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Abstract: The authors develop the theory of discrete differentiation and, on its basis, solve the problem
of detecting trends in records, using the idea of the connection between trends and derivatives
in classical analysis but implementing it using fuzzy logic methods. The solution to this problem
is carried out by constructing fuzzy measures of the trend and extremum for a recording. The
theoretical justification of the regression approach to classical differentiation in the continuous case
given in this work provides an answer to the question of what discrete differentiation is, which is used
in constructing fuzzy measures of the trend and extremum. The detection of trends using trend
and extremum measures is more stable and of higher quality than using traditional data analysis
methods, which consist in studying the intervals of constant sign of the derivative for a piecewise
smooth approximation of the original record. The approach proposed by the authors, due to its
implementation within the framework of fuzzy logic, is largely focused on the researcher analyzing
the record and at the same time uses the idea of multiscale. The latter circumstance provides a more
complete and in-depth understanding of the process behind the recording.

Keywords: trend problem; discrete regression derivatives; trend measures; extremum measures;
multiscale; extremum migration

MSC: 26E50

1. Introduction

Research on data and methods of their analysis using fuzzy mathematics has now
taken shape as an independent direction, which includes methods of fuzzy regression and
the analysis of fuzzy time series [1–7]. We can highlight the main stages of development of
this direction.

In the initial stage, studies of the fuzzy regression model were carried out. The second
stage was the development of soft-computing methods, within which a huge number
of studies have been carried out on the effectiveness of soft computing for time series
analysis. The third stage consisted in the transition from the analysis of time series using
fuzzy mathematics methods to the analysis of fuzzy time series. The development of fuzzy
database methods has made it possible to move to the stage of extracting rules from fuzzy
(granular) time series.

Within each of the listed stages, a significant part consists of methods for identifying
trends and, more broadly, a morphological analysis of time series. The proposed work
should be attributed to the use of fuzzy mathematics methods for the analysis of discrete
time series.

1.1. Trends and Fuzzy Principles for Their Modeling

Trends in a time series are its fundamental characteristic and therefore can tell a lot about
the nature of the process behind it. The identification of trends is a significant part of what is
traditionally considered to be the morphological analysis of time series [8–11], including:
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• The decomposition of the time series into trend and seasonal components, as well as
the remainder: the trend shows the general direction of changes over time, seasonality
reflects repeating patterns associated with certain periods of time, and the remainder
reflects random fluctuations within the time series;

• An autocorrelation analysis, which helps identify periodic fluctuations associated
with seasonality;

• A spectral analysis, which allows one to analyze the cyclicity in a time series and the
most important time periods for it.

Currently, a broader understanding of morphological analysis as the study of the
manifestation of one or another geometric property in a graphical representation of the
dynamics of a time series is gaining momentum [12]. A morphological analysis of time
series is useful for a better understanding of their dynamics and more accurate forecasting.

There are several methods for constructing and identifying time series trends. Here
are the main ones [8,11,13–18]: smoothing with a kernel (in particular, the moving average
method, exponential smoothing), regression and autoregressive (AR) methods, wavelet
analysis, nonlinear methods (in particular, machine learning and neural networks).

Real trends are stochastic and are not at all similar to ideal mathematical ones, since
they have glitches. This does not confuse the researcher, who perceives the trend adaptively
and understands when a violation is insignificant and the trend continues, and when a
violation interrupts the trend.

Thus, if mathematical trends are strict and unambiguous segments in each subsequent
node for which the value of the record is greater than, or equal to (less than, or equal to)
the value of the record in the present node, then stochastic ones depend on the point of
view of the researcher and therefore can differ.

Let us call the formalization and search for trends and extrema in a function the trend
problem. Its solution, according to the authors, consists of a sequence of answers to the
following questions:

• What is the trend of a function at a point?
• Which parts of the function should be considered definitely trendy?
• How do these fragments form a general trend?
• What is an extremum of a function?

The solution to the trend problem, according to the authors, should be fuzzy, multipa-
rameter and multiscale in the spirit of wavelets and fractals. By changing the parameters
and scale, the researcher gets a complete picture of the trends and selects the ones they
need. In addition, a multiscale trend analysis is very useful, objective and can tell a lot
about the function as a whole.

The above is fully consistent with the principles of fuzzy modeling, on the basis
of which it is supposed to approach stochastic trends. In this regard, we quote Zadeh [19]:
“All we need to solve most practical problems is a parameterized family of definitions that,
if necessary, would allow a non-standard choice of operators that reflect the characteristic
features of a particular application. The advantage of this approach is that by avoiding fixed,
concrete-independent definitions, fuzzy set theory and fuzzy logic achieve a pluralism that
increases their flexibility and expressive capabilities”.

In this work, such operators will be regression differentiation, regression smoothing,
fuzzy trend measure and fuzzy extremum measure.

It should be noted that regression derivatives were used earlier, in a simpler form
than in this work, for the classification of time series, which made it possible to determine
groups of series similar in morphology using various similarity measures [20–24]. In such
problems, the choice of similarity measure affects the classification accuracy to a greater
extent than the choice of classification method.

The advantage of similarity measures constructed using regression derivatives is the
ability to take into account both positive dependencies, when time series simultaneously
increase or decrease values, and negative dependencies, when the values of one time series
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decrease and another increase, and vice versa [23]. Similar results based on the fuzzy
correlation measure constructed by the authors are given in the conclusion.

1.2. Solution of the Problem of Trends and on the Basis of Discrete Mathematical Analysis

The problem of trends (see Section 1.1) in this work is solved within the framework
of discrete mathematical analysis (DMA)—a new approach to data analysis, researcher-
oriented and occupying an intermediate position between hard mathematical methods
and soft intellectual ones [25–29].

The solution to the problem within the framework of DMA consists of two parts.
The first is informal: it explains the researcher’s logic, introduces the necessary concepts,
and explains the scheme and principles of the solution. The second is of a formal na-
ture: with the help of the DMA apparatus, all concepts receive strict definitions within
the framework of fuzzy mathematics and fuzzy logic, and the scheme and principles
become algorithms.

We call the first, informal part of solving the trend problem within the framework
of DMA the logic of the researcher’s trends (RTL) and formulate it in the form of the
following provisions:

• There is a record f on a finite uniform set of nodes T. At each node, the researcher
vaguely but unambiguously sees a positive, negative or neutral trend f.

• The researcher considers positive (negative) trends for f to be segments in T consisting
of positive and neutral (negative and neutral) nodes from T.

• Opposite trends intersect at neutral nodes, among which the researcher can choose an
extremum for f.

The further, main part of the work is devoted to the transformation of RTL into
algorithms (the second part of solving the problem of trends within the framework of DMA):
fuzzy measures of the trend and extremum are constructed, expressing the researcher’s
opinion about the presence of a trend and extremum in a record in a particular node.
The combined use of these measures makes it possible in a discrete situation to repeat
the classical results of mathematical analysis regarding trends and extrema for piecewise
smooth functions.

The measures are based on discrete regression derivatives. Their definition, study
and rationale for use are given below. Having a discrete derivative, there is a natural
desire to repeat on its basis, in a discrete situation, the scheme of the approach of classical
mathematical analysis to trends and extremes. This determines both the motivation and
goals of this work.

1.3. Regression Approach to Derivatives (Continuous Case)

Let the function f be integrable on an interval I containing zero internally. Then, for
a sufficiently small ∆ > 0, the segment [−∆, ∆] is contained in I. Let us denote by f∆ the
restriction of f to the segment [−∆, ∆]: f∆ = f[−∆,∆] and calculate the projection pr f∆ of
the function f∆ in space L2[−∆, ∆] into the two-dimensional subspace of linear functions
Lin2[−∆, ∆].

Statement 1. If a function f has a tangent at zero, then, as ∆ → 0, the linear projection pr f∆
tends to it.

Proof. Let e1 = e1(∆), e2 = e2(∆) be an orthonormal basis in Lin2[−∆, ∆], obtained from
the natural basis (1, x) by a Gram–Schmidt orthogonalization [30], then:

pr f∆ = ( f∆, e1)∆e1 + ( f∆, e2)∆e2.
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Let us put e1 = c, e2 = ax + b. Three conditions arise on a, b and c:

∥e1∥∆ = 1 ←→
∫ ∆
−∆ c2dt = 1 ←→ c2 = 1

2∆ ,
(e1, e2)∆ = 0 ←→

∫ ∆
−∆ c(at + b)dt = 0 ←→ b = 0,

∥e2∥∆ = 1 ←→
∫ ∆
−∆ a2t2dt = 1 ←→ a2 = 3

2∆3 .

Thus,

pr f∆(x) =
1

2∆

∫ ∆

−∆
f (t)dt +

(
3

2∆3

∫ ∆

−∆
t f (t)dt

)
x.

Additionally, the function f is differentiable at zero:

f (x) = f (0) + f ′(0)x + α(x)x,

where α(x)→ 0 when x → 0.
The limit

1
2∆

∫ ∆

−∆
f (x)dx → f (0)

in the free term of the projection pr f∆ is explained by the mean value theorem [31].
Let us analyze the expansion coefficient pr f∆ at x:

3
2∆3

∫ ∆

−∆
t f (t)dt =

3
2∆3

∫ ∆

−∆
t( f (0) + f ′(0)x + α(t)t)dt =

3
2∆3

∫ ∆

−∆
t f (0)dt +

3
2∆3

∫ ∆

−∆
t2 f ′(0)dt +

3
2∆3

∫ ∆

−∆
t2α(t)dt =

0 + f ′(0) +
3

2∆3

∫ ∆

−∆
t2α(t)dt.

The last integral tends to zero as ∆→ 0:

∀ε > 0 ∃∆(ε) : ∀∆ < ∆(ε)|α|
∣∣
[−∆,∆] < ε⇒

⇒
∣∣∣∣ 3
2∆3

∫ ∆

−∆
t2α(t)dt

∣∣∣∣ ≤ 3
2∆3

∣∣∣∣∫ ∆

−∆
εt2dt

∣∣∣∣ = ε.

1.4. Regression Approach to Derivatives (Discrete Case)

We postpone the consequences of the proven statement and its further development
in the continuous case until the Appendix A, and now we discuss its significance mainly
for the analysis of data in a discrete situation.

Replacing the tangent to f with the projection pr f∆ for small ∆ makes it possible to
determine the tangent for discrete functions, since the projection pr f∆ is nothing more than
a linear regression for f on [−∆, ∆] and can be generalized to the discrete case.

The limit transition t̄→ t in the discrete case is replaced by a fuzzy weight structure
δt(t̄) ∈ [0, 1] of proximity to node t in a finite set of nodes T, the domain of definition
of the function f .

The proven statement gives grounds to consider the linear regression of the function
f with respect to the weight structure δt on T as a tangent for f at t, and its slope as the
derivative of f at t.

Having a derivative for f , there is a natural desire to repeat on its basis in a discrete
situation the classical approach to trends and extrema from mathematical analysis.



Mathematics 2024, 12, 284 5 of 33

2. Discrete Regression Derivatives

Statement 1 proved above allows us to conclude that for a function f that is differen-
tiable at zero, its linear continuous regressions on the segments [−∆, ∆] tend to the tangent
as ∆→ 0.

This approach to differentiation in the continuous case allows a continuation to the
discrete case, since discrete regressions are just as efficient and fundamental as continu-
ous ones.

Let T = [a, b] be a finite discrete segment with equal nodes t = ti : T = {t} = {ti|Ni=1},
ti = a + (i− 1)h, h = b−a

N−1 .
Let us call a segment τ in T a piece in T without gaps: τ = [ti, tj] = {ti < · · · < tj} for

some 1 ≤ i ≤ j ≤ N. In addition, we call the beginning (end) τ and denote by bτ (eτ) the
first and last nodes ti and tj, respectively.

We consider any real function on T to be a time series (record) f ; F(T) is the space of
such functions.

The analysis by a researcher of the behavior of a time series involves considering its
values not only in a separate node but also simultaneously taking into account the values
in some of its vicinity. This is precisely why the segment T needs to be localized at each of
its nodes. It can be implemented using the fuzzy structure δt on T, which plays the role of a
neighborhood of node t and expresses the proximity to it of individual nodes t̄ normalized
in t: δt is a measure of theproximity of t̄ to t.

(δt(t) = 1) ∧
(
|t̄− t| ≤

∣∣ ¯̄t− t
∣∣→ δt( ¯̄t) ≤ δt(t̄)

)
. (1)

We consider the proximity measure δ on T to be a set of fuzzy structures δt: δ = {δt :
t ∈ T}, δt ∈ Fuzzy T.

The measure δ is the only parameter in the theory of trends and extrema constructed
below and is therefore very important. Its choice is entirely determined by the researcher.
The authors’ choice is the family δ = δ(p, r).

Definition 1. δ = δ(p, r), p—scale parameter, r—viewing radius (Figure 1).

δt(t̄) = δt(t̄|p, r) =


(

1− |t̄−t|
r

)p
, if |t̄− t| ≤ r

0, if |t̄− t| > r
. (2)

Figure 1. Proximity of δt(p, r) to node t for different p’s.

The family δ(p, r) expresses the authors’ point of view on localization: a researcher
analyzing a record f at node t first selects the boundary of the view (parameter r) and then
its thoroughness (scale, parameter p). The required localization can be achieved using the
family δ(p, r) in two ways: either by the parameter r tending to zero, or by the parameter p
tending to infinity. In this paper, the authors chose the second path: in the measure δ(p, r),
there is an interesting dependence on the scale parameter p, which allows you to “look at
the record from a different height”.

The parameters p and r are chosen by the researcher. In this work, the measure δ(p, r)
is used for trend analysis, which can be simple (p and r are fixed) and multiscale (p changes,
r is fixed). The work focuses on multiscale analysis. For its objectivity and completeness,
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the radius r is assumed to be equal to a quarter of the length of the segment T. Figure 1
shows the dependence of the proximity δt(t̄|p, r) to node t on p for r equal to a quarter
of the length of the segment T.

The limit transition t̄→ t to T performs a proximity measure δt by distributing weights
on T: t̄→ t↔ T = {t̄} → Tδ(t) = {(t̄, δt(t̄))}. With that said, we should consider a linear
regression based on the fuzzy image Imδ f (t) = {( f (t̄), δt(t̄)), t̄ ∈ T} at the beginning of
the tangent lδ f (t) = lδ f (t)(t̄) = at t̄ + bt to the function f at node t. Associated with the
image Imδ, f (t) is the functional

J(a, b) = ∑̄
t∈T

δt(t̄)( f (t̄)− at̄− b)2.

The values (at, bt) of the parameters of the tangent lδ f (t) are the minimum point of
J(a, b). Therefore, at and bt satisfy the system of equations

at ∑
t̄∈T

δt(t̄)t̄2 + bt ∑
t̄∈T

δt(t̄)t̄ = ∑
t̄∈T

δt(t̄) f (t̄)t̄,

at ∑
t̄∈T

δt(t̄)t̄ + bt ∑
t̄∈T

δt(t̄) = ∑
t̄∈T

δt(t̄) f (t̄).

Hence,

at =

∣∣∣∣∣∣ ∑t̄∈T t̄δt(t̄) f (t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T δt(t̄) f (t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣
,

bt =

∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄) f (t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄) f (t̄)

∣∣∣∣∣∣∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣
.

(3)

To build trends, the formulas in (3) are used. A simpler expression for at and bt is used
in Appendix A.1.

Definition 2. The slope coefficient at is called the regression derivative of f at t and is denoted by
Dδ f (t). The function t→ at is called the regression derivative of f and is denoted by Dδ f ∈ F(T).
The functional correspondence f → Dδ f is a linear operator on F(T), called regression differentia-
tion and denoted by Dδ.

Definition 3. The value lδ f (t)(t) = att + bt of the regression tangent lδ f (t) of the function f at
t is called the regression value of f at t and is denoted Rδ f (t). The function t→ Rδ f (t) is called
regression smoothing of f and is denoted by Rδ f ∈ F(T). The functional correspondence f → Rδ f
is a linear operator on F(T), called regression smoothing and denoted by Rδ.

A special notation for differentiation and smoothing in the case of a measure δ = δ(p, r) is:

Dδ(p,r) = D(p, r); Rδ(p,r) = R(p, r). (4)

The theoretical justification for the regression approach to differentiation presented in
this work finds additional empirical confirmation in the form of the good performance of
regression smoothing: with the same review (parameter p) on smooth functions, regression
smoothing works better than conventional averaging. In Figure 2, regression smoothing
is shown with a solid line, and conventional averaging is shown with a dotted line. The
visual comparison is supported by the quadratic discrepancy with the ideal. The advantage
of regression smoothing over conventional smoothing is especially visible at the ends of
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both the synthetic smooth recording (Figure 2) and the real one (Figure 3). Until the end
of this paper, these records participate in the game and serve as a testing ground for the
trends and extremes proposed in this work.

Figure 2. Results of smoothing R(p, r) (solid line) and averaging M(p, r) (dotted line) for smooth
records (black line) at different scales p with quadratic residuals deviations: p = 1 (red lines),
p = 12 (green) and p = 35 (blue).

Figure 3 shows the performance of the regression smoothing R(p, r) on the real mag-
netic storm record in the same p-scale parameters as in Figure 2 for the synthetic one.
The above figures confirm the convergence proved in Appendix A.1 to the record f of its
regression smoothing R(p, r) at p→ ∞.

Figure 3. Results of smoothing R(p, r) on a real recording (black line) at different scales p: p = 1 (red line),
p = 12 (green line) and p = 35 (blue line).

3. Trend Measure: Preliminary Solution to the Trend Problem

The assumption that a researcher looking at a record f can determine its trend at
any node t ∈ T is central to the researcher’s trend logic. Based on it, we construct its
implementation using a fuzzy trend measure.

The researcher’s view of the record f is formalized by its regression smoothing
fδ = Rδ f based on the proximity (localization) measure δ on T chosen by the researcher.
Next, the researcher is not interested in the smoothing fδ itself, but in the result f ′δ of its
differentiation by the operator D(0, h): f ′δ = D(0, h) fδ (4). The value of f ′δ(t) is called the
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elementary dynamics of the entry f at node t based on the localization of δ. Their totality,
that is, the image Im f ′δ, serves as the basis for constructing a fuzzy trend measure τrδ f . The
value τrδ f (t) in the fuzzy scale [0, 1] expresses the degree of confidence of the researcher
(the measure of their reason) to consider the trend of the record f at node t to be positive.

It is constructed as follows: the researcher gives the weight
∣∣ f ′δ(t)

∣∣δt(t̄) to the elemen-
tary dynamics f ′δ(t̄) at node t̄. The argument for a positive trend f at node t is all positive
dynamics f ′δ(t̄) > 0, and against, all negative dynamics f ′δ(t̄) < 0 with their weights.

The measure of trend τrδ f (t) is considered the ratio of the sum of the weights of
positive dynamics (the argument “for” the positive trend f at node t) to the total sum
of weights:

τrδ f (t) =
∑ δt(t̄) f ′δ(t̄) : f ′δ(t̄) > 0

∑ δt(t̄)
∣∣ f ′δ(t̄)

∣∣ : t̄ ∈ T
. (5)

If τrδ f (t) > 1/2, then the total argument of the weights of increasing dynamics is
greater than the total argument of the weights of decreasing dynamics; therefore, the
researcher considers node t to be positive according to the trend for f , and the degree of
conditionality of its solution is τrδ f (t).

Similarly, if τrδ f (t) < 1/2, then node t is considered negative according to the trend
for f with a base of 1− τrδ f (t) and neutral in the case of equality τrδ f (t) = 1/2.

Let us summarize the intermediate result: based on the measure τrδ f , the answer
to the first question formulated in the introduction was obtained: “What is a trend at
a point?”.

Next, partitioning T = T+
δ f ∨ T−δ f ∨ T0

δ f into positive, negative, and trend-neutral nodes

T+
δ f = {t ∈ T : τrδ f (t) > 1/2}

T−δ f = {t ∈ T : τrδ f (t) < 1/2}
T0

δ f = {t ∈ T : τrδ f (t) = 1/2}

allows one to simultaneously answer the following two questions of the trend problem:
“Which fragments of the record should be considered unconditionally trendy?” and “How
do these add up to overall final trends?”

The fact is that in real conditions, there are very few neutral trends from T0
δ f , or none

at all. Therefore, it seems natural to consider segments of the record f entirely consisting of
positive and neutral (negative and neutral) nodes, respectively, as positive and negative
trends τr+ (τr−) for f : τr+ (τr−), a set of nodes without gaps in T+

δ f ∨ T0
δ f (T−δ f ∨ T0

δ f ).

Definition 4. We denote an arbitrary trend by τr: τr = τr+ ∨ τr−. Trends τr replace each other
and can intersect only at neutral nodes, forming an almost disjunct covering T, which we denote as
Trδ f = {τ}.

We call the partition Trδ f a preliminary solution to the trend problem for recording
f based on the proximity measure δ. An explanation of its preliminary nature is given
below, but now, we note that strongly depending on δ, in the case δ = δ(p, r), turns out
to be very effective and gives good results at different scales p on difficult real recordings
with, in our opinion, a large radius review r. It was this circumstance that served as the
reason for writing this work.

The proof is presented in the form of a complete display of the solution to trends Trδ f :
record f → smoothing fδ → trend measure τrδ f with a partition Trδ f applied to it→ par-
tition Trδ f on smoothing fδ → partitioning Trδ f into records f . The obvious presence of
scale p requires additional effort. Continuing (4) for δ = δ(p, r) and omitting the viewing
radius r, we introduce the following notation:

• smoothing fδ(p,r) ↔ fp,
• elementary dynamics f ′

δ(p,r) ↔ f ′p,

• trend measure τrδ(p,r) ↔ τrp,
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• partition Trδ(p,r) ↔ Trp.

In order not to confuse the trend measure τrp with the trend segments τr obtained
on its basis, in the latter, we agree to indicate the dependence on the scale p in the form of
an argument:

• τr ↔ τr(p),
• Trp f = {τr(p)}.

In Figures 4–6, the complete scenario for solving Trp f is given for a smooth function
on three scales, and for a real record on two scales in Figures 7 and 8.

The effectiveness of working in difficult real-world conditions is the main criterion
in data analysis, a largely empirical discipline. According to the authors, success in the
problem of trends based on the trp measure lies in two reasons: stability and adequacy.

Stability is a general property of the construction of the measure trp f . Figure 9
illustrates this; Figure 9b,c shows the trend solution on a scale p = 35 for a smooth record
and its disturbance, indicated in Figure 9a in black and green, respectively.

Adequacy: Trends τr(p) obtained on the basis of the measure τrp f are consistent with
the “p” scale: there are no small dynamics in modulus p on smoothing fp among them.
As noted above, it was precisely this circumstance that served as the reason for this work.
The explanation of adequacy at the moment is semiempirical: according to the apologetics
of regression differential calculus given at the beginning of the work and Appendix A.1,
regression derivatives and values inherit the fundamental properties of linear regression,
and the measure of trend very naturally depends on them. Therefore, if the effect for trends
through regression derivatives exists, then it must necessarily manifest itself through the
trend measure. This is illustrated in Figure 10, whose detailed story is given below.

Figure 4. Preliminary solution of the problem of trends on a smooth record on a scale p = 1. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f1. (c) Measure of trend τr1 f with red–blue partition Tr1 f . (d) Partition Tr1 f on smoothing f1.
(e) Partitioning Tr1 f into records f .
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Figure 5. Preliminary solution of the problem of trends on a smooth record on a scale p = 12. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f12. (c) Measure of trend τr12 f with red–blue partition Tr12 f . (d) Partition Tr12 f on smoothing f12.
(e) Partitioning Tr12 f into records f .

Figure 6. Preliminary solution of the problem of trends on a smooth record on a scale p = 35. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f35. (c) Measure of trend τr35 f with red–blue partition Tr35 f . (d) Partition Tr35 f on smoothing f35.
(e) Partitioning Tr35 f into records f .
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Figure 7. Preliminary solution of the problem of trends on a real record on a scale p = 1. Red lines
are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f1. (c) Measure of trend τr1 f with red–blue partition Tr1 f . (d) Partition Tr1 f on smoothing f1.
(e) Partitioning Tr1 f into records f .

Figure 8. Preliminary solution of the problem of trends on a real record on a scale p = 12. Red lines
are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f12. (c) Measure of trend τr12 f with red–blue partition Tr12 f . (d) Partition Tr12 f on smoothing f12.
(e) Partitioning Tr12 f into records f .
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Figure 9. Stability of the preliminary solution to the trend problem. Red lines are positive trends,
blue lines are negative ones. (a) Smooth notation (black) and its disturbance (green). (b) Solution for
the smooth recording. (c) Solution to its disturbance.

Figure 10. Adequacy of the preliminary solution to the trend problem. Red lines are positive trends,
blue lines are negative ones. (a) Initial recording. (b) Mathematical solution to the trend problem.
(c) Preliminary solution to the trend problem. (d) Mathematical solution to the trend problem
(fragment). (e) Preliminary solution to the trend problem (fragment).
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The stability and adequacy of the solution to the trend problem made it possible to
answer the second and third questions relatively simply, i.e., construct final (currently)
versions of trend sections τr(p) of record f at scale p.

This does not always happen. The traditional solution to the trend problem based
on smoothing, for example, polynomial, uses a standard mathematical understanding of
trends: trends in a record are considered to be mathematical trends in its smoothing. In
this solution, the problem of small dynamics remains: on the one hand, smoothing must
sufficiently scan the record, on the other hand, the stochastic nature of the record leads to
the appearance of small dynamics in the smoothing (short segments of increase/decrease),
which a mathematical understanding of the trend in smoothing will highlight as separate
trends on the recording.

Let us turn to Figure 10: the classic solution to trends for recording f based on
smoothing fδ is shown in Figure 10b, and the solution currently proposed by the authors is
in Figure 10c. Selected fragment in Figure 10d,e illustrates the above and shows a greater
stability of the Trδ f solution compared to the classical one. The solution Trδ f is also better
in comparison with the previous solution of the authors, where the trend was obtained in
several stages and for this, it was necessary to solve the difficult problem of combining
fragments of the f record into a single trend.

However, the solution Trp f , despite all the advantages mentioned above, has some
inaccuracy that does not allow it to be considered the final solution to the trend problem
(Figure 11). To do this, we need a measure of extremity that eliminates the inaccuracy in
the solution Trp f and adds stability and adequacy to it.

Figure 11. Partition inaccuracy Trp f . (a) Original record. (b) Preliminarily solving the trend problem on
a scale p = 12. (c) Extrema partition Tr12 f (highs are red, lows are blue, black is the original record).

4. Extremum Measure: The Final Solution to the Trend Problem

In the trend problem, there is one last question about extrema. Of course, the first
answer to this question is similar to the classical one: extrema are the boundaries between
opposite trends in Trδ f . On this path, the problem of their existence arises: as noted above,
there are few or no neutral nodes from Tr0

δ f (namely, the extrema should lie within them)
due to the stochasticity of f and discreteness of T. The second option, the most natural
of the nonempty ones, is as follows: if the positive trend τr+ is replaced by a negative
τr−, then the maximum should be considered the choice from the end e(τr+) and the
beginning b(τr−), where the entry f is maximum, and, conversely, if the negative trend
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τr− is replaced by a positive τr+, then the minimum should be considered the choice from
the end e(τr−) and the beginning b(τr+), where the entry f is minimal.

But even after this, some problems remain: the global nature of the trend measure
τrδ f makes the partition Trδ f stable and quite satisfactory (at least in the case δ = δ(r, p))
on the one hand, and on the other hand, it entails some inaccuracy.

We construct a fuzzy extremum measure exδ f , similar to the trend measure τrδ f : the
value exδ f in the fuzzy scale of the segment [0, 1] expresses the degree of confidence of the
researcher (the measure of their basis) to consider node t the maximum for the function f .
Together, the measures τrδ f and exδ f solve the problem of trends: they finally determine
the trends and extrema of the record f .

The construction of the measure exδ f begins in the same way as the measure τrδ f :
the researcher gives the elementary dynamics f ′δ(t̄) at node t̄ the weight δt(t̄)

∣∣ f ′δ(t̄)
∣∣.

If node t̄ lies to the left of t (t̄ < t), then the weight δt(t̄)
∣∣ f ′δ(t̄)

∣∣ speaks in favor of a maximum
at t for f with f ′δ(t̄) > 0 (climbing an imaginary mountain with a peak at t), and against, all
δt(t̄)

∣∣ f ′δ(t̄)
∣∣ with f ′δ(t̄) < 0. To the right of t (t̄ > t), everything is the other way around: the

weights δt(t̄)
∣∣ f ′δ(t̄)

∣∣ with f ′δ(t̄) < 0 (descent from an imaginary mountain with a top at t),
and against, all δt(t̄)

∣∣ f ′δ(t̄)
∣∣ with f ′δ(t̄) > 0. The measure of the extremum exδ f is considered

the sum of the pros to the total sum of weights:

exδ f =

(
∑t̄<t δt(t̄) f ′δ(t̄) : f ′δ(t̄) > 0

)
−

(
∑t̄>t δt(t̄) f ′δ(t̄) : f ′δ(t̄) < 0

)
∑ δt(t̄)

∣∣ f ′δ(t̄)
∣∣ : t̄ ̸= t

. (6)

By analogy with the partition Trδ f , we introduce and denote by Exδ f the partition by
alternating segments ex+ (ex−) obtained by switching exδ f ≶ 1/2: ex+ ↔ exδ f ≥ 1/2,
ex− ↔ exδ f ≤ 1/2 (Figures 12–16). Ex(t) denotes the segment of this partition containing
node t.

Figure 12. Partition of Exp f on a smooth record on a scale p = 1. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f1. (c) Measure of extremum
ex1 f with red–blue partition Ex1 f . (d) Partition of ex1 f on smoothing f1. (e) Partition of Ex1 f into
records f .
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Figure 13. Partition of Exp f on a smooth record on a scale p = 12. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f12. (c) Measure of extremum
ex12 f with red–blue partition Ex12 f . (d) Partition of ex12 f on smoothing f12. (e) Partition of Ex12 f
into records f .

Figure 14. Partition of Exp f on a smooth record on a scale p = 35. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f35. (c) Measure of extremum
ex35 f with red–blue partition Ex35 f . (d) Partition of ex35 f on smoothing f35. (e) Partition of Ex35 f
into records f .
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Figure 15. Partition of Exp f on a real record on a scale p = 1. Red lines are positive trends, blue lines
are negative ones. (a) Original record f . (b) Regression smoothing f1. (c) Measure of extremum ex1 f
with red–blue partition Ex1 f . (d) Partition of ex1 f on smoothing f1. (e) Partition of Ex1 f into records f .

Figure 16. Partition of Exp f on a real record on a scale p = 12. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f12. (c) Measure of extremum
ex12 f with red–blue partition Ex12 f . (d) Partition of ex12 f on smoothing f12. (e) Partition of Ex12 f
into records f .
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The scheme for displaying the partition Exδ f is exactly the same as for the partition
Trδ f : record f → smoothing fδ → extremum measure exδ f with the partition Exδ f applied
to it→ partition Exδ f on smoothing fδ → partition Exδ f on records f . Taking into account
the notations exδ(p,r) ↔ exp and Exδ(p,r) ↔ Exp, in Figures 12–14, the full scenario Exp f
is shown for a smooth function on three scales p = 1, 12, 35, and in Figures 15 and 16, for a
real recording on a scale p = 1, 12.

Let e+ be the version of the maximum obtained above based on τrδ f . Let us say that
it allows a correction if exδ f (e+) > 1/2, and the correction itself consists in the transition
of e+ to the nearest maximum of the measure exδ f on the segment Ex(e+). Similarly, if e−

is a version of the minimum obtained above on the basis of τrδ f , then it allows a correction
if exδ f (e−) < 1/2, and the correction itself consists in the transition of e− to the nearest
minimum of the measure exδ f on the segment Ex(e−). Extrema based on the measure τrδ f
that do not allow corrections are preserved. This can happen in two situations.

• First, the extremum e is already in the correct position↔ no correction is needed (it is
zero); this happens often, for example, for δ = δ(r, p), and confirms the high efficiency
of the measure τrδ f , as well as solving the problem of trends Trp f on its basis.

• Second, the extremum e is not consistent with the measure exδ f : exδ f (e+) < 1/2 or
exδ f (e−) > 1/2. This means that the measure exδ f at the extremum e shows the
opposite of its essence: the maximum seems to the researcher to lie in the lowlands,
and the minimum on the hills.
Let us look at this in more detail, assuming that the maximum e+ is the extremum.
Let L+

δ f (e+), L−δ f (e+) be the arguments for (against) the maximum of f in e+ to the
left of it; in notation (5) and (6),

L+
δ f (e+) = ∑t≤e+ δe+(t) f ′δ(t) : f ′δ(t) > 0,

L−δ f (e+) = ∑t≤e+ δe+(t)
∣∣ f ′δ(t)

∣∣ : f ′δ(t) < 0.

Similarly, we define arguments R+
δ f (e+), R−δ f (e+) for (against) the maximum of f

in e+ to the right of it:

R+
δ f (e+) = ∑t≥e+ δe+(t) f ′δ(t) : f ′δ(t) > 0,

R−δ f (e+) = ∑t≥e+ δe+(t)
∣∣ f ′δ(t)

∣∣ : f ′δ(t) < 0.

In e+, there is an equilibrium

τrδ f (e+) = 1/2↔ L+
δ f (e+) + R−δ f (e+) = L−δ f (e+) + R+

δ f (e+).

It allows us to conclude that one-sided extremalities are equivalent for e+: e+ is the
left maximum for f ↔ L+

δ f (e+) > L−δ f (e+) ↔ R+
δ f (e+) > R−δ f (e+) ↔ e+—the

maximum on the right for f .
Further, it follows that L+δ f (e+) + R+

δ f (e+) > L−δ f (e+) + R−δ f (e+)↔ exδ f (e+) > 1/2.
Hence, if the maximum e+ does not allow any correction due to an inconsistency with
the measure of extremity (exδ f (e+) < 1/2), then e+ is not a maximum on any side.
It is probably possible to construct an artificial example of this situation; however,
the authors have never encountered this on real recordings. They are calm about the
possible appearance of this kind of extrema, since they consider them unstable and,
with increasing scale p, either disappearing or turning into normal extrema.

• Third, the extremum e can be consistent with the extremum measure exδ f but not
unique on the segment Ex(e). In this case, its trace will necessarily be an extremum
that does not allow any correction for the second reason.

Let us summarize: the extremes obtained after correction are considered final, and
the segments between them are considered the final trends of the f record. Let us retain
their previous designations e, τr, Trδ f , noting that after correction, they are the result
of the joint activity of the measures τrδ f and exδ f (Figure 17).
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The correction of extrema for a smooth recording is shown in Figure 17, and for a real
recording, in Figure 18, according to the scheme: recording f → smoothing fδ → trend mea-
sure τrδ f with preliminary extrema in strokes→ extrema measure exδ f with preliminary
extrema in strokes and their continuous correction→ final solution to the trend problem on
smoothing fδ → preliminary solution to the trend problem for comparison on smoothing
fδ → final solution to the trend problem on record f .

Figure 17. The final solution of trends for a smooth record on a scale p = 12. Red lines are positive
trends, blue lines are negative ones. (a) Original record f . (b) Smoothing f12. (c) Dashed extrema
of a preliminary nature on the trend measure τr12 f . (d) Dashed extrema of a preliminary nature on
the trend measure ex12 f and their solid corrections. (e) Final solution of trends using smoothing f12.
(f) Preliminary solution of trends using smoothing f12. (g) Final solution of trends on record f .
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Figure 18. The final solution of trends for a real record on a scale p = 12. Red lines are positive
trends, blue lines are negative ones. (a) Original record f . (b) Smoothing f12. (c) Dashed extrema
of a preliminary nature on the trend measure τr12 f . (d) Dashed extrema of a preliminary nature on
the trend measure ex12 f and their solid corrections. (e) Final solution of trends using smoothing f12.
(f) Preliminary solution of trends using smoothing f12. (g) Final solution of trends on record f .

5. Various Scales

As mentioned above, there are two dynamic scenarios for tending to node t from the
position of the family δ(p, r): the first is r → 0 for a fixed p∗, the second is p → ∞ for a
fixed r∗. In this article, the authors chose the second path, considering that the behavior of
δ(p, r∗), p→ ∞ for a large radius r∗ gives a more objective dynamic picture of localization
at t, since a large number of nodes t̄ take a nontrivial part in it t̄ : |t̄− t| < r∗ (see Definition 1
and the text after Figure 1).

The stability and adequacy of the solution to the problem of trends Trp f , the conver-
gence of smoothings fp to f as p→ ∞, established in Appendix A.1, give reason to believe
that a simultaneous analysis of partitions Trp f , measures τrp f and exp f for different p’s
can be useful and allow us to gain knowledge about f at a new level.
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The scale parameter p is assumed to be from some discrete uniform segment P = [p1, pM];
p = pi, i = 1, . . . , M. The initial scale p1 = pb is usually equal to zero, and the final scale
pM plays the role of infinity pM = p∞. The choice of P is up to the researcher.

The parametric families (t, p)→ τrp f (t) and (t, p)→ exp f (t), like the wavelet spec-
trum, characterize the trendiness and extremity of f on a two-dimensional grid P× T at
different nodes and scales. Let us use them to determine the hierarchy of extrema on f . The
very ability to see the hierarchy of extremes suggests a different scale of the researcher’s
view of the record. First, one looks at the recording from the greatest height↔ at the largest
scale. Then, it gradually descends lower, making the viewing scale smaller. Along this
path, extrema appear, forming chains. The latter express the migration dependence of the
extremum on the scale and generate a hierarchy of extrema: the earlier the chains appear,
the more significant the corresponding extremum for the record f .

What was said above according to the scheme “record f → different-scale partitioning
Trp f →migration of extrema to Trp f → hierarchy of extrema on record f ′′ is illustrated for
a noisy smooth record in Figure 19, and for a real recording in Figure 20.

Figure 19. Multiscale solution of the trend problem on a synthetic record. (a) Original entry f .
(b) Partition Trp f . Red areas are positive trends, blue areas are negative ones. (c) Migration of
extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of extrema on record
f . Asterisks in different colors correspond to extrema on a scale p = 50.
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Figure 20. Multiscale solution of the trend problem on a real record. (a) Original entry f . (b) Partition
Trp f . Red areas are positive trends, blue areas are negative ones. (c) Migration of extrema to Trp f .
Different colors correspond to different extrema. (d) Hierarchy of extrema on record f . Asterisks in
different colors correspond to extrema on a scale p = 50.

Definition 5. Let Trp+1(e(p)) be a segment in the final solution of trends at level p + 1, which
contains the extremum e(p). Let us call the migration e(p+ 1): e(p)→ e(p+ 1) the same oriented
end of the segment Trp+1(e(p)).

The maximal chains CEx = {e(p) → e(p + 2) → · · · → e(p + k)} are migration
scenarios of the extremum e(p1) on the P× T grid for record f . For any extremum e = e(p),
let CEx(e) denote the chain passing through it. Note that the extremum e = e(p) can be
internal in it: p1 < p < pk.

Definition 6. The weight ω(e) of extremum e is the exponent p1 of the chain CEx(e) containing it.

Next, we take the last level of the scale p∞ and all its extrema for f : Ex f (p∞). Let us
order Ex f (p∞) by weights: ei < ej ↔ ω(ej) < ω(ei); thus, the most fundamental for f is
the extremum with the minimum weight.

The identification of trends using trend and extremum measures is stable, and there-
fore, a multiscale analysis based on these measures is stable and informative. The algorithm
for migrating extrema (constructing their chains) proposed in this work is effective only
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if the quality of their determination is high. The classical approach to trends based on
smoothing, for example, polynomial, and using a standard mathematical understanding
of trends, is unstable and is not suitable for such an algorithm: a continuation of a really
important extremum at one scale level can become a weak (unreasonable) extremum at the
next level, which will lead to a migration (chain) of extrema in the wrong direction. As
confirmation of what was said earlier, Figures 21 and 22 present a different-scale solution
of trends based on a strict mathematical relationship to them for the same records f and on
the same scales p as the solutions Trp f in Figures 19 and 20. Omitting the details of their
comparison, let us pay attention only to the narrow red wedge in Figure 21 slightly to the
right of t = 1000. It is associated with the appearance of unreasonable highs of high rank,
while in fact, there should be only one significant minimum, and it is this one that is shown
in Figure 19d, and the corresponding chain of migrations is shown in yellow in Figure 19c.

Note that replacing p → ∞ by r → 0 and r∗ by p∗ leads to another dynamic imple-
mentation of the above scenario with partitioning Trr f by measures τrr f and exr f .

Figure 21. Multiscale rigorous mathematical solution to the problem of trends on a synthetic record.
(a) Original record f . (b) Partition Trp f . Red areas are positive trends, blue areas are negative ones.
(c) Migration of extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of
extrema on record f . Asterisks in different colors correspond to extrema on a scale p = 50.
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Figure 22. Multiscale rigorous mathematical solution to the problem of trends on a real record.
(a) Original record f . (b) Partition Trp f . Red areas are positive trends, blue areas are negative ones.
(c) Migration of extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of
extrema on record f . Asterisks in different colors correspond to extrema on a scale p = 50.

6. Trends and Fuzzy Logic

The measures τrδ f and exδ f make it possible to use fuzzy logic in a further study
of the record f . The authors plan this in the future, and in this work, we provide two
announcements of our research.

• In addition to the measures τrδ f and exδ f , we take into consideration their fuzzy
negations ¬τrδ f and ¬exδ f . According to (5) and (6), the measures τrδ f and exδ f
are responsible for the increase and maximum of f ; therefore, their negations ¬τrδ f
and ¬exδ f are responsible for the decrease and minimum of f , respectively. Let us
denote their fuzzy disjunction by µδ f :

µδ f (t) = max{τrδ f (t),¬τrδ f (t), exδ f (t),¬exδ f (t)}

We display the manifestation of the measure µδ f on the record f in a color scale
(Figure 23):
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Cyan↔manifestation through an increase: µδ f (t) = τrδ f ;
Violet↔manifestation through a decrease: µδ f (t) = ¬τrδ f ;
Red↔manifestation through a maximum: µδ f (t) = exδ f ;
Blue↔manifestation through minimality: µδ f (t) = ¬exδ f .

Such an encoding of the record by the measure µδ f , together with the final solution
to the problem of trends for f in the form of a partition Trδ f = {τr}, allows us to move
further in understanding the behavior of the record through trends.

Figure 23. Coding a record by measure µδ f . (a) original record f. (b) Its smoothing at p = 1 with
the manifestation of the measure µδ f .

A few first observations: to be specific, the trend is τr = τr+. In the regular case,
the increasing trend τr+ is a sequential alternation of blue, green and red sections
(minimality, growth and maximum). Similarly, a decreasing trend τr− will be an
alternation of red, lilac and blue sections (maximum, decrease and minimum). The
relationships between the parts indicate both the nature of the extrema (trend bound-
aries) and the trend itself: the relatively larger the central part, the more singular
the extrema, and the more pronounced the trend (Figure 24, p = 5, increasing trend
containing node 3000 and decreasing trend containing node 3500).
In addition, red or blue inclusions may appear in the central phase: they are outliers
in the τr+ trend and indicate its stochastic nature (Figure 25, p = 10, increasing trend
containing node 3000).

• Considering Boolean logic to be part of fuzzy logic, we present a second direction
of further research related to it. It concerns the dynamic correlation of records f and g
on T in the form of a fuzzy measure corδ( f , g). It is constructed similarly to the mea-
sures τrδ f and exδ f : the researcher selects a node t and a point of view δt on T,
then each joint elementary dynamics ( f ′δ(t̄), g′δ(t̄)) is assigned weight δt(t̄)| f ′δ(t̄)g′δ(t̄)|.
The argument for the correlation of f and g at t are all equally oriented elementary dy-
namics, sgn f ′δ(t̄)· sgn g′δ(t̄) = 1, and against, oppositely oriented elementary dynam-
ics, sgn f ′δ(t̄)· sgn g′δ(t̄) = −1, with its weights. The correlation measure corδ( f , g)(t)
is considered the ratio of the sums of weights “for” to the total sum of weights

corδ( f , g)(t) =
∑
[
δt(t̄)| f ′δ(t̄)g′δ(t̄)| : sgn f ′δ(t̄)· sgn g′δ(t̄) = 1

]
∑
[
δt(t̄)| f ′δ(t̄)g′δ(t̄)| : t ∈ T

] .
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Fuzzy negation ¬ corδ( f , g) is a measure of anticorrelation (multidirectionality) of
records f and g. The correlation of functions f (Figure 26a) and g (Figure 26b) for
proximity δ(p, r) on three scales p = 1, 5, 10 is shown in Figures 27–29: the areas where
corδ(p,r)( f , g) > 0.5 (<0.5) are shown on the regression smoothings fp and gp in red
and blue, respectively.

Figure 24. Coding a record by measure µδ f : (a) original record f; (b) its smoothing at p = 5 with
the manifestation of the measure µδ f .

Figure 25. Coding a record by measure µδ f : (a) original record f; (b) its smoothing at p = 10 with
the manifestation of the measure µδ f .
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Figure 26. (a) Record f . (b) Record g.

Figure 27. Smoothing functions f and g at p = 1 with selected areas’ correlations (red is where
functions correlate). (a) f1. (b) g1.
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Figure 28. Smoothing functions f and g at p = 5 with selected areas’ correlations (red is where
functions correlate). (a) f5. (b) g5.

Figure 29. Smoothing functions f and g at p = 10 with selected areas’ correlations (red is where
functions correlate). (a) f10. (b) g10.

7. Conclusions

In classical mathematical analysis, the concept of locality is based on a passage to the
limit and thus has an infinitesimal character. For this reason, solving the problem of finding
trends for piecewise smooth functions is reduced to determining segments of constant sign
of the derivative.
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In a discrete case, within the framework of DMA, a comparative, fuzzy, multiscale
perception of locality is natural and important. It is this perception of locality that is
important for analyzing discrete data and understanding the dynamics of the processes
that these data express.

Solving the problem of determining trends in discrete time series provides only a pre-
liminary fragmentation of the process. Without identifying the relationship between trends,
a deep understanding of the dynamics of the process, which is obtained by constructing a
hierarchy of trends and extremes, is impossible.

The theoretical justification of the regression approach to differentiation presented in
the work allows, firstly, to give an answer to the question: “What is discrete differentiation”,
and secondly, outlines a path for solving the problem of trends at different scales within
the framework of the classical approach. It consists in transferring to the continuous case
the discrete solution of the trend problem proposed in this work based on measures of
trend and extremum by replacing the sum in constructions (5) and (6) with an integral. The
efficiency of the discrete solution allows us to hope for success in the continuous case.

About future plans for our research announced in Section 6, we add the following

• A comparative analysis of the solution to the trend problem Trp f based on the scale
parameter p at a fixed viewing radius r∗ with the solution to the trend problem Trr f
based on the viewing radius r at a fixed scale parameter p∗.

• The trend measures τrp f and τrp f̄ are very convenient for comparing records f and f̄
on scales p and p̄: such a comparison cor(p,p̄)( f , f̄ ) can be any functional distance
between fuzzy measures τrp f and τrp f̄ on the general domain of their definition T.
The fuzzy weight σ(p, p̄) of the comparison depends on the researcher. The general
conclusion for the set

{
f , f̄ , σ(p, p̄), p ∈ P, p̄ ∈ P̄

}
will give a final comparison of a new

type cor( f , f̄ ) between records f and f̄ , which is a measure of similarity that can serve
as the basis for clustering on records.

• The last direction of further research by the authors, similar to the study of wavelet
spectra, is related to the migration of extrema [18,32,33]. It involves two stages:
the construction of chains of migration of extrema and their subsequent multifractal
analysis (Gibbs sums, scaling exponent, Hölder index). The stage of constructing
chains of migration of extremes is described in the proposed article.

In conclusion, we note the following. Regression motives in the analysis of dis-
crete series are present, in particular, in the form of F-transformations (more precisely,
f 1-transformations for differentiating a series). Following Zadeh’s principle of incom-
patibility, they are focused on data analysis for the purpose of decision making. Thus,
F-transformations during localization do not deal with the entire family of proximity mea-
sures {δt, t ∈ T} but only with a certain sample

{
δtk , tk ∈ T, k = 1, . . . , K

}
, where k≪ |T|

to effectively simplify calculations [34].
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Appendix A

Appendix A.1

For the proximity measure δ on T and its nodes ti, tj; i, j = 1, . . . , N, by aij = aij(δ),

we denote the fraction δti (tj)
(

∑N
j=1 δti (tj)

)−1
. For each i, the set

{
aij|Nj=1

}
is a probability

distribution on T: ∑N
j=1 aij = 1.

Let us denote by Mi(x) the functional of the mathematical expectation relative to this
distribution on F(T): Mi(x) = ∑N

j=1 aijxj, x ∈ F(T) and use it to express the regression
value fδ(ti):

fδ(ti) = Mi( f )− Mi(t)− ti
Mi(t2)−Mi(t)2 (Mi(t f )−Mi(t)Mi( f )), (A1)

where t f is the series (t1 f1, . . . , tN fN), and t2 is the series
(
t2
1, . . . , t2

N
)
.

We are interested in the convergence of fδp(ti) → f (ti) as p → ∞. To achieve this,
we require the measure δ to satisfy two conditions: symmetry δti (tj) = δtj(ti) and nontrivial
strict monotonicity(∣∣tj − ti

∣∣ < ∣∣∣t j̄ − ti

∣∣∣) ∧ (
δti (tj)δti (t j̄) ̸= 0

)
→ δti (t j̄) < δti (tj).

Let us put aij(δ
p) = aij(p). Then, lim

p→∞
aii(p) = 1, and for i ̸= j, lim

p→∞
aij(p) = 0. Let us

consider node ti internal in T: i > 1; then, due to the conditions on δ, in the distribution{
aij(p)|Nj=1

}
, for any p ≥ 0, there are three main actors: aii and ai i+1 = ai+1 i, which we

denote by ai(p).
Let us reveal the uncertainty of the relation (Mi(t)− ti)(Mi(t2)−Mi(t)2)−1 in (A1)

by expanding the numerator and denominator modulo ai(p):

1− aii = 2ai + o(ai),

Mi(t) = aiiti + ai(ti−1 + ti+1) + o(ai) = ti(aii + 2ai) + o(ai),

Mi(t)2 = t2
i (aii + 2ai)

2 + o(ai) = t2
i (a2

ii + 4aiiai + 4a2
i ) + o(ai),

Mi(t2) = aiit2
i + ai(t2

i−1 + t2
i+1) + o(ai) = t2

i + ai(2t2
i + 2h2) + o(ai).

Numerator:

Mi(t)− ti = ti(aii + 2ai)− ti + o(ai) =

= ti(aii − 1) + 2aiti + o(ai) = −2aiti + 2aiti + o(ai) = o(ai).

Denominator:

Mi(t2)−Mi(t)2 = t2
i + ai(2t2

i + 2h2)− t2
i (a2

ii + 4aiiai + 4a2
i ) + o(ai) =

= aii(1− aii)t2
i − 4aiiait2

i + 2ait2
i − 4a2

i t2
i + 2h2ai + o(ai) =

= 2ai(1− aii)t2
i − 4aiiait2

i + 2h2ai + o(ai) =

= 4aiiait2
i − 4aiiait2

i + 2h2ai + o(ai) = 2h2ai + o(ai).

Thus, as p → ∞, the fraction (Mi(t)− ti)(Mi(t2)−Mi(t)2)−1 tends to zero, and the
regression values fδp(ti) tends to f (ti).

Appendix A.2

The regression approach to derivatives continues into higher dimensions.
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Let f (x) be a function on the segment [−1, 1] having on it continuous derivatives f i(x),
i = 1, . . . , n + 1 up to and including order n + 1. Under these assumptions, the McLaren
decomposition of nth order takes place for f (x):

f (x) = f (0) +
f ′(0)

1!
x + · · ·+ f (n)(0)

n!
xn + rn(x), (A2)

where rn(x) is the remainder term in Lagrange form

rn(x) =
f (n+1)(θ(x))
(n + 1)!

xn+1, θ(x) ∈ [0, x].

Let us denote by Tn f (x) the Taylor polynomial for f (x) [31,35–38], so that

f (x) = Tn f (x) + rn(x), rn(x) = c(x)x(n+1)

and |c(x)| < M evenly on [−1, 1]
. (A3)

We fix ∆ ∈ (0, 1). Let us denote by prn f∆ the projection of the restriction f |[−∆,∆] onto
the (n + 1)th subspace Pn[−∆, ∆] of polynomials of degree ≤ n in the space L2[−∆, ∆]:
prn f∆ = ∑n

j=0 bj( f , ∆)xj is nth order quadratic regression of f on [−∆, ∆].

Statement A1. lim
∆→0

bj( f , ∆) = f (j)(0)
j! , j = 0, . . . , n.

The proof follows from the tendency to zero as ∆ → 0 of the regression prn(rn)∆ ↔
a∗0(∆) + a∗1(∆)x + · · ·+ a∗n(∆)xn.

For simplicity of presentation, let us temporarily omit the dependence on ∆ in the
coefficients of the polynomials, setting ai = ai(∆). The regression functional P(a0, . . . , an)
is the distance from rn(x) to the polynomial P(x) = a0 + a1x + · · · + anxn in the space
L2[−∆, ∆]:

P(a0, . . . , an) =
∫ ∆

−∆
(a0 + a1x + · · ·+ anxn − rn(x))2dx

and the set a∗0 , . . . , a∗n gives its minimum.
The following equations arise

∂P
∂ai

= 0↔
∫ ∆
−∆ xi(a0 + a1x + · · ·+ anxn − rn(x)) = 0↔

∑n
j=0

(∫ ∆
−∆ xi+jdx

)
a∗j =

∫ ∆
−∆ xirn(x)dx; i = 0, . . . , n

(A4)

and the integral

∫ ∆

−∆
xi+jdx =

{ 2
i+j+1 ∆i+j+1

0
, if i + j

even

odd
.

Therefore, the matrix M = M(∆) of system (A4) has the form

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2∆ 0 2
3 ∆3 0 2

5 ∆5 . . . . . . . . .

0 2
3 ∆3 0 2

5 ∆5 . . . . . . . . . . . .
2
3 ∆3 0 2

5 ∆5 . . . . . . . . . . . . . . .

0 2
5 ∆5 . . . . . . . . . . . . . . . . . .

2
5 ∆5 . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (A5)
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A nontrivial contribution to the determinant of det M is made only by even strategies
σ = (j, σ(j)), going along M from left to right: strategy σ is even↔ the sum j + σ(j) is
even in j.

If σ is an even strategy, then the product Π(σ) of its corresponding matrix elements
satisfies the equality

Π(σ) = Πn
j=0

2∆j+σ(j)+1

j + σ(j) + 1
= 2n+1K(σ)∆(n+1)2

,

where K(σ) = Πn
j=0(j + σ(j) + 1)−1.

Because of
n

∑
j=0

j =
n

∑
j=0

σ(j) =
n(n + 1)

2
,

then

n

∑
j=0

(j + σ(j) + 1) =
n

∑
j=0

j +
n

∑
j=0

σ(j) +
n

∑
j=0

1 =
2n(n + 1)

2
+ n + 1 = (n + 1)2.

Thus,
det M = det M(∆) =

(
∑(−1)sgn σK(σ)

)
2n+1∆(n+1)2

, (A6)

where σ are even strategies and sgn σ is the signature of the permutation σ.
The alternative sum K in (A6) is necessarily nontrivial. This is a consequence of

Euclidean geometry and linear algebra: the projection rn(x) in the space L2[−∆, ∆] onto
any of its subspaces always exists and is unique, which, in turn, is equivalent to the
nontriviality of det M(∆). Thus, the order of smallness of the determinant det M(∆) as
∆→ 0 is equal to (n + 1)2.

The next step is to analyze the determinants det Mj∗ of the auxiliary matrices Mj∗ of
system (A4), obtained from the main M by replacing the j∗th column with a column of
free terms:

Mj∗ = Mj∗(∆) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2∆ 0 2
3 ∆3 0 2

5 ∆5 . . .
∫ ∆
−∆ rn(x)dx . . .

0 2
3 ∆3 0 2

5 ∆5 . . . . . .
∫ ∆
−∆ xrn(x)dx . . .

2
3 ∆3 0 2

5 ∆5 . . . . . . . . .
∫ ∆
−∆ x2rn(x)dx . . .

0 2
5 ∆5 . . . . . . . . . . . .

∫ ∆
−∆ x3rn(x)dx . . .

2
5 ∆5 . . . . . . . . . . . . . . .

∫ ∆
−∆ x4rn(x)dx . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

A nontrivial contribution to det Mj∗ is also made only by even strategies: such σ must
necessarily be even for j ̸= j∗, but always ∑n

j=0(j + σ(j)) = n(n + 1), and therefore, the
sum j∗ + σ(j∗) is also even.

Let σ be any even strategy; then, the product Π(σ, j∗) associated with it in det Mj∗ is
equal to

Π(σ, j∗) = 2n
(

Πj ̸=j∗
1

j + σ(j) + 1

)
∆(n+1)2−(j∗+σ(j∗)+1)

∫ ∆

−∆
xσ(j∗)rn(x)dx.

According to assumption (A3) on f ,∣∣∣∣∫ ∆

−∆
xσ(j∗)rn(x)dx

∣∣∣∣ ≤ ∫ ∆

−∆
|x|σ(j∗)|rn(x)|dx ≤ M

∫ ∆

−∆
|x|σ(j∗)+n+1dx ≤ M̃∆σ(j∗)+n+2;
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therefore, the product Π(σ, j∗) is o
(

∆(n+1)2
)

, since n + 1− j∗ > 0:

|Π(σ, j∗)| ≤
≈
M∆(n+1)2−(j∗+σ(j∗)+1)∆σ(j∗)+n+2 =

≈
M∆(n+1)2n+1−j∗ .

The determinant det Mj = det Mj(∆) is an alternative sum of the products Π(σ, j∗) and

therefore is o
(

∆(n+1)2
)

and also relative to det M(∆). The equality a∗j = a∗j (∆) = det Mj(∆)

(det M)−1 completes the proof.
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