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Abstract: Finite-dimensional equations constructed earlier to describe the motion of an aquatic
drop-shaped robot due to given rotor oscillations are studied. To study the equations of motion, we
use the Poincaré map method, estimates of the Lyapunov exponents, and the parameter continuation
method to explore the evolution of asymptotically stable solutions. It is shown that, in addition to the
so-called main periodic solution of the equations of motion for which the robot moves in a circle in
a natural way, an additional asymptotically stable periodic solution can arise under the influence
of highly asymmetric impulsive control. This solution corresponds to the robot’s sideways motion
near the circle. It is shown that this additional periodic solution can lose stability according to the
Neimark–Sacker scenario, and an attracting torus appears in its vicinity. Thus, a quasiperiodic mode
of motion can exist in the phase space of the system. It is shown that quasiperiodic solutions of the
equations of motion also correspond to the quasiperiodic motion of the robot in a bounded region
along a trajectory of a rather complex shape. Also, strange attractors were found that correspond to
the drifting motion of the robot. These modes of motion were found for the first time in the dynamics
of the drop-shaped robot.

Keywords: aquatic robot; finite-dimensional model; invariant torus; strange attractor
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1. Introduction

To describe the free and controlled motion of rigid bodies in a fluid, finite-dimensional
mathematical models based on ordinary differential equations are often used. It should be
noted that a full description of motion requires simultaneously solving the Navier–Stokes
equations and the equations of motion of the body [1,2]. However, finite-dimensional
models have a number of advantages. To study them, the well-developed analytical and
computational methods of the theory of dynamical systems can be used, which makes
it possible to study the dynamics of the system entirely. In addition, finite-dimensional
models allow a real-time prediction of system dynamics, compared to infinite-dimensional
models based on partial differential equations.

Almost all finite-dimensional dynamical systems describing the motion of rigid bodies
in a fluid have forms similar to those of the Kirchhoff equations [3] or the Chaplygin
equations [4]. The above-mentioned equations of motion are supplemented with terms
describing forces and torque due to the viscous resistance of the medium, and the presence
of any singularities of the flow such as sinks/sources or vortices. In the latter case, the
equations of motion of a rigid body are usually supplemented with equations for the
transfer of point vortices. We recall that a point vortex is a mathematical abstraction that
assumes that the vorticity is concentrated at one point in the plane [5], in contrast to a
physical vortex that occupies a certain region of space, for example, a tornado [6]. This
makes it possible to obtain, instead of a partial differential equation governing the transport
of vorticity, ordinary differential equations for the coordinates of point vortices. Note that
the equations of motion of point vortices are first-order equations [5], in contrast to the
equations of motion of material particles [7].
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In the case of a smooth body, it is assumed a priori that the vortices are always present
in a fluid and have constant intensities; see, for example [8–12]. For bodies with a sharp
edge, it is possible to describe the generation of vorticity based on the point vortex model
and the Kutta–Chaplygin condition [13,14]. Such mathematical models were considered,
for example, in [15–20].

Note that the model with the shedding of point vortices is easier to compute than the
joint numerical solution of the Navier–Stokes equations and the equations of body motion.
However, adding a new vortex increases the dimension of the phase space of the system
by 2, thus making it impossible to study the dynamics of the system qualitatively. Therefore,
models that have a small fixed dimension of phase space and describe the influence of
vorticity indirectly in the coefficients of the equations are more convenient for qualitative
analysis of motion. See, for example [21,22].

In addition to point vortices, one considers the influence of other types of point
singularities on the motion of a rigid body. In [23], the motion of a balanced and an
unbalanced circular foil in the field of a fixed-position point source was studied.

The study of finite-dimensional models is also of interest for the theory of dynamical
systems. Despite their simplicity, such models can exhibite various dynamical effects:
asymptotic stability with respect to part of variables [24,25], Fermi acceleration under the
periodic controls [26–29], stabilization or loss of stability due to periodic disturbances [30],
chaotic scattering of trajectories [23,31], the transition to chaos according to Feigenbaum’s
scenario [32,33] and through a series of doublings of the invariant tori [34–36], etc.

In this paper, we continue the study of the mathematical model developed in [22],
which describes the motion of an aquatic robot under the periodic rotation of a rotor. In [37],
it was shown that for this model the fastest locomotion is achieved when control becomes
impulsive. Note that periodic controls close to impulsive ones also occur in practical
implementations. For example, the work [38] describes a fish-like robot with an elastic
tail that has two stable positions. The transition between these positions occurs almost
impulsively and generates propulsion (https://www.youtube.com/watch?v=DZ8SU_00
BLU&ab_channel=ZechenXiong, accessed on 9 December 2023).

Section 2 presents the equations of motion and the control law. Section 3 shows that,
in the case of a highly asymmetric impulsive control law, additional stable and unstable
periodic and quasiperiodic modes of motion and strange attractors can occur in the system.
These modes of motion do not occur in the case of admissible controls specified by the
technical data of the engine.

2. Mathematical Model
2.1. Equations of Motion

Let us consider the equations(
m + λ

(1)
11

)
v̇1 =

(
m + λ

(1)
22

)
v2ω + λ

(1)
23 ω2 − c1v1|v1|,(

m + λ
(2)
22

)
v̇2 + λ

(2)
23 ω̇ = −

(
m + λ

(2)
11

)
v1ω − c2v2|v2|,

λ
(3)
23,l v̇2 +

(
I + λ

(3)
33

)
ω̇ =

(
λ
(3)
11 − λ

(3)
22

)
v1v2 − λ

(3)
23,rv1ω − c3ω|ω| − k̇(t),

(1)

Ẋ = v1 cos α − v2 sin α, Ẏ = v1 sin α + v2 cos α, α̇ = ω, (2)

governing the plane-parallel motion of an aquatic robot [22] shown in Figure 1a.
In this paper, we keep the notation used earlier in [22,37]: v1, v2 are the projections

of the linear velocity of point C on the axis of the moving coordinate system attached to
the robot (see Figure 1b), ω is the angular velocity of the robot, k = IrΩ(t) is the angular
momentum of the rotor (the control), Ω is the angular velocity of the rotor, m = 0.905 kg
is the mass of the robot, I = 0.00844 kg · m2 is the central moment of inertia of the robot,
and Ir = 0.00058 kg · m2 is the central moment of inertia of the rotor. The values of the
moments of inertia I and Ir were calculated based on a 3D models built in a CAD system.

https://www.youtube.com/watch?v=DZ8SU_00BLU&ab_channel=ZechenXiong
https://www.youtube.com/watch?v=DZ8SU_00BLU&ab_channel=ZechenXiong
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Figure 1. (a) A fish-like aquatic robot. (b) OXY is a fixed coordinate system, Cx1x2 is a moving
coordinate system.

The coefficients λk
ij and ck were calculated in [22] by processing the data of experimen-

tally determined trajectories of the robot and have the following values:

λ
(1)
11 ≈ 0.3087, λ

(1)
22 ≈ −0.5796, λ

(1)
23 ≈ 0.039085,

λ
(2)
22 ≈ 2.0996, λ

(2)
23 ≈ 0.17629, λ

(2)
11 ≈ −7.9826,

λ
(3)
23,l ≈ 0.083474, λ

(2)
33 ≈ 0.018935, λ

(3)
11 − λ

(3)
22 ≈ −4.7550, λ

(3)
23,r ≈ 1.4488,

c1 = 0.04715, c2 = 17.702, c3 = 0.092872.

(3)

The technique for processing data and calculating coefficients (3) is described in Appendix A.

2.2. The Form of Control

The equations of motion (1) contain the derivative of the angular momentum of the
rotor k̇ or its angular acceleration Ω̇. In the previous work [22], it was noted that rotation of
the rotor with constant velocity is equivalent to the motion of a system with a fixed (frozen)
rotor. In addition, a shift in the angular velocity of the rotor by a constant Ω → Ω + const
does not change the form of the equations of motion (1).

As before, we will control the motion of the robot by alternating between uniform
and uniformly accelerated rotations of the rotor. In particular, we will use the following
dependence of the angular velocity of the rotor:

Ω(t) =


Ωmax, t ∈ [τn

0 , τn
1 ]

Ωacc1(t), t ∈ [τn
1 , τn

2 ]

−Ωmax, t ∈ [τn
2 , τn

3 ]

Ωacc2(t), t ∈ [τn
3 , τn

4 ]

(4)

τn
k = nT +

k

∑
j=1

tk, Ωacc1 = Ωmax −
2Ωmax

t2
(t − τn

1 ), Ωacc2 = −Ωmax +
2Ωmax

t4
(t − τn

3 ), (5)

where Ωmax is the constant that specifies the maximum angular velocity of the rotor, t1 and
t3 are the lengths of time intervals of uniform rotation of the rotor, t2 and t4 are the lengths
of time intervals of uniformly accelerated rotation of the rotor, and

t1 + t2 + t3 + t4 = T = const . (6)

A graph of the dependence (4) is shown in Figure 2a. Figure 2b shows a graph of the
derivative of the angular momentum of the rotor k̇(t).
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Figure 2. (a) Time dependence (4) of the angular velocity Ω(t) of the rotor; (b) time dependence of
control k̇(t) corresponding to the dependence (4).

Remark 1. As a rule, piecewise constant controls turn out to be convenient for practical implemen-
tation and research (ignoring the transient processes due to switches between pieces of the control).
In particular, such an approach was used in [39] to study parametric resonance.

In [37], in studying Equations (1) and (2) we restricted ourselves to the values
Ωmax ⩽ 50 s−1 and the time of uniformly accelerated rotation of the rotor equal to no less
than 0.3 s. These restrictions are due to the technical data of the engine. Since this work is
theoretical, we ignore restriction on the time of accelerated rotation of the rotor, tending it
to zero, and we limit ourselves to studying the motion at

Ωmax = 10 s−1.

We consider a question that is important from a theoretical point of view: how does
impulsive control influence the dynamics? In this case, t2 = t4 → +0 and a δ-singularity
appears in the third equation of motion (1):

λ
(3)
23,l v̇2 +

(
I + λ

(3)
33

)
ω̇ =

(
λ
(3)
11 − λ

(3)
22

)
v1v2 − λ

(3)
23,rv1ω − c3ω|ω|+

+ 2IrΩmax

∞

∑
n=0

(
δ(t − τn

1 )− δ(t − τn
3 )
)

. (7)

Thus, the values v2 and ω have a jump when the rotor changes the direction of rota-
tion impulsively. In this case it is necessary to integrate the second Equation (1) and the
Equation (7) in the neighborhood of the δ-singularity over the interval tending to zero.

For times t = τn
1 = τn

2 , the changes of v2 and ω are given by the relations

v2(t − τn
1 + 0) = v2(t − τn

1 − 0)−
2IrΩmaxλ2

23

(m + λ
(2)
22 )(I + λ

(3)
33 )− λ

(2)
23 λ

(3)
23,l

,

ω(t − τn
1 + 0) = ω(t − τn

1 − 0) +
2IrΩmax(m + λ

(2)
22 )

(m + λ
(2)
22 )(I + λ

(3)
33 )− λ

(2)
23 λ

(3)
23,l

,

(8)

and for times t = τn
3 = τn

4 by
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v2(t − τn
3 + 0) = v2(t − τn

3 − 0) +
2IrΩmaxλ2

23

(m + λ
(2)
22 )(I + λ

(3)
33 )− λ

(2)
23 λ

(3)
23,l

,

ω(t − τn
3 + 0) = ω(t − τn

3 − 0)−
2IrΩmax(m + λ

(2)
22 )

(m + λ
(2)
22 )(I + λ

(3)
33 )− λ

(2)
23 λ

(3)
23,l

.

(9)

Since the system (1) includes dissipative terms, the following statement can be proven
similar to one in [40]:

For large values of v1, v2, and ω, the kinetic energy of the system decreases, that is, the
vector field specified by Equation (1) is directed inside some compact region. Thus, there
is always an attractor in the system.

3. Asymptotically Stable Modes of Motion
3.1. Limit Cycles

In the previous work [37], it was shown that under technically feasible control actions
the system (1) has a single asymptotically stable limit cycle. This limit cycle corresponds
to directed propulsion in the case of a symmetric control law (t1 = t3, t2 = t4) and to the
motion near a circle in the case of an asymmetric control law (t1 ̸= t3, t2 = t4).

The question arises: do limit cycles different from those mentioned above and more
complex modes of motion exist? Each fixed point of the period advance Poincaré map for
the period corresponds to a periodic solution of the system (1). We have performed a scan
of the phase space of the Poincaré map within

v1 ∈ [−0.1, 0.2], v2 ∈ [0, 0.1], ω ∈ [−0.6, 0] (10)

with steps

∆v1 = 0.015, ∆v2 = 0.005, ∆ω = 0.03. (11)

It turns out that for sufficiently small values of t2 = t4 and strong asymmetry of control
(t1 ≪ t3) the Poincaré map has more than one fixed point.

Using the parameter continuation method for the detected fixed points, we constructed
bifurcation diagrams, examples of which are given in Figure 3a–c. These diagrams show
the dependence of the coordinate v1 of fixed points (main p1 and additional p2, p3) on the
parameter t1 for various fixed values of t2. For coordinates v2 and ω, bifurcation diagrams
have a similar form and are not presented here. From Figure 3a–c it is clear that additional
fixed points p2 and p3 arise in pairs due to tangent bifurcation. The bifucarcation value t1
increases as t2 decreases and reaches its highest value at t2 = 0.

Figure 3d–f show the dependence of the fixed point multipliers on the parameter t1
for t2 = 0. We see that the main fixed point p1 is always stable (Figure 3d), the additional
fixed point p3 is always unstable (Figure 3f), and the fixed point p2, which is asymptotically
stable at the moment of birth, loses stability as the parameter t1 decreases (Figure 3e).

Stable fixed points correspond to the motion of the robot near a circle. Moreover, on
the limit cycle corresponding to the fixed point p1, the robot moves in a “natural” way (see
Figure 3g). And for a fixed point p2, sideways motion that is almost a circle takes place (see
Figure 3h).

Figures 4a–c and 5a–c show the corresponding dependencies v1(t), v2(t), ω(t) at
t1 = 0.055 for both stable fixed points. Figures 4d and 5d show fragments of the trajectory
of the robot. We see that the trajectories are piecewise smooth due to the jumps in the
velocity component v2.
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Figure 3. (a–c) Bifurcation diagrams of fixed points of the Poincaré map. The solid lines correspond
to asymptotically stable motions, and the dashed lines correspond to unstable ones. (d–f) Multipliers
of the fixed point at t2 = 0. (g) Trajectory and position of the robot corresponding to the fixed point p1

at t1 = 0.055. (h) Trajectory and position of the robot corresponding to the fixed point p2 at t1 = 0.055.
In panels (g,h) the coordinates x, y are measured in meters, and the robot is shown not to scale.
Arrows show the direction of motion.

Figure 4. (a–c) Evolition of variables v1(t), v2(t), ω(t) and (d) a fragment of the trajectory of the robot
corresponding to the fixed point p1 of Poincaré map with the parameter control value t1 = 0.055. Due
to impulsive nature of selected control, the curve v1(t) and trajectory are continuous and piecewise
smooth, and curves v2(t) and ω(t) have jumps.
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Figure 5. (a–c) Evolition of variables v1(t), v2(t), ω(t) and (d) a fragment of the trajectory of the robot
corresponding to the fixed point p2 of Poincaré map with the parameter control value t1 = 0.055. Due
to impulsive nature of selected control, the curve v1(t) and trajectory are continuous and piecewise
smooth, and curves v2(t) and ω(t) have jumps.

3.2. Neimark–Sacker Bifurcation: Evolution of Invariant Curves of the Poincaré Map

In the bifurcation diagram (Figure 3c) we saw that the fixed point p2 loses stability
as the parameter t1 decreases. The loss of stability occurs according to the scenario of the
Neimark–Sacker bifurcation [41,42]. In this case, an attracting invariant curve appears in
the neighborhood of a fixed point when it becomes unstable.

To make sure that a Neimark–Sacker bifurcation does occur, we need to verify accord-
ing to [43] a number of conditions for the moment of bifurcation:

1. No strong resonances

arg µ1,2 ̸= 0, ±π, ±2π

3
, ±π

2
. (12)

To check this condition, we calculate arg µ1,2 before bifurcation at t1 = 0.04985

µ1,2 = 0.957032298473895 + 0.288972163322678i arg µ1,2 ≈ ±0.2932 ≈ ±0.09333π

and after the moment of bifurcation at t1 = 0.0498 we have

µ1,2 = 0.95741782849056 + 0.288884102569519i arg µ1,2 ≈ ±0.2930 ≈ ±0.09327π.

Assuming that arg µ1,2 changes fairly smoothly as t1 changes, we see that there are no
strong resonances.

2. Strictly monotonic increase in |µ1,2| in the vicinity of the bifurcation value t1 = t∗1

d|µ1,2|
dt1

∣∣∣∣
t1=t∗1

̸= 0. (13)

This condition can be easily verified in Figure 3c. We see that at the moment of
bifurcation |µ1,2| intersects the line |µ1,2| = 1 transversally. Therefore, condition (13)
is satisfied.
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3. An additional condition is associated with the construction of the normal form (which
is problematic in numerical calculations) and allows us to establish the type of bi-
furcation. However, the type of bifurcation can be determined using the numerical
solution. Since a stable invariant curve arises, the bifurcation is supercritical.

Next, we will study the process of evolution of invariant curves of the Poincaré map
using the parameter continuation method. In particular, we will change the values of
t1 from 0.0498 down to values close to zero. Next, we will perform a similar procedure,
increasing the parameter t1 from almost zero values to the value 0.0498. Examples of
invariant curves are shown in Figure 6. Additionally, we will estimate Lyapunov exponents
(see Figures 7 and 8). To estimate Lyapunov exponents we used Benettin’s algorithm [44,45].

The invariant curve resulting from the Neimark–Sacker bifurcation has a fairly simple
shape (see Figure 6e,f). As t1 decreases, this curve grows and disappears at t1 ≈ 0.03989.
At this moment, its Lyapunov exponents take values close to zero (see the red lines in
Figures 7 and 8).

At t1 ≈ 0.04233373687 an additional invariant curve of a rather complex shape appears
in the phase space of the Poincaré map (see the black lines in Figure 6d). As the parameter
t1 increases, this dynamical mode disappears (see Figures 7 and 8). As the parameter t1
decreases, the shape of the curve changes insignificantly (see Figure 6b,c). In addition,
instead of this invariant curve, a strange attractor may arise (see Figure 6a) in very small
intervals t1 (see the jumps in the largest Lyapunov exponent in Figures 7 and 8).

Figure 6. The red dots correspond to the modes obtained by continuation with respect to the
decreasing parameter t1. The black dots correspond to the modes obtained by continuation with
respect to the increasing parameter t1.
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Figure 7. (a) The largest Lyapunov exponent λ1. (b) The middle Lyapunov exponent λ2. (c) The
smallest Lyapunov exponent λ3. The red curves correspond to the modes obtained by decreasing the
parameter t1. The black curves correspond to the modes obtained by increasing the parameter t1.

Figure 8. Fragment of the diagram shown in Figure 7. Strong peaks in the panel (a) correspond
to appearance of strange attractor. Jumps of exponents λ2, λ3 near value 0.0415 (see panels (b,c))
correspond to appearance additional invariant curve.
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3.3. Quasiperiodic Nature of the Robot Motion in the Case of an Invariant Curve

The invariant curves shown in the previous subsection correspond to invariant tori in
the phase space of the system. The motion on the invariant torus is quasiperiodic and can
be formally represented as the following multiple series (in the resonant case Ω1/Ω2 ∈ Q
the motion becomes periodic):

V = v1 + iv2 = ∑
k∈Z2

cv
k ei(Ω, k)t, ω = ∑

k∈Z2

cω
k ei(Ω, k)t, (14)

Ω = (Ω1, Ω2), k = (k1, k2),
Ω1

Ω2
∈ Q.

The rotation angle of the robot can be obtained with direct integration (14):

α(t) = ⟨ω⟩t + ω̃(t), ω̃(t) = α(0) + ∑
k∈Z2\{(0, 0)}

c̃ω
k

(
ei(Ω, k)t − 1

)
, c̃ω

k =
cω

k
i(Ω, k)

, (15)

where ⟨ω⟩ = cω
0, 0 is the mean value of the angular velocity, and ω̃(t) is the so-called

quasiperiodic antiderivative.
Let us represent the equation for the trajectory of the robot in complex form

Ż = Ẋ + iẎ = Veiα(t) = ei⟨ω⟩t ∑
k∈Z2

cv
k eiω̃(t)ei(Ω, k)t. (16)

In the last expression, the sum is a quasiperiodic function with frequencies Ω1 and Ω2.
Therefore, it can be represented as

Ż = ei⟨ω⟩t ∑
k∈Z2

cz
kei(Ω, k)t. (17)

Let us perform term-by-term integration (17), assuming that (Ω, k) + ⟨ω⟩ ̸= 0, ∀k ∈ Z2,
i.e., there are no resonances. Integration yields the following expression for the trajectory:

Z(t) = Z̃0 + ei⟨ω⟩t ∑
k∈Z2

c̃z
kei(Ω, k)t, (18)

c̃z
k =

cz
k

(Ω, k) + ⟨ω⟩ , Z̃0 = Z(0)− ∑
k∈Z2

c̃z
k.

We see that the function Z(t) is three-periodic and, due to the absence of resonances,
describes a compact curve on the plane (X, Y).

Remark 2. Under the resonance condition (Ω, k) + ⟨ω⟩ = 0, the mean motion of the robot will be
directed with the velocity c̃z

k. The search for such modes of motion can be performed numerically but
is not within the scope of this paper.

Let us construct a period advance map (under period T) for the function Z(t):

Zn = Z(nT) = Z̃0 + ei∆αn ∑
k∈Z

c̃z
keik2Ω2Tn, ∆α = ⟨ω⟩T. (19)

Recall that T is the period of the control action.
If the frequencies Ω1 and Ω2 were Diophantine, then the series on the right side of (19)

would represent a periodic function. In this case, the trajectory of the map Zn will consist
of repetitive fragments rotated relative to each other by an angle ∆αn∗, where n∗ satisfies
the relation

Ω2Tn∗ = 2πm∗, gcd(n∗, m∗) = 1. (20)
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In the case of non-Diophantine frequencies Ω1 and Ω2, relation (20) will be approx-
imate: Ω2Tn∗ ≈ 2πm∗. This means that the trajectory of the map Zn will consist of
fragments similar in shape and rotated relative to each other by an angle ∆αn∗.

Let us illustrate this using numerical experiments.
Figure 9d shows an invariant curve of simple shape that exists at t1 = 0.0399196451225613.

The frequency Ω2 can be found using the Fourier transform of the dependencies vn
1 , vn

2 ,
and ωn. The frequency ⟨ω⟩ will be defined as

⟨ω⟩ ≈ αN

N
. (21)

In the numerical experiments we have used the value N = 106.

Figure 9. The variable of the map: (a) vn
1 (b) vn

2 , (c) ωn. (d) Portrait of the invariant curve. (e) Ap-
proximately repetitive trajectory fragments Zn are depicted by different colors. (f) The trajectory of
the map Zn at t1 = 0.0399196451225613. The periods are T1 = T = 1, T2 ≈ 26.4091. The frequencies
are Ω1 = 2π, Ω2 = 0.237917434035222 ≈ 2π · 0.0378657356744456, ⟨ω⟩ = 0.056847724950789 ≈
2π · 0.089296197539346.

Analysis of the numerical solution shows that

Ω2 ≈ 2π · 0.0378657356744456, ⟨ω⟩ ≈ 2π · 0.089296197539346. (22)

We see that the frequencies Ω1 = 2π, Ω2, ⟨ω⟩ are non-Diophantine and that the trajectory
Zn is quasiperiodic (see Figure 9f) and consists of similar fragments (see Figure 9e).
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A similar situation is observed for invariant curves of more complex shape, see
Figure 10. In addition to the base frequency Ω1 = 2π, this mode of motion is characterized
by the following additional frequencies:

Ω2 ≈ 2π · 0.00268583276930845, ⟨ω⟩ ≈ 2π · 0.0884924992865968. (23)

Thus, we see that all frequencies are non-Diophantine.

Figure 10. The variable of the map: (a) vn
1 (b) vn

2 , (c) ωn. (d) Portrait of the invariant curve. (e) Ap-
proximately repetitive trajectory fragments Zn are depicted by different colors. (f) The trajectory of
the map Zn at t1 = 0.034519048124062. The periods are T1 = T = 1, T2 ≈ 372.3240. The frequencies
are Ω1 = 2π, Ω2 = 0.0168755849936603 ≈ 2π · 0.00268583276930845, ⟨ω⟩ = 0.0563360747520716 ≈
2π · 0.0884924992865968.

The trajectory Zn (see Figure 10f) consists of similar fragments of a more complex
shape (see Figure 10e).

The behavior of the trajectory of the map Zn described above is not valid for strange
map attractors. We see that the behavior of the variables vn

1 , vn
2 , and ωn is irregular (see

Figure 11a–c). The trajectory Zn is drifting in nature (see Figure 11f) and consists of
fragments that have no similarities (see Figure 11e).
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Figure 11. The variable of the map: (a) vn
1 (b) vn

2 , (c) ωn. (d) Portrait of the strange attractor.
(e) Fragments of the trajectory Zn corresponding to the intervals between peaks vn

1 are depicted by
different colors. (f) The trajectory of the map Zn at t1 = 0.0399120977758897. Confidence interval of
the highest Lyapunov exponents ⟨λ1⟩ ≈ 0.00669 ± 0.00016 with reliability 0.999.

4. Conclusions

In this work, we have presented a numerical study of the equations constructed in [22]
to describe the motion of an aquatic robot with an internal rotor. We have studied the
impulsive control law of the rotor when it instantly changes the rotation velocity. This case
is interesting for a number of reasons. Firstly, for such a control the fastest locomotion of the
robot is implemented [37]. Secondly, within the framework of the considered model under
a strong asymmetry of the control law (the time of rotation of the rotor clockwise is much
longer/shorter than the time of counterclockwise rotation of the rotor), asymptotically
stable periodic and quasiperiodic and chaotic modes of motion coexist. In fact, multistability
and complex dynamics occur that have not been found previously in the dynamics of the
drop-shaped robot.

An asymptotically stable mode of motion has been found, which is not the robot’s
self-propulsion in forward direction, but sideways motion in a circle. Of significant interest
is the study of various designs of drop-shaped robots for which such motion modes are
implemented in practice. In addition, this study shows that chaotic modes of motion can
occur, which should be avoided in practice when developing this kind of robot.

It is important to keep in mind that the model used in this work is extremely simpli-
fied. Although it allows one to analyze the dependence of the system dynamics on the
parameters, all the results obtained must be verified experimentally. We also note that it
would also be possible to use a model of the motion of the robot in a viscous fluid using the
Navier–Stokes equations, but this approach only allows for simulation of certain motions
and provides no insight into the dependence on parameters.
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Appendix A. Approach to Calculating Coefficients λ
(k)
ij and ck

In Section 2.1 the values of the coefficients (3) were indicated that were obtained by
the processing of experimental data in [22]. In this Appendix we briefly describe this data
processing technique. In [22], a set of robot trajectories was obtained experimentally (using
a motion capture system) for a given law of rotor motion. Thus, the input data of the
processing algorithm are the trajectory of the robot’s motion and the dependence of its
orientation on time. That is, a sequence of values of the following form:

ti = 0.02i, Xi = X(ti), Yi = Y(ti), αi = α(ti), i = 0, 1, 2, . . . (A1)

Using the Savitzky–Golay filter [46], the above-specified sequence can be supplemented
with values [22]

v1(ti), v2(ti), ω(ti), v̇1(ti), v̇2(ti), ω̇(ti). (A2)

Therefore, according to the accepted model of motion, the force and torque acting on
the robot from the fluid can be represented in the following form:

F1 = −λ
(1)
11 v̇1 + λ

(1)
22 v2ω + λ

(1)
23 ω2 − c1v1|v1|,

F2 = −λ
(2)
22 v̇2 − λ

(2)
23 ω̇ − λ

(2)
11 v1ω − c2v2|v2|,

G = −λ
(3)
23,l v̇2 − λ

(3)
33 ω̇ +

(
λ
(3)
11 − λ

(3)
22

)
v1v2 − λ

(3)
23,rv1ω − c3ω|ω|,

(A3)

where the coefficients λ
(k)
ij and ck are assumed to be unknown.

To determine the coefficients λ
(k)
ij and ck included in the expressions (A3), we will

determine the force components F1, F2 and the torque G by numerically integrating the
Navier–Stokes equations. In [22] these equations were written with respect to the curvilin-
ear coordinate system (ξ, η) attached to the moving foil of the robot:

∂Du1

∂ξ
+

∂Du2

∂η
= 0,

∂u1

∂t
+

1
D2

(
∂D(u1 − w1)u1

∂ξ
+

∂D(u2 − w2)u1

∂η

)
=

= − 1
Dρ

∂p
∂ξ

+
ν

D2

(
∂2u1

∂ξ2 +
∂2u1

∂η2

)
+ β1 + 2u2ω

∂u2

∂t
+

1
D2

(
∂D(u1 − w1)u2

∂ξ
+

∂D(u2 − w2)u2

∂η

)
=

= − 1
Dρ

∂p
∂η

+
1

D2

(
∂2u2

∂ξ2 +
∂2u2

∂η2

)
+ β2 − 2u1ω,

(A4)

where u1 and u2 are the projections of the fluid velocity vector onto the curvilinear axes, p
is the pressure, ρ is the fluid density, ν is the kinematic viscosity, and w1 = v1 − ωx2(ξ, η),
w2 = v2 + ωx1(ξ, η) are the components of the transfer velocity. The Lamé coefficient D
and the terms β1, β2 arising due to the curvature of the grid lines have the form:
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D =

√(
∂x1

∂ξ

)2
+

(
∂x2

∂ξ

)2
=

√(
∂x1

∂η

)2
+

(
∂x2

∂η

)2
,

β1 =
ν

D3

(
u1

(
∂2D
∂ξ2 +

∂2D
∂η2

)
+ 2

∂u1

∂ξ

∂D
∂ξ

+ 2
∂u2

∂ξ

∂D
∂η

+

+
2u2

D
∂D
∂ξ

∂D
∂η

− 2u1

D

(
∂D
∂η

)2
)

β2 =
ν

D3

(
u2

(
∂2D
∂ξ2 +

∂2D
∂η2

)
+ 2

∂u1

∂η

∂D
∂ξ

+ 2
∂u2

∂η

∂D
∂η

+

+
2u1

D
∂D
∂ξ

∂D
∂η

− 2u2

D

(
∂D
∂ξ

)2
)

For Equation (A4), kinematic boundary conditions were specified at the foil boundary:

u1 = v1 − ωx2(ξ, η), u2 = v2 + ωx1(ξ, η). (A5)

Figure A1 shows a fragment of the computational mesh.

Figure A1. Computational mesh constructed using the complex variable boundary element method [47].

Given distributions u1, u2, and p, the forces F1, F2 and the torque G acting on the body
from the fluid are determined with the following integrals along the foil contour:

F1 =
∮

L

(
p

∂x2

∂ξ
+

ρν

D
∂u1

∂η

∂x1

∂ξ

)
dξ,

F2 =
∮

L

(
−p

∂x1

∂ξ
+

ρν

D
∂u1

∂η

∂x2

∂ξ

)
dξ,

G =
∮

L

(
x1

(
−p

∂x1

∂ξ
+

ρν

D
∂u1

∂η

∂x2

∂ξ

)
− x2

(
p

∂x2

∂ξ
+

ρν

D
∂u1

∂η

∂x1

∂ξ

))
dξ − k̇(t).

(A6)

Thus, after solving the auxiliary hydrodynamic problem, the sequence of values (A2)
is supplemented with the following values:

F1(ti), F2(ti), G(ti). (A7)

We see that the required coefficients λ
(k)
ij and ck are included into the expressions (A3)

linearly and all other quantities are known at the current stage. Thus, λ
(k)
ij and ck can be

found using the classical least squares method. The found values are referred to one meter,
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since the problem of plane-parallel motion is being solved. The required values of the
coefficients are obtained as follows:

λ
(k)
ij 7→ 0.0335λ

(k)
ij , ck 7→ 0.0335ck, (A8)

where 0.0335 is the height in meters of the wetted part of the robot in the experiment.
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