = 1, . . . , m.

In the case of the Fm-function, for the related H- and I-functions, we have the con-
ditions of existence (13) satisfied, namely: q + 1 = 2m ≥ 1, and the other characteristic

parameter is: µ = 1 + (m − 1) +
m
∑

i=1
αiγi − m =

m
∑

i=1
αiγi > 0, according to the assumed con-

ditions (26). This allows us to conclude from Theorem 2 that (28)–(30) are entire functions
of z in the complex plane.

For the definition of the H-function (29), and, resp., of the I-function (30), as was
mentioned before, the path of integration can be either a shifted imaginary axis L =
(c − i∞, c + i∞) or a “Slater”-type contour L+∞ starting at +∞ + iφ2 and finishing at
+∞ + iφ1, with suitable φ1 < φ2 (following the ideas from Marichev [5] (Ch.4), Rogosin–
Dubatovskaya [45]). It is supposed that these contours are chosen not to cross the branch
cuts and to separate the singularities of the Gamma functions in the numerator of the
corresponding integrals.
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Indeed, let us analyze the singularities of the involved Gamma functions in the
representation of (29):

Fm(z) = T · H1,m
m,2m

[
− z
∣∣∣∣ (1 − τi, 1, 1)m

1
(0, 1)m−times , (1 − βi, αi, γi)

m
1

]

=
T

2πi

∫
L

Γ1(1 − s) ·
m
∏
i=1

Γ1(τi + s)

Γm−1(1 + s) ·
m
∏
i=1

Γγi (βi + αis)
zsds.

The poles of Γ(1 − s) are sl = 1 + l, l = 0, 1, 2, . . .; therefore, it has no singularities
for s < 1. The functions Γ(τi + s) have poles at sik = −τi − k, k = 0, 1, 2, . . ., and have no
singularities for s > −m0, where m0 := min{τ1, . . . , τm}. Then, the Gamma functions in
the numerator have no singularities for s ∈ (−m0, 1).

The poles of the (m − 1) functions Γ(1 + s) are sl = −1 − l, l = 0, 1, 2, . . ., i.e.,
s = −1, −2, −3, . . .. Finally, for the Γγi (βi + αis), i = 1, . . . , m in the denominator, the sin-
gularities appear at sin = − βi

αi
− n

αi
≤ − βi

αi
, n = 0, 1, 2, . . . and so, if we denote m̃0 :=

min{β1/α1, . . . , βm/αm}, there will be no their singularities for s > −m̃0. When the γi
are not integers, to avoid multi-valueness, we need to make a branch cut to the left of
s = −m̃0 < 0.

It is now evident that the vertical strip (c − i∞, c + ∞) with c ∈ (−min(m0, m̃0), 1) is
free of any singularities of the involved Gamma functions. However, to have a contour that
does not intersect the branch cuts to the left of s = −m̃0 < 0 and also to the left of s < 0
(for single values of zs), we can take a contour L = (c∗ − i∞, c∗ + i∞) with c∗ ∈ (0, 1) to
ensure the existence of the bar-H-function in (29), and therefore also for (30).

4. Related “Eigen”-operators for Some Classes of SF: Gelfond–Leontiev Operators and
Operators of FC

In analysis, linear algebra, physics, etc., the notions related to the prefix “Eigen”
(coming from the German word meaning “self” or “own”) play important roles. In short,
an eigenfunction is a function that, when acted on by an operator, yields a scalar multiple
of the function itself. The scalar value is called the eigenvalue. The eigenfunctions and
eigenvalues are also important, for example, in quantum mechanics, because they allow us
to describe the behavior of operators in a way that is easy to understand and calculate.

Aside from many other analytical properties of the special functions, and the evalu-
ation of their images under integral transforms and operators of fractional calculus, it is
an important but often still open problem to determine corresponding linear integral L and
differential operators D that transform a function f into itself just multiplied by a scalar,
e.g., D f = λ f . For shortness, here, we call such operators “eigen“-operators (eigenoperators) for
the function f .

It so happens that a useful tool to resolve this (generally open) problem for some
classes of special functions is the notion of Gelfond–Leontiev operators (G-L operators) for
generalized integration and differentiation, introduced in these authors’ work [63] of
1951. Up to this point, we have developed the theory of the G-L operators to propose
corresponding integral and differential operators for which the Mittag-Leffler functions
(7) and their multi-index analogues (9) are eigenfunctions. It appears that these are also
operators of Generalized Fractional Calculus (in the sense of Kiryakova [20]). See, for
example, [20] (Ch.5), [37,38], etc., and survey [64].

Next, our goal is to propose eigenoperators corresponding to the considered Le Roy-type
functions.

4.1. Preliminaries for the Gelfond–Leontiev Operators

We first provide a reminder of some of the basics of the theory of generalized integra-
tion and differentiation, and specifically, the notion of such Gelfond–Leontiev operators.

Consider a function
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f (z) =
∞

∑
k=0

akzk, (31)

analytic in a disk ∆R = {|z| < R} in the complex plane (in particular, it can be the unit disk
with R = 1). Let {bk}∞

k=0 be an arbitrary sequence (multipliers’ sequence) satisfying suitable

conditions and defining another analytic function in the same disk ∆R: b(z) =
∞
∑

k=0
bkzk.

Then, let us define the operator

D{b; f }(z) = (b ◦ f )(z) :=
∞

∑
k=0

akbkzk,

where ◦ denotes the Hadamard product (convolution). If bk → ∞ for k → ∞, we can
consider the operator D{b; f } as a generalized differentiation. For bk ̸= 0, k = 1, 2, . . . ,

the inverse operation, or the convolution with the “reciprocal” function b∗(z) =
∞
∑

k=0
zk/bk,

I{b; f }(z) =
∞

∑
k=0

ak
bk

zk = D{b∗; f }(z)

can be called a generalized integration, see, e.g., Samko–Kilbas–Marichev [65] (§22.3).
Following this idea, the so-called Gelfond–Leontiev operators of generalized integration

and differentiation can be considered, as introduced in [63]. There, the multipliers’ sequences
{bk}∞

k=0 and {1/bk}∞
k=0 are constructed by means of the coefficients of an entire function.

Definition 8. Let us take an entire function

ϕ(λ) =
∞

∑
k=0

ϕkλk

with a growth (order ρ > 0 and type σ ̸= 0) such that lim
k→∞

k
1
ρ k
√
|ϕk| = (σeρ)

1
ρ . In [63], the fol-

lowing operator of generalized differentiation is introduced:

f (z) =
∞

∑
k=0

akzk Dϕ7−→ Dϕ f (z) =
∞

∑
k=1

ak
ϕk−1

ϕk
zk−1, (32)

together with its n-th powers Dn
ϕ, n = 0, 1, 2, . . .. We call the operation (32) a Gelfond–Leontiev (G-

L) operator of generalized differentiation with respect to the function ϕ(λ), and then can introduce
the corresponding G-L operator of generalized integration, defined by

Lϕ f (z) =
∞

∑
k=0

ak
ϕk+1

ϕk
zk+1. (33)

Evidently, DϕLϕ f (z) = f (z).

That is, we take bk =
ϕk−1

ϕk
and 1/bk+1 =

ϕk+1
ϕk

̸= 0. The conditions required for

ϕ(λ) always hold for lim supk→∞. We suppose that there exists lim
k→∞

k

√∣∣∣ ϕk−1
ϕk

∣∣∣ = 1, and

therefore, based on the Cauchy–Hadamard formula, the above-defined series (31)–(33) for
f (z), Dϕ f (z), Lϕ f (z) have the same radius of convergence (in particular, this can be R = 1).

Example 1. For the simplest example we take ϕ(λ) = exp λ, with ϕk = 1/k! = 1/Γ(k + 1), that
is bk = k, k = 0, 1, 2, . . . . Then, the operators (32) and (33) are the differentiation and integration
of 1st order:

D f (z) =
∞

∑
k=1

kak zk−1 =
d
dz

f (z) , L f (z) = D−1 f (z) =
∞

∑
k=0

ak
k + 1

zk+1 =

z∫
0

f (ξ)dξ.
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4.2. G-L Operators Related to M-L Functions and to FC Operators

In classical fractional calculus (FC), the most often-used definition of the integration
of an arbitrary (fractional) order δ ≥ 0 is the Riemann–Liouville (R-L) operator of fractional
integration (left-hand sided), defined by the formula

Iδ f (z) = Iδ
0+ f (z) =

1
Γ(δ)

z∫
0

(z − ξ)δ−1 f (ξ)dξ (34)

=
zδ

Γ(δ)

1∫
0

(1 − σ)δ−1 f (zσ)dσ, I0 f (z) := f (z).

Then, the corresponding R-L fractional derivative, and, resp., the Caputo fractional derivative of
order δ > 0, are defined by compositions of the n-th order casual derivative (n−1<δ≤n,
n ∈ N) and fractional order integral of form (34), taken in the two cases in reverse order:

Dδ f (z) = RLDδ f (z)

:= Dn In−δ f (z) =
(

d
dz

)n
 1

Γ(n − δ)

z∫
0

(z − ξ)n−δ−1 f (ξ)dξ

, (35)

CDδ f (z) := In−δDn f (z) =
1

Γ(n − δ)

z∫
0

(z − ξ)n−δ−1 f (n)(ξ)dξ, D0 f (z) := f (z). (36)

The theory of fractional calculus (FC) based on these (classical) operators is widely pre-
sented in many basic handbooks such as [4,65,66], etc. For its historical development, see
survey [67].

Under these operators of FC, the images of analytic functions f (z) of the form (31) are
as follows:

Iδ f (z) =
∞

∑
k=0

ak
Γ(k + 1)

Γ(k + δ + 1)
zk+δ, Dδ f (z) =

∞

∑
k=0

ak
Γ(k + 1)

Γ(k − δ + 1)
zk−δ. (37)

This suggests that by replacing the multiplier sequences from Example 1 with more general
ones, one can define G-L-type operators corresponding to some special functions.

Example 2. The G-L operator of generalized integration generated by the Mittag-Leffler entire
function ϕ(λ) := Eα,1(λ) = Eα(λ) has the form

Jα f (z) =
∞

∑
k=0

ak
Γ(αk + 1)

Γ(αk + α + 1)
zk+1. (38)

The following result for (38) is given in Samko–Kilbas–Marichev [65] (§22.3):
The G-L operator of generalized integration Jα generated by the entire function Eα(λ) is the

following modification of the R-L integral of order α:

Jα f (z) =
1

Γ(α)

1∫
0

(1 − t)α−1 f (ztα)dt =
z−1

Γ(α)

z∫
0

(
z1/α − ξ1/α

)α−1
f (ξ) d(ξ1/α). (39)

The proof uses the known definition of the Beta-function

Γ(αk + 1)
Γ(αk + α + 1)

=
B(α, αk + 1)

Γ(α)
=

1
Γ(α)

1∫
0

(1 − t)α−1tαkdt.
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This integral representation allows us to extend the definition of the integration operator
(38) from analytic functions f (z) in a disk to continuous functions (and even to integrable
ones), given in a (complex) domain starlike with respect to the origin z = 0.

A more general “classical” operator of fractional integration is the Erdélyi–Kober (E-K)
fractional integral of order δ > 0, with two additional parameters: real “weight” γ and some
β > 0:

Iγ,δ
β f (z) =

z−β(γ+δ)

Γ(δ)

z∫
0

(zβ − ξβ)δ−1ξβγ f (ξ) d(ξβ)

=
1

Γ(δ)

1∫
0

(1 − t)δ−1tγ f (zt1/β) dt =
1∫

0

β(1 − σβ)δ−1 σβγ+β−1

Γ(δ)
f (zσ)dσ (40)

=

1∫
0

H1,0
1,1

[
σ

∣∣∣∣∣ (γ + δ + 1 − 1
β , 1

β )

(γ + 1 − 1
β , 1

β )

]
f (zσ)dσ.

For γ = 0, β = 1, it reduces to the R-L fractional integral, namely: I0,δ
1 f (z) = z−δ Iδ f (z).

The involved additional parameters give more freedom and thus, much wider ap-
plication, see, for example, Sneddon [68] and Kiryakova [20] (Ch.2). The corresponding
Erdélyi–Kober (E-K) fractional derivative is introduced in [20] (Ch.2), (1.6.9) in the form

Dγ,δ
β f (z) = Dη Iγ+δ,η−δ

β f (z),

with η − 1 < δ ≤ η, η ∈ N, and Dη :=
η

∏
j=1

(
1
β

z
d
dz

+ γ + j), a polynomial P(
d
dz

).

Let Ω be a complex domain, starlike with respect to the origin z = 0 (in particular, it can
be a disk |z| < R). We can consider the R-L and E-K fractional integrals, the corresponding
R-L and E-K fractional derivative, and the operators of Generalized FC that are defined in
Section 4.3 in functional spaces of the form

Hµ(Ω) =
{

f (z) = zµ f̃ (z); µ ≥ 0; f̃ ∈ H(Ω)− the space of functions analytic in Ω
}

,

where 0 ≤ arg z < 2π, i.e., with a cut along the positive half-line {Re z ≥ 0, Im z = 0},
or − π ≤ arg z < π, i.e., with a cut along the negative half-line {Re z ≤ 0, Im z = 0},

(41)

so as to avoid multiplicities in members like zµ+k in f (z).
In Kiryakova [20] (Ch.4), [69], etc., it is shown that the E-K operators transform the

pFq- and pΨq-functions into the same kind of functions with increased orders p and q: resp.,
into p+1Fq+1- and p+1Ψq+1-functions. For the Le Roy-type functions (24), the images under
the Erdélyi–Kober (E-K) fractional integration operator (40) are provided in our recent
paper [14], and in particular cases, for the Riemann–Liouville fractional integrals (34) of the
function (22), by Rogosin–Dubatovskaya [45]. Note also that R-L fractional integrals of the
H-function are presented in Srivastava et al. [70].

4.3. G-L Operators for Multi-Index M-L Functions and Generalized FC

To explain the construction of the G-L operators generated by the multi-index M-L
functions (9), we need to introduce briefly the notions of Generalized Fractional Calculus
(GFC) from Kiryakova [20] and other works. Fractional calculus, as an exotic theory of the
differentiation and integration of arbitrary (not-integer) order, arose in the 19th century, and
has nowadays become a hot topic with a very wide scope of application. To read about its
development, the reader can consult, e.g., the survey by Machado–Kiryakova [67]. We need
to pay honor to Kalla [71] who introduced the notion of generalized operators of fractional
integration by using an arbitrary special function as a kernel. Then, he and many other
authors explored kernels such as the Gauss hypergeometric function, the Bessel functions,
the Appell F3-function, and in general, the Fox H-function; for details, see [72]. However,
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the choice of suitable kernels as Gm,0
m,m- and Hm,0

m,m-functions was crucial for the possibility to
develop a detailed and comparatively full theory of GFC [20].

Definition 9. Take an integer (multiplicity) m ≥ 1. By means of the sets of parameters: δδδ =
(δ1 ≥ 0, . . . , δm ≥ 0) as a multi-order of fractional integration, γγγ = (γ1, . . . , γm) as a real multi-
weight and additional multi-parameter βββ = (β1 > 0, . . . , βm > 0), we define the integral operator:

I(γk),(δk)
(βk),m

f (z) =
1∫

0

Hm,0
m,m

[
t

∣∣∣∣∣ (γi + δi + 1 − 1
βi

, 1
βi
)m

i=1
(γi + 1 − 1

βi
, 1

βi
)m

i=1

]
f (zt)dt, if

m

∑
i=1

δi > 0, (42)

and I(γk),(δk)
(βk),m

f (z) = f (z) if δ1 = δ2 = · · · = δm = 0. We call it a multiple (m-tuple) Erdélyi–
Kober fractional integration operator. More generally, all operators of the form

I f (z) = zδ0 I(γk),(δk)
(βk),m

f (z) with δ0 ≥ 0, (43)

are our generalized (m-tuple) fractional integrals of multi-order (δ1 ≥ 0, . . . , δm ≥ 0).

The kernel function in (42) is a suitably chosen case Hm,0
m,m of the Fox H-function (1), and

when ∀βi = β > 0, i = 1, . . . , m, we have slightly simpler generalized fractional integrals
with the kernel as Meijer Gm,0

m,m-function (3), see [20] (Ch.1).

The generalized fractional derivatives D(γk),(δk)
(βk),m

of multi-order (δ1, . . . , δm), correspond-

ing to (42) and (43), are also introduced explicitly, in a way similar to that for Dδ and Dγ,δ
β

but with more complicated differ-integral representations. See [20] and also [73,74].
Here, the operators of GFC are considered in the spaces Hµ(Ω) of analytic functions

with power weights of the form (41). In [20] (Ch.1, Ch.5) and in subsequent works, see,
e.g., survey [73], the properties of these operators of GFC in various other functional
spaces are studied and a full chain of operational rules is proposed, with a wide range of
applications and many particular examples. Here, we mention only the following basic
result for functions analytic in a disk that are useful for our next considerations.

Let the following conditions on the parameters be satisfied: βk(γk + 1) > −µ, δk ≥ 0,
k = 1, . . . , m. Then, the multiple E-K integral (42) maps the class Hµ(Ω) of weighted analytic
functions f (z) into itself. In particular, the images of the functions f (z) analytic in a disk
∆R = {|z| < R}:

f (z) = zµ
∞

∑
k=0

akzk = zµ(a0 + a1z + . . . ) ∈ Hµ(∆R), (44)

have the same form:

I(γk),(δk)
(βk),m

f (z) = zµ
∞

∑
k=0

ak

 m

∏
i=1

Γ(γi +
k+µ

βi
+ 1)

Γ(γi + δi +
k+µ

βi
+ 1)

zk ∈ Hµ(∆R), (45)

with the same radius of convergence R =
{

lim supk→∞
k
√
|ak|
}−1

> 0.
For m = 1, (42) is the “classical” E-K integral (40). A very important property of the

single-integral operators (42) with H-functions kernels (or with Meijer’s G-functions in the
simpler case of equal βi = β > 0, i = 1, . . . , m) is the so-called composition/decomposition
rule: they can also be represented by means of commutative compositions of classical E-K
integrals (m = 1):

I(γk),(δk)
(βk),m

f (z) =

[
m

∏
i=1

Iγi ,δi
βi

]
f (z)

=

1∫
0

. . .
1∫

0

[
m

∏
i=1

(1 − ti)
δi−1tγi

i
Γ(δi)

]
f
(

zt
1

β1
1 . . . σ

1
βm

m

)
dt1 . . . dtm , (46)
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that is, by iterated integrals without special functions involved in the kernel. This explains
the wide and efficient use of the operators of the GFC from [20] because compositions like
(46) often appear in problems related to applications, but their study and evaluation is
based on the simple but effective tools of the theory of the kernel special functions (H- and
G-functions) in definition (42).

Next, let us consider the G-L-type integration and differentiation operators we in-
troduced as generated by the M-L function (7) and by the multi-index M-L function (9).
The series representations for these operators can be analytically continued in the func-
tional spaces Hµ(Ω) as particular cases of the generalized fractional integrals I(γk),(δk)

(βk),m
and

derivatives D(γk),(δk)
(βk),m

of fractional multi-order. We called these operators multiple Dzrbashjan–
Gelfond–Leontiev operators, so as to honor the Armenian mathematician Dzrbashjan, author
of the book [75], one of the most detailed studies of the 20th century on the M-L function (7)
in the complex plane. In [29], he also introduced a 2 × 2 (m = 2) M-L-type function as the
first representative of the multi-index M-L functions (9). Now, we refer to these operators
as G-L operators for the multi-index M-L functions, defined as follows.

Let f (z) be an analytic function in a disk ∆R = {|z| < R} and αi > 0, βi ∈ R, i = 1, . . . , m
be arbitrary parameters. The operators:

f (z) =
∞

∑
k=0

akzk 7−→ D(αi),(βi)
f (z) and L(αi),(βi)

f (z),

constructed as

D(αi),(βi)
f (z) =

∞

∑
k=1

ak
Γ(α1k + β1) . . . Γ(αmk + βm)

Γ(α1(k − 1) + β1) . . . Γ(αm(k − 1) + βm)
zk−1,

L(αi),(βi)
f (z) =

∞

∑
k=0

ak
Γ(α1k + β1) . . . Γ(αmk + βm)

Γ(α1(k + 1) + β1) . . . Γ(αm(k + 1) + βm)
zk+1,

(47)

are called G-L operators generated by the multi-index M-L function (9).
Evidently, D(αi),(βi)

L(αi),(βi)
f (z) = f (z) for f (z) analytic in ∆R, and the coincidence

of the radii of convergence of f (z) and of the series in (47) easily follows by the Cauchy–
Hadamard formula and the asymptotic estimation of the Γ-function multipliers (details
are, e.g., in [20] (Th.5.5.2)). In Kiryakova [20] (§5.4.ii) and subsequent works such as [37,39],
etc., we provided the following integral representation of the G-L integration L(αi),(βi)

as its
analytical extension in terms of the GFC operators of multi-order (α1, . . . , αm).

Theorem 4. Let Ω ⊃ ∆R be a domain in C starlike with respect to the origin z = 0. Then,
the multi-index G-L integration operator in (47) can be analytically continued from H(∆R) into
Hµ(Ω) by means of the single-integral operator

L(αi),(βi)
f (z) = z

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣ (βi, αi)
m
1

(βi − αi, αi)
m
1

]
f (zσ)dσ = z I(βi−1),(αi)

(1/αi),m
f (z), (48)

that is, by a generalized fractional integral of form (43).

Here, we concentrate on the G-L operators of generalized integration and their repre-
sentations by generalized fractional integrals, and skip the details on the corresponding
differentiation analogues. However, let us mention that the multi-index G-L derivative
in (47) can be represented by generalized fractional derivatives D(γk),(δk)

(βk),m
([20,73]), and

for analytic functions in H(Ω) ⊃ H(∆R), and under restrictions βi − αi ̸= 0,−1,−2, . . .;
z ̸= 0,

D(αi),(βi)
f (z)= z−1 D(βi−αi−1),(αi)

(1/αi),m
f (z)−

[
m

∏
i=1

Γ(βi)

Γ(βi−αi)

]
f (0)

z
. (49)

By the rules of the GFC one can check that D(αi),(βi)
L(αi),(βi)

f (z) = f (z).
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The following result from [38–40] shows that the multi-index M-L functions (9) are
“eigenfunctions” of the multi-index G-L operators (47)–(49). Namely:

The multi-index Mittag-Leffler functions (9) satisfy the integral relation

L(αi),(βi)
E(αi),(βi)

(λz) =
1
λ

E(αi),(βi)
(λz)− 1

λ ∏
i

Γ(βi)
, λ ̸= 0, (50)

and the differential equation of fractional multi-order (α1, . . . , αm):

D(αi),(βi)
E(αi),(βi)

(λz) = λ E(αi),(βi)
(λz), λ ̸= 0. (51)

Then, we may say that the G-L operators (47)–(49) are “eigen”-operators for the multi-
index Mittag-Leffler functions (9).

Example 3. For m = 1, the operators (47) are the Dzrbashjan–Gelfond–Leontiev differentiation
and integration operators, generated by the Mittag-Leffler function (7), as introduced in Kiryakova
[20] (Ch.2):

Dα,β f (z) =
∞
∑

k=1
ak

Γ(αk + β)

Γ(α(k − 1) + β)
zk−1,

Lα,β f (z) =
∞
∑

k=0
ak

Γ(αk + β)

Γ(α(k + 1) + β)
zk+1.

(52)

And their analytical continuations appear as (single, m = 1) E-K fractional integrals (40) and
corresponding E-K derivatives:

Lα,β f (z) = z1 Iβ−1,α
1/α f (z) =

z
Γ(α)

1∫
0
(1 − t)α−1tβ−1 f (ztα) dt,

Dα,β f (z) = z−1Dβ−α−1,α
1/α f (z)− f (0)Γ(β)

Γ(β − α)
z−1, z ̸= 0.

(53)

For β = 1, one has the simpler G-L operators (38) and (39) from Samko–Kilbas–Marichev [65], as
in the previous Example 2.

4.4. G-L Operators Generated by the Le Roy-Type Functions F(γ)m
(α,β)m

We consider only the case of the multi-index Mittag-Leffler functions (22) of Le Roy
type F(γ)m

(α,β)m
, as the simpler cases introduced in Rogosin and Dubatovskaya’s articles [45,61].

It seems that the more general case of special functions (24) with additional Prabhakar
parameters τi ̸= 1, i = 1, . . . , m, still cannot be treated with respect to corresponding
eigenoperators (in the sense of Gelfond–Leontiev operators). At this point, we consider it
to be an open problem.

First, let us present the corresponding (slightly simpler) representations of these Le
Roy-type functions in terms of the generalizations of the Fox H-function and Fox–Wright
function pΨq. As a corollary of Theorem 3, bearing in mind that ∀τi = 1, T = 1, and
that some equal sets of parameters in the upper and lower rows in the Ψ̃- and I-functions
cancel each other out (Property (7.1) in Rathie [10], quite similar to that for the H-functions,
e.g., [7], etc.), we have:

F(γ)m
(α,β)m

(z) =
∞

∑
k=0

zk

m
∏
i=1

Γγi (αik + βi)

= mΨ̃2m−1

[
(1, 1, 1)m

1
(1, 1, 1)(m−1)−times , (βi, αi, γi)

m
1

∣∣∣∣z] (54)

= 1Ψ̃m

[
(1, 1, 1)

(βi, αi, γi)
m
1

∣∣∣∣z]
= H1,m

m,2m

[
− z
∣∣∣∣ (0, 1, 1)m

1
(0, 1, 1)m−times , (1 − βi, αi, γi)

m
1

]
(55)
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= H1,1
1,m+1

[
− z
∣∣∣∣ (0, 1, 1)
(0, 1, 1), (1 − βi, αi, γi)

m
1

]
= I1,m

m,2m

[
− z
∣∣∣∣ (0, 1, 1)m

1
(0, 1, 1)m−times , (1 − βi, αi, γi)

m
1

]
(56)

= I1,1
1,m+1

[
− z
∣∣∣∣ (0, 1, 1)
(0, 1, 1), (1 − βi, αi, γi)

m
1

]
.

Now, let us construct the Gelfond–Leontiev generalized operators of integration and
differentiation (32) and (33), generated by the coefficients of the mMLR-function F(γ)m

(α,β)m
:

ϕk = 1/
m

∏
i=1

Γγi (αik + βi).

For an entire function f (z) =
∞
∑

k=0
akzk (or analytic in a disk), these have the following form

of power series, to be a generalized G-L differentiation:

D f (z) := DmMLR f (z) =
∞

∑
k=1

akzk−1 ·
m

∏
i=1

Γγi (αik + βi)

Γγi (αik + βi − αi)
, (57)

and, respectively, a generalized G-L integration:

L f (z) := LmMLR f (z) =
∞

∑
k=0

akzk+1 ·
m

∏
i=1

Γγi (αik + βi)

Γγi (αik + βi + αi)
. (58)

Then, D L f (z) = f (z).

Theorem 5. The generalized G-L operator of differentiation (32) is an eigenoperator for the function
F(γ)m
(α,β)m

, that is, F(γ)m
(α,β)m

is an eigenfunction for this “differentiation” operator:

D F(γ)m
(α,β)m

(λz) = DmMLR F(γ)m
(α,β)m

(λz) = λ F(γ)m
(α,β)m

(λz), λ ̸= 0. (59)

For the G-L integration, we obtain the corresponding relation

L F(γ)m
(α,β)m

(λz) = LmMLR F(γ)m
(α,β)m

(λz) =
1
λ

F(γ)m
(α,β)m

(λz)− 1

λ
m
∏
i=1

Γγi (βi)
, λ ̸= 0. (60)

Proof. Indeed, using the power series representation (22),

DmMLR

(
F(γ)m
(α,β)m

(λz)
)
= DmMLR

 ∞

∑
k=0

λk

m
∏
i=1

Γγi (αik + βi)
zk



=
∞

∑
k=1

λk

m
∏
i=1

Γγi (αik + βi)
zk−1

m
∏
i=1

Γγi (αik + βi)

m
∏
i=1

Γγi (αik + βi − αi)

(where the groups of the Gamma functions Γγi (αik + βi) cancel each other out, and we
change the index of summation as k∗ := k − 1, to have)

= λ
∞

∑
k∗=0

(λz)k∗
m

∏
i=1

1
Γγi (αik∗ + βi)

= λ F(γ)m
(α,β)m

(λz).

Analogously,
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L F(γ)m
(α,β)m

(λz) = LmMLR

 ∞

∑
k=0

λk

m
∏
i=1

Γγi (αik + β1)
zk



=
∞

∑
k=0

λk

m
∏
i=1

Γγi (αik + βi)
zk+1

m
∏
i=1

Γγi (αik + βi)

m
∏
i=1

Γγi (αik + βi + αi)

=
1
λ

∞

∑
k∗=1

(λz)k∗

m
∏
i=1

Γγi (αik∗ + βi)
=

1
λ

F(γ)m
(α,β)m

(λz) − 1

λ
m
∏
i=1

Γγi (βi)
. □

Both relations (59) and (60) are exactly the expected analogues of those for the multi-index
M-L functions, (51) and (50).

Now, we aim to find an integral representation of the G-L integral (58), as an analogue
of the generalized fractional integration operator (48) in Theorem 4. Instead of the H-
function Hm,0

m,m, we have now an I-function as a kernel. Then, we can admit that such an
integral operator can also be somehow thought of as an operator of “fractional multi-order”.

Theorem 6. The G-L integration operator (58) of an entire function f (z), generated by means of
the Le Roy-type function (22), can also be represented by means of the integral operator

I f (z) = LmMLR f (z) = z
1∫

0

Im,0
m,m

[
σ

∣∣∣∣ (βi, αi, γi)
m
1

(βi − αi, αi, γi)
m
1

]
f (zσ)dσ. (61)

This can be interpreted as a kind of a generalized fractional integration of multi-order
(α1, . . . , αm).

We call the operators (58) and (61) the Gelfond–Leontiev–Le Roy (G-L-Le Roy) operators of
generalized integration. To emphasize when these concern the general case of m = 1, 2, 3, . . .,
we sometimes also use the notation Im and, for example, when m = 1, the notation is I1.
If necessary, sub-indices i are also used, I1

i , so as to specify the relation to the particular
parameters αi > 0, βi > 0, γi > 0.

Proof. First, let us analyse the nature of the kernel function Im,0
m,m with the parameters as in

(61). As an I-function, its definition (11) and (12) reads as

Im,0
m,m(σ) =

1
2πi

∫
L

m
∏
i=1

Γγi (βi − αi − αis)

m
∏
i=1

Γγi (βi − αis)
σsds. (62)

The singular points for Γγi (βi − αi − αis) are: sik = βi
αi
+ k

αi
− 1, k = 0, 1, 2, . . ., that is

∀i = 1, . . . , m: sik > −1, and there are no singularities for s < −1. For Γγi (βi − αis),
the singular points appear at sil = βi

αi
+ l

αi
, l = 0, 1, 2, . . . and all are sil > 0. Then, it

seems that for s < −1, none of the Gamma functions have singularities. The cut to ensure
single values of the involved members can now be taken along the real half-line s ≥ 0 (see
assumptions (41)). Therefore, we can have a contour L = (c− i∞, c+ i∞) with some c < −1
for which all singularities are to the right and which does not intersect the branch cut.

The parameters (13) for the Im,0
m,m-function in (61) are as follows:

µ =
m

∑
i=1

αiγi −
m

∑
i=1

αiγi = 0; ∆ =
m

∑
i=1

αiγi −
m

∑
i=1

αiγi = 0;

∇ =
m

∑
i=1

γi(βi − 1/2)−
m

∑
i=1

γi(βi − αi − 1/2) =
m

∑
i=1

αiγi > 0;
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R =
m

∏
i=1

α
αiγi
i /

m

∏
i=1

α
αiγi
i = 1.

This means that the kernel function Im,0
m,m is an analytic function in the unit disk 0 < |z| < 1

and it vanishes for |z| > 1. Then, the integral in (61) from 0 to 1, when necessary (for the
evaluations below), can also be taken with limits from 0 to ∞, having the same value.

Let us evaluate this integral operator of an entire function with power series f (z) =
∞
∑

k=0
akzk:

I f (z) = z
1∫

0

Im,0
m,m

[
σ

∣∣∣∣ (βi, αi, γi)
m
1

(βi − αi, αi, γi)
m
1

]{ ∞

∑
k=0

ak zkσk

}
dσ

= z
∞

∑
k=0

akzk


1∫

0

σk Im,0
m,m

[
σ

∣∣∣∣ (βi, αi, γi)
m
1

(βi − αi, αi, γi)
m
1

]
dσ


= z

∞

∑
k=0

akzk


1∫

0

Im,0
m,m

[
σ

∣∣∣∣ (βi + αik, αi, γi)
m
1

(βi − αi + αik, αi, γi)
m
1

]
dσ

,

where the exchanged order of integration and summation is admissible, and we also use
the shifting property from Rathie [10] (7.3) for σk Im,0

m,m(σ).
Now, we need to use an auxiliary result that in general will read as follows:

1∫
0

Im,0
m,m

[
σ

∣∣∣∣ (ai, Ai, αi)
m
1

(bi, Bi, βi)
m
1

]
dσ =

∞∫
0

Im,0
m,m

[
σ

∣∣∣∣ (ai, Ai, αi)
m
1

(bi, Bi, βi)
m
1

]
dσ

=
m

∏
i=1

Γβi (bi + Bi)

Γαi (ai + Ai)
, for ∀ai > bi > 0. (63)

This is an analogue of our “Auxiliary integral“ (Kiryakova [20] (App.E, (E.21))) for the
similar Hm,0

m,m-function with ai > bi > 0, i = 1, . . . , m:
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣ (ai, Ai)
m
1

(bi, Bi)
m
1

]
dσ =

m

∏
i=1

Γ(bi + Bi)

Γ(ai + Ai)
. (64)

The simpler analogous formula for the case of Gm,0
m,m is proved in Kiryakova [20] (Lemma

B.2), and the same one is repeated in Karp–Lopez [76].
For the Hm,0

m,m-function, Formula (64) follows by also taking s = 1 in the result for the
Mellin transform of Hm,0

p,m-function (it can also be p = m) from Karp–Prilepkina [77] (Th.6):

R (or ∞)∫
0

σs−1 Hm,0
p,m

[
σ

∣∣∣∣ (ai, Ai)
(bj, Bj)

]
dσ =

m
∏
j=1

Γ(bj + Bjs)

p
∏
i=1

Γ(ai + Ais)
.

Analogously, the result for Im,0
m,m follows from the Mellin transform image of the I-

function ([78] (3.9)) taken for s = 1. As in the case of the H-functions, the same result can
be derived as a corollary by a more general integral formula, see Vellaisamy–Kataria [78]
(Prop.3.1), and Lemma 1 in Section 4.5, involving a weighted product of two I-functions.
For the corresponding formula in the case of the product of two H-functions, we refer to [3]
(2.8.4) and [20] (E.21’).

For the particular parameters of the Im,0
m,m-function here, from (63), we obtain

1∫
0

Im,0
m,m

[
σ

∣∣∣∣ (βi + αik, αi, γi)
m
1

(βi − αi + αik, αi, γi)
m
1

]
dσ (=

∞∫
0

. . .)

=
m

∏
i=1

Γγi (βi − αi + αik + αi)

Γγi (βi + αik + αi)
=

m

∏
i=1

Γγi (αik + βi)

Γγi (αik + αi + βi)
,
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which we need to show that

I f (z) = I
(

∞

∑
k=0

akzk

)
=

∞

∑
k=0

ak zk+1
m

∏
i=1

Γγi (αik + βi)

Γγi (αik + αi + βi)
= LmMLR f (z). □

Remark 1. Along with the check above that the two operators LmMLR f (z) and I f (z) are equivalent
for entire functions f (z) given by power series, we can discuss the behavior of the kernel Im,0

m,m around
the singularities 0 and 1 in the improper integral (61). First, it is known (see, e.g., Rathie [10] (6.9))
that for small values of σ, i.e., for σ → +0:

Im,0
m,m

[
σ

∣∣∣∣ (βi, αi, γi)
m
1

(βi − αi, αi, γi)
m
1

]
∼ σc, where

c = min
1≤i≤m

{(βi − αi)/αi} = min
1≤i≤m

{ βi
αi

− 1} > −1, for ∀ αi > 0, βi > 0.

The asymptotic behavior of the I-functions near the singular point σ = 1 (or in more general
cases, near σ = R on the circle of convergence) is not yet well studied. The same situation stands
for the Fox H-functions’ behavior at the third singular point when these are analytic in disks with
finite radius |z| < R, or outside, in |z| > R. A particular result for the case of Hm,0

p,m-functions

(n = 0, q = m) with µ =
m
∑

j=1
Bj −

p
∑

i=1
Ai = 0 is contained in Karp [21] (12.24). This can be

paraphrased briefly as

Hm,0
p,m

[
R · σ

∣∣∣∣ (ai, Ai)
p
1

(bj, Bj)
m
1

]
= (1 − σ)η−1

∞

∑
k=0

hk(1 − σ)k

Γ(η + k)
,

where in our case (m = p = q):

R = 1 and η =
p

∑
i=1

ai −
m

∑
j=1

bj −
m−p

2
=

p

∑
i=1

ai −
m

∑
j=1

bj > 0, that is, η − 1 > −1.

In the case of µ =
m
∑

j=1
Bj −

p
∑

i=1
Ai = 0 (which is also true, in particular, if ∀Ai = Bj), the

main term in the representation above depends only on the value of η given above.
The result for the simpler case of the Meijer Gm,0

m,m function (known also as the Meijer–Nørlund
function) by Marichev (1981) is analogous, and was used by Kiryakova [20] (1.1.14):

Gm,0
m,m

[
σ

∣∣∣∣ (ak)
m
1

(bk)
m
1

]
∼ (1 − σ)η∗m

Γ(η∗
m + 1)

as σ → 1, σ < 1,

with η∗
m =

m
∑

k=1
(ak − bk)− 1 > −1 in the case when (see [20] (Ch.1)) ak − bk = (γk + δk)− γk =

δk > 0, ∀k = 1, . . . , m and
m
∑

k=1
δk ̸= 1, 2, 3, . . . (to avoid the logarithmic case, which separately

considered leads to similar asymptotics, ensuring η∗
m > −1). The same behavior follows from the

result found by Karp–López [76] (8), for Gm,0
m,m(σ) in the disk |1− σ| < 1 under the same conditions,

showing that the behavior near the singular point σ = 1 depends only on this η > −1.
In the case of I-function (62) of orders n = 0, m = p = q, with parameters ai := βi >

βi − αi := bi, one has quite a similar result because of all of the equal second (αi > 0) and third
(γi > 0) parameters, i = 1, . . . , m. The main term of the asymptotics depends only on η:

Im,0
m,m

[
σ

∣∣∣∣ (βi, αi, γi)
(βi − αi, αi, γi)

]
∼ (1 − σ)η−1,

with η =
m
∑

i=1
[βi − (βi − αi)]γi =

m
∑

i=1
αiγi > 0 ⇒ η − 1 > −1, as σ → 1, σ < 1.

(65)

We clarify this situation in more detail for m = 1 in Section 4.5.
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Alternatively, for the Im,0
m,m-functions (62), one may interpret and specify the results (6.4)

and (6.5) from Rathie [10] (Procedure 1) when µ = 0 and ∇ =
m
∑

i=1
αiγi > 0 but is not integer.

The technique used employs a known expansion for large s, involving the Bernoulli polynomials.
Then, I(σ) can be expressed in a series of Beta functions in the unit disk that leads to similar

asymptotics as those in (65). Otherwise, if ∇ =
m
∑

i=1
αiγi is a positive integer, one falls in a

logarithmic case, a result that is considered in [10] (6.6). In our situation (for shortness, we mention
the result for m = 1, ∇ = αγ = 1, 2, 3, . . .), one can derive it in a form:

Im,0
m,m(σ) ∼

(1 − σ1/α)αγ−1

(αγ − 1)!
+ . . . for σ → 1, σ < 1 with (αγ − 1) > −1.

4.5. Composition/Decomposition Property of the Gelfond–Leontiev–Le Roy Integrations

For the generalized fractional integrals (42) with Hm,0
m,m- (resp. Gm,0

m,m-) kernels in the
Generalized Fractional Calculus (Kiryakova [20]), we have already mentioned the important
composition/decomposition property (46). In the case of the G-L generalized integration
in (53) for m = 1, generated by the M-L function Eα,β, we provide a reminder that its
integral representation has the form

Lα,β f (z) = z Iβ−1,α
1/α f (z) =

z
Γ(α)

1∫
0

(1 − t)α−1tβ−1 f (ztα) dt

= z
1∫

0

(1 − σ1/α)α−1 σβ/α−1

α Γ(α)
f (zσ) dσ = z

1∫
0

H1,0
1,1

[
σ

∣∣∣∣ (β, α)
(β − α, α)

]
f (zσ)dσ,

where the kernel H1,0
1,1 analytic in |σ| < 1 can also be represented by the generalized bino-

mial series

(1 − σ1/α)α−1 σβ/α−1

α Γ(α)
=

Γ(α) σβ/α−1

α Γ(α)

∞

∑
k=0

(
α − 1

k

)(
−σ1/α

)k
=

σβ/α−1

α

∞

∑
k=0

(
−σ1/α

)k

Γ(α − k) k!
.

Note that if α − 1 = n, a non-negative integer, the k = n + 1-term and all the next ones in
the series are 0, i.e., the series is finite.

Next, we prove a similar result in that the Gelfond–Leontiev–Le Roy integrals (61) of
“multi-order” (α1, . . . , αm) can be represented as commutable compositions of m operators I1 of the
same kind for m = 1, each one with different parameters. As mentioned before in the proof
of Theorem 6, we use the notation Im for the case of arbitrary (multiplicity) m = 1, 2, 3, . . .,
while a particular operator with m = 1 is denoted by I1, and we add a sub-index i for I1

i to
keep in mind that it is the case with parameters (αi, βi, γi). These operators I1

i play the role
of “Le Roy type” extensions of the Erdélyi–Kober operators (40) for the integration of “order” αi.
In short, these can be called Erdélyi–Kober–Le Roy integrations (E-K-Le Roy), with each of
them having a representation as for (61) with m = 1:

I1
i f (z) = z

1∫
0

I1,0
1,1

[
σ

∣∣∣∣ (βi, αi, γi)
(βi − αi, αi, γi)

]
f (zσ)dσ (66)

=

z∫
0

I1,0
1,1

[
ζ

z

∣∣∣∣ (βi, αi, γi)
(βi − αi, αi, γi)

]
f (ζ)dζ.

It is interesting to represent this kernel function I1,0
1,1 in the way we did above for the H1,0

1,1 ,
as a kind of similar “generalized” binomial series. Namely, for |σ| < 1, γ > 0, one has
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I1,0
1,1

[
σ

∣∣∣∣ (β, α, γ)
(β − α, α, γ)

]
=

σβ/α−1

α

∞

∑
k=0

(
−σ1/α

)k

Γγ(αγ − k) k!
.

The main term in such series gives an asymptotics as

I1,0
1,1

[
σ

∣∣∣∣ (β, α, γ)
(β − α, α, γ)

]
∼ σβ/α−1 (1 − σ1/α)αγ−1

αΓγ(αγ)
,

with β/α − 1 > −1 for σ → 0, σ > 0, and αγ − 1 > −1 for σ → 1, σ < 1.

This is to confirm again, for the simplest case of m = 1, the described behavior of the
kernel Im,0

m,m near the singular points 0 and 1 in the improper integral (66).
Before proving the decomposition of the operator Im, we need the following auxiliary

result that appears analogous to the formula for the Mellin transform, and thus, for an
integral from 0 to ∞ of the product of two different H-functions. This can be found, for
example, in some handbooks such as [3] (2.8.4) and (E.21’) in Kiryakova [20].

Here, it is derived from Proposition 3.1 in Vellaisamy–Kataria [78] for the Mellin
transform of the product of two different I-functions. For our purposes, we reproduce it as an
integral formula in a simpler form.

Lemma 1. For λ ̸= 0, ν ̸= 0, s > 0,
∞∫

0

σs−1 · Im,n
p,q

[
λσ

∣∣∣∣ (ai, Ai, αi)
p
1

(bj, Bj, β j)
q
1

]
· Ik,l

u,v

[
νσ

∣∣∣∣ (ci, Ci, φi)
u
1

(dj, Dj, ψj)
v
1

]
dσ

=
1
s
· In+k,m+l

q+u,p+v

[
ν

λ

∣∣∣∣∣ (ci, Ci, φi)
l
1, (1 − bj − Bj, Bj, β j)

q
1, (ci, Ci, φi)

u
l+1

(dj, Di, ψj)
k
1, (1 − ai − Ai, Ai, αi)

p
1 , (dj, Dj, ψi)

v
k+1

]
. (67)

A set of necessary operational properties for the I-functions that are rather similar
to those for the Fox H-functions can be found in Rathie [10] (Sect. 7). We mention only a
few of them that are needed below, such as: symmetry in some sets of parameters; shifting
property (7.3) for σc Im,n

p,q (σ); and (7.5) for Im,n
p,q (σ) 7→ In,m

q,p (1/σ).
Now, we are ready to state and prove the composition/decomposition property of the

Gelfond–Leontiev–Le Roy generalized integration.

Theorem 7. For entire functions f (z), the equivalent representations hold:

Im f (z) =

[
m

∏
i=1

I1
i

]
f (z) = I1

m

{
I1

m−1 · · ·
[
I1

1 f (z)
]}

. (68)

This composition of operators is commutative.

Proof. Let us check the statement first for m = 2. We consider the composition of two Le
Roy-type Erdélyi–Kober operators of the form (66):

I1
2 I1

1 f (z) =
z∫

0

I1,0
1,1

[
ζ

z

∣∣∣∣ (β2, α2, γ2)
(β2 − α2, α2, γ2)

] {
I1

1 f (z)
}

dζ

=

z∫
0

I1,0
1,1

[
ζ

z

∣∣∣∣ (β2, α2, γ2)
(β2 − α2, α2, γ2)

]
ζ∫

0

I1,0
1,1

[
τ

ζ

∣∣∣∣ (β1, α1, γ1)
(β1 − α1, α1, γ1)

]
f (τ) dτ

 dζ

=

z∫
0

f (τ) dτ


z∫

τ

I1,0
1,1

[
ζ

z

∣∣∣∣ (β2, α2, γ2)
(β2 − α2, α2, γ2)

]
· I1,0

1,1

[
τ

ζ

∣∣∣∣ (β1, α1, γ1)
(β1 − α1, α1, γ1)

]
dζ


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:=
z∫

0

f (τ)
{
Ĩ
}

dτ.

The interchange of the order of integrals, as above, is well admissible. We have to note that
both of the involved I1,0

1,1 -functions in the above expression Ĩ vanish outside the unit disk.
That is, the one with (i = 1) parameters is ≡ 0 for ζ < τ, and the other one for (i = 2) is
≡ 0 for ζ > z. Therefore, the above inner integral denoted by Ĩ will have the same value
if its limits from τ to z are extended to an interval from 0 to ∞. Moreover, we replace I1,0

1,1

with the (i= 1) parameters by I0,1
1,1 of the reciprocal argument, according to the property

(7.5) from Rathie [10] (quite similar to one for the H-functions) and then use Formula (67),
taking λ := z−1, ν := τ−1 and s = 1. We have:

I1
2 I1

1 f (z) =
z∫

0

I0,2
2,2

[
z
τ

∣∣∣∣ (1 − β1 + α1, α1, γ1), (1 − β2 + α2, α2, γ2)
(1 − β2, α1, γ2), (1 − β1, α1, γ1)

]
f (τ) dτ,

and using again Rathie’s property (7.5) for I0,2
2,2 → I2,0

2,2 , and symmetry of the I2,0
2,2 -function

with respect to the parameters in the upper and lower rows, this gives

I1
2 I1

1 f (z) =
z∫

0

I2,0
2,2

[
τ

z

∣∣∣∣ (β1, α1, γ1), (β2, α2, γ2)
(β1 − α1, α1, γ1), (β2 − α2, α2, γ2)

]
f (τ) dτ, i.e.,

I1
2 I1

1 f (z) = z
1∫

0

I2,0
2,2

[
σ

∣∣∣∣ (β1, α1, γ1), (β2, α2, γ2)
(β1 − α1, α1, γ1), (β2 − α2, α2, γ2)

]
f (zσ) dσ = I2

2,1 f (z).

The statement for the composition of the arbitrary number m ≥ 1 of operators (66) can
then be derived by mathematical induction, following the same procedure as above. In the
final stage, we repeat the above evaluation for

Im−1
{
I1

m f (z)
}
= Im f (z).

Note that due to symmetry of the Im,0
m,m-function with respect to the parameters in the

upper and lower rows, the composition is commutative, i.e., does not depend on the order
of the operators I1

i , i = 1, 2, . . . , m in (66).

Remark 2. An alternative way to prove Theorem 7 is to show that the Mellin transform images

M of the operators Im and of the composition
[

m
∏
i=1

I1
i

]
coincide for entire functions f (z). This kind

of proof is similar to that we used for the composition/decomposition property of the generalized
fractional integrals (43) with Hm,0

m,m-kernels, see Th. 5.1.5 and Th. 5.2.1 in Kiryakova [20] (Ch.5).
Using (67) again and the auxiliary formula (63), we have:

M{Im f (z); s} =

[
m

∏
i=1

Γγi (βi − sαi)

Γγi (βi + αi − sαi)

]
M{ f (z); s} =

m

∏
i=1

[
M
{
I1

i f (z); s
}]

.

In a future study, we can look for a semigroup property for the new generalized operators of
the fractional integration of multi-order (α1, . . . , αm) of a form more general than that appearing
in (61).

5. Illustration of Results from Sections 3 and 4 for Particular Cases of the Le Roy-Type
Functions

Here, we give examples as to how the discussed results work for the previously
introduced and studied Le Roy-type functions F(γ), F(τ)

α,β , F(γ)m
(α,β)m

, and for some of their
particular cases.
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For m = 1, the simplest case is the original Le Roy function (20), γ > 0. According to
Theorem 3, (28), etc., for α = β = 1,

F(γ)(z) =
∞

∑
k=0

zk

(k!)γ
=

∞

∑
k=0

zk

Γγ(1.k + 1)
= 1Ψ̃1

[
(1, 1, 1)
(1, 1, γ)

∣∣∣∣z]
= H1,1

1,2

[
−z
∣∣∣∣ (0, 1, 1)
(0, 1), (0, 1, γ)

]
= I1,1

1,2

[
−z
∣∣∣∣ (0, 1, 1)
(0, 1, 1), (0, 1, γ)

]
.

Naturally, for γ = 1,

F(1)(z) =
∞

∑
k=0

zk

k!
= 1Ψ1

[
(1, 1)
(1, 1)

∣∣∣∣z] = 1F1(1; 1; z) = exp(z),

as a “classical” generalized hypergeometric function, and in particular, the exponential one.
Based on Theorem 4, the “eigen” integral operator generated by the Le Roy function for

entire functions f (z) =
∞
∑

k=0
akzk has the form

L1
1,1 f (z) = z

∞

∑
k=0

ak
Γγ(k + 1)
Γγ(k + 2)

zk = z
1∫

0

I1,0
1,1

[
σ

∣∣∣∣ (1, 1, γ)
(0, 1, γ)

]
f (zσ)dσ,

with L1
1,1 Fγ(λz) = (1/λ) Fγ(λz)− 1/λ, and the corresponding G-L differentiation (57):

D1
1,1 Fγ(λz) = λ Fγ(λz), λ ̸= 0.

For the Mittag-Leffler-type Le Roy function (21) (Gerhold, Garra–Polito, Garrappa–
Rogosin–Mainardi, etc.) with α > 0, β > 0, γ > 0, the same results read as follows:

F(γ)
α,β (z) =

∞

∑
k=0

zk

Γγ(αk + β)
= 1Ψ̃1

[
(1, 1, 1)
(β, α, γ)

∣∣∣∣z]

= H1,1
1,2

[
−z
∣∣∣∣ (0, 1, 1)
(0, 1), (1 − β, α, γ)

]
= I1,1

1,2

[
−z
∣∣∣∣ (0, 1, 1)
(0, 1, 1), (1 − β, α, γ)

]
.

The corresponding eigenoperators Lγ
α,β, resp. Bγ

α,β satisfy the eigenfunction relations:

Lγ
α,β F(γ)

α,β (λz) =
1
λ

F(γ)
α,β (λz)− 1

λ Γγ(β)
, Dγ

α,β F(γ)
α,β (λz) = λ F(γ)

α,β (λz),

where we have the Le Roy-type analogue of the Erdélyi–Kober fractional integral:

Lγ
α,β f (z) = z

∞

∑
k=0

ak
Γγ(αk + β)

Γγ(αk + α + β)
zk = z

1∫
0

I1,0
1,1

[
σ

∣∣∣∣ (β, α, γ)
(β − α, α, γ)

]
f (zσ)dσ.

For m = 2, in our previous papers [13,14,16], we discussed the Le Roy-type function
mentioned in Pogány [79], and kept the original denotations from there:

Fα,β
(p,q;r,s)(z) =

∞

∑
k=0

zk

Γα(pk + q) Γβ(rk + s)
.

Then, we provided the values for the order and type of this entire function. In view of the
results of Sections 3 and 4, the following new representations follow:

Fα,β
(p,q;r,s)(z) = 2Ψ̃3

[
(1, 1, 1)

(1, 1, 1), (q, p, α), (s, r, β)

∣∣∣∣z]
= H1,2

2,4(−z) = I1,2
2,4

[
−z
∣∣∣∣ (0, 1, 1)
(0, 1, 1), (0, 1, 1), (1 − q, p, α), (1 − s, r, β)

]
,

and the corresponding Gelfond–Leontiev–Le Roy integration operator is represented by
(with the adapted denotations)

Lα,β
(p,q;r,s) f (z) = z

1∫
0

I2,0
2,2

[
σ

∣∣∣∣ (q, p), (s, r)
(q − p, p), (s − r, r)

]
f (zσ)dσ.
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The above kernel function can be considered as an analogue of the Gauss hypergeometric
function related to G2,0

2,2 , so such an integral operator can be thought as analogous to the
popular Saigo fractional integrals. It is important to mention that a case of G-L-Le Roy-type
integration with m = 3 and a kernel I3,0

3,3 would resemble an extension of the so-called
Marichev–Saigo–Maeda operators of FC, see more details in Kiryakova [80].

In the case of arbitrary m ≥ 1, for the general M-L-P function of Le Roy type (24), the
representations in terms of the generalized Fox–Wright function, H- and I-functions are
given as in Theorem 3. However, the problem of defining corresponding Gelfond–Leontiev
operators for which Fm is an eigenfunction seems to still be open, in the general case.

In the case of Prabhakar parameters ∀τi = 1, we have the following representations:

F(γ)m
(α,β)m

(z) = mΨ̃2m−1

[
(1, 1, 1)m

1
(1, 1, 1)(m−1)−times , (βi, αi, γi)

m
1

∣∣∣∣z]

= H1,m
m,2m

[
−z
∣∣∣∣ (0, 1, 1)m

1
(0, 1)m−times , (1−βi, αi, γi)

m
1

]
= I1,m

m,2m

[
− z
∣∣∣∣ (0, 1, 1)m

1
(0, 1, 1)m−times , (1−βi, αi, γi)

m
1

]
,

where some of the orders of the above Ψ̃, H- and I-functions can be suitably reduced
because of the coincidence of some parameters (1, 1, 1) in the upper row with part of the
same in the lower row. Then, these are analogous to the representations for the multi-index
Mittag-Leffler functions (9) with ∀γi = 1:

F(1)m
(α,β)m

:= E(m)
(αi ,βi)

(z) = 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣z] = H1,1
1,m+1

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1 − βi, αi)

]
.

For the F(γ)m
(α,β)m

-functions, in Section 4 we developed the Gelfond–Leontiev generalized inte-
grations and differentiation (58) and (57) as their eigenoperators, called Gelfond–Leontiev–
Le Roy operators.

It is necessary to emphasize the evident analogy of the representations of (58) and
(57), with the results for the operators (47): L(αi ,βi)

and D(αi ,βi)
generated by the multi-

index Mittag-Leffler functions, in terms of the Generalized Fractional Calculus (GFC), see
Kiryakova [20]. Compare the integral representation (48) with the new one of Le Roy-type,
(61), when the kernel Fox Hm,0

m,m-function is replaced by a more general Im,0
m,m-function. For

m = 1, we have L(α,β) in the form of an Erdélyi–Kober integral (40), and, respectively,
the operator I1 in (66) as a kind of “Erdélyi-Kober-Le Roy integral” (66).

6. Some Short Reminders from “Guide to SF of FC”

Here, we provide only a brief reminder of some of the SF of FC that are considered in
detail in the survey of Kiryakova [9], and partly in the monographs by Kiryakova [20] and
Paneva-Konovska [43]. The reason is because these special functions are to be compared
with related extensions to the Le Roy type, I- and H-functions.

6.1. Classes of G- and H-Functions as Kernels of Laplace-Type Integral Transforms and of
Operators of Generalized Fractional Calculus

In survey [9] (Sect.3), we attracted readers’ attention to the use of two basic classes of G-
and H-functions with specific orders: (i) Gm,0

0,m , resp., Hm,0
0,m with m = q, n = p = 0; and (ii)

Gm,0
m,m, resp., Hm,0

m,m with m = p = q, n = 0.

Concerning the G- and H-functions of type (i), let us mention that the analogues of
the Laplace transform, the so-called G- and H-transforms

G{ f (t); s} =

∞∫
0

Gm,n
p,q

[
st
∣∣∣∣ (aj)

p
1

(bk)
q
1

]
f (t)dt,

and, respectively,
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H{ f (t); s} =

∞∫
0

Hm,n
p,q

[
st
∣∣∣∣ (aj, Aj)

p
1

(bk, Bk)
q
1

]
f (t)dt,

are said to be generalized integral transforms of Laplace type when

δ = m + n − p + q
2

> 0, resp. a∗ =
n

∑
j=1

Aj −
p

∑
j=n+1

Aj +
m

∑
k=1

Bk −
q

∑
k=m+1

Bk > 0.

As their simplest examples, we mention the Laplace and Meijer transforms

L{ f (t); s} =

∞∫
0

exp(−st) f (t)dt, Kν{ f (t); s} =

∞∫
0

√
st Kν(st) f (t)dt, (69)

and also the Borel transform (considered by Dzrbasjan [75], see also Kiryakova [20] (Ch.2))

B(ρ),(µ){ f (t); s} =

∞∫
0

exp(−sρtρ) tµρ−1 f (t)dt, ρ > 0, µ ∈ C.

In 1958, the Bulgarian mathematician Obrechkoff introduced a far-reaching gener-
alization of both Laplace and Meijer transforms, particular cases of which were studied
years later by many authors (Ditkin, Prudnikov, Krätzel, etc.). We mention, for example,
the Krätzel transform ([81,82]),

L(m)
ν { f (t); s} :=

∞∫
0

Λ(s, t) f (t)dt, where Λ(s, t) is the Krätzel function as below.

For details and studies on the latter function, see [81–83].
Note that the kernels of the above-mentioned integral transforms appear, resp., as

exp(−s) = G1,0
0,1

[
s
∣∣∣∣ −−

0

]
, Kν(s) =

1
2

G2,0
0,2

[
s2

4

∣∣∣∣ −−
ν
2 , −ν

2

]
,

exp(−sρtρ) = H1,0
0,1

[
st

∣∣∣∣∣ −−
(µ − 1

ρ , 1
ρ )

]
, Λ(s, t) = s−ν−1+ 2

m Gm,0
0,m

[
st
∣∣∣∣ −−

0, (ν + k−2
m )k=m

k=2

]
.

These integral transforms have been used mainly for the purposes of operational calculi for
different classes of differential operators, like

D =
d
dt

, Bν =
d
dt

t1−ν d
dt

tν, D 1/ρ, B(m)
ν =

d
dt

t
1
m −ν

(
t1− 1

m
d
dt

)m−1
tν+1− 2

m , etc.

The initial aims of Obrechkoff were to extend the theorem of S.N. Bernstein for abso-
lutely monotonic functions representable by means of Laplace–Stieltjes transforms when
the conditions for n-th derivatives are replaced by similar for differential operators, more
general than those above. The Obrechkoff transform, as modified by Dimovski and studied
in detail by Kiryakova (see [84], also [20,85] (Ch.3)), was defined originally in the form

O{ f (t); s} = β

∞∫
0

tβ(γm+1)−1 K
[
(st)β

]
f (t)dt = β

∞∫
0

λ(t, s) f (t)dt,

with the kernel function

K(s) =
∞∫

0

. . .
∞∫

0

exp
(
−u1 − . . . − um−1 −

s
u1 . . . um−1

) m

∏
k=1

uγm−γk−1
k du1 . . . dum−1. (70)
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Later, in Kiryakova [20] (Ch.3) (and in other works, see e.g., [84]), we proved that the kernel
function (70) of the Obrechkoff transform is representable by a Meijer’s Gm,0

0,m-function,
namely

λ(t, s) = s−β(γm+1)+1 Gm,0
m,m

[
(st)β

∣∣∣∣∣ −−
(γk − 1

β + 1)m
1

]
.

Thus, the Obrechkoff transform appears to be a G-transform of Laplace type, related to the hyper-
Bessel differential operators (Dimovski [86], Kiryakova [85], Dimovski–Kiryakova [84])

B f (t) = tα0
d
dt

tα1
d
dt

· · · tαm−1
d
dt

tαm f (t) (71)

= t−β Pm

(
t

d
dt

)
f (t) = t−β

m

∏
k=1

(
t

d
dt

+ βγk

)
f (t), t > 0,

with arbitrary parameters α0, α1, . . . , αm, β := m − (α0 + α1 + . . . + αm) > 0, γk := (αk +
αk+1 + . . . + αm)/β, k = 1, . . . , m, and Pm a polynomial of degree m. Evidently, for
particular choices of these parameters, (71) gives the above-mentioned simpler differential
operators and many others frequently appearing in problems of mathematical physics.

Next, the generalized Obrechkoff transform (its fractionalized analogue) was introduced
and studied by Kiryakova [20] (Ch.5) (and next in papers by Luchko, Al Mussalam and
V.K. Tuan, and also in Yakubovich–Luchko [36]) with a Fox Hm,0

m,m-function as a kernel:

GO(s) := B(ρi),(µi)
{ f (t); s} =

∞∫
0

Hm,0
0,m

[
st

∣∣∣∣∣ −−
(µi − 1

ρi
, 1

ρi
)m

1

]
f (t)dt. (72)

We called it multi-index Borel–Dzrbashjan transform because m = 1 is reduced to the men-
tioned Borel transform. The “fractional” Obrechkoff transform (72) can be considered not
only as a H-transform but as a tool in operational calculus for the fractional multi-order
analogues of hyper-Bessel differential operators (71), formally written as

D(ρi),(µi)
f (t) = t−1

m

∏
i=1

(
t1+(1−µi)ρi D1/ρi

tρi t(µi−1)ρi
)

f (t),

in the same way as the Laplace transform, Obrechkoff transform and its particular cases
serve for the classical differentiation, for the hyper-Bessel operators (71), etc.

All the above details on the use of the functions Gm,0
0,m and Hm,0

0,m serve to pose an Open
Problem (see 8.4. in the concluding Section 8) for the possibility to introduce and study a
Laplace-type integral transform with Im,0

0,m and Hm,0
0,m as kernel functions.

We also have to emphasize in terms of the other class of special functions the Gm,0
m,m and

Hm,0
m,m-functions of type (ii), as discussed in survey [9], because here in Section 4, the classical

FC operators of integration (such as R-L and E-K, (40)) are mentioned as having such kernels
for m = 1, and also the generalized fractional integrals (42) have these kernels for arbitrary
order m ≥ 1. In addition, in Section 4.4 (Theorem 6), their Im,0

m,m-analogue appears as a kernel
function of the integral operator (61), being an alternative representation of the series (58)
for the introduced Gelfond–Leontiev generalized integration generated by the Le Roy-type
functions (22). Thus, the need for the analogy is evident.

6.2. Some Important Cases of Mittag-Leffler Functions (7) and Multi-Index Mittag-Leffler
Functions (9)

• We mention a few cases of M-L functions (m = 1) from §5.1 of [9]: Generalized
trigonometric functions of higher integer orders m ≥ 1, cosm and, resp., sine-functions;
and next mentioned their “fractalized” analogues; also the Lorenzo–Hartley functions,
the Rabotnov function, etc. Extensive literature is nowadays available on the theory of
the M-L functions and their cases, with a few to mention such as: [2,30,31,39,50,87],
etc.

• For m = 2, a not very popular function introduced by Dzrbashjan [29], in his and,
respectively, in “our” denotations, is:
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Φρ1,ρ2(z; µ1, µ2) =
∞

∑
k=0

zk

Γ(µ1 +
k

ρ1
)Γ(µ2 +

k
ρ2
)

(73)

:= E( 1
ρ1

, 1
ρ2
),(µ1,µ2)

(z) = E(α1,α2),(β1,β2)
(z), 1/ρi := αi > 0, µi := βi.

In addition to the classical M-L function, the geometric series and the Bessel functions Jν, we
observed ([9]) that (73) also includes: the Struve and Lommel functions sµ,ν and Hν, and the
(classical) Wright function [24,25] (details in [27] and in many books)

ϕ(α, β; z) =
∞

∑
k=0

1
Γ(αk + β)

zk

k!
= 0Ψ1

[
−

(β, α)

∣∣∣∣z] = E(2)
(α,1),(β,1)(z),

and thus, also the Mainardi function M(z; α/2) = ϕ(−α/2, 1 − α/2;−z), and the Airy
function M(z; 1/3) = 32/3Ai(z/31/3), etc.

In other denotations, the Wright function ϕ(α, β; z) is also known as the generalized
Bessel function, the Wright–Bessel function or misnamed as the Bessel–Maitland function:

Jµ
ν (z) = ϕ(µ, ν + 1;−z) = 0Ψ1

[
−

(ν + 1, µ)

∣∣∣∣− z
]

(74)

=
∞

∑
k=0

(−z)k

Γ(ν + kµ + 1) k!
= E(2)

(1/µ,1),(ν+1,1)(−z) ,

again as an example of the Dzrbashjan function. We discuss its extension as an H-function
(81) in Section 7. In the same survey [9] (§5.2), further extensions of the Bessel function
with 3, 4, etc., parameters are mentioned.

• For the case m ≥ 2, we mention the hyper-Bessel functions of Delerue [88] (for details
and essential use of these functions, see [20] (Ch.3)):

J(m−1)
γi ,...,γm−1(z) =

( z
m

)m−1
∑

i=1
γi

E(m)
(1,1,...,1),(γ1+1,γ2+1,...,γm−1+1,1)

(
−(

z
m
)m
)

(75)

=

[
m−1

∏
i=1

Γ(γi+1)

]−1( z
m

)m−1
∑

i=1
γi

0Fm−1

(
γ1+1, γ2+1,. . ., γm−1+1;−(

z
m
)m
)

.

This representation suggests that the multi-index M-L functions (9) with arbitrary (α1, . . . , αm)
̸= (1, . . . , 1) can be interpreted as fractional-indices analogues of the hyper-Bessel functions (75),
which themselves are multi-index analogues of the Bessel function. Functions (75) are closely
related to the hyper-Bessel differential operators (71) of Dimovski [86] and form a fundamental
system of solutions of the differential equations of the form By(z) = λy(z), as proved in
Kiryakova [20] (Ch.3, Th.3.4.3).

In relation to the multi-index analogues of the Mittag-Leffler functions, we can also
mention two other variants that appear as solutions of some fractional multi-order (multi-
term) differential equations. In Gorenflo–Kilbas–Rogosin [89], the function

Eα,µ,l(z) =
∞

∑
k=0

ckzk, where ck =
k−1

∏
j=0

Γ[α(jµ + l) + 1]
Γ[α(jµ + l + 1) + 1]

,

is introduced and studied, with indices Re (α) > 0, l ∈ C, µ ∈ R. One can be curious about
a case when Le Roy-type fractional power indices are attached to the Gamma functions
in the coefficient ck. Another variant is the function introduced and studied recently by
Droghei [90]

W (ᾱ,ν̄),n(z) =
∞

∑
k=0

(
k

∏
i=1

n

∏
j=1

Γ(αn+1i + aj)

Γ(αn+1i + bj)

)
zk

Γ(αn+1k + bn+1)
,
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with parameters ᾱ = (α1, . . . , αn+1); ν̄ = (ν1, . . . , νn) and aj = 1 + ∑
j
m=1(νm−1 − αm);

and bj = 1 + ∑
j
m=1(νm−1 − αm−1), such that aj = bj − αj with j = 1, . . . , n + 1. In some

particular cases, say for n = 1, its three-parameter variant:

Wα,β,ν(zβ) =
∞

∑
k=0

(
k

∏
i=1

Γ(βi + 1 − α)

Γ(βi + 1)

)
zβk

Γ(βk + 1 − α + ν)

is shown to be a solution of the fractional order variant of the Bessel equation, and reducible
to the Bessel function; to the Wright function (α = 1); to the Mittag-Leffler function (α = 0:
W0,α,β−1(z) = Eα,β(z)); and to some cases of the hyper-Bessel and 2 × 2 Mittag-Leffler

function of Dzrbashjan: Wν,ν,ν(zν) =
∞
∑

k=0

zνk

Γ2(νk+1) . Therefore, this can also be considered as

a Le Roy-type function but with integer index γ = 2.
Other cases of the pΨq and of multi-index M-L functions are mentioned in [9] (Ch.6),

such as Virchenko and Ricci generalized hypergeometric functions, Mainardi–Massina and
Paris generalized exponential integrals, generalized K-series and M-series, etc., as well as
critics on the numerous so-called k-analogues defined by replacement of the Γ-functions by
Γk-functions that bring no essential novelties at all (details in Kiryakova [91]).

A multi-variable Mittag-Leffler multi-index function (called also multinomial M-L function)
was introduced by Luchko et al. (e.g., [36,60]) as well. Further, a multinomial Prabhakar
function was introduced by Bazhlekova–Bazhlekov, see Bazhlekova [92] (2.2), where an
additional Prabhakar parameter δ is involved. The complete monotonicity of this new
special function is studied via the Laplace transform image, and the appearance of the
above-mentioned multinomial M-L type functions in resolving multi-term time-fractional
evolution equations is discussed.

7. Other Important SF in the Scheme of the III- and HHH-Functions

Next, it is time to mention some other well-known or not so well-known special
functions, but all with important significance, that also fall in the scheme of the H-functions
of Inayat-Hussain [11] and of the more general I-functions of Rathie [10]. This class of
generalized hypergeometric functions is introduced and studied as an extension of the Fox–
Wright functions pΨq and of the Fox H-functions, and the functions are defined by kinds of
“Mellin-Barnes”-type integrals (or more exactly, their analogues). They involve quotients of
Gamma functions on arbitrary (fractional) powers, and in general, present multi-valued
functions with branch points, thus needing precision of the meanings and conditions of
existence. Several authors have studied the details of the I- and H-functions, along with
the above-mentioned initiators, such as: Buschman–Srivastava [12], Saxena [47], Gupta–
Soni [93], Srivastava–Lyn–Wang [70], Mathai–Saxena–Haubold [6], Vellaisamy–Kataria [78],
Jolly [94], Srivastava [95], etc. Nevertheless, this theory has not yet been deeply developed
and this has raised some open problems. However, we need to mention that the I- and H-
functions arose from the needs for mathematical tools, such as for the evaluation of certain
Feynman integrals (arising in perturbation calculations of the equilibrium properties of a
magnetic model of phase transitions), partition function of the Gauss model from statistical
mechanics, etc.

We skip the particular examples of I- and H-functions from the initial works of Inayat-
Hussain and Rathie, invoking their appearance; these are also mentioned in Appendix A.5.1
in Mathai–Saxena–Haubold [6], as (A.60)–(A.62).

Here, we provide some examples of popular “mathematical” functions, starting from the
simplest ones.

• The polylogarithm function.

Consider (see for example, [1] (Vol.1), [5], etc.)

Liα(z) =
∞

∑
k=1

zk

kα
= z +

z2

2α
+

z3

3α
+ · · · , |z| < 1, α ∈ C, (76)
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which for particular choices of the index α appears as: ordinary logarithm Li1(z) =

−ln (1 − z); Li0(z) =
z

1 − z
; Li−1(z) =

z
(1 − z)2 ; Lin(z) = z n+1Fn(1, 1, . . . ; 2, 2, . . . ; z),

n = 0, 1, 2, . . .; Li−n(z) = z nFn−1(2, 2, . . . ; 1, 1, . . . ; z), −n = −1,−2, . . .; etc. Note also
that for (the singular value) z = 1 when α > 1, it gives the famous Riemann Zeta function,

Liα(1) = ζ(α) =
∞
∑

k=1
1/(kα). The function (76) is also referred to as the Jonquière function. As

particular examples, for special choice of argument and parameters, one can also mention
some popular polynomials such as the Jonquière and Bernoulli polynomials, and number
sequences such as the Stirling and Eulerian numbers, etc.

For the purposes here, we consider the real positive index α > 0. Contour-type inte-
gral representations of “Mellin-Barnes”-type have been considered in many of the above-
mentioned works, like, e.g., Jolly [94] (1.1.24). We appeal to the representation as presented
by Gerhold–Tomovski [96], (1.2)–(1.3):

Liα(z)(z) = − 1
2πi

1/2+i∞∫
1/2−i∞

π

sα sin πs
(−z)s ds,

and using [1] (Vol.1, Ch.1),

π

sin πs
= Γ(s)Γ(1 − s) ; sα =

[
Γ(1 + s)

Γ(s)

]α

, we have:

Liα(z) = − 1
2πi

1/2+i∞∫
1/2−i∞

Γα+1(s) Γ(1 − s)
Γα(1 + s)

(−z)s ds

= − H1,1
1,2

[
− z
∣∣∣∣ (1, 1, α + 1)
(1, 1, 1), (0, 1, α)

]
,

as a H1,1
1,2-function of the same orders as the H-function (29) for our Mittag-Leffler–Prabhakar

function of Le Roy type, F1 for m = 1 (but with different parameters). Note that the singu-
larities of the Gamma functions in the numerator of the above contour integral for Liα are
all lying to the left of s = 0 and to the right of s = 1, and so there are none in the interval
c ∈ (0, 1), which explains the choice c = 1/2 for the “vertical” contour L = (c− i∞, c+ i∞).
Meanwhile, the series (76) can be rewritten as

Liα(z) =
∞

∑
k=1

Γα(k)
Γα(k + 1)

zk,

that is, in the form of an “extended” Le Roy-type function, as discussed in Section 4 of our joint
work [14].

• The generalized Riemann Zeta function (Hurwitz–Lerch Zeta function) ([1] eq.(1), §1.11).

As mentioned in [94] (1.1.27), see also [97] (1.1),

Φ(z, α, b) =
∞

∑
n=0

zn

(n + b)α
(77)

= H1,2
2,2

[
−z
∣∣∣∣ (0, 1, 1), (1 − b, 1, α)

(0, 1, 1), (−b, 1, α)

]
, b ̸= 0,−1,−2, . . . , |z| ≤ 1,

and more precisely, for α ∈ C when |z| < 1, or Re (α) > 1 when |z| = 1; with a branch cut
along with the positive semi-axis from 1 to +∞. Then, the function is analytic in z in the
so-cut z-plane.

This contains not only the Riemann Zeta function ζ(α) (z = 1, b = 0) and the Hurwitz
Zeta function ζ(α, b) = Φ(1, α, b) with Re (α) > 1 but also the above-mentioned polylog-
arithm function (76), as Liα(z) = z Φ(z, α, 1), α ∈ C when |z| < 1, or Re (α) > 1 when
|z| = 1.

The more general Hurwitz–Lerch Zeta function is:
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Φρ,σ
µ,ν(z, α, b) =

∞

∑
n=0

(µ)ρn

(ν)σn
· zn

(n + b)α
, for |z| < δ = ρ−ρσσ,

involving Pochhamer symbols, and in some cases as:

Φσ,σ
ν,ν (z, α, b) = Φ(z, α, b), and Φ1,1

µ,1(z, α, b) =
∞

∑
n=0

(µ)n

n!
· zn

(n + b)α
·

Details of the parameters and contoursfor the more general case are explained below.

• The generalized Hurwitz–Lerch Zeta function (Srivastava–Saxena–Pogány–Saxena [97]).

It is assumed that λ, µ ∈ C; b, ν = 0,−1,−2, . . .; real ρ, σ, κ > 0; κ − ρ − σ > −1 when
α, z ∈ C, or κ − ρ − σ = −1 and α ∈ C when |z| < δ∗ = ρ−ρσ−σκκ , while κ − ρ − σ = −1
and Re (α + ν − λµ) > 1 when |z| = δ∗. Then, the following generalized (extended)
Hurwitz–Lerch Zeta functions is considered:

Φ(ρ,σ,κ)
λ,ν,µ (z, α, b) =

∞

∑
n=0

(λ)ρn(µ)σn

(ν)κn n!
· zn

(n + b)α
· (78)

In Srivastava–Saxena–Pogány–Saxena [97], the Riemann–Liouville fractional deriva-
tives of the above Hurwitz–Lerch Zeta-type functions are evaluated, as expected in terms
of similar kind of functions, in full agreement with the results as in Kiryakova [69,80], and
the ideas for the SF of FC ([9]). Functional relations are also presented of (78) with the
generalized Wright–Fox functions pΨ̃q of the form (16) from Section 2.

According to [97] (Th.4), the generalized Hurwitz–Lerch Zeta function (78) has the
following contour integral representation:

Φ(ρ,σ,κ)
λ,ν,µ (z, α, b) =

Γ(ν)
Γ(λ)Γ(µ)

×
∫
L

Γ(−s)Γ(λ + ρs)Γ(µ + σs) Γα(s + b)
Γ(ν + κs) Γα(s + b + 1)

(−z)s ds, (79)

for |arg(−z)| < π, and path of integration L = (c − i∞, c + i∞) in the complex s-plane that
separates the singularities of Γ(−s), Γ(λ + ρs), Γ(µ + σs) and Γα(s + b). Then, the relation
with the H-function is obtained, as in [97] (Th.5):

Φ(ρ,σ,κ)
λ,ν,µ (z, α, b) =

Γ(ν)
Γ(λ)Γ(µ)

× H1,3
3,3

[
−z
∣∣∣∣ (1 − λ, ρ, 1), (1 − µ, σ, 1), (1 − b, 1, α)

(0, 1), (1 − ν, κ, 1), (−b, 1, α)

]
. (80)

Several important special cases are then considered, such as asymptotic estimations,
etc.

• Generalized Wright–Bessel function (see Jolly [94], (1.1.27), p.13)

J̄ν,µ
λ (z) =

∞

∑
k=0

(−z)k

Γµ(λ + kν + 1) k!
= H1,0

0,2

[
z
∣∣∣∣ −−
(0, 1), (−λ, ν, µ)

]
. (81)

Let us compare this with the popular Wright–Bessel/Bessel–Maitland function (e.g.,
Marichev [5]) considered often by Kiryakova at al., for example, (57) in [9], see in Section 6:

Jν
λ(z) = 0Ψ1

[
−−

(λ + 1, ν)

∣∣∣∣− z
]
=

∞

∑
k=0

(−z)k

Γ(λ + kν + 1) k!
= H1,0

0,2

[
z
∣∣∣∣ −−
(0, 1), (−λ, ν)

]
,

which appears as a case of (81) if µ = 1. See also Srivastava et al. [70] (3.2).
One can prolong this list with some more complicated or exotic-looking special func-

tions that can fall in the scheme of the I-functions. We limit ourselves to the case below.

• In Bhatter et al. [98], the authors introduce the so-called E-function:
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τEh
k

[
z
∣∣∣∣ (ρ, a); (γi, qi, αi)

h
1

(α, β); (δj, pj, rj)
k
1

]
=

∞

∑
n=0

cn
(−1)ρn zan+τ

Γ(αn + β)
(82)

with coefficients including the Pochhamer symbols cn =

[
(γ1)q1n

]α1 . . .
[
(γh)qhn

]αh[
(δ1)p1n

]r1 . . .
[
(δk)pkn

]rk
.

These lead to Γ-functions to (arbitrary) fractional powers both in the numerator and
denominator of the power series (82), which is convergent for all finite values of

h

∏
i=1

(qi)
qiαi

[
αα

k

∏
j=1

(pj)
pjrj

]−1

|za|.

We omit all assumptions on parameters and on the contour that are provided in the
cited work. As shown in [98] (Th.5), this E-function allows a kind of Mellin–Barnes-type
integral

τEh
k (z) =

k
∏

v=1
Γrv(δv)

h
∏

u=1
Γαu(γu)

· zτ

2πi

∫
L

Γ(s)Γ(1 − s)
h

∏
i=1

Γαi (γi − qis)

Γ(β − αs)
k

∏
j=1

Γrj(δj − pjs)
[(−1)ρ(−za)]−s ds. (83)

Then, it can be considered as a case of a H1,1+h
2,k -function, and also has a form close to

the “extended” Le Roy-type functions, discussed in Sect. 4 of our joint work [14].

8. Some Remarks and Open Problems

We now mention in brief some open or related problems that can be further discussed
for the Le Roy-type functions (in the sense as discussed here), and more generally, for the
I-functions.

8.1. Open problem to determine G-L-type operators of generalized integration (33) in the case
of the Prabhakar-type Le Roy functions (24), and the corresponding “eigenoperators” as
the generalized differentiation (32), for which these special functions can appear as
eigenfunctions. As mentioned in Kiryakova [64], even for the simplest case m = 1 and
γ = 1, the problem stays open if τ ̸= 1. In the particular case of Prabhakar parameters
∀τi = 1, we proposed such operators in Section 4 here, see (58) as well as (61).

8.2. Open problem to find conditions of parameters for which the Le Roy-type functions
(24), or the simpler (22), or the multi-index Mittag-Leffler functions (9) and (10), are
Completely Monotone (CM). Over many years, several attempts have been made to
study the CM of some simpler classes of special functions. As a reminder, a function
f (z) is called CM if it is infinitely differentiable and (−1)n f (n)(z) ≥ 0, ∀n = 0, 1, 2, . . ..
According to the Bernstein theorem ([99]), a function f is CM if and only if it can be
uniquely represented as a Laplace transform of a non-negative (weight) function.

The results for the Mittag-Leffler function Eα,β: 0 ≤ α ≤ 1, β ≥ α are known, see,
e.g., [2] (after the earlier results by Pollard for β = 1, and by Miller–Samko), for the classical
Prabhakar function by Giusti at al. [34] and for the multinomial Prabhakar function by
Bazhlekova [92]. See also Karp–Prilepkina [77], Berg–Çetinkaya–Karp [100] (Sect.3), etc.,
for some conditions related to the CM of some Fox H- and similar functions.

For the Le Roy-type function F(γ)
(α,β), there are results given by Gorska and Horzela [56]

and Simon [57].

8.3. Open problem for the behavior of the I- and H-functions near the third singular points on
the circle of convergence when these functions are analytic inside/outside disks with
final radius R. Even for the Fox H-functions, in general, it is still an open problem,
but some particular results are available in Karp [21] (12.24).
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8.4. Open problem (as mentioned in Section 5) to define and study the properties of in-
tegral transforms of Laplace type with kernels Im,0

0,m . These should be analogues of the
Laplace; Borel-Dzrbashjan; Meijer; Obrechkoff; and “fractional” Obrechkoff trans-
forms, where the kernel functions are, resp.: exp(−z); zρ−1 exp(−zρ) = G1,0

0,1(z
ρ);

Kν(z) = 1
2 G2,0

0,2

[
z2

4

∣∣∣∣ ν
2−ν
2

]
; Gm,0

0,m(z); Hm,0
0,m (z), etc. See some details in Kiryakova [9]

(Sect.3), and our works such as [20] (Ch.2, Ch.3, Ch.5); [37,38,84].
8.5. Open problem related to the notion of the non-holomonicity for the case of I-functions

and Le Roy-type functions. A sequence {u(n)} is called holonomic (p-recursive)
if it satisfies a homogeneous linear recurrence p0(n)u(n) + p1(n)u(n + 1) + . . . +
pd(n)u(n + d) = 0, n ≥ 0 with polynomials pk, and pd not identically zero. A formal

power series f (z) =
∞
∑
0

u(n)zn is holonomic (d-finite) if it satisfies a homogenous linear

ordinary differential equation p0(z) f (z) + p1(z) f
′
(z) + . . . + pd(z) f (d)(z) = 0 with

polynomial coefficients. It is well known that such a power series is holonomic if and
only if its coefficient sequence is.

For definitions of the above-mentioned notions, and non-holomonicity of the hyper-
geometric sequences Γα1(n − u1) . . . Γαm(n − um) with non-integer αi, related to functions
f (z) = Γα1(z − u1) . . . Γαm(z − um), see Gerhold [101], Bell–Gerhold et al. [102] (Theorem
8), Flajolet–Gerhold–Salvy [103], Gerhold [52] (Sect.3), etc. Important examples of non-
holonomic functions that are I-functions have been mentioned, such as the polylogarithms,
Riemann Zeta functions, etc. More generally, I- and H-functions that involve such non-
holonomic sequences are also expected to fall in the case of the non-holonomic functions,
and in particular, the considered Le Roy-type functions.
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