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Abstract: This paper investigates the observer-based adaptive fuzzy quantized control problem for
a class of fractional-order nonlinear time-delay systems with unknown control gains based on a
modified fractional-order dynamic surface control (FODSC) technique and an indirect Lyapunov
method. First, a fractional-order, high-gain state observer is constructed to estimate unavailable state
information. Furthermore, the Nussbaum gain technique and a fractional-order filter are adopted to
cope with the problem of unknown control gains and to reduce the computational complexity of the
conventional recursive procedure, respectively. Moreover, through integration with the compensation
mechanism and estimation model, the adaptive fuzzy quantized controllers and adaptive laws are
designed to ensure that all the signals of the closed-loop system are bounded. In the end, the proposed
controller is applied to a numerical example and a single-machine-infinite bus (SMIB) power system;
the simulation results show the validity, superiority, and application potential of the developed
control strategy.

Keywords: adaptive quantized control; dynamic surface control; fractional-order nonlinear time-
delay systems; fuzzy logic systems; Nussbaum gain technique

MSC: 93C10; 93C40; 93B52

1. Introduction

Recently, fractional-order nonlinear systems (FONSs), as the extension of integer-order
nonlinear systems, have received considerable attention due to the attractive properties
of fractional calculus in modeling and characterizing accurate dynamical properties of
natural phenomena. To achieve the predefined control goals, numerous control methods
have been presented to design controllers for FONSs, such as robust control [1,2], adaptive
control [3,4], sliding mode control (SMC) [5,6], etc. In particular, the adaptive intelligent
backstepping control technique has been widely used to handle the control problem of
fractional-order nonlinear systems through integration with recursive control and an in-
telligent approximator [7–9]. Furthermore, motivated by the integer-order results [10–15],
the modified fractional-order dynamic surface control technique was introduced to over-
come the problem of computational complexity encountered in the traditional recursive
procedure [16–18]. In [16], an auxiliary function was adopted to compensate for unknown
disturbances and approximation errors. In [17], an online composite adaptive learning
control method was proposed to relax the limitation generated by PE conditions. Moreover,
the command-filtered backstepping control technique was extended to FONSs, which
ensured that the filter error caused by the introduction of the filter could be effectively
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eliminated. However, the assumption that information about control gains is available
prior is strictly required in the abovementioned scenario, which may result in limitations
for practical applications to some extent .

The Nussbaum gain technique (originally proposed in [19]) has been widely used to
address the adaptive control problem for nonlinear systems with unknown control gains,
and many remarkable results have been obtained [20–23]. In [21], a composite adaptive
neural control approach was developed to guarantee the convergence of the tracking error
to an arbitrarily small neighborhood, even if the sign of the control gain was unavailable.
In [22], an adaptive neural control algorithm the can be easily implemented in practical
systems was developed for nonstrict-feedback nonlinear systems with unknown control
directions and input dead zones. In contrast, only a few results have been reported for the
adaptive control of FONSs without knowledge of control gains. Although the adaptive
control problem for FONSs subject to unknown control gains was first investigated in [24],
the observer-based adaptive control issue for fractional-order nonlinear time-delay systems
(FONTDSs) with unknown control gains has not been fully investigated, which remains
challenging.

Another point regarding the control of nonlinear systems is that the data to be trans-
mitted are usually quantized in real communication systems under the influence of band-
width limitations. Therefore, quantized control has become a very significant research
topic [25–29]. In [27], a state-observer-based adaptive quantized control problem was stud-
ied, where a high-gain fuzzy state observer was constructed to estimate unmeasurable
system states. In [28], an adaptive neural output feedback quantized control problem for
FONTDSs was discussed. On the other hand, time delays usually appear in most real appli-
cations, often degrading the system’s performance and even leading to system instability.
As a result, many attempts have been made to handle the adaptive control problem for
nonlinear systems with time delays. In [30,31], the influence of time-varying state delays
was eliminated by establishing a Lyapunov–Krasovskii functional. In [32,33], an auxiliary
system was used to overcome the influence of input delays. The adaptive control issues
of FONTDSs were also discussed in [34,35]. However, it is worth noting that adaptive
quantized control for FONSs with time-varying delays remains an open problem.

Inspired by the observations reported above, an observer-based adaptive fuzzy quan-
tized tracking control problem for FONTDSs with unknown control gains is investigated in
this paper. The main contributions in comparison to the existing results are summarized
as follows.

(1) In most of previously reported results with respect to adaptive control for FONSs [8,9,16–18],
the system states must be available a priori, which may not be easily satisfied in prac-
tice. In contrast to the aforementioned results, only the system output—rather than all
state information—is required for the controller designed in this work by constructing
a high-gain fuzzy state observer. Time-varying delays and input quantization are
simultaneously considered in the investigated system. Therefore, the system model
considered in this paper is more general than previous proposals.

(2) In [8,9,16–18], prior knowledge of control gains of the investigated systems was
assumed, which also implies that previously proposed methods in [8,9,16–18] may
be not valid when exact information about control gains is not accessible in advance.
In contrast to the methods proposed in [8,9,16–18], in our work, the dependence
of controller design and stability analysis on control gains were fully removed by
incorporating an indirect Lyapunov method and Nussbaum gain technique, making
the obtained results more relaxed in comparison to the abovementioned results.
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2. Preliminaries and System Description
2.1. Fractional Calculus

Definition 1 ([36]). The fractional integral of order α for a function (p(t)) is expressed as:

t0 D−α
t p(t) =

1
Γ(α)

∫ t

t0

p(τ)
(t − τ)1−α

dτ (1)

where p(t) is an arbitrary integrable function, t0 D−α
t denotes the fractional integral of order α on

[t0, t], and Γ(·) is a well-known Gamma function satisfying Γ(z) =
∫ ∞

0 e−ttz−1dt.

Definition 2 ([36]). The Mittag–Leffler function with two parameters is expressed as follows:

Eq1,q2(z) =
∞

∑
k=0

zk

Γ(kq1 + q2)
, (2)

where q1 > 0, q2 > 0, and z is a complex number. Using the Laplace transform for the above
equation, one can obtain L

{
tq2−1Eq1,q2(−βtq1)

}
= sq1−q2

sq1+β
.

Definition 3 ([36]). Let p(t) be a real continuously differentiable function. Its Caputo fractional
derivative of a function with order α is defined as:

t0 Dα
t p(t) =

1
Γ(n − α)

∫ t

t0

(t − τ)n−α−1 p(n)(τ)dτ, (3)

where n − 1 ≤ α < n, and p(n) denotes the n-th derivative.

For simplicity, we denote t0 Dα
t as Dα when t0 = 0 in the subsequent parts of this work.

Lemma 1 ([37]). A FONS (Dαx(t) = p(x(t))) with order α ∈ (0, 1) and pseudo-state x(t) ∈ Rn

is essentially a continuous-frequency distributed model expressed by
∂Z(ϖ, t)

∂t
=− ϖZ(ϖ, t) + p(x(t))

x(t) =
∫ ∞

0
µα(ϖ)Z(ϖ, t)dϖ

(4)

where µα(ϖ) = sin(απ)
ϖαπ denotes the weighting function of the state variable (Z(ϖ, t)) with fractional

order α, and ϖ denotes the elementary frequency.

2.2. Nussbaum-Type Function

For any continuous function (N(ξ)), if the properties
lim
l→∞

sup
1
l

∫ l

0
N(ξ)dξ = +∞,

lim
l→∞

inf
1
l

∫ l

0
N(ξ)dξ = −∞

(5)

hold, then N(ξ) is called a Nussbaum-type function. In fact, many continuous functions
can be chosen as Nussnbaum-type functions, i.e., ξ2 sin(ξ), ξ2 cos(ξ) and eξ2

cos( π
2ξ ). In

this paper, we choose N(ξ) = ξ2 cos(ξ).
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Lemma 2 ([38]). We define two smooth functions as ξ(·) on [0, ts) and V(t) ≥ 0, ∀t ∈ [0, ts). If
N(ξ) is an even, smooth Nussbaum-type function satisfying

V(t) ≤ m1 + e−m2ς
∫ t

0
φN(ξ)ξ̇em2ςdς + e−m2ς

∫ t

0
ξ̇em2ςdς (6)

then, V(t), ξ(t) and
∫ t

0 N(ξ)ξ̇dς are bounded on [0, ts), where m1 > 0 and m2 > 0 are constants.

2.3. Fuzzy Logic Systems

To better achieve the abovementioned control goal, fuzzy logic systems (FLSs) are
adopted in this article to handle unknown nonlinearities. We consider k fuzzy IF–THEN
rules with the following form [39,40]:

Rs: IF x1 is Fs
1 and . . . and xn is Fs

n
THEN, y is Gs, s = 1, . . . , k

where Rs represents the sth rule, 1 ≤ s ≤ k, xi(i = 1, . . . , n), and y ∈ R denotes the
linguistic variables associated with the inputs and outputs of the FLSs. Fs

i and Gs are the
fuzzy set. Then, the FLSs are described as

y(x) =
∑k

s=1 ws

(
∏n

i=1 µFs
i
(xi)

)
∑k

s=1

(
∏n

i=1 µFs
i
(xi)

) . (7)

We define the weight vector and fuzzy basis function vector as W = [W1, . . . , Wk]
T and

ϕ(x) = [ϕ1, . . . , ϕk]
T , respectively, in which ϕs =

[
(∏n

i=1 µFs
i
(xi))/ ∑k

s=1

(
∏n

i=1 µFs
i
(xi)

)]
;

then, the above expression can be represented as y(x) = WTϕ(x).

Lemma 3 ([39,40]). For any continuous function (F(x)) defined over a compact set (Θ) and a
desired level of accuracy (o > 0), there exist an FLS such that

sup
x∈Θ

|F(x)− WTϕ(x)| ≤ o. (8)

2.4. Nonlinear System Model

We consider FONTDSs with unknown control gains and quantized input as:
Dαζi = φiζi+1 + fi(ζ̄i) + gi(ζ̄i(t − τi(t))) + di(ζ, t), i = 1, . . . , n − 1

Dαζn = φnq(u) + fn(ζ̄n) + gn(ζ̄n(t − τn(t))) + dn(ζ, t)

y = ζ1

(9)

where α denotes the fractional order satisfying 0 < α < 1; ζ̄i = [ζ1, . . . , ζi]
T ∈ Ri, i = 1, . . . , n,

y ∈ R, and u ∈ R are the state vector, the system output, and the control input, respectively;
fi(ζ̄i) stands for an unknown but smooth nonlinear function; τi(t) is an unknown bounded
time delay satisfying specific constraints |τi(t)| ≤ τ̄ and τ̇i(t) ≤ τ∗ ≤ 1, where τ̄ and τ∗ are
known constants; φi is an unknown constant; di(ζ, t) represents the unknown but bounded
disturbance term; and q(u) represents the quantized input. According to [27], the following
hysteresis quantizer is considered to reduce chattering phenomena while obtaining the
quantized control signal:
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q(u) =



uisgn(u),
ui

1 + δ
< |u| ≤ ui, u̇ < 0, or

ui < |u| ≤ ui
1 − δ

, u̇ > 0

ui(1 + δ)sgn(u), ui < |u| ≤ ui
1 − δ

, u̇ < 0, or

ui
1 − δ

< |u| ≤ ui(1 + δ)

1 − δ
, u̇ > 0

0, 0 ≤ |u| < umin
1 + δ

, u̇ < 0, or

umin
1 + δ

≤ |u| ≤ umin, u̇ > 0

q(u(t−)), otherwise,

(10)

where ui = ϱ1−ium(i = 1, 2, . . .) with 0 < ϱ < 1 and δ = 1−ϱ
1+ϱ , and um is the range of the

dead zone for a quantized input (q(u)) taking a value from the set U = (0,±ui,±ui(1+ ϱ)).

Remark 1. For system (9) without time-delay terms, some adaptive control methods were presented
in [8,9,16–18]. However, φi = 1(i = 1, . . . , n) is assumed, and information about control gains was
assumed to be available in advance in the aforementioned studies. Motivated by the results reported
in [27,41], an adaptive fuzzy quantized control scheme is established for FONTDSs with unknown
control gains by integrating an indirect Lyapunov method and Nussbaum gain technique, which
can ensure that the relaxed results in comparison to those reported in [8,9,16–18] can be obtained.

To facilitate the stability analysis and controller design, some necessary assumptions
are provided as follows.

Assumption 1 ([30]). For nonlinear function Gi(·)(i = 1, 2, . . . , n), there exist known functions
(χi(z1(t − τi(t)))), bounded functions (χ̃i(yd(t − τi(t)))), and positive scalars (mi) such that the
following inequality holds:

|Gi(ζ̄i(t − τi(t)))|2 ≤z1(t − τi(t))χi(z1(t − τi(t))) + χ̃i(yd(t − τi(t))) + mi

where z1 = y − yd and yd denote the tracking error and reference signal, respectively.

Assumption 2 ([41]). The unknown control gain (ϕi) is a non-zero and bounded constant, and
there exists a positive scalar (ϕ̄i) such that |ϕi| ≤ ϕ̄i.

Assumption 3 ([42]). The reference signal (yd) is a known smooth, bounded signal. Its fractional
derivative (Dαyd) is also bounded.

2.5. Model Transformation

To overcome the negative influence caused by unknown control gains in the system (5),
the transformation is expressed as 

x1 = ζ1

xi =
ζi

φi∼n

(11)
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where i = 2, . . . , n, φi∼n = bi · · · bn.
Using (11), system (9) can be rewritten as:

Dαx1 = φx2 + F1(x1) + G1(x̄1,τ1(t)) + ψ1

Dαxi = xi+1 + Fi(x̄i) + Gi(x̄i,τi(t)) + ψi, 2 ≤ i ≤ n − 1

Dαxn = q(u) + Fn(x̄n) + Gn(x̄n,τn(t)) + ψn

y = x1

(12)

where φ = ∏n
j=1 φj, x̄n = [x1, . . . , xn]T ∈ Rn, ζ = B̄x̄, B̄ = diag

{
1, ∏n

j=2 φj, . . . , φn

}
, Fi(x) =

fi(ζ)/φi∼n, Gi(x̄i,τi(t)) = gi(ζ̄i,τi(t))/φi∼n with ζ̄i,τi(t) = ζ̄i(t − τi(t)), and ψi = di/φi∼n.
Based on fuzzy approximation, system (12) can be rewritten as:

Dαx1 = x2 + F̂1(x̂2|θ̂1) + θ∗T
1 ψ1(x̄2)− θ̂T

1 ψ1(x̂2) + G1(x̄1,τ1(t)) + ψ̄1

Dαxi = xi+1 + F̂i(x̂i|θ̂i) + θ∗T
i ψi(x̄i)− θ̂T

i ψi(x̂i) + Gi(x̄i,τi(t)) + ψ̄i

Dαxn = q(u) + F̂n(x̂n|θ̂n) + θ∗T
n ψn(x̄n)− θ̂T

n ψn(x̂n) + Gn(x̄n,τn(t)) + ψ̄n

y = x1

(13)

where 2 ≤ i ≤ n − 1, x̂i = [x̂1, . . . , x̂i]
T ∈ Ri, x̂i is an estimation of xi, which can be

directly obtained by the state observer designed herein. F̂1(x̂2|θ̂1) = θ̂T
1 ψ1(x̂2), F̂j(x̂j|θ̂j) =

θ̂T
j ψj(x̂j), F1(x1) + (φ − 1)x2 = θ∗T

1 ψ1(x̄2) + o1(x̄2), Fj(xj) = θ∗T
j ψj(x̄j) + oj(x̄j), ψ̄1 = ψ1 +

o1(x̄2), ψ̄j = ψj + oj(x̄j) with j = 2, . . . , n.
The control goal of this work is to propose an observer-based adaptive fuzzy quantized

control scheme for system (9) via an indirect Lyapunov method and FODSC technique such
that all the signals of the closed-loop system (CLS) are bounded and the system output can
track the preassigned reference signal.

3. Main Results

In this section, we propose an observer-based adaptive fuzzy quantized control scheme
for FONTDS (9). First, a fractional-order, high-gain fuzzy state observer is constructed to
estimate unavailable state information. Subsequently, the controller design and stability
results are obtained by means of the FODSC technique, an indirect Lyapunov method, and
a Lyapunov–Krasovskii functional.

3.1. High-Gain Fuzzy State Observer Design

Considering that the system states may not be not available, an FO fuzzy high-gain
observer is first designed to estimate the immeasurable system states. According to system
(9), the high-gain observer is constructed as:

Dα x̂1 = x̂2 + F̂1(x̂2|θ̂1) + µ1L1(y − x̂1)

Dα x̂i = x̂i+1 + F̂i(x̂i|θ̂i) + µiLi(y − x̂1), 2 ≤ i ≤ n − 1

Dα x̂n = q(u) + F̂n(x̂n|θ̂n) + µnLn(y − x̂1)

(14)

By defining the observation error as e = x − x̂ = [e1, . . . , en]T and invoking (13) and
(14), the observation error dynamics are

Dαe1 = e2 + θ∗T
1 ψ1(x̄2)− θ̂T

1 ψ1(x̂2) + G1(x̄1,τ1(t)) + ψ̄1 − µ1L1(y − x̂1)

Dαei = ei+1 + θ∗T
i ψi(x̄i)− θ̂T

i ψi(x̂i) + Gi(x̄i,τi(t)) + ψ̄i − µiLi(y − x̂1)

Dαen = θ∗T
n ψn(x̄n)− θ̂T

n ψn(x̂n) + Gn(x̄n,τn(t)) + ψ̄n − µnLn(y − x̂1)

(15)
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where i = 2, . . . , n − 1.
To facilitate further analysis, system (15) is rewritten as:

Dαe =AµLe +
n

∑
i=1

[
Biθ

∗T
i ψi(x̄i, x̂i) + Bi θ̃

T
i ψi(x̂i) + BiGi(x̄i,τi(t))

]
+ Ψ (16)

where ψi(x̄i, x̂i) = ψi(x̄i)−ψi(x̂i), AµL = A− LE, L = [µL1, . . . , µnLn]T , µ > 1 is a constant,
Ψ = [ψ̄1, . . . , ψ̄n]T , and Bi = [0, . . . , 0, 1︸ ︷︷ ︸

i

, 0 . . . , 0]T with

A =


0 1

0
. . .

... 1
0 0 · · · 0

, E =


1
0
...
0


T

.

Then, through coordinate transformation of E = χe with χ = diag
{

1, µ−1, . . . , µ1−n},
one can obtain

DαE =µALE + χ
n

∑
i=1

[
Biθ

∗T
i ψi(x̄i, x̂i) + Bi θ̃

T
i ψi(x̂i) + BiGi(x̄i,τi(t))

]
+ χΨ (17)

where

AL =


−L1 1

−L2
. . .

... 1
−Ln 0 · · · 0

.

It can be easily observed that AL is a strict Hurwitz matrix. Therefore, for a given
matrix (Q > 0), there exists a matrix P > 0 such that the following equation holds:

AT
LP +PAL = −Q. (18)

To analyze the performance of the error dynamic (17), a frequency-distributed model
is adopted to rewrite the system (17). According to Lemma 1, one has

∂ZE (ϖ, t)
∂t

=− ϖZE (ϖ, t) + µALE + χ
n

∑
i=1

[
Biθ

∗T
i ψi(x̄i, x̂i)

+Bi θ̃
T
i ψi(x̂i) + BiGi(x̄i,τi(t))

]
+ χΨ

E =
∫ ∞

0
µα(ϖ)ZE (ϖ, t)dϖ

(19)

where µα(ϖ) = sin(απ)/πϖα.
Then, the following Lyapunov function is selected:

V0 = V0,0 + V0,1 (20)

where

V0,0 =
1
2

∫ ∞

0
µα(ϖ)ZT

E (ϖ, t)PZE (ϖ, t)dϖ,

V0,1 =
||P ||2e−σt

a(1 − τ̄)

n

∑
i=1

∫ t

t−τi(t)
eσςz1(ς)χi(z1(ς))dς.
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The derivative of V0 is calculated as:

V̇0 =−
∫ ∞

0
ϖµα(ϖ)ZT

E (ϖ, t)PZE (ϖ, t)dϖ − ||P ||2
a

n

∑
i=1

e−στi(t)z1,τi(t)χi(z1,τi(t))

− µE TQ̄E − σV0,1 + E TPχ

[
n

∑
i=1

Biθ
∗T
i ψi(x̄i, x̂i) +

n

∑
i=1

Bi θ̃
T
i ψi(x̂i)

+
n

∑
i=1

BiGi(x̄i,τi(t)) + Ψ

]
+

||P ||2
a(1 − τ̄)

n

∑
i=1

z1(t)χi(z1(t)) (21)

where z1,τi(t) = z1(t − τi(t)), Q̄ = 1
2Q.

According to Assumption 2.1 and Young’s inequality, one has

E TPχ
n

∑
i=1

Biθ
∗T
i ψi(x̄i, x̂i) ≤ E TE + ||P ||2

n

∑
i=1

θ∗T
i θ∗i

E TPχ
n

∑
i=1

Bi θ̃
T
i ψi(x̂i) ≤ E TE +

||P ||2
2

n

∑
i=1

θ̃T
i θ̃i

E TPχ
n

∑
i=1

BiGi(x̄i,τi(t)) ≤
b
2
E TE +

||P ||2
2b

n

∑
i=1

z1,τi(t)χi(z1,τi(t)) +
n

∑
i=1

h̄i

E TPχΨ ≤ 1
2
E TE +

||P ||2
2

Ψ̄

(22)

where h̄i =
||P ||2

ϱ (χ̃i(yd(t − τi(t))) + mi), b = aeστ

2 with τ = max{τ1(t), . . . , τn(t)}, and Ψ̄

is an unknown constant satisfying ||Ψ||2 ≤ Ψ̄.
According to the definition of γ, we can obtain

||P ||2
2γ

n

∑
i=1

z1,τi(t)χi(z1,τi(t))−
||P ||2

a

n

∑
i=1

e−στi(t)z1,τi(t)χi(z1,τi(t)) < 0 (23)

It follows from (22) and (23) that

V̇0 =−
∫ ∞

0
ϖµα(ϖ)ZT

E (ϖ, t)PZE (ϖ, t)dϖ − σ||P ||2e−σt

a(1 − τ̄)

n

∑
i=1

∫ t

t−τi(t)
eσςz1(ς)χi(z1(ς))dς

− cµE TE +
||P ||2

a(1 − τ̄)

n

∑
i=1

z1(t)χi(z1(t)) + ||P ||2
n

∑
i=1

θ∗T
i θ∗i +

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j

+
n

∑
i=1

h̄i +
||P ||2

2
Ψ̄ (24)

where c = λmin(Q̄)− 5+b
2 .

Remark 2. In view of the complexity of the fractional derivative, it should be pointed out that
the Lyapunov functions in most of the existing IO/FO results, such as those reported in [16–18],
are rarely used to handle the control problem of FONSs subject to unknown control gains and
time-varying delays. Therefore, an indirect Lyapunov method is employed to finish the predefined
control goal. Moreover, the method proposed in this paper is easily extended to investigate the control
problem of incommensurate FONTDSs.

3.2. FODSC-Based Adaptive Fuzzy Quantized Control Design

Step 1. First, we define the following change of coordinates:{
z1 = y − yd,

zi = x̂i − λi, f , (i = 2, . . . , n)
(25)
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where zj(j = 1, 2, . . . , n) denotes surface error, and the virtual control signal (ηi−1) and
λi−1, f are the input and output of the modified FO filter to be designed, respectively.

The FO derivative of z1 is expressed as follows:

Dαz1 =φ
(

z2 + e2 + λ2, f

)
+ θ∗T

s1 ψs1(X1) + G1(x̄1,τ1(t)) + ∆1 (26)

where the term F1(x1)− Dαyd is approximated by the FLS with X1 = [x1, yd, Dαyd] and
∆1 = os1 + ψ1, satisfying ||∆1||2 ≤ ∆1,M.

To overcome the complexity issue existing in the traditional backstepping control
method, we let η1 pass through the following modified FO filter to obtain a filtered signal.

ι2Dαλ2, f + λ2, f = η1, λ2, f (0) = η1(0) (27)

where ι2 > 0 is a time constant. By defining the filter error as ϵ2 = λ2, f − η1, we have

Dαλ2, f = − ϵ2

ι2
(28)

The first virtual control input (η1) and update laws are designed as:

η1 = N(ξ)η
1

(29)

η
1
=

(
φ2

M +
3 + 2k1

2

)
z1 + θ̂T

s1ψs1(X1) +
χ1(z1(t))
2a(1 − τ̄)

+
||P ||2

a(1 − τ̄)

n

∑
i=1

χi(z1(t)) (30)

Dα θ̂1 = ψ1(x̂2)z1 − a1θ̂1, (31)

Dα θ̂s1 = ψs1(X1)z1 − a1θ̂s1, (32)

where k is a positive constant, and φM is a constant satisfying |φ| ≤ φM.
According to (28)–(30), we have

Dαϵ2 = − ϵ2

ι2
+ Ω2(⋆) (33)

where Ω2(·) is a continuous function concerning variables z1, ξ. Based on previously
reported results [16], there exists a constant (M2) such that |Ω2(⋆)| ≤ M2.

According to Lemma 1, we can rewrite Dαz1, Dα θ̃1, Dαϵ2 as:
∂Zz1(ϖ, t)

∂t
=− ϖZz1(ϖ, t) + φ(z2 + e2 + η1 + ϵ2)

+ θ∗T
s1 ψ1(X1) + G1(x̄1,τ1(t)) + ∆1

z1 =
∫ ∞

0
µα(ϖ)Zz1(ϖ, t)dϖ

(34)


∂Zθ̃1

(ϖ, t)

∂t
=− ϖZθ̃1

(ϖ, t) + ψ1(x̂2)z1 − a1θ̂1

θ̃1 =
∫ ∞

0
µα(ϖ)Zθ̃1

(ϖ, t)dϖ

(35)


∂Zθ̃s1

(ϖ, t)

∂t
=− ϖZθ̃s1

(ϖ, t) + ψs1(X1)z1 − a1θ̂s1

θ̃s1 =
∫ ∞

0
µα(ϖ)Zθ̃s1

(ϖ, t)dϖ

(36)


∂Zϵ2(ϖ, t)

∂t
=− ϖZϵ2(ϖ, t)− ϵ2

ι2
+ Ω2(⋆)

ϵ2 =
∫ ∞

0
µα(ϖ)Zϵ2(ϖ, t)dϖ

(37)
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Then, we select the following Lyapunov function:

V1 = V0 + V1,1 + V1,2 + V1,3 + V1,4 + V1,5 (38)

where V1,1 = e−σt

2a(1−τ̄)

∫ t
t−τi(t)

eσςz1(ς)χ1(z1(ς))dς, V1,2 = (1/2)
∫ ∞

0 µα(ϖ)Z2
z1
(ϖ, t)dϖ,

V1,3 = (1/2)
∫ ∞

0 µα(ϖ)ZT
θ̃1
(ϖ, t)Zθ̃1

(ϖ, t)dϖ, V1,4 = (1/2)
∫ ∞

0 µα(ϖ)ZT
θ̃s1
(ϖ, t)Zθ̃s1

(ϖ, t)dϖ,

V1,5 = (1/2)
∫ ∞

0 µα(ϖ)Z2
ϵ2
(ϖ, t)dϖ.

The derivative of V1 is

V̇1 ≤− (Ξ0,0 + Ξ0,1 + Ξ1,1 + Ξ1,2 + Ξ1,3)− σ(V0,1 + V1,1) +
||P ||2

a(1 − τ̄)

n

∑
i=1

z1(t)χi(z1(t))

− cµE TE + ||P ||2
n

∑
i=1

θ∗T
i θ∗i +

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j +

n

∑
i=1

h̄i +
||P ||2

2
Ψ̄ +

z1(t)χ1(z1(t))
2a(1 − τ̄)

− e−στ1(t)

2a
z1,τ1(t)χ1(z1,τ1(t)) + z1

[
φ(z2 + e2 + η1 + ϵ2) + θ∗T

s1 ψ1(X1) + G1(x̄1,τ1(t))

+∆1 + θ̃T
1 ψ1(X̂2)− θ̃T

1 ψ1(x̂2)
]
− θ̃T

1
(
ψ1(x̂2)z1 − a1θ̂1

)
− θ̃T

s1
(
ψ1(X1)z1 − a1θ̂s1

)
+ ϵ2

(
− ϵ2

ι2
+ Ω2(⋆)

)
(39)

where Ξ0,0 =
∫ ∞

0 ϖµα(ϖ)ZT
E (ϖ, t)PZE (ϖ, t)dϖ, Ξ0,1 =

∫ ∞
0 ϖµα(ϖ)ZT

θ̃s1
(ϖ, t)Zθ̃s1

(ϖ, t)dϖ,

Ξ1,1 =
∫ ∞

0 ϖµα(ϖ)Z2
z1
(ϖ, t)dϖ, Ξ1,2 =

∫ ∞
0 ϖµα(ϖ)ZT

θ̃1
(ϖ, t)Zθ̃1

(ϖ, t)dϖ, Ξ1,3 =
∫ ∞

0 ϖµα(ϖ)

Z2
ϵ2
(ϖ, t)dϖ.

Substituting (29) and (30) into (37) and using Young’s inequality, one can obtain

V̇1 ≤− (Ξ0,0 + Ξ0,1 + Ξ1,1 + Ξ1,2 + Ξ1,3)− σ(V0,1 + V1,1)− c̄µE TE

+ ||P ||2
n

∑
i=1

θ∗T
i θ∗i +

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j +

n

∑
i=1

h̄i +
||P ||2

2
Ψ̄ + z1

(
φz2 + φη1 + η

1

)
− k1z2

1 + a1θ̃T
1 θ̂1 + a1θ̃T

s1θ̂s1 +
∆1,M

2
+

||θ̃1||2
2

+ ¯̄h −
(

1
ι2

− 1
2

)
ϵ2

2 +
1
2

M2
2 (40)

where c̄ = c − 1
2 > 0, 0 < ι2 < 2, ¯̄h = 1

2 [χ̃1(yd(t − τ1(t))) + m1].
We set ξ̇ = z1η

1
. Then, invoking (40) yields

V̇1 ≤− (Ξ0,0 + Ξ0,1 + Ξ1,1 + Ξ1,2 + Ξ1,3)− σV0,1 − σV1,1 + φN(ξ)ξ̇ + ξ̇ − k1z2
1

+ φz1z2 + a1θ̃T
1 θ̂1 + a1θ̃T

s1θ̂s1 +
M2

2
2

+
||θ̃1||2

2
+

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j + Λ1 (41)

where Λ1 = ||P ||2 ∑n
i=1 θ∗T

i θ∗i + ∑n
i=1 h̄i + ¯̄h +

[
||P ||2Ψ̄ + ∆1,M

]
/2.

Step i (i = 2, . . . , n − 1). Similar to step 1, Dαzi is calculated as:

Dαzi = x̂i+1 + θ̂T
i ψi(x̂i) + µiLi(y − x̂1)− Dαλi, f (42)

By adopting the FO filter (ιi+1Dαλi+1, f + λi+1, f = ηi) with λi+1, f (0) = ηi(0) and
defining the filter error as ϵi+1 = λi+1, f − ηi, we can obtain

Dαλi+1, f = − ϵi+1

ιi+1
, (43)
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The virtual control input (ηi) and parameter update law are designed as:

ηi = −zi−1 − (ki + 1)zi − θ̂T
i ψi(x̂i)− µiLi(y − x̂1) + Dαλi, f (44)

Dα θ̂i = ψi(x̂i)zi − ai θ̂i, (45)

where ki and ai are positive constants.
Then, we can obtain

Dαϵi+1 = − ϵi+1

ιi+1
+ Ωi+1(⋆), (46)

where Ωi+1(⋆) is a continuous function concerning variables z1, . . . , zi, θ̂1, . . . , θ̂i, λi, f , Dαλi, f .
There exists a constant (Mi+1) such that |Ωi+1(⋆)| ≤ Mi+1.

Similar to (34)–(37), we have
∂Zzi (ϖ, t)

∂t
=− ϖZzi (ϖ, t) + x̂i+1 + θ̂T

i ψi(x̂i)

+ µiLi(y − x̂1)− Dαλi, f

zi =
∫ ∞

0
µα(ϖ)Zzi (ϖ, t)dϖ

(47)


∂Zθ̃i

(ϖ, t)

∂t
=− ϖZθ̃i

(ϖ, t) + ψi(x̂i)zi − ai θ̂i

W̃i =
∫ ∞

0
µα(ϖ)Zθ̃i

(ϖ, t)dϖ

(48)


∂Zϵi+1(ϖ, t)

∂t
=− ϖZϵi+1(ϖ, t)− ϵi+1

ιi+1
+ Ωi+1(⋆)

ϵi+1 =
∫ ∞

0
µα(ϖ)Zϵi+1(ϖ, t)dϖ

(49)

Then, we construct the following Lyapunov function:

Vi = Vi−1 + Vi,1 + Vi,2 + Vi,3 (50)

where Vi,1 = (1/2)
∫ ∞

0 µα(ϖ)Z2
zi
(ϖ, t)dϖ, Vi,2 = (1/2)

∫ ∞
0 µα(ϖ)ZT

θ̃i
(ϖ, t)Zθ̃i

(ϖ, t)dϖ,

Vi,3 = (1/2)
∫ ∞

0 µα(ϖ)Z2
ϵi+1

(ϖ, t)dϖ.
Calculating the derivative of Vi yields

V̇i ≤− (Ξ0,0 + Ξ0,1)−
i

∑
j=1

(
Ξj,1 + Ξj,2 + Ξj,3

)
− σ(V0,1 + V1,1) + φN(ξ)ξ̇ + ξ̇ + a1θ̃T

s1θ̂s1

+
||P ||2

2

n

∑
j=1

θ̃T
j θ̃j +

i−1

∑
j=1

||θ̃j||2

2
+

i−1

∑
j=1

aj θ̃
T
j θ̂j −

i−1

∑
j=1

k jz2
j + φ̄z1z2 + zi−1zi + Λi−1

+ zi

[
zi+1 + ϵi+1 + ηi + θ̂T

i ψi(x̂i) + µiLi(y − x̂1)− Dαλi, f + θ̃T
i ψi(x̂i)− θ̃T

i ψi(x̂i)
]

− θ̃T
i
(
ψi(x̂i)zi − ai θ̂i

)
+ ϵi+1

(
− ϵi+1

ιi+1
+ Ωi+1(⋆)

)
(51)

in which φ̄ = φ− 1, Λi−1 = Λ1 +∑i−1
j=1

1
2 M2

j+1, 0 < ιi+1 < 2, Ξi,1 =
∫ ∞

0 ϖµα(ϖ)Z2
zi
(ϖ, t)dϖ,

Ξi,2 =
∫ ∞

0 ϖµα(ϖ)ZT
θ̃i
(ϖ, t)Zθ̃i

(ϖ, t)dϖ, Ξi,3 =
∫ ∞

0 ϖµα(ϖ)Z2
ϵi+1

(ϖ, t)dϖ.
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Substituting (48) into (50) and using Young’s inequality, one can obtain

V̇i ≤− (Ξ0,0 + Ξ0,1)−
i

∑
j=1

(
Ξj,1 + Ξj,2 + Ξj,3

)
− σ(V0,1 + V1,1) + φN(ξ)ξ̇ + ξ̇ + a1θ̃T

s1θ̂s1

+
||P ||2

2

n

∑
j=1

θ̃T
j θ̃j +

i

∑
j=1

||θ̃j||2

2
+

i

∑
j=1

aj θ̃
T
j θ̂j −

i

∑
j=1

k jz2
j + φ̄z1z2 + zizi+1 + Λi (52)

where Λi = Λ1 + ∑i
j=1

1
2 M2

j+1.
Step n. In this step, the control input is designed. Along with step i, we have

Dαzn = q(u) + θ̂T
n ψn(x̂n) + µnLn(y − x̂1)− Dαλn, f (53)

The intermediate control input (υ) and parameter update law are designed as:

v = zn−1 + (kn + 1)zn + θ̂T
n ψn(x̂n) + µnLn(y − x̂1)− Dαλn, f (54)

Dα θ̂n = ψn(x̂n)zn − an θ̂n (55)

Using Lemma 1 again, we can rewrite systems (53) and (55) as:
∂Zzn(ϖ, t)

∂t
=− ϖZzn(ϖ, t)q(u) + θ̂T

n ψn(x̂n)

+ µnLn(y − x̂1)− Dαλn, f

zn =
∫ ∞

0
µα(ϖ)Zzn(ϖ, t)dϖ

(56)


∂Zθ̃n

(ϖ, t)
∂t

=− ϖZθ̃n
(ϖ, t) + ψn(x̂n)zn − an θ̂n

θ̃n =
∫ ∞

0
µα(ϖ)Zθ̃n

(ϖ, t)dϖ

(57)

Then, we set the Lyapunov function as:

Vn = Vn−1 + Vn,1 + Vn,2 (58)

where Vn,1 = 1
2

∫ ∞
0 µα(ϖ)Z2

zn(ϖ, t)dϖ, Vn,2 = 1
2

∫ ∞
0 µα(ϖ)ZT

θ̃n
(ϖ, t)Zθ̃n

(ϖ, t)dϖ.
The derivative of Vn is

V̇n ≤− (Ξ0,0 + Ξ0,1)−
n

∑
j=1

(
Ξj,1 + Ξj,2

)
−

n−1

∑
j=1

Ξj,3 − σ(V0,1 + V1,1) + φN(ξ)ξ̇ + ξ̇ + a1θ̃T
s1θ̂s1

+
||P ||2

2

n

∑
i=1

θ̃T
j θ̃j +

i

∑
j=1

||θ̃j||2

2
+

i

∑
j=1

aj θ̃
T
j θ̂j −

n−1

∑
j=1

k jz2
j + φ̄z1z2 + zn−1zn + Λn−1

+ zn

[
u + h + θ̂T

n ψn(x̂n) + µnLn(y − x̂1)− Dαλn, f + θ̃T
n ψn(x̂n)− θ̃T

n ψn(x̂n)
]

− θ̃T
n
(
ψn(x̂n)zn − an θ̂n

)
(59)

where Ξn,1 =
∫ ∞

0 ϖµα(ϖ)Z2
zn(ϖ, t)dϖ, Ξn,2 =

∫ ∞
0 ϖµα(ϖ)ZT

θ̃n
(ϖ, t)Zθ̃n

(ϖ, t)dϖ.
Substituting (54) into (59) yields
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V̇n ≤− (Ξ0,0 + Ξ0,1)−
n

∑
j=1

(
Ξj,1 + Ξj,2

)
−

n−1

∑
j=1

Ξj,3 − σ(V0,1 + V1,1) + φN(ξ)ξ̇ + ξ̇

+ a1θ̃T
s1θ̂s1 +

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j +

n

∑
j=1

||θ̃j||2

2
+

n

∑
j=1

aj θ̃
T
j θ̂j −

n−1

∑
j=1

k jz2
j + φ̄z1z2 + Λn

−
(

kn +
1
2

)
z2

n + znv + zn(u + h) (60)

where Λn = Λ1 + ∑n−1
j=1

1
2 M2

j+1.
Then, the actual control input is designed as:

u = − znυ2

(1 − δ)
√

z2
nυ2 + ℵ2

(61)

where ℵ is a positive parameter to be determined.
Based on the abovementioned analysis, the following theorem is proposed.

Theorem 1. For the considered FONTDS (9) under Assumptions 1–3, the presented control scheme
including an FO high-gain fuzzy state observer (14); intermediate control laws (29), (30), (44) and
(54); actual control law (61); and parameter update laws (31), (45) and (55) can guarantee that all
the signals in the CLS are bounded and that the system output (y) can track the given reference
signal (yd).

Proof. According to Lemma 3 and given the fact that znu < 0, we have

znh ≤δ|znu|+ |zn|umin ≤ −δznu +
1
2

z2
n +

1
2

u2
min (62)

Substituting (62) into (60), one can obtain

V̇n ≤− (Ξ0,0 + Ξ0,1)−
n

∑
j=1

(
Ξj,1 + Ξj,2

)
−

n−1

∑
j=1

Ξj,3 − σ(V0,1 + V1,1) + φN(ξ)ξ̇ + ξ̇

+ a1θ̃T
s1θ̂s1 +

||P ||2
2

n

∑
j=1

θ̃T
j θ̃j +

n

∑
j=1

||θ̃j||2

2
+

n

∑
j=1

aj θ̃
T
j θ̂j −

n

∑
j=1

k jz2
j + φ̄z1z2 + Λn

+ (1 − δ)znu + znυ +
1
2

u2
min (63)

It follows from Lemma 3 in [43] that

znυ + (1 − δ)znu ≤ |znυ| − z2
nυ2√

z2
nυ2 + ℵ2

< ℵ. (64)

Invoking (63) and (64) and utilizing Young’s inequality yields

V̇n ≤− (Ξ0,0 + Ξ0,1)−
n

∑
j=1

(
Ξj,1 + Ξj,2

)
−

n−1

∑
j=1

Ξj,3 − σ(V0,1 + V1,1)

+
||P ||2

2

n

∑
j=1

θ̃T
j θ̃j −

n

∑
j=1

aj

2
θ̃T

j θ̃j + (φN(ξ) + 1)ξ̇ −
n

∑
j=1

k̄ jz2
j + Λ̄n (65)

where k̄1 =

(
k1 −

φ2
M
2

)
, k̄2 =

(
k2 − 1

2

)
, k̄ j = k j(j = 3, . . . , n) and Λ̄n = Λn +

a1||θ∗s1||2
2 +

∑n
j=1

aj ||θ∗j ||
2

2 + 1
2 u2

min + ℵ.
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Furthermore, by choosing the appropriate design parameters (ki, ai(i = 1, . . . , n)), the
following inequality holds

V̇n ≤− κV + Λ̄n + φN(ξ)ξ̇ + ξ̇ (66)

where κ = min{ϖ, σ}.
Multiplying inequality (66) by eκt on both sides yields

eκtV̇n + κVneκt ≤Λ̄neκt + eκt φN(ξ)ξ̇ + eκt ξ̇ (67)

Furthermore, we have

d
(
Vneκt)
dt

≤ Λ̄neκt + eκt φN(ξ)ξ̇ + eκt ξ̇ (68)

Then, we take the integration for (68) over [0, t] to obtain

Vn ≤ Λ̄n

κ
+

(
Vn(0)−

Λ̄n

κ

)
e−κt + e−κt

∫ t

0
(φN(ξ) + 1)ξ̇eκςdς (69)

By utilizing Lemma 1, it can be determined that e−κt ∫ t
0 (φN(ξ) + 1)ξ̇eκςdς is bounded.

Subsequently, we have

Vn ≤ Λ̄n

κ
+

(
Vn(0)−

Λ̄n

κ

)
e−κt + τ (70)

where τ denotes the upper bound of e−κt ∫ t
0 (φN(ξ) + 1)ξ̇eκςdς. Moreover, it can be con-

cluded from (73) that all the signals of the closed-loop system are bounded. This completes
the proof.

A block diagram is presented in Figure 1 to clarify the structure of the proposed
control scheme.
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i fn

x

x

u

q u

rD y

ix

nx

ie

N

T

q u

T

n n
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Figure 1. Block diagram of the proposed control scheme.
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4. Simulation Verification

To demonstrate the effectiveness of the developed control strategy, a pair of simulation
studies are conducted in this section.

4.1. Numerical Example

Example 1. We consider the following FONTDS with unknown control gains and input quantization.
Dαζ1 = φ1ζ2 − 0.5ζ2

1 +
ζ3

1(t−τ1(t))
1+ζ2

1(t−τ1(t))
+ d1(ζ, t)

Dαζ2 = φ2q(u) + ζ1ζ2
2 +

ζ4
1(t−τ2(t)) sin(ζ2)

1+ζ2
1(t−τ2(t))

+ d2(ζ, t)

y = ζ1,

(71)

where α = 0.9, φ1 = 1.5, φ2 = 2, d1(ζ, t) = 0.2 sin(t)+ 0.1 sin(ζ1ζ2), d2(ζ, t) = 0.3 cos(1.5t)+
0.1 sin(ζ2

1ζ2), τ1(t) = 0.2 + 0.2 sin(t), τ2(t) = 0.1 + 0.1 sin(t).

For each variable input into the FLS, we define nine Gaussian membership func-

tions (GMFs) as: µF1
1
(X1) = exp

[
−(X1−i+5)2

4

]
and µF2

1
(X2) = exp

[
−(X2−i+5)2

4

]
with i =

1, 2, . . . , 9, uniformly distributed on [−4, 4], as demonstrated in Figure 2, where X1 =

[x1, yd, Dαyd], X2 = [x̂1, x̂2], and x̂i is the estimate of the system state (xi =
ζi

φi∼n
).
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Figure 2. Membership functions of the FLSs.

The initial conditions are set as: ζ1(0) = 0.1, ζ2(0) = −0.2, ζ̂1(0) = 0.2,
ζ̂2(0) = −0.1, θ̂s1(0) = θ̂1(0) = θ̂2(0) = 0, and yd = sin(0.5t). To verify the effect of
the selection of design parameters on system performance, we investigate the following
three cases.
Case 1. k1 = k2 = 15, a1 = a2 = 5, δ = 0.6, ρ = 0.25, ι = 0.01, µ = 2, L1 = 15, L2 = 10,
ς1 = 0.02.
Case 2. δ = 0.75, ρ = 1

7 , and the other design parameters are the same as in Case 1.
Case 3. k1 = k2 = 30, µ = 4, and the other parameters are the same as in Case 1.

The simulation results are presented in Figures 3–11. Figures 3–5 display the time
response of the reference signal (yd), system output (x1), and its estimation (x̂1), respectively,
for each of the three cases. The curves of the tracking error (y− yd) are shown in Figures 6–8.
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0 5 10 15 20 25 30

Time(s)

−1.5

−1

−0.5

0

0.5

1

1.5
yd in Case 1

y in Case 1

x̂1 in Case 1

Figure 3. Trajectories of yd, y, and x̂1 for Case 1.

Furthermore, three kinds of performance index—integral absolute error (IAE), integral
time-weighted absolute error (ITAE), and integral square error (ISE)—are introduced to
quantify the tracking performance by choosing different control parameters. It can be
concluded from Figures 6–8 and Table 1 that better tracking performance can be achieved
by increasing parameters ki and µi. Meanwhile, it is easily observed that the tracking
performance is degraded by increasing the quantization parameter (δ), which also confirms
that the larger the quantization parameter (δ), the coarser the quantizer. The trajectories
of the Nussbaum parameters (ξ, N(ξ)) and adaptive parameters (||θ̂s1||, ||θ̂i||(i = 1, 2)) are
depicted in Figures 9 and 10, respectively. The curves of the control signal (u) and the
quantized control signal (q(u)) are presented in Figure 11. Although the tracking accuracy
can be effectively enhanced by increasing ki, it follows from Figure 11 that more efforts need
to be dedicated to this task. Therefore, a relative tradeoff between tracking performance
and control cost can be achieved by selecting appropriate design parameters. In addition,
Figures 2–11 prove that the boundedness of the resulting signals can be guaranteed.

0 5 10 15 20 25 30

Time(s)

−1.5

−1

−0.5

0

0.5

1

1.5
yd in Case 2

y in Case 2

x̂1 in Case 2

Figure 4. Trajectories of yd, y, and x̂1 for Case 2.
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yd in Case 3

y in Case 3

x̂1 in Case 3

Figure 5. Trajectories of yd, y, and x̂1 for Case 3.
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y − yd in Case 1

Figure 6. Tracking error of y − yd for Case 1.

To further illustrate the validity and the practical potential of our method, an applica-
tion example is considered in Example 2.
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0.05

0.1
y − yd in Case 2

Figure 7. Tracking error of y − yd for Case 2.
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Time(s)
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0.1
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Figure 8. Tracking error of y − yd for Case 3.

Table 1. Performance comparisons among different methods.

Performance Index Item Case 1 Case 2 Case 3

IAE
∫ T

0 |z1(t)|dt 0.4701 0.4704 0.3675
ITAE

∫ T
0 t|z1(t)|dt 4.241 4.244 3.096

ISE
∫ T

0 z2
1(t)dt 0.017 0.017 0.0138

0 5 10 15 20 25 30

−1

0

1 ξ in Case 1
N(ξ) in Case 1

0 5 10 15 20 25 30

−1

0

1 ξ in Case 2
N(ξ) in Case 2

0 5 10 15 20 25 30

Time(s)

−1

0

1 ξ in Case 3
N(ξ) in Case 3

Figure 9. Trajectories of ξ and N(ξ) for the three cases.

Figure 10. Trajectories of ||θ̂s1|| and ||θ̂i||(i = 1, 2) for the three cases.
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50
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Figure 11. Trajectories of u and q(u) for the three cases.

4.2. Application Example

Example 2. We consider the single-machine-infinite-bus (SMIB) power system shown in Figure 12.
According to [44], the mathematical model of the SMIB power system can be described by the
following swing equation:

Mθ̈ + Dθ̇ + PE sin θ = PM (72)

where θ is the relative angle in rads, θ̇ = ω denotes the relative speed in rad/s between the generator
(G1) and G2, M denotes the moment of inertia in s, D represents the damping coefficient in p.u., PE
is the maximum power of the generator in p.u., and PM = A sin(Ωt) represents the power of the
machine in p.u.

District 1 District 2

Loads 1 Loads 2

Generator 1 Generator 2

Transformer

Set 1

Transformer

Set 2

Circuit Breaker 1 Circuit Breaker 2

Figure 12. Diagram of the SMIB power system.

Then, by defining θ = x1, ω = x2, the SMIB power system can be rewritten as:{
ẋ1 = x2
ẋ2 = −ax2 − b sin(x1) + f sin(Ωt)

(73)

where a = D
M = 0.5, b = PE

M = 1, Ω = 1, and f = A
M = 2.66 are system parameters.

Furthermore, considering that the fractional-order model can provide a more accurate
description of physical behavior and the actual system [45], the fractional-order model of the
SMIB power system with input quantization and time-varying delays can be expressed as:
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
Dαx1 = x2 +

x3
1(t−τ1(t))

1+x2
1(t−τ1(t))

+ d1(x, t)

Dαx2 = −ax2 − b sin(x1) + f sin(Ωt) + +
x4

1(t−τ2(t)) sin(x2)

1+x2
1(t−τ2(t))

+ d2(x, t)
(74)

where α = 0.95 represents the fractional order, and di(x, t) denotes the disturbance term
with i = 1, 2.

The control parameters, initial conditions, and disturbances are provided in Table 2.
Similar to Example 1, seven GMFs uniformly distributed on [−3, 3] are defined for fuzzy
approximation as shown in Figure 13. Furthermore, the fuzzy adaptive backstepping
control (FABC) method proposed in [8] is used to show the superiority of the proposed
method. The comparative tracking performance results are exhibited in Figures 14 and 15.
Figure 14 displays the trajectories of the reference trajectory (yd) and the system output
(y). Figure 15 depicts the time response of tracking error (y − yd) under different control
methods. Figures 14 and 15 show that better tracking performance can be achieved by
using the proposed method in comparison to the FABC method proposed in [8]. The
curves of parameter ξ and the Nussbaum function (N(ξ)) are plotted in Figure 16. The
trajectories of adaptive parameters (||θ̂s1||, ||θ̂||) and control signals (u, q(u)) are shown in
Figures 17 and 18, respectively.

Table 2. Selection of simulation parameters.

Design Parameters Disturbance Terms

k1 = k2 = 30, a1 = a2 = 5, ι = 0.01,
δ = 0.6, ρ = 0.25, µ = 2, L1 = 5, L2 = 10,
τ1 = 0.5 + 0.2 sin(t), τ2 = 0.3 + 0.1 sin(t).

d1(x, t) = 0.3 sin(1.5t) + 0.2 cos(x1x2),
d2(x, t) = 0.2 cos(1.5t) + 0.1 sin(x2

1x2).

Initial Conditions

x1(0) = 0.1, x2(0) = −0.1, x̂1(0) = x̂2(0) = 0, θ̂s1(0) = θ̂(0) = 0.

Reference Signal

yr = 0.5 sin(t) + sin(0.5t)
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Figure 13. Membership functions of the FLSs.
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Figure 14. Trajectories of yd and y.
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Figure 15. Trajectory of y − yd.
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Figure 16. Trajectories of ξ and N(ξ).
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Figure 17. Trajectories of ||θ̂s1|| and ||θ̂||.
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4

6
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Figure 18. Trajectories of u and q(u).

5. Conclusions

In this article, a high-gain observer-based adaptive fuzzy quantized tracking control
strategy is proposed for FONTDSs with unknown control gains. Based on an indirect
Lyapunov method, the Nussbaum gain technique, and the Lyapunov–Krasovskii functional,
a recursive control framework was established, and the stability of the closed-loop system
was analyzed. In contrast to most existing adaptive control results of fractional-order
nonlinear systems, the proposed controller does not depend on information about all
system states and control gains, which also ensures that the system output can track the
given reference signal, even if time delays and input quantization cause negative effects
on tracking performance. The reported simulation results prove that the presented control
approach is effective.
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