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Abstract: A time stepping quasilinearization approach to the mixed (or coupled) form of one and
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1. Introduction

Richards’ equation serves as a fundamental model for water movement in non-
swelling unsaturated soils, see e.g., [1–9]. It exclusively hinges on soil water content
as the sole dependent variable. L. Richards [10] derived it in an effort to construct a model
of groundwater dynamics that includes actions of gravity and nonlinear capillary effects
without having to model the non-wetting phase (air) as an unknown itself. Applications for
computer simulations based on this equation include nuclear waste disposal, geochemical,
and agricultural, etc.

Due to its nonlinear nature and transition of the type in different parts of the problem
domain, this equation is difficult to solve by analytical techniques and closed form solutions
can be obtained only in some particular cases [11,12].

In [11], the author investigates a class of analytical solutions to describe moisture
flow in unsaturated porous materials. These solutions hinge on an exponential connection
between hydraulic conductivity and moisture content with respect to water pressure. Well-
posedness of Richards’ equation and an explicit solution for the corresponding steady-state
problem are established in [13]. Uniqueness of the solution to a parabolic inverse problem
with an unknown boundary condition upon a single internal measurement is established
in [14].

Other difficulties in solving Richards’ equation arise from practical initial and bound-
ary conditions, and water constitutive relations that can lead to solutions with low regu-
larity. Additionally, when dry soils experience infiltration, it frequently triggers distinct
wetting boundaries characterized by exceptionally steep spatial gradients in soil hydraulic
characteristics [15–17].

Overcoming all these complexities make Richards’ equation challenging to solve, even
numerically. In [18], the authors discuss the numerical behavior of standard approximation
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methods—finite difference and finite element methods for the unsaturated flow equation
in different forms. Recently, variety numerical methods for solving Richards’ equation
are developed: adaptive higher-order discontinuous Galerkin method [19], finite volume
discretization realized by nested, Newton-type algorithm [20], Padé approximants for
simplifying the analytical form of hydraulic parameters and Adomian’s decomposition [3],
finite difference method by local balance of mass [21], monotone finite volume method [13],
fitted finite volume method on graded spatial mesh [22], modified Picard algorithm with
adaptive strategy in time and mass-conservative switching algorithm involving the mass-
conservative mixed form and the pressure head-based form in different zones of the flow
problem [9], etc.

In [23], an adaptive discontinuous Galerkin method for solving the model that com-
bines Richards’ equation with a surface water balance is constructed to simulate the rate
of recharge from rainwater in a zone with roots, an intermediate storage layer with high
conductivity, and a lower water table. A numerical model is employed in [24] to simulate
both mechanical root reinforcement and hydrological influences, encompassing evapotran-
spiration with various root configurations and alterations induced by roots in soil water
retention and hydraulic conductivity.

Richards’ equation indirectly connects even to honeybee populations through its
impact on plant growth (as soybean, rapeseed, sunflower) and the availability of nectar-
producing flowers. Proper irrigation and soil moisture management play a role in ensuring
a suitable environment for both plants and honeybees [25,26]. The paper [6] studies model
verification both for classical and fractional Richardsons’ equations using measurements
data for soybean sprinkling irrigation.

Inverse problems have important practical applications, since they involve the deter-
mination of initial function or boundary conditions and parameters that are unknown and
cannot be measured in a satisfactory way. These problems are challenging to solve because,
in general, they are ill-posed [1,7,8,27–33].

A more intensively studied class of inverse problems for Richards’ equation involves
the identification of parameter(s). Necessary conditions for uniqueness of the solutions of
parameter identification inverse problems of water flow through multi-dimensional vari-
ably saturated porous media are derived in [32]. In [34], an inverse problem is discussed for
the determination of the two coefficients within the pressure head formulation of the porous
flow equation. The parameter estimation problem for the hydraulic properties (the nonlin-
ear coefficients) of porous media is studied in [28]. The problem is solved numerically by
least-squares functional minimization. The authors of [1] solve the numerically parameter
determination inverse problem for recovering hydrological parameters in Richards’ equa-
tion with given measurements of pressure. They apply optimal control approach, derive
time discretization of the corresponding state problem, and solve the generated nonlinear
state problem by finite difference scheme and Picard’s iteration procedure. In [29], authors
discuss numerically solving two parameter identification inverse problems for Richards’
equation. In the first problem, soil parameters are restored, while in the second problem,
hydraulic permeability, longitudinal dispersivity, and adsorption isotherms are determined.
Stochastic parameterization and Monte Carlo methods are employed in [2] in order to
determine saturated hydraulic conductivity fields. In [35], the Levenberg–Marquardt algo-
rithm is utilized to minimize least-square functional in order to restore two parameters in
the constitutive relations of the exponential model of Richards’ equation. Compensated
nonlinear root water uptake is developed and soil hydraulic parameters are estimated
in [36,37].

A technique for determining the saturation coefficients linked to relative hydraulic
conductivity and water content is suggested in [38] on the basis of the simulation outcomes.
In [39], the parameters are estimated by fitting the experimental data exclusively to the
retention curve. The authors of [5] performed a model calibration in order to simulate
water and nitrogen transport for two furrow irrigation technologies. In [40], the authors
propose mathematical modeling for the groundwater recharge estimation problem.
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In an irrigation setting, an optimal control approach was implemented in [25] for
Richards’ equation, focusing on the reduction of water consumption and the enhancement
of root water absorption.

There are few results in the literature for identifying boundary conditions in Richards’
problems. In [8], the authors construct an algorithm for recovering boundary conditions at
the lower end of the domain from observations at the surface. Simultaneous recovering of
multiple boundary heat flux parameters is achieved in [41] by solving nonlinear transient
inverse heat conduction problems, applying a modified Levenberg–Marquardt algorithm.

In our previous paper [42], decomposition method is applied in order to determine
external boundary conditions in a lime-fractional linear fluid-porous interface problem,
defined on disjoint domains.

In this work, we construct and examine a numerical method for solving an inverse
problem to identify the left Dirichlet boundary condition and the pressure head in Richards’
initial boundary value problem with additional measurements of the pressure within the
domain. The algorithm is based on a quazilinearization approach and on decomposition of
the inverse problem solution.

The remaining part of the paper is organized as follows: In the next section, we discuss
the basic forms of the famous Richards’ equation. In Section 3, direct and inverse problems
are formulated. The main results, numerical solution of 1D and 2D inverse problems, are
obtained in Sections 4 and 5. Computational simulations are presented in Section 6 and the
paper is finalized with some conclusions.

2. Mathematical Models

Richards’ equation incorporates a diffusion term into a mass balance equation. The
conservation of mass within a small uniform volume of unsaturated soil is represented by
the equality

∂θ

∂t
= −∇ · q. (1)

The fluid motion is considered as incompressible and the soil structure as robust and
unyielding. The Equation (1) correlates the volumetric soil water content θ [L3L−3] with
the specific flow vector q [LT−1] and t [T] is time.

The governing principle that defines the flow of water through an unsaturated porous
medium is modeled by

q = −K∇H, ∇H =

(
∂H
∂x

,
∂H
∂y

,
∂H
∂z

)
. (2)

It can be seen as an expansion of Darcy’s law that takes unsaturated conditions into account.
Here, K = K(θ) [LT−1] represents the hydraulic conductivity, and H is the total head,
H = z + ψ, where ψ [L] is the capillary heights and z [L] is geometric altitude.

In the case of flow along the z-direction, where the z-axis is oriented vertically up-
wards, an extra gravitational factor must be incorporated, leading to the inclusion of a
gravitational term

qz = −Kz
∂(ψ + z)

∂z
. (3)

In the scientific literature, Richards’ equation is represented in three principal formu-
lations: the mixed form, the pressure ψ-based form, and the water content θ-based form.
We discuss these formulations in 1D case. Combining (1) and (3), we obtain the mixed
formulation

∂θ(ψ)

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
− 1
)]

. (4)
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Further, the utilization of the concept of differential water capacity, expressed as the
derivative of the soil water retention curve

C(ψ) =
∂θ

∂ψ
, (5)

from (4) and (5), we derive the ψ-based formulation of Richards’ equation

C(ψ)
∂ψ

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
− 1
)]

. (6)

Here, C(ψ) [L−1] is the specific fluid capacity.
In the saturated environment, the θ-based formulation of Richards’ equation can be

formulated [19,43]. Namely, introducing the diffusion coefficient D [L2T−1]

D(θ) = K(θ)
∂ψ

∂θ
,

we obtain
∂θ

∂t
=

∂

∂z

[
D(θ)

∂θ

∂z
− K(θ)

]
. (7)

In the same fashion, the three formulations of 3D Richards’ equation are derived:

- mixed formulation
∂θ(ψ)

∂t
= div[K(ψ)∇(ψ − z)], (8)

- ψ-based formulation

C(ψ)
∂ψ

∂t
= div[K(ψ)∇(ψ − z)]. (9)

- head or θ-based formulation
∂θ

∂t
= divD(θ)∇θ − ∂K

∂z
. (10)

A different type of empirical constitutive relation for the moisture content and hy-
draulic conductivity are used in the literature. For example, the exponential model or Gardner
model [2,8,11,44], given by

θ(ψ) = θseβψ or θ(ψ) = θr + (θs − θr)eαψ, K = Ks(z)eαψ, (11)

where θs [L3L−3] and θr[L3L−3], 0 ≤ θr < θs are saturation and residual water content,
respectively, Ks is the saturated hydraulic conductivity, β > 0 and α > 0 [L−1] is soil
pore-size distribution parameter.

The most popular constitutive relations are those described in studies conducted by
van Genuchten [45]

C(ψ) =

 αnm
θs − θr

[1 + |αψ|n]m+1 |αψ|n−1, ψ ≤ 0,

0, ψ > 0.
(12)

K(ψ) =

 Ks

[
θ(ψ)− θr

θs − θr

]1/2
{

1 −
[

1 −
(

θ(ψ)− θr

θs − θr

)1/m
]m}2

, ψ ≤ 0

Ks, ψ > 0

(13)

θ(ψ) =

 θr +
θs − θr

[1 + |αψ|n]m , ψ ≤ 0,

θs, ψ > 0.
(14)

Here, n > 0 is a pore-size distribution index, m = 1 − 1
n > and α > 0 are fitting parameters.
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3. Direct and Inverse Problems

In this section, we formulate inverse problems for recovering the boundary condi-
tion in 1D and 2D problems, described by Richards’ equation in mixed form (4) and (8),
respectively.

First, we consider 1D case. The model problem is formulated for mixed form of the
Richards’ equation in the spatial domain with height Lz [1,8,18]

∂θ

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
− 1
)]

, z ∈ (0, Lz), t ∈ (0, T],

ψ(0, t) = ψb(t), t ∈ (0, T],

ψ(Lz, t) = ψL(t), or
[

K(ψ)
(

∂ψ

∂z
− 1
)]

z=Lz

= −qt(t), t ∈ (0, T],

ψ(z, 0) = ψ0(z), z ∈ Ω = [0, Lz],

(15)

where qt(t) is the external time-dependent surface flow.
The direct problem is the problem (15) with known parameters, boundary, and initial

conditions.
The following assertion presents a brief analysis of the solution of this problem.

Theorem 1. Let us assume that the functions θ(ψ) and K(ψ) are piecewise continuous and there
are constants θ0 > 0, K0 > 0, such that

θ(ψ) ≥ θ0, K(ψ) ≥ K0, ∀ ψ ∈ R.

Then, the problem (15) has a unique solution ψ ∈ L2((0, T), H1(Ω)).

Proof. We follow the idea of [13] to apply the results of [46]. To this end, we perform
the change

φ(z, t) := ψ(z, t)− z

and reduce the problem (15) as follows:

∂(φ + z)
∂t

=
∂

∂z

[
K(φ + z)

(
∂φ

∂z
− 1
)]

, z ∈ Ω = (0, Lz), t ∈ (0, T],

φ(0, t) = ψb(t), t ∈ (0, T],

φ(Lz, t) = ψL(t)− Lz, or
[

K(φ + z)
(

∂ψ

∂z
− 1
)]

z=Lz

= −qt(t), t ∈ (0, T],

φ(z, 0) = ψ0(z)− z, z ∈ Ω = [0, Lz].

(16)

Now, in a usual way, see e.g., [47], we define a weak solution φ ∈ L2((0, T], H1(Ω)) of
the problem (16) as follows

T∫
0

Lz∫
0

(
θ(φ + z)− φ0(z)

dw
dt

)
dzdt −

T∫
0

Lz∫
0

K(φ + z)
dφ

dt
dw
dt

dzdt = 0,

for all w ∈ L2([0, T], H1
0(Ω)), such that w ∈ L∞([0, T] × Ω) and w(z, T) = 0. Now, the

statement of the theorem directly follows from the main result in [46].

We study the inverse problem (IP-1D) for identifying the left boundary condition
ψb(t) and solution ψ(z, t) in (15) under given point measurements.

ψ(z∗l , t) = ψ∗(t) for all t ∈ (0, T] and z∗l ∈ (0, Lz). (17)
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Next, we consider the initial boundary value problem for 2D Richards’ equation in
mixed form (8) [2,9,20,28]

∂θ

∂t
=

∂

∂x

(
Kx(ψ)

∂ψ

∂x

)
+

∂

∂z

[
Kz(ψ)

(
∂ψ

∂z
− 1
)]

, (x, z) ∈ (0, Lx)× (0, Lz), t ∈ (0, T],

ψ(x, 0, t) = ψb(x, t),
[

K(ψ)
(

∂ψ

∂z
− 1
)]

z=Lz

= −qt(t), t ∈ (0, T], x ∈ (0, Lx],

ψ(0, z, t) = ψl(z, t), ψ(Lx, z, t) = ψr(z, t), t ∈ (0, T], z ∈ (0, Lz],

ψ(x, z, 0) = ψ0(x, z), (x, z) ∈ [0, Lx]× [0, Lz],

(18)

The inverse problem (IP-2D) for identifying the function ψ̃b(t) in the left boundary
condition ψb(x, t) = ψ̃b(t)ψ̊b(x) and solution ψ(x, z, t) in (18) is formulated under given
point measurements

ψ(x∗s , z∗l , t) = ψ∗(x∗s , z∗l , t) for all t ∈ (0, T] and (x∗s , z∗l ) ∈ (0, Lx)× (0, Lz). (19)

4. Numerical Solution of the Inverse Problem—1D Case

In this section, we discuss numerically solving the IP-1D. The numerical approach is
constructed in four steps—time semidiscretization, linearization, decomposition, and full
discretization.

We introduce uniform temporal mesh with grid nodes tn = nτ, n = 0, 1, . . . , N,
Nτ = T. Applying implicit-explicit time-stepping (Rothe method) to the direct problem
(15), we derive the following ODE system for unknown solution ψn = ψn(x), n = 1, 2, . . . , N

θ(ψn+1)− θ(ψn)

τ
= σLz(ψ

n+1) + (1 − σ)Lz(ψ
n), z ∈ (0, Lz),

ψn+1(0) = ψb(tn+1), z = 0,

ψn+1(L) = ψL(tn+1), or
[

K(ψn+1)

(
∂ψn+1

∂z
− 1
)]

z=Lz

= −qt(tn+1), z = Lz,

ψ(z, 0) = ψ0(z), z ∈ [0, Lz],

(20)

where Lz(ψ
n) =

∂

∂z

[
K(ψn)

(
∂ψn

∂z
− 1
)]

and 0 < σ ≤ 1.

For a general quasilinear parabolic equation, the convergence of the Rothe method is
studied in [48]. This study is based on the proof of a priori estimates for the corresponding
differential-difference nonlinear system (20). Then, using these estimates, the author of [48]
proves the existence of a smooth solution of the original differential problem. The next
theorem immediately follows from the main result in [48].

Theorem 2. For (x, t) ∈ Ω × (0, T], any ψ, ψ < ∞, the input data of the problem (15) are
uniformly bounded, where for the derivatives θ′(ψ) and K′(ψ) hold:

0 < θmin ≤ θ′(ψ) ≤ θmax, 0 < Kmin ≤ K′(ψ) ≤ Kmax, ψ ∈ R.

The function ψL(t), qt(t) are continuous and ψ0(z) is continuously differentiable and they all
satisfy compatibility conditions. Then, Richards’ parabolic nonlinear problem (15) has a unique
smooth solution, which is the limit of the Rothe solution (20) as the time step τ goes to zero.

Further, we apply Belman and Kalaba quazilinearization [4,22,49,50]. Let us denote

ψ
n+1

=
∂ψn+1

∂z
, (21)
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and suppose that ψn+1
0 , ψ

n+1
0 are the initial approximations of the corresponding exact

values of ψn+1 and ψ
n+1 at the (n + 1)-th time layers.

Then

ψn+1 = ψn+1
0 + (ψn+1 − ψn+1

0 ) = ψn+1
0 + δψn+1, ψ

n+1
= ψ

n+1
0 + δψ

n+1. (22)

We consider ψn+1 and ψ
n+1 as independent variables and assume that δψn+1 and

δψ
n+1 are small values. Using the notation K′(ψ) = dK/dψ, we represent

K(ψn+1)(ψ
n+1 − 1) = K(ψn+1

0 )ψ
n+1

+ K′(ψn+1
0 )ψ

n+1
0 (ψn+1 − ψn+1

0 )

− K(ψn+1
0 )− K′(ψn+1

0 )(ψn+1 − ψn+1
0 )

(23)

and therefore

Lz(ψ
n+1) =

∂

∂z

(
K(ψn+1

0 )ψ
n+1

+ K′(ψn+1
0 )ψ

n+1
0 ψn+1 − K′(ψn+1

0 )ψn+1
)

− ∂

∂z

(
K′(ψn+1

0 )ψ
n+1
0 ψn+1

0 + K(ψn+1
0 )− K′(ψn+1

0 )ψn+1
0

)
.

(24)

In the same manner, we treat the the function θ(ψn+1) in the evolution term in (20)

θ(ψn+1) = θ(ψn+1
0 ) + θ′(ψn+1

0 )(ψn+1 − ψn+1
0 ), (25)

where θ′(ψ) = dθ/dψ.
From (24) and (25), substituting in (20), rearranging and taking into account (21), we

obtain

θ′(ψn+1
0 )ψn+1

τ
− σ

∂

∂z

(
K(ψn+1

0 )
∂ψn+1

∂z
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)ψn+1

)
= F(z), (26)

where F(z) = Fn
1 (z) + Fn+1

2 (z),

Fn
1 (z) =

θ(ψn)

τ
+ (1 − σ)

∂

∂z

[
K(ψn)

(
∂ψn

∂z
− 1
)]

,

Fn+1
2 (z) = −σ

∂

∂z

(
K(ψn+1

0 ) + K′(ψn+1
0 )(ψ

n+1
0 − 1)ψn+1

0

)
+

θ′(ψn+1
0 )ψn+1

0
τ

−
θ(ψn+1

0 )

τ
.

The problem is completed by initial and boundary conditions in (20). The flux-type
right boundary condition is handled as in (23). At point z = Lz, we have

K(ψn+1
0 )

∂ψn+1

∂z
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)ψn+1 = Fb, (27)

Fb = K′(ψn+1
0 )(ψ

n+1
0 − 1)ψn+1

0 + K(ψn+1
0 )− qn+1

t .

We proceed with the third step. In order to solve the inverse problem IP-1D, we apply
the following decomposition of the solution

ψn+1(z) = Ψn+1
1 (z) + ψn+1

b Ψn+1
2 (z). (28)

Substituting in (26) with the corresponding Dirichlet or flux boundary conditions (27)
and initial condition, we obtain two problems for the unknown functions Ψn+1

1 (z) and
Ψn+1

2 (z)
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θ′(ψn+1
0 )Ψn+1

1
τ

− σ
∂

∂z

(
K(ψn+1

0 )
∂Ψn+1

1
∂x

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

1

)
= F(z),

Ψn+1
1 (0) = 0, z = 0,

Ψn+1
1 (Lz) = ψL(tn+1) or K(ψn+1

0 )
∂Ψn+1

1
∂z

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

1 = Fn+1
b , z = Lz,

ψ(z, 0) = ψ0(z), z ∈ [0, Lz],

(29)

and

θ′(ψn+1
0 )Ψn+1

2
τ

− σ
∂

∂z

(
K(ψn+1

0 )
∂Ψn+1

2
∂x

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

2

)
= 0,

Ψn+1
2 (0) = 1, z = 0,

Ψn+1
2 (Lz) = 0, K(ψn+1

0 )
∂Ψn+1

2
∂z

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

2 = 0, z = Lz.

(30)

Finally, we define uniform spatial mesh with grid nodes zi = ihz, i = 0, 1, . . . , I,
hz = Lz/I and denote by vn

i the values of the mesh function v at grid node (zi, tn). We use
also the notations

vn
z,i =

vn
i+1 − vn

i
hz

, vn
z,i = vn

x,i−1.

For the discretization of (29) and (30), we apply finite volume method. To this aim, we
define also the dual mesh

zi+1/2 = zi +
hz

2
, i = −1, 0, 2, . . . , I, z−1/2 = z0, zI+1/2 = zI

and denote by vn
i+1/2 the values of the mesh function v at grid node (zi+1/2, tn).

The full discrete scheme of the direct problem (26) and (27) associated with the corre-
sponding Dirichlet boundary conditions and initial conditions (20) is

θ′i ψ
n+1
i
τ

− σ

hz

(
Kn+1

i+1/2ψn+1
z,i +

(K′)n+1
i+1/2

2
(ψ0

n+1
z,i − 1)

(
ψn+1

i + ψn+1
i+1
)
− Kn+1

i−1/2ψn+1
z,i

+
(K′)n+1

i−1/2

2
(ψ0

n+1
z,i − 1)

(
ψn+1

i−1 + ψn+1
i
))

= Fi, i = 1, 2, . . . , I − 1,

ψi
n+1 = ψb

n+1, i = 0,

ψi
n+1 = ψL

n+1, i = L, or

θ′Iψ
n+1
I

τ
+

2σ

hz

(
Kn+1

I−1/2ψn+1
z,i +

(K′)n+1
I−1/2

2
(ψ0

n+1
z,I − 1)

(
ψn+1

I−1 + ψn+1
I
))

= FI ,

ψ(zi, 0) = ψ0
i , i = 0, 1, . . . , I,

(31)

where Kn
i = K(ψn

i ), Kn
i+1/2 = K(ψn

i+1/2) =
1
2
(
K(ψn

i ) + K
(
ψn

i+1
))

, Kn+1
i = K(ψn+1

0,i ),

Kn+1
i+1/2 = K(ψn+1

0,i+1/2) =
1
2

(
K(ψn+1

0,i ) + K
(

ψn+1
0,i+1

))
and similarly for the functions K′(·),

θ(·) and
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Fi = Fn
1,i −

σ

hz

(
Kn+1

i+1/2 +
(K′)n+1

i+1/2

2
(ψ0

n+1
z,i − 1)

(
ψn+1

0,i + ψn+1
0,i+1

)
−Kn+1

i−1/2 +
(K′)n+1

i−1/2

2
(ψ0

n+1
z,i − 1)

(
ψn+1

0,i−1 + ψn+1
0,i
))

+
(θ′)n+1

i ψn+1
i,0

τ
−

θn+1
i
τ

,

Fn
1,i =

θ(ψn
i )

τ
+

1 − σ

hz

[
Kn

i+1/2
(
ψn

z,i − 1
)
− Kn

i−1/2
(
ψn

z,i − 1
)]

,

FI = −2σ

hz
qn+1

t + Fn
1,I +

2σ

hz

(
Kn+1

I−1/2 +
(K′)n+1

I−1/2

2
(ψ0

n+1
z,I − 1)

(
ψn+1

0,I−1 + ψn+1
0,I
))

+
(θ′)n+1

I ψn+1
I,0

τ
−

θn+1
I
τ

,

Fn
1,I =

θ(ψn
I )

τ
− 2(1 − σ)

hz

[
qn

t + Kn
I−1/2

(
ψn

z,I − 1
)]

,

In the same fashion, we derive the full discretizations of (29) and (30)

θ′i Ψ
n+1
1,i

τ
− σ

hz

(
Kn+1

i+1/2(Ψ1)
n+1
z,i +

(K′)n+1
i+1/2

2
(ψ0

n+1
z,i − 1)

(
(Ψ1,i)

n+1 + Ψn+1
1,i+1

)
−Kn+1

i−1/2(Ψ1)
n+1
z,i +

(K′)n+1
i−1/2

2
(ψ0

n+1
z,i − 1)

(
(Ψ1,i−1)

n+1 + (Ψ1,i)
n+1))

= Fi, i = 1, 2, . . . , I − 1,

Ψ1,i
n+1 = 0, i = 0,

Ψ1,i
n+1 = ψL

n+1, i = Lz, or

θ′IΨ
n+1
1,I

τ
+

σ

hz

(
(K′)n+1

I−1/2

2
(ψ0

n+1
z,I − 1)

(
(Ψ1,I−1)

n+1 + (Ψ1,I)
n+1)

+Kn+1
I−1/2(Ψ1)

n+1
z,I

)
= FI ,

ψ(zi, 0) = ψ0
i , i = 0, 1, . . . , I,

(32)

and

θ′i Ψ
n+1
2,i

τ
− σ

hz

(
Kn+1

i+1/2(Ψ2)
n+1
z,i +

(K′)n+1
i+1/2

2
(ψ0

n+1
z,i − 1)

(
(Ψ2,i)

n+1 + Ψn+1
2,i+1

)
−Kn+1

i−1/2(Ψ2)
n+1
z,i +

(K′)n+1
i−1/2

2
(ψ0

n+1
z,i − 1)

(
(Ψ2,i−1)

n+1 + (Ψ2,i)
n+1))

= 0, i = 1, 2, . . . , I − 1,

Ψ1,i
n+1 = 1, i = 0,

Ψ2,i
n+1 = 0, i = Lz, or

θ′IΨ
n+1
2,I

τ
+

σ

hz

(
(K′)n+1

I−1/2

2
(ψ0

n+1
z,I − 1)

(
(Ψ2,I−1)

n+1 + (Ψ2,I)
n+1)

+Kn+1
I−1/2(Ψ2)

n+1
z,I

)
= 0.

(33)
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Let denote ∥v∥ = max
0≤i≤I

|vi|. In order to solve the problems (31)–(33), we initiate

iteration process, replacing ψn+1
0 by the solution ψ

(k)
0 at old iteration and ψn+1 is the

solution at new iteration ψ(k+1), k = 0, 1, . . . . Suppose that the points of measurements
are grid nodes. Thus, for the numerical recovering of the solution ψ and left boundary
condition, the computations are performed by the following steps

Algorithm IP-1D

1. Start with initial function ψ0, measurements ψ∗(t), and set the accuracy ϵ.
2. Set n = 0.
3. Set k = 0.

4. Solve the problem (32), ψ
(k)
0 := ψn+1

0 , ψ(k+1) := ψn+1 to find Ψ(k+1)
1 .

5. Solve the problem (33), ψ
(k)
0 := ψn+1

0 , ψ(k+1) := ψn+1 to find Ψ(k+1)
2 .

6. From (17) and (28), determine

ψ
(k+1)
b =

ψ∗(tn+1)− Ψ(k+1)
1 (z∗)

Ψ(k+1)
2 (z∗)

.

7. From (28), determine

ψ
(k+1)
i = Ψ(k+1)

1,i + ψ
(k+1)
b Ψ(k+1)

2,i , i = 1, . . . , I.

8. If ∥ψ(k+1) − ψ(k)∥ < ϵ

then ψn+1
b = ψ

(k+1)
b , ψn+1 = ψ(k+1), n := n + 1;

if n < N,
then ψ(0) := ψ(k+1) and go to step 3;
or else, stop the computations.

or else k := k + 1 and go to step 4.

We use the iterative solution of the direct problem (31) in the numerical tests only to
generate measurements and to estimate the accuracy of the inverse method.

5. Numerical Solution of the Inverse Problem—2D Case

In this section we briefly discuss the construction of the numerical method for solving
inverse problem IP-2D. We follow the same steps as for the 1D case.

First, we apply weighed semidiscretization in time to obtain the ODE system. Next,

we linearize the terms Lv(ψn+1) = ∂
∂v

[
K(ψn+1)

(
∂ψn+1

∂v

)]
.

In this framework, for Lz(ψn+1), using the notations (21), (22), we derive (24). In the
same manner, we treat the term Lx(ψn+1). Involving the notation ψ, we obtain

ψ
n+1

=
∂ψn+1

∂x
, ψn+1 = ψn+1

0 + δψn+1, ψ
n+1

= ψ
n+1
0 + δψ

n+1
. (34)

Therefore

Lx(ψ
n+1) =

∂

∂x

(
K(ψn+1

0 )ψ
n+1

+ K′(ψn+1
0 )ψ

n+1
0 ψn+1 − K′(ψn+1

0 )ψ
n+1
0 ψn+1

0

)
. (35)
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Then, in view of (25), the linearized problem (18) became

θ′(ψn+1
0 )ψn+1

τ
−σ

∂

∂z

(
K(ψn+1

0 )
∂ψn+1

∂z
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)ψn+1

)
− σ

∂

∂x

(
K(ψn+1

0 )
∂ψn+1

∂x
+ K′(ψn+1

0 )ψ
n+1
0 ψn+1

)
= F(z),

ψn+1(x, 0) = ψ̃n+1
b ψ̊b(x),

K(ψn+1
0 )

∂ψn+1

∂x
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)ψn+1 = Fb, z = Lz,

ψn+1(0, z) = ψn+1
l (z), ψn+1(Lx, z) = ψn+1

r (z),

ψ(x, z, 0) = ψ0(x, z),

(36)

where F(z) = Fn
1 (z) + Fn+1

2 (z) + Fn
1 (x) + Fn+1

2 (x), Fn
1 (z), Fn

2 (z), Fb are defined as before,
replacing ψn(z) by ψn(x, z) and

Fn
1 (x) = (1 − σ)

∂

∂x

(
K(ψn)

∂ψn

∂z

)
, Fn+1

2 (x) = −σ
∂

∂x

(
K′(ψn+1

0 )ψ
n+1
0 ψn+1

0

)
.

To solve the inverse problem IP-2D, we decompose the solution

ψn+1(x, z) = Ψn+1
1 (x, z) + ψn+1

b Ψn+1
2 (x, z). (37)

Substituting (37) in (36), we derive two problems for the unknown functions Ψn+1
1 (x, z)

and Ψn+1
2 (x, z)

θ′(ψn+1
0 )Ψn+1

1
τ

− σ
∂

∂z

(
K(ψn+1

0 )
∂Ψn+1

1
∂x

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

1

)

− σ
∂

∂x

(
K(ψn+1

0 )
∂ψn+1

∂x
+ K′(ψn+1

0 )ψ
n+1
0 ψn+1

)
= F(z),

Ψn+1
1 (x, 0) = 0,

K(ψn+1
0 )

∂Ψn+1
1

∂z
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)Ψn+1

1 = Fn+1
b , z = Lz,

Ψ1(x, z, 0) = ψ0(x, z), z ∈ [0, Lz],

Ψn+1
1 (0, z) = ψn+1

l (z), Ψn+1
1 (Lx, z) = ψn+1

r (z)

(38)

and

θ′(ψn+1
0 )Ψn+1

2
τ

− σ
∂

∂z

(
K(ψn+1

0 )
∂Ψn+1

2
∂x

+ K′(ψn+1
0 )(ψ

n+1
0 − 1)Ψn+1

2

)

− σ
∂

∂x

(
K(ψn+1

0 )
∂ψn+1

∂x
+ K′(ψn+1

0 )ψ
n+1
0 ψn+1

)
= 0,

Ψn+1
2 (x, 0) = ψ̊b(x),

K(ψn+1
0 )

∂Ψn+1
2

∂z
+ K′(ψn+1

0 )(ψ
n+1
0 − 1)Ψn+1

2 = 0, z = Lz,

Ψn+1
1 (0, z) = 0, Ψn+1

1 (Lx, z) = 0.

(39)

Further, we define primal and dual uniform spatial meshes also in x-direction with
grid nodes

xi = ihx, j = i = 0, 1, . . . , J, hx = Lx/J,

xj+1/2 = xj +
hx
2 , j = −1, 0, 2, . . . , J, x−1/2 = x0, xJ+1/2 = zJ .
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Denote by vn
j,i, vn

j,i+1/2 and vn
j+1/2,i the values of the mesh function v at grid node

(xj, zi, tn), (xj, zi+1/2, tn) and (xj+1/2, zi+, tn), respectively. We use also the notations

vn
z,j,i =

vn
j,i+1 − vn

j,i

hz
, vn

z,j,i = vn
x,j,i−1, vn

x,j,i =
vn

j+1,i − vn
j,i

hz
, vn

x,j,i = vn
x,j−1,i.

For clarity of the exposition, we simplify the notations for the mesh function v

vn := vn
j,i, vn

j±p := vn
j±p,i, vn

i±p := vn
j,i±p.

Taking

ψ(k) := ψn+1
0 , ψ(k+1) := ψn+1, K(k) := K(ψ(k)) = K(ψn+1

0 ), Kn := K(ψn), (40)

the same for K′ and θ′, the full discrete iterative finite volume scheme of the direct problem
(36) is

θ′ψ(k+1)

τ
− σ

hx
Lh

x
(
ψ(k+1), ψ(k))− σ

hz
Lh

z
(
ψ(k+1), ψ(k))

= F(k)
i + F(k)

j , j = 1, 2, . . . , J − 1, i = 1, 2, . . . , I − 1,

ψ(k+1) = ψ̃n+1
b ψ̊b, j = 1, 2, . . . , J − 1, i = 0,

θ′ψ(k+1)

τ
+

2σ

hz

K(k)
i−1/2ψ

(k+1)
z,i−1 +

(K′)
(k)
i−1/2

2
(ψ

(k)
z,i − 1)

(
ψ
(k+1)
i−1 + ψ(k+1))

− σ

hx
Lh

x
(
ψ(k+1), ψ(k)) = F(k)

I + F(k)
j , j = 1, 2, . . . , J − 1, i = I,

ψ(k+1)(0, zi) = ψ
(k+1)
l (zi), ψn+1(Lx, zi) = ψn+1

r (zi), i = 1, 2, . . . , I,

ψ(xj, zi, 0) = ψ0, j = 0, 1, . . . , J, i = 0, 1, . . . , I,

(41)

where Fi and FI are defined as before, replacing ψi±p by ψj,i±p. Then, F(k)
i and F(k)

I are
obtained applying (40)

Lh
x
(
ψ(k+1), ψ(k)) = K(k)

j+1/2ψ
(k+1)
x +

(K′)
(k)
j+1/2

2
ψ
(k)
x
(
ψ(k+1) + ψ

(k+1)
j+1

)
−K(k)

j−1/2ψ
(k)
x,j +

(K′)
(k)
j−1/2

2
ψ
(k)
x,j−1

(
ψ
(k+1)
j−1 + ψ(k+1)),

Lh
z
(
ψ(k+1), ψ(k)) = K(k)

i+1/2ψ
(k+1)
z +

(K′)
(k)
i+1/2

2
(ψ

(k)
z − 1)

(
ψ(k+1) + ψ

(k+1)
i+1

)
−K(k)

i−1/2ψ
(k+1)
z,i +

(K′)
(k)
i−1/2

2
(ψ

(k)
z,i−1 − 1)

(
ψ
(k+1)
i−1 + ψ(k+1)),

F(k)
j = Fn

1,j −
σ

hx

 (K′)
(k)
j+1/2

2
ψ
(k)
x
(
ψ(k) + ψ

(k)
j+1

)
−

(K′)
(k)
j−1/2

2
ψ
(k)
x,j
(
ψ
(k)
j−1 + ψ

(k)
j
),

Fn
1,j =

1 − σ

hx

[
Kn

j+1/2ψn
x,j − Kn

j−1/2ψn
x,j

]
.
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Similarly, we obtain the full discretizations of (38) and (39)

θ′Ψ(k+1)
1
τ

− σ

hx
Lh

x
(
Ψ(k+1)

1 , ψ(k))− σ

hz
Lh

z
(
Ψ(k+1)

1 , ψ(k))
= F(k)

i + F(k)
j , j = 1, 2, . . . , J − 1, i = 1, 2, . . . , I − 1,

Ψ(k+1)
1 = 0, j = 1, 2, . . . , J − 1, i = 0,

θ′Ψ(k+1)
1
τ

+
2σ

hz

K(k)
i−1/2Ψ1

(k+1)
z,i−1 +

(K′)
(k)
i−1/2

2
(Ψ1

(k)
z,i − 1)

(
Ψ1

(k+1)
i−1 + Ψ(k+1)

1
)

− σ

hx
Lh

x
(
Ψ(k+1)

1 , ψ(k)) = F(k)
I + F(k)

j , j = 1, 2, . . . , J − 1, i = I,

Ψ(k+1)
1 (0, zi) = ψ

(k+1)
l (zi), Ψn+1

1 (Lx, zi) = ψn+1
r (zi), i = 1, 2, . . . , I,

ψ(xj, zi, 0) = ψ0, j = 0, 1, . . . , J, i = 0, 1, . . . , I,

(42)

and

θ′Ψ(k+1)
2
τ

− σ

hx
Lh

x
(
Ψ(k+1)

2 , ψ(k))− σ

hz
Lh

z
(
Ψ(k+1)

2 , ψ(k))
= 0, j = 1, 2, . . . , J − 1, i = 1, 2, . . . , I − 1,

Ψ(k+1)
2 = ψ̊b, j = 1, 2, . . . , J − 1, i = 0,

θ′Ψ(k+1)
2
τ

+
2σ

hz

K(k)
i−1/2Ψ2

(k+1)
z,i +

(K′)
(k)
i−1/2

2
(ψ

(k)
z,i−1 − 1)

(
Ψ2

(k+1)
i−1 + Ψ(k+1)

2
)

− σ

hx
Lh

x
(
Ψ(k+1)

2 , ψ(k)) = 0, j = 1, 2, . . . , J − 1, i = I,

Ψ(k+1)
2 (0, zi) = 0, Ψn+1

2 (Lx, zi) = 0, i = 1, 2, . . . , I.

(43)

Algorithm IP-2D

We follow the same steps 1–8 as in Algorithm IP-1D, but the norm is defined by ∥ψ∥ =
max

0≤j≤Nx
max

0≤i≤Nz
|ψi,j| and instead of (32) and (33), we compute (42) and (43), respectively.

Also, steps 6 and 7 are based on the decomposition (37) and measurements (19), namely

. . . . . .
6. From (17) and (28), determine

ψ
(k+1)
b =

ψ∗(tn+1)− Ψ(k+1)
1 (x∗, z∗)

Ψ(k+1)
2 (x∗, z∗)

.

7. From (28), determine

ψ
(k+1)
j,i = Ψ(k+1)

1j,i
+ ψ

(k+1)
b Ψ(k+1)

2j,i
, j = 1, . . . , J i = 1, . . . , I.

. . .

6. Computational Results

In this section, we illustrate the efficiency of the constructed Algorithm IP-1D and
Algorithm IP-2D for numerical determination of the left boundary condition ψb and the
solution ψ in problems (15) and (18). The stability is investigated by adding a different
level of random noise on the over-specified boundary data.
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We set hydraulic parameters for clay loam texture [23,25]

Ks = 0.5458 cm/h, θs = 0.4686, θr = 0.1060, n = 1.3954, α = β = 0.0104 cm−1.

All computations are performed for τ = h, σ = 0.5 and ϵ = 1 × 10−6. To solve the
linear systems of algebraic equations generated after full discretization, we apply direct
method, using the ’mldivide’ toolbox of MATLAB R2022a for sparse matrices.

Example 1 (1D inverse problem: exact data). We verify the order of convergence of the Algorithm
IP-1D. The test problem is the inverse problem for (15), L = 1, T = 1.

We take the measurements from the numerical solution of the direct problem (31) at
each time layer and at three different space points z∗ = 0.25, z∗ = 0.5, z∗ = 0.75. The
averaging number of iterations is denoted by kaver.

First, we consider constitutive relations of the exponential model (11). We add
residual functions in the right-hand side of the differential equation in (15), choose ap-
propriate function qt(t), initial condition, and Dirichlet boundary conditions, such that
ψex(x, t) = 2e−t/2 sin(πx) to be the exact solution of the modified direct problem (15).

The error and order of convergence are estimated in maximal discrete norm

E = E(I) = ∥ψN
inv − ψT

ex∥, CR = log2
E(2I)
E(I)

, (44)

where ψN
inv is the solution, obtained by Algorithm IP-1D at final time, and ψT

ex is the exact
solution of the direct problem (15) at t = T, computed by (31).

In Tables 1 and 2 we give errors, order of convergence, and average number of
iterations for z∗ = 0.25 and z∗ = 0.75.

Table 1. Errors and order of convergence of the solution of Algorithm IP-1D, exponential problem
with Dirichlet right boundary condition, Example 1.

z∗ = 0.25 z∗ = 0.75
I E CR E CR kaver

80 1.57827 × 10−4 1.57827 × 10−4 2
160 3.94728 × 10−5 1.9994 3.94728 × 10−5 1.9994 2
320 9.86805 × 10−6 2.0000 9.86805 × 10−6 2.0000 2
640 2.46700 × 10−6 2.0000 2.46700 × 10−6 2.0000 2

1280 6.16751 × 10−7 2.0000 6.16751 × 10−7 2.0000 2

Table 2. Errors and order of convergence of the solution of Algorithm IP-1D, exponential problem
with Neumann right boundary condition, Example 1.

z∗ = 0.25 z∗ = 0.75
I E CR E CR kaver

80 4.40797 × 10−4 4.40797 × 10−4 2
160 1.16875 × 10−4 1.9151 1.16875 × 10−4 1.9151 2
320 3.00400 × 10−5 1.9600 3.00400 × 10−5 1.9600 2
640 7.61233 × 10−6 1.9805 7.61233 × 10−6 1.9805 2

1280 1.91586 × 10−6 1.9903 1.91586 × 10−6 1.9903 2

We observe that the location of the measurements does not influence the accuracy of
the Algorithm IP-1D and the order of convergence is O(τ2 + h2).

Further, all computations are performed for the case of right Neumann boundary
condition in (15). In Figure 1, we plot the absolute difference between the numerical
solution of the inverse problem ψN

inv and direct problem ψN
d at final time for I = 80. In

Figure 2, we depict exact and recovered function ψb. The results show that Algorithm IP-1D
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recovers numerical solution and left boundary condition of the direct problem exactly.
Therefore, considering also the results in Tables 1 and 2, both numerical solution of the
direct and inverse problems are second order accurate in space and time.
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Figure 1. Exponential model. Absolute difference between the numerical solution of the inverse
problem ψN

inv and numerical solution of the direct problem ψN
d at final time for I = 80, z∗ = 0.25 (left)

and z∗ = 0.75 (right), Example 1.
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Figure 2. Exponential model. Exact and recovered function ψb for I = 80, z∗ = 0.25 (left) and
z∗ = 0.75 (right), Example 1.

Now, we examine constitutive relations of the Genuchten model. We solve original
problem (15), (12)–(14) for qt(t) = q0 + δeςt with q0 = −0.1 [cm/h], δ = −0.8 [cm/h] and
ς = −0.1 [h−1], see [8], z∗ = 0.5 and initial function

ψ0(z) =
{

−5, z > 0.6,
−3 − z/0.3, z ≤ 0.6.

In Figure 3, we illustrate the numerical solution of the inverse problem and direct
problems and absolute error |ψN

inv −ψN
d | at final time for I = 80. In Figure 4, we depict exact

function ψb = −5e−t and numerically restored by Algorithm IP-1D function ψb and the
absolute difference between these two solutions. Note that for this test example kaver = 4.
The computations show that the numerical solution of the direct problem is recovered
exactly.
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Figure 3. Genuchten model. Numerical solution of the direct and inverse problems (left) and the
corresponding absolute difference (right) at final time for I = 80, z∗ = 0.5, Example 1.
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Figure 4. Genuchten model. Exact and restored left boundary (left) and the corresponding absolute
difference (right) for I = 80, z∗ = 0.5, Example 1.

Example 2 (1D inverse problem: noisy data). We repeat the same computations as in Example
1, but with perturbed measurements ψ∗

l (tn), n = 1, 2, . . . , N, generated from numerical solution of
the direct problem (31), by adding noise

ψ∗
l (tn) = (ψd)

n
l + 2ε(ρ(tn)− 0.5), zl = z∗, 1 ≤ l ≤ I, (45)

where ε is the noise level and ρ(tn) is a random function, uniformly distributed on the interval
[0, 1]. For the test examples, we set z∗ = 0.5 and I = 80.

We consider exponential model (11) and (15). In Figures 5 and 6, we plot numerical
solution of the direct and inverse problems for ε = 0.01 and ε = 0.05, respectively. Figure 7
illustrates the exact and recovered left boundary for ε = 0.01 and ε = 0.05. For these test
examples, the average number of iterations are kaver = 3.080 for ε = 0.01 and kaver = 3.850
for ε = 0.05.

Next, we examine Genuchten model (12)–(14) and (15). In Figures 8 and 9, we depict
numerical solution of the direct and inverse problems for ε = 0.01 and ε = 0.05, respectively.
Figure 10 represents the exact and recovered left boundary for ε = 0.01 and ε = 0.05. In the
case of ε = 0.01, the average number of iterations is kaver = 7.125, while for ε = 0.05 it is
kaver = 8.338.

As can be expected, the bigger deviation leads to bigger error. Nevertheless, it is
evident that even for perturbed data for both models, the Algorithm IP-1D recovers suc-
cessfully the numerical solution of the direct problem with optimal accuracy.
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Figure 5. Exponential model. Numerical solution of the direct and inverse problems, ε = 0.01 (left)
and the corresponding absolute difference (right) at final time for I = 80, z∗ = 0.5, Example 2.
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Figure 6. Exponential model. Numerical solution of the direct and inverse problems, ε = 0.05 (left)
and the corresponding absolute difference (right) at final time for I = 80, z∗ = 0.5, Example 2.
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Figure 7. Exponential model. Exact and restored left boundary for ε = 0.01 (left) and ε = 0.05 (right),
I = 80, z∗ = 0.5, Example 2.
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Figure 8. Genuchten model. Numerical solution of the direct and inverse problems, ε = 0.01 (left)
and the corresponding absolute difference (right) at final time for I = 80, z∗ = 0.5, Example 2.
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Figure 9. Genuchten model. Numerical solution of the direct and inverse problems, ε = 0.05 (left)
and the corresponding absolute difference (right) at final time for I = 80, z∗ = 0.5, Example 2.
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Figure 10. Genuchten model. Exact and restored left boundary for ε = 0.01 (left) and ε = 0.05 (right),
I = 80, z∗ = 0.5, Example 2.

Example 3 (2D inverse problem: exact data). Consider the problem (8), K = Kx = Kz,
Lx = Lz = 1, T = 0.5. For all computations we take hx = hx = h and measurements at each time
layer at space point x∗ = 0.5, z∗ = 0.5. First, we examine exponential model with constitutive
relations (11). As in Example 1, we deal with the corresponding modified problem with exact
solution ψex = et/2 sin(πx) cos(πz).

In Table 3, we give errors and orders of convergence, estimated in maximal discrete
norm by (44), average number of iterations, and CPU times (in seconds). As for 1D case,



Mathematics 2024, 12, 299 19 of 23

we observe second temporal and spatial order convergence and rapid increasing of the
computational time as the mesh become finer, since the large matrix inversion requires
much more computational time.

Table 3. Errors and order of convergence of the solution of the exponential problem, computed by
Algorithm IP-2D, Example 3.

I E CR kaver CPU

20 1.41242 × 10−3 2.727 1.078
40 5.98987 × 10−4 1.2376 2.381 2.124
80 1.76721 × 10−4 1.7610 1.951 9.296

160 4.42133 × 10−5 1.9989 1.975 49.897
320 1.10502 × 10−5 2.0004 1.987 489.527
640 2.76211 × 10−6 2.0002 1.993 3866.782

In Figure 11, we plot absolute difference between the numerical solution of the inverse
problem ψN

inv, obtained by Algorithm IP-2D and direct problem ψN
d , computed by (41) at

final time, and recovered boundary ψn
b and exact boundary ψb(tn) for I = 80.
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Figure 11. Exponential model. Absolute difference between recovered solution and numerical
solution of the direct problem at final time (left) and recovered boundary and exact boundary (right),
I = 80, x∗ = 0.5, z∗ = 0.5, Example 3.

Now, we consider Genuchten model (8), (12)–(14) with initial solution ψ0(x, z) =
sin πx cos πz + 0.25 and Dirichlet boundary conditions formed from the function et/2ψ0(x, z)
at the corresponding boundary nodes. The function qt(t) is the same as in Example 1.

We compare the recovered solution with the numerical solution of the direct problem.
The solution, solved by Algorithm IP-2D, and absolute difference between this solution and
numerical solution of the direct problem, are depicted in Figure 12. The average number of
iterations is kaver = 3.878.

As in 1D case, we conclude that the order of convergence of the numerical solution
of the inverse and direct problems is O(τ + h2

x + h2
z). Moreover, the solution obtained by

Algorithm IP-2D recovers exactly the numerical solution of the direct problem.
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Figure 12. Genuchten model. Recovered solution (left) and absolute difference between this solution
and numerical solution of the direct problem (right), I = 80, x∗ = 0.5, z∗ = 0.5, Example 3.

Example 4 (2D inverse problem: noisy data). We consider the same Genuchten problem as in
Example 3, but for perturbed data generated from numerical solution of the direct problem as in (45)
for ε = 0.03, x∗ = 0.5, z∗ = 0.5. In Figure 13, we plot numerical solution of the direct problem
at final time, computed by (41), and the corresponding recovered solution, obtained by Algorithm
IP-2D, for I = 80. We observe that the recovering is quite satisfactory. The average number of
iterations is kaver = 3.951.
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Figure 13. Genuchten model. Numerical solution of the direct problem (left) and recovered solution
(right) at final time, I = 80, x∗ = 0.5, z∗ = 0.5, ε = 0.03, Example 4.

The computational simulations, presented in this section to test the developed method,
are implemented by MATLAB R2022a on a computer with an Intel® CoreTM i5-7500 Processor,
DDR4 2133 MHz.

7. Summary and Conclusions

In this paper, we solved numerically inverse boundary condition problems upon
internal measurements for 1D and 2D mixed forms of Richards’ equation. First, time
discretization is performed and then at each time layer for the resulting elliptic boundary-
value problems we apply quazilinearization. For the numerical solution of the inverse
problem, the decomposition of the solution is realized. Numerical examples are presented
to illustrate the efficiency of the proposed method.

The computational tests for exponential and Genuchten 1D and 2D problems illustrate
that for noisy-free measurements the order of convergence of the restored solution is the
same as for the numerical solution of the direct problem, namely second order in space
and time for Crank–Nicolson time discretization. Moreover, the numerical solution of
the inverse problem recovers exactly the numerical solution of the direct problem and
unknown boundary.
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In the case of perturbed observations, the proposed algorithms recover successfully
the solution of the direct problem and unknown Dirichlet boundary with optimal accuracy.

The developed approach is stable and reaches satisfactory and relevant precision in a
moderate number of iterations.

Our next aim is to develop other numerical methods for solving inverse boundary con-
ditions and source problems for initial boundary values problems for Richards’ equation.
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