
Citation: Belkacem, N.-E.; Chiter, L.;

Louaked, M. A Novel Approach to

Enhance DIRECT-Type Algorithms for

Hyper-Rectangle Identification.

Mathematics 2024, 12, 283. https://

doi.org/10.3390/math12020283

Academic Editor: Ioannis G. Tsoulos

Received: 27 November 2023

Revised: 11 January 2024

Accepted: 12 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Approach to Enhance DIRECT-Type Algorithms
for Hyper-Rectangle Identification
Nazih-Eddine Belkacem 1, Lakhdar Chiter 1,2,* and Mohammed Louaked 3

1 Department of Mathematics, Faculty of Sciences, Ferhat-Abbas University of Sétif 1, Sétif 19000, Algeria;
naziheddine.belkacem@univ-setif.dz

2 Fundamental and Numerical Mathematics Laboratory (LMFN), Ferhat-Abbas University, Sétif 19000, Algeria
3 Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, Campus II, Boulevard Maréchal Juin,

B.P. 5186, 14032 Caen, France; mohammed.louaked@unicaen.fr
* Correspondence: lchiter@univ-setif.dz

Abstract: This paper introduces novel enhancements to the most recent versions of DIRECT-type
algorithms, especially when dealing with solutions located at the hyper-rectangle vertices. The
BIRECT algorithm encounters difficulties in efficiently sampling points at the boundaries of the
feasible region, leading to potential slowdowns in convergence. This issue is particularly pronounced
when the optimal solution resides near the boundary. Our research explores diverse approaches,
with a primary focus on incorporating a grouping strategy for hyper-rectangles of similar sizes.
This categorization into different classes, constrained by a predefined threshold, aims to enhance
computational efficiency, particularly involving a substantial number of hyper-rectangles of varying
sizes. To further improve the new algorithm’s efficiency, we implemented a mechanism to prevent
oversampling and mitigate redundancy in sampling at shared vertices within descendant sub-regions.
Comparisons with several DIRECT-type algorithms highlight the promising nature of the proposed
algorithms as a global optimization solution. Statistical analyses, including Friedman and Wilcoxon
tests, demonstrated the effectiveness of the improvements introduced in this new algorithm.

Keywords: global optimization; derivative-free global optimization; diagonal partitioning scheme;
DIRECT-type algorithms; potentially optimal hyper-rectangles

MSC: 90C56; 90C26

1. Introduction

In scientific and engineering domains, optimization problems often involve objective
functions that can only be obtained through ‘black-box’ methods or simulations, frequently
lacking explicit derivative information. In cases of black-box optimization, the neces-
sity to optimize various and increasingly complex problems in practice, where analytic
information about the objective function is unavailable, has led to the development of
derivative-free global optimization methods (DFGO) [1–6]. The absence of derivative infor-
mation necessitates the use of DFGO methods, specifically designed to optimize functions
when derivatives are unavailable or unreliable. These techniques explore the function’s
behavior by sampling it at various points in the input space.

This paper addresses a global optimization problem

min
x∈D

f (x), (1)

that only requires the availability of objective function values and no derivative information;
therefore, numerical methods using gradient information cannot be used to solve prob-
lem (1). The objective function is assumed to be Lipschitz-continuous with some fixed but

Mathematics 2024, 12, 283. https://doi.org/10.3390/math12020283 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020283
https://doi.org/10.3390/math12020283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9288-053X
https://orcid.org/0000-0003-4708-0960
https://doi.org/10.3390/math12020283
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020283?type=check_update&version=3

Mathematics 2024, 12, 283 2 of 24

unknown Lipschitz constant, and the feasible domain is an n-dimensional hyper-rectangle
D = [l, u] = {x ∈ Rn : lj ≤ xj ≤ uj, j = 1, . . . , n}.

Global optimization approaches can be categorized into two main types: determinis-
tic [7–11] and stochastic methods [12,13]. These methods address optimization problem (1)
using various domain partition schemes, often involving hyper-rectangles [8,13]. While
many DIRECT-type techniques employ hyper-rectangular partitions, other alternative ap-
proaches use simplicial partitioning [14,15] (such as DISIMPL-C [16] and DISIMPL-V [17]) or
diagonal sampling schemes (see [18,19], such as adaptive diagonal curves (ADC) [20]).

DIRECT-type algorithms, such as the DIRECT (divide rectangles) algorithm [21,22] are
the most widely used partitioning-based algorithms for global optimization problems.
One of the challenges faced by these algorithms is the selection of potentially optimal
hyper-rectangles (POHs: the most promising regions), which can lead to inefficiencies
and increased computational costs. In this paper, we provide a comprehensive review of
techniques and strategies aimed at reducing the set of selected potential optimal hyper-
rectangles in DIRECT-type algorithms. We explore various approaches, including a novel
grouping strategy that simplifies the identification of hyper-rectangles in the selection
procedure. This strategy consists of rounding or approximating the measurements (sizes)
of hyper-rectangles, which are extremely small in size, by grouping them together into
classes. This simplification can help in various computational or analytical tasks, making
the problem more manageable, without significantly compromising the accuracy of the
analysis or optimization process.

Our review highlights the importance of reducing the number of function evaluations,
while maintaining the algorithm’s convergence properties. Recent papers [23,24] have
provided a clear and a comprehensive overview of techniques aimed at reducing the
set of potentially optimal rectangles in DIRECT-type algorithms. They have significantly
contributed to the field of derivative-free global optimization and serve as a valuable
resource for researchers and practitioners seeking to enhance the efficiency and effectiveness
of such algorithms. Various suggested methods are summarized in [4,23–26].

In the context of optimization methods in engineering mathematics, the size of a
hyper-rectangle often incorporates constraints imposed by the engineering problem. These
constraints ensure that the optimization process adheres to real-world limitations, such
as physical boundaries, safety margins, or resource constraints. For example, in struc-
tural engineering, the size of a hyper-rectangle could represent the permissible range for
material properties, dimensions, or loads. In engineering optimization, reducing the size
of a hyper-rectangle can signify the imposition of stricter constraints. This ensures that
the optimized solution adheres to more rigorous requirements, such as safety limits or
design specifications.

We also use an additional assumption to improve this version, thus allowing the
evaluation of the objective function only once at each vertex of each hyper-rectangle. The
objective function values at vertices can be stored in a special vertex database, and then the
result is directly retrieved from this database when required. In addition, an update to the
modified optimization domain is applied for some test problems, as used in the previous
version [27].

In reference to [6,25], the DIRECT algorithm is subject to various strengths and weak-
nesses. The weaknesses are briefly summarized below. For an in-depth presentation and
analysis, please refer to [6,25].

First, DIRECT exhibits a relatively low convergence rate when refining solutions. Sec-
ond, the exploration around local minima may potentially delay the identification of the
global minimum. Third, there are instances where it fails to effectively leverage local
trends. Fourth, the algorithm’s performance tends to degrade in higher dimensions. Fifth,
additionally, it demonstrates inflexibility in its center-based sampling and partitioning
scheme, leading to slow convergence to an optimum on the boundary.

Based on the existing literature, a variety of studies have been conducted on the weak-
nesses of DIRECT from various perspectives [6]. However, the following potential research

Mathematics 2024, 12, 283 3 of 24

gaps remain: The original DIRECT algorithm faces challenges when it comes to sampling
points at the edges of the feasible region, which can slow down its convergence, particularly
in cases where the best solution is located at the boundary. This limitation is especially
pronounced in constrained problems. Recent research [24,28,29] has emphasized the impor-
tance of addressing this issue, showing that it is possible to achieve faster convergence by
employing strategies that sample points at the vertices of hyper-rectangles, especially when
solutions are near the boundary. However, an extension, referencing our approach [30],
to handle global optimization problems involving Lipschitz continuous functions subject
to linear constraints addresses the limitations of existing techniques, which mainly focus
on bound constraints and encounter difficulties when faced with infeasible regions [29].
For DIRECT-type algorithms, this poses a significant challenge, as they must partition these
regions to reveal feasible areas, leading to a considerable number of function evaluations
being wasted.

Taking these insights into account, we have integrated one of the latest versions
of the DIRECT-type algorithm into our approach, a new diagonal partitioning and sam-
pling scheme called BIRECTv (bisection of rectangles with vertices) [27]. In the BIRECTv
framework, the objective function is evaluated at specific points within the initial hyper-
rectangle. Instead of evaluating the objective function only at the vertices, as done in most
DIRECT-type algorithms, BIRECTv samples two points along the main diagonal of the initial
hyper-rectangle, located 1/3 and 1 of the way along the diagonal. This adaptation provides
more comprehensive information about the objective function and enhances the explo-
ration of boundary regions, thereby improving the algorithm’s convergence performance
in such scenarios. By employing a strategy that samples two points per hyper-rectangle,
this partitioning technique reduces the likelihood of the algorithm choosing suboptimal
points within a hyper-rectangle containing an optimal solution, (see e.g., [20,24]). This
approach offers a notable advantage over center sampling methods, particularly when the
majority of solution coordinates fall within specified boundaries. Furthermore, to ensure
the reliability and significance of our results, we employed statistical analyses, including
Friedman [31] and Wilcoxon [32] tests, to validate the effectiveness of the improvements
introduced to this algorithm compared to existing optimization solvers for such problems.

A literature review was conducted to identify the research gaps addressed in this
study. The contributions and novelties of this study are summarized as follow:

1. Dedicated Vertex Database Integration: This work introduces a new approach by
incorporating a dedicated vertex database. The purpose of this strategic embedding
is to constrain sampling points within descent sub-regions, effectively mitigating
the risk of oversampling. By implementing this vertex database, the algorithm pro-
vides more efficient computations, improving both the accuracy and speed of the
optimization process.

2. Innovative Grouping Strategy for Hyper-Rectangle Identification: A groundbreaking
grouping strategy is introduced, specifically designed for the efficient identification of
hyper-rectangles in DIRECT-type algorithms. This innovation addresses the challenge
of managing and organizing data points in the search space. By taking advantage
of this advanced clustering strategy, the algorithm optimizes the hyper-rectangle
identification process, resulting in a more rational and powerful exploration of the
solution space.

3. Performance Enhancement in the BIRECTv Algorithm: This paper outlines the sig-
nificant improvements made to the BIRECTv algorithm. These developments have
a positive and noticeable impact on the overall efficiency of the algorithm. By refin-
ing the BIRECTv approach, this research contributes to a more robust and efficient
optimization algorithm, with advances in convergence rates and solution quality.
The refined BIRECTv algorithm illustrates the practical implications of the suggested
contributions in the design of the underlying optimization process.

The remaining sections of this paper are arranged as follows: Section 2 is devoted
to an overview of the existing methods for selecting (POHs) in various DIRECT-type

Mathematics 2024, 12, 283 4 of 24

approaches. In Section 3.1, a review of the original BIRECT algorithm is provided, while
in Section 3.2 a brief description of the new sampling and partitioning scheme called the
BIRECTv algorithm is given. In Section 3.3, we incorporate a novel scheme for grouping
and selecting potential optimal hyper-rectangles in BIRECT-type algorithms. In Section 4,
a numerical investigation and discussion of the results are provided. The algorithmic
performance and evaluation metrics are presented in Section 4.3. Additionally, several main
statistical methods and techniques, such as Friedman and Wilcoxon tests, are introduced in
Section 4.4. In Section 5, the paper’s findings are summarized, and potential directions for
future prospects are outlined.

2. Overview of Existing Methods for Selecting (POHs) in Various
DIRECT-Type Approaches

This section provides a short discussion on the existing methods used for the selection
of POHs in various DIRECT-type approaches.

The field of optimization algorithms has undergone significant advancements, as
shown by recent research contributions. The BIRECTv algorithm represents a significant
evolution of the BIRECT algorithm, with a particular focus on improving its ability to iden-
tify hyper-rectangles. Meanwhile, a new DIRECT-type algorithm specifically designed for
hyper-rectangle identification was presented in another research paper, highlighting the
importance of rectangles in identifying potentially optimal hyper-rectangles for optimiza-
tion tasks [33]. In addition, a separate article discussed the improvements made to the
modified version of the BIRECT algorithm, called BIRECTv, and focused on hyper-rectangle
identification improvements [27]. Another study provided a comprehensive exploration
of hyper-rectangle splitting in the DIRECT algorithm, revealing an improved strategy for
identifying potentially optimal hyper-rectangles, with the full text offering detailed insights
into the algorithmic enhancements [25]. Further contributing to DIRECT optimization, a
study proposed a new strategy for selecting potentially optimal hyper-rectangles, thereby
enriching our understanding of optimization algorithms [23].Finally, an experimental study
highlighted the effectiveness of the well-known derivative-free global search algorithm
DIRECT, giving an overview of its performance and its practical benefits in solving opti-
mization problems [34]. Together, these works represent a variety of advances, refining and
extending the capabilities of optimization algorithms for hyper-rectangle identification and
global search tasks.

Various strategies have been developed to enhance this selection process, resulting
in different versions of the algorithm. In the DIRECT-l variant [25,35], the size of a hyper-
rectangle is measured using the length of its longest side, which corresponds to the infinity
norm. This approach allows DIRECT-l to group more hyper-rectangles with the same
measure, resulting in fewer distinct measures. Moreover, in DIRECT-l, only one hyper-
rectangle from each group is selected, even if there are multiple POHs in the same group.
This reduces the number of divisions within a group. DIRECT-l has been found to perform
well for lower-dimensional problems that do not have an excessive number of local and
global minima.

The aggressive version of DIRECT [36] takes a different approach by selecting and
dividing a hyper-rectangle of every measure in each iteration. While this strategy requires
more function evaluations compared to other versions of DIRECT, it may be advantageous
for solving more complex problems. The PLOR algorithm [37] (Pareto–Lipschitzian opti-
mization with reduced-set), simplifies the set of POHs to just two: the maximal and the
minimal Lipschitz constants. This reduction allows the PLOR approach to be independent
of user-defined parameters. It strikes a balance between local and global search during the
optimization process by considering only these two extreme cases.

In two-phase globally and locally biased algorithms, the selection procedure during
one of the phases operates similarly to the original DIRECT algorithm, considering all hyper-
rectangles from the current partition. However, in the second phase, the selection of POHs
is constrained based on their measures. Globally-biased versions [17,20] focus on larger

Mathematics 2024, 12, 283 5 of 24

subregions, addressing the algorithm’s first weakness, while locally-biased versions [35,38]
concentrate on smaller subregions, addressing the second weakness of DIRECT-type algo-
rithms. These adaptations and strategies aim to improve the efficiency and effectiveness of
DIRECT-type algorithms in addressing optimization challenges, particularly in scenarios
with complex landscapes and varying dimensions [3,29].

The authors in [23] introduced an improved scheme by extending the set of POHs
in a new DIRECT-type algorithm called DIRECT-GL algorithm. These enhanced criteria
are designed to reduce the computational cost of the algorithm by focusing on the most
promising regions of the search space. By implementing improved selection criterion, the
algorithm becomes more efficient in identifying regions of interest within the optimization
landscape. This leads to a reduction in the number of hyper-rectangles that need to be
explored, saving computational resources and time. The enhancements introduced in this
work are not limited to a specific type of problem or application. They can be applied to a
wide range of optimization scenarios where DIRECT-type algorithms are utilized [24,39,40].

3. From BIRECT to BIRECTv(impr.)

This section provides an overview of the original BIRECT algorithm and its modifications.

3.1. The Original BIRECT

The BIRECT (bisection of rectangles) algorithm, developed in [41], employs a diagonal
space-partitioning approach and involves two primary procedures, namely sampling on
diagonals and bisection of hyper-rectangles.

In the initialization step, the algorithm begins by evaluating the objective func-
tion at two initial points, “lower” l = (l1, . . . , ln) = (1/3, . . . , 1/3)T and “upper”
u = (u1, . . . , un) = (2/3, . . . , 2/3)T , positioned along the main diagonal of the normalized
domain, considered as the first unit hyper-cube, D̄ = D̄1

0 = [l̄, ū] = {x̄ ∈ Rn : 0 ≤ l̄j ≤ x̄ ≤
ūj ≤ 1, j = 1, . . . , n}. The hyper-cube representing the search space is then divided into a
set of smaller hyper-rectangles obeying a specific sampling and partitioning scheme using
the following criteria (see Algorithm 1).

3.1.1. Selection Criterion

• At each iteration (kth iteration), starting from the current partition

Pk = {D̄i
k : i ∈ Ik},

where Ik is the index set identifying the current partition, a new partition Pk+1 is
created by bisecting a set of POHs from the previous partition.

• The identification of a potentially optimal hyper-rectangle (POH) is based on lower
bound estimates of the objective function over each hyper-rectangle, with a fixed rate
of change L̃ > 0 (analogous to a Lipschitz constant).

• A hyper-rectangle D̄j
k, j ∈ Ik is considered potentially optimal if specific inequalities

involving ε (a positive constant) and the current best-known function value fmin
are satisfied.

min
{

f (lj), f (uj)
}
− L̃δk

j ≤ min
{

f (li), f (ui)
}
− L̃δk

i , ∀i ∈ Ik (2)

min
{

f (lj), f (uj)
}
− L̃δk

j ≤ fmin − ε| fmin|, (3)

where the measure (distance, size) of the hyper-rectangle is given by

δ̄i
k =

2
3
∥b̄i − āi∥. (4)

The ∥.∥ on the right-hand side of Equation (4), represents the standard Euclidean
2-norm. The measure of a hyper-rectangle is determined using the Euclidean distance from

Mathematics 2024, 12, 283 6 of 24

its sampled point along the main diagonal to the farthest vertex, or equivalently, using
two-thirds of the length of a diagonal. A hyper-rectangle D̄j

k is potentially optimal if the
lower bound for f computed by the left-hand side of (2) is optimal for some fixed rate of
change L̃ among the hyper-rectangles of the current partition Pk. The second criterion (3)
requires that the lower bound of the hyper-rectangle must surpass the current best solution
(fmin). To be precise, it should be less than or equal to fmin − ε| fmin|. This condition serves
as a threshold to prevent the algorithm from expending function evaluations on hyper-
rectangles with extremely small bounds that are unlikely to yield significant improvements.
The practical choice of ε can vary, in the study [21], favorable outcomes were obtained with
ε values ranging from 10−2 to 10−7.

Algorithm 1 Main steps of the BIRECT algorithm

1: Input : Objective function: f , search-space: D, tolerance: ϵpe, the maximal number of
function evaluations: Mmax, and the maximal number of iterations: Kmax;

2: Output : The best objective function value: fmin, global minimizer: xmin, and algorith-
mic performance measures: m, k and pe (if needed);

3: Normalize the search space D to the unit hyper-cube D̄;
4: Initialize l1 = (1/3, . . . , 1/3) and u1 = (2/3, . . . , 2/3), evaluate f (l1) and f (u1), and

set fmin = min
{

f (l1), f (u1)
}

, xmin = argmin
x∈{li ,ui}

f (x), m = 2, k = 1, Ik = {1};

5: while pe > εpe and m < Mmax and k < Kmax do
6: Identify the index set Pk ⊆ Ik of potentially optimal hyper-rectangles (POHs);
7: Set Ik = Ik\{Pk};
8: for i ∈ Pk do
9: Select the branching variable br (coordinate index) Equation (5);

10: Divide D̄i into a two new hyper-rectangles D̄m+1 and D̄m+2. Update δm+1 and
δm+2;

11: Create the new sampling points lm+1 and um+2;
12: Update the partition set: Pk = Pk\D̄j

k ∪ D̄m+1
k ∪ D̄m+2

k ;
13: if f m+1

min ≤ fmin or f m+1
min ≤ fmin then

14: Update fmin and xmin;
15: end if
16: Update performance measures: k, m and pe;
17: end for
18: end while
19: Return : fmin, xmin and algorithmic performance measures: m, k and pe.

3.1.2. Division and Sampling Criterion

• After the initial partitioning, BIRECT proceeds to future iterations by partitioning
POHs and evaluating the objective function f (x) at new sampling points.

• New sampling points are generated by adding and subtracting a distance equal to half
the side length of the branching coordinate from the previous points. This approach
allows for the reuse of old sampled points in descendant subregions.

• An important aspect of the algorithm is how the selected hyper-rectangles are divided.
For each POH, the set of maximum coordinates (edges) is computed, and the hyper-
rectangle is bisected along the coordinate (branching variable xbr, 1 ≤ br ≤ n) with
the largest side length (di

br). Starting from the coordinates associated with the smallest
index j (in case multiple coordinates are eligible):

br = min

{
arg max

1≤j≤n
=

{
di

j =
∣∣∣bi

j − ai
j

∣∣∣}}, (5)

and by using the exact bisection [42]. The division is limited to only being performed
along the longest coordinate of the hyper-rectangle. This constraint guarantees that, during
each iteration, the hyper-rectangles will contract along one dimension. The partitioning

Mathematics 2024, 12, 283 7 of 24

process continues until a predefined number of function evaluations has been performed
or a stopping criterion is satisfied. The algorithm keeps track of the best (smallest) objective
function value f (x̄) found over all sampled points in the final partition. The corresponding
generated point x̄ at which this value was achieved, provides an approximate solution
to the optimization problem. The main steps of the BIRECT algorithm are outlined in
Algorithm 1 (see [41] for a detailed pseudo-code).

The BIRECT algorithm is a robust optimization technique that efficiently explores
the search space, combines global and local search strategies, and strives to find the
optimal or near-optimal solution for multidimensional optimization problems. For a more
comprehensive understanding, additional details can be found in the original paper [41].

3.2. Description of the BIRECTv Algorithm

In this subsection, we revert to one of the most recent versions of DIRECT-type algo-
rithms (called BIRECTv) developed in [27]. One effective strategy is to sample points at
the vertices of the hyper-rectangles. This approach ensures that points near the bound-
aries are explored, increasing the chance of finding solutions located there. Sampling at
vertices can significantly improve convergence when the optimal solution is at or near the
boundary, see [29]. A description of two different partitioning schemes used in DIRECT-type
algorithms is shown in Figure 1.

Mathematics 2024, 1, 0 7 of 24

function value f (x̄) found over all sampled points in the final partition. The corresponding
generated point x̄ at which this value was achieved, provides an approximate solution
to the optimization problem. The main steps of the BIRECT algorithm are outlined in
Algorithm 1 (see [41] for a detailed pseudo-code).

The BIRECT algorithm is a robust optimization technique that efficiently explores
the search space, combines global and local search strategies, and strives to find the
optimal or near-optimal solution for multidimensional optimization problems. For a more
comprehensive understanding, additional details can be found in the original paper [41].

3.2. Description of the BIRECTv Algorithm

In this subsection, we revert to one of the most recent versions of DIRECT-type
algorithms (called BIRECTv) developed in [27]. One effective strategy is to sample points at
the vertices of the hyper-rectangles. This approach ensures that points near the boundaries
are explored, increasing the chance of finding solutions located there. Sampling at vertices
can significantly improve convergence when the optimal solution is at or near the boundary,
see [29]. A description of two different partitioning schemes used in DIRECT-type algorithms
is shown in Figure 1.

Figure 1. Description of the initialization and the first two iterations used in two different sampling
and partitioning schemes (BIRECT: upper figure), and (BIRECTv: lower figure) on a two-dimensional
example.

The original DIRECT algorithm primarily focuses on sampling within the interior of the
feasible region, which means it may miss exploring points near the boundary. Therefore,
it may require a large number of iterations to converge to the optimal solution. This slow
convergence is because it relies on subdividing hyper-rectangles within the interior, and it
may take many iterations before a hyper-rectangle boundary coincides with the solution.
The studies conducted in [3,43] indeed highlighted the significant impact of the limitation
in convergence when the optimal solution lies at the boundary of the feasible region. This
issue is particularly prevalent in constrained optimization problems, where solutions often
lie at the boundary due to the constraints imposed on the variables.

However, a challenge arises when the newly created sampling points coincide with
previously evaluated points at shared vertices. This leads to additional evaluations of the

Figure 1. Description of the initialization and the first two iterations used in two different sam-
pling and partitioning schemes (BIRECT: upper figure), and (BIRECTv: lower figure) on a two-
dimensional example.

The original DIRECT algorithm primarily focuses on sampling within the interior of the
feasible region, which means it may miss exploring points near the boundary. Therefore,
it may require a large number of iterations to converge to the optimal solution. This slow
convergence is because it relies on subdividing hyper-rectangles within the interior, and it
may take many iterations before a hyper-rectangle boundary coincides with the solution.
The studies conducted in [3,43] indeed highlighted the significant impact of the limitation
in convergence when the optimal solution lies at the boundary of the feasible region. This
issue is particularly prevalent in constrained optimization problems, where solutions often
lie at the boundary due to the constraints imposed on the variables.

However, a challenge arises when the newly created sampling points coincide with
previously evaluated points at shared vertices. This leads to additional evaluations of the

Mathematics 2024, 12, 283 8 of 24

objective function, increasing the number of function evaluations per iteration. To address
this issue, the paper suggested modifying the original optimization domain to obtain a
good approximation of the global solution.

This approach was presented as an alternative to locate solutions that are situated near
the boundary. The results of the experiments demonstrated that the proposed modification
to the optimization domain positively impacted the performance of the BIRECTv algorithm.
It outperformed the original BIRECT algorithm and the two popular DIRECT-type algorithms
on the test problems. Additionally, the BIRECTv algorithm showed particular efficacy in
solving high-dimensional problems.

3.3. Integration Scheme for Identification of Potentially Optimal Hyper-Rectangles in
DIRECT-Based Frameworks

In this section, we introduce an innovative grouping technique that streamlines the
hyper-rectangle identification process during selection. This approach involves the round-
ing or approximation of measurements (sizes) for hyper-rectangles of exceedingly small
dimensions. These are then organized into classes, yielding a simplification that enhances
the manageability of computational and analytical tasks. Importantly, this simplification
does not substantially impact the precision of the analysis or optimization process. The
selection of the most promising hyper-rectangles in DIRECT-type algorithms is a crucial
aspect of optimization.

Let the partition of D̄i
k at iteration k be defined as

Pk = {D̄i
k : i ∈ Ik},

Let Ik be the set of indices identifying the subsets defining the current partition Pk. Let δ̄i
k

be a measure of D̄i
k defined Equation (4)

Let Ii
k ⊆ Ik represent a subset of indices that correspond to elements of Pk, with mea-

sure δi
k having almost the same measure as δ̄i

k within a certain tolerance (threshold = ∆),
ranging from 10−7 to 10−2, i.e., such that ∆ =

{
10−7, 10−6, 10−5, 10−4, 10−3, 10−2}.

diff =
∣∣∣δ̄i

k − δi
k

∣∣∣ ≤ ∆, i ∈ Ii
k. (6)

In Equation (6), the diff on the left-hand side represents the absolute difference
between the scalar numerical value δ̄i

k, and an array of numerical values δi
k. The purpose is

to identify POHs. This looks for hyper-rectangles (indexed by I) where the norm value (δi
k)

is very close (within the defined tolerance) to the normalized norm value (δ̄i
k).

Line 11 is used to reduce the set of POHs. The code filters the hyper-rectangles and
selects only those that meet a specific condition, which is having a norm value (δi

k) close to
the normalized norm value (δ̄i

k) within a tolerance of 0.0001.
In summary, this line of code helps to focus on potentially more promising hyper-

rectangles, discarding those that are not as close to the desired normalized norm value.
This is a way to efficiently narrow down the search space and improve the efficiency of the
algorithm. An illustrative example for two different tolerance levels is given in Figure 2.

The difference between the tolerance 10−2 and 10−7 lies in the level of precision used
when comparing the δi

k and δ̄i
k values used to filter the POHs.

1. Tolerance 10−2 :

• A tolerance of 10−2 (0.01) means that the algorithm will consider hyper-rectangles
whose δi

k and δ̄i
k values are within 0.01 of each other.

• This allows for a relatively larger difference between δi
k and δ̄i

k, meaning the
algorithm will be more lenient in selecting POHs.

• This might result in a larger set of POHs, including some with relatively larger
differences in their norm values.

2. Tolerance 10−7 :

Mathematics 2024, 12, 283 9 of 24

• A tolerance of 10−7 (0.0000001) means that the algorithm will consider hyper-
rectangles whose δi

k and δ̄i
k values are within 0.0000001 of each other.

• This uses a much smaller tolerance, making the algorithm much stricter in
selecting POHs.

• This will result in a smaller set of POHs, only including those with extremely
close norm values.

Figure 2. Grouping strategy using two different tolerance levels in the BIRECT algorithm applied to
the Ackley test problem 1 at iteration 36. Small tolerance (left side), large tolerance (right side).

The choice of tolerance depends on the specific problem and the desired level of
precision in the algorithm. A larger tolerance may lead to faster execution, but it might
also include some hyper-rectangles that are not truly optimal. On the other hand, a smaller
tolerance will be more accurate but may require more computational effort to identify the
POHs. There is a trade-off between efficiency and precision in the algorithm’s behavior.

Note: The algorithm assumes a zero-based index for the array elements, and the first
index found satisfying the condition is returned. If no element satisfies the condition, the
algorithm returns −1.

The algorithm essentially performs a linear search through the δi
k array and stops

as soon as it finds the first element within the specified tolerance level. It is important
to choose an appropriate tolerance level depending on the application and the expected
values in the array.

Convergence

The existing literature has extensively explored the convergence characteristics of
DIRECT-type algorithms (see e.g., [4,20,21,35,41]). These algorithms, including BIRECTv, are
often categorized as ’divide the best’ methods and exhibit a form of convergence known as
’everywhere dense’. This means they converge at every point within the feasible region. As
the algorithm progresses, each explored point becomes an accumulation point, gradually
leading to the sampling of points that approach the global solution. The convergence
framework of BIRECTv aligns with this established pattern, in the sens of the ’everywhere-
dense’ type of convergence. In addition, the continuity of the objective function in the
neighborhood of global minima is a sufficient assumption that guarantees convergence.

4. Results and Discussion
4.1. Implementation

In this section, we provide an overview of the methodology and objectives of our
study, which involved benchmarking the new enhanced BIRECTv against the previous
version of BIRECTv [27], the original BIRECT [26,41], and other DIRECT-type algorithms
on a set of test problems. In our study, the size of the hyper-rectangle in BIRECTv was
measured using the same criterion as in the original BIRECT algorithm. In contrast, for
DIRECT-l, this corresponds to the infinity norm, allowing it to collect more hyper-rectangles
of the same size. This is different from the Euclidean distance measure used in the original

Mathematics 2024, 12, 283 10 of 24

DIRECT algorithm. Our implementation used the same set of 54 global optimization test
problems from [44]. The Hedar test set is a popular benchmark for testing optimization
algorithms, and its problems are described in Table A1, including attributes like problem
number, problem name, dimension, feasible domain, number of local minima, and known
minimum. Some test problems have multiple variants, and an algorithm is tested for
different dimensionalities. In some cases, during the initial steps of the algorithm, sampling
is performed near the global minimizer. The feasible domain is modified by increasing the
upper bound in these situations. These modified test problems are marked with a star. All
computations were performed with MATLAB R2016b on a computer with an Intel Core
i5-6300U CPU @ 3.5 GHz Processor, 8 GB memory, and running on Windows 10 operating
system. The output values were rounded up to 10 decimals.

To determine the stopping condition, we applied well-established criteria frequently
utilized in assessing the performance of various DIRECT-type algorithms, as discussed in
previous studies [21,26]. Since the global minima were known for all test problems, our
evaluation of the algorithms was concluded upon the discovery of a point x̄ that met a
predefined percentage error (pe).

pe =

{ f (x̄)− f ∗

| f ∗ | ≤ 10−4, f ∗ ̸= 0,

f (x̄) ≤ 10−4, f ∗ = 0.
(7)

All algorithms were tested using a limit of Mmax = 500, 000 function evaluations in
each run. The value of εpe was set to 10−4 as the default value, representing a tolerance
threshold used during the optimization process such that pe ≤ εpe .

The comparison was based on two primary criteria: the best-found function value
f (x̄) and the number of function evaluations (f.eval.). These criteria helped evaluate
the performance of the algorithms on each test problem. The study provided statistical
measures, such as averages and medians, for the number of function evaluations. The
average performance provides an overall assessment of each algorithm’s performance
across all problems, while the median performance is less influenced by outliers and
represents the middle point in the data. In the tables labeled “comparison”, the best
number of function evaluations is highlighted in bold font to emphasize the most efficient
results. Additionally, the results, including information about the number of iterations and
the execution time, are specifically reported on the GitHub repository (see Data Availability
Statement below).

The results of all six algorithms are reported in Table 1, where the same arguments
were used: a specific domain modification, and a grouping scheme from Algorithm 2
with a tolerance level of 10−4. Note that, in our results, a correction was made during
the current experiments to the minimum value achieved for the Perm test function 27
from [27]. The POHs are those that had norm values close to the normalized norm value,
meaning they are potentially interesting candidates for further evaluation. By filtering out
the hyper-rectangles that did not satisfy this condition, the set of POHs (I) was reduced
to a smaller subset. These reduced hyper-rectangles are considered more interesting
candidates for further evaluation or processing in the algorithm. Additionally, BIRECTv-
l(impr.) and BIRECTv(impr.) are improved versions using a special vertex database to
prevent redundant sampling. Note that this assumption does not apply to the BIRECT
algorithm, as the algorithm itself is designed to enable the reuse of objective function
values in descendant subregions. An illustrative example in Figure 3 demonstrates the
corresponding version of the BIRECTv algorithm when the introduced vertex database was
applied. The total number of function evaluations was 490 for BIRECTv and 370 for the
improved version.

Mathematics 2024, 12, 283 11 of 24

Algorithm 2 Find first index within tolerance

Require:
1: Input:
2: δi

k: An array of numerical values,
3: δ̄i

k: A scalar numerical value (The normalized norm value: measure of the hyper-
rectangle D̄i

k);
Ensure:

4: Output:
5: index: The index of the first occurrence in δi

k where the absolute difference with δ̄i
k is

within the tolerance level;
6: procedure FIND INDEX WITHIN TOLERANCE(δi

k, δ̄i
k)

7: Set the tolerance level threshold to 0.0001 (or any desired value);
8: Initialize the variable index to −1;
9: for each element at index i in the δi

k array do
10: Calculate the absolute difference diff between element and δ̄i

k;
11: if diff ≤ threshold then
12: Set index to i;
13: break
14: end if
15: end for
16: return index;
17: end procedure

iteration: 1 fmin: 17.5082995158 f evals: 2

. . .

iteration: 20 fmin: 0.4093044620 f evals: 10

. . .

iteration: 24 fmin: 0.3994884267 f evals: 16

iteration: 25 fmin: 0.3994884267 f evals: 26

iteration: 26 fmin: 0.3980837400 f evals: 16

iteration: 27 fmin: 0.3980837400 f evals: 14

. . .

iteration: 31 fmin: 0.3980250409 f evals: 18

iteration: 32 fmin: 0.3980250409 f evals: 14

iteration: 33 fmin: 0.3979818763 f evals: 24

iteration: 34 fmin: 0.3979818763 f evals: 28

iteration: 35 fmin: 0.3979818763 f evals: 12

iteration: 36 fmin: 0.3979818763 f evals: 12

iteration: 37 fmin: 0.3979818763 f evals: 22

iteration: 38 fmin: 0.3979067737 f evals: 24

Iteration: 1 fmin: 17.5082995158 f evals: 2

. . .

Iteration: 20 fmin: 0.4093044620 f evals: 9

. . .

Iteration: 24 fmin: 0.3994884267 f evals: 13

Iteration: 25 fmin: 0.3994884267 f evals: 20

Iteration: 26 fmin: 0.3980837400 f evals: 12

Iteration: 27 fmin: 0.3980837400 f evals: 11

. . .

Iteration: 31 fmin: 0.3980250409 f evals: 14

Iteration: 32 fmin: 0.3980250409 f evals: 10

Iteration: 33 fmin: 0.3979818763 f evals: 20

Iteration: 34 fmin: 0.3979818763 f evals: 18

Iteration: 35 fmin: 0.3979818763 f evals: 8

Iteration: 36 fmin: 0.3979818763 f evals: 8

Iteration: 37 fmin: 0.3979818763 f evals: 15

Iteration: 38 fmin: 0.3979067737 f evals: 15

Figure 3. An example of the iteration progress using the BIRECTv algorithm on the left-hand side
from [27], and Impr.BIRECTv(impr.) on the right-hand side, while solving the Branin test problem
(No. 3 from Table 1).

Mathematics 2024, 12, 283 12 of 24

Table 1. Comparison between BIRECTv-l(impr.), BIRECTv(impr.), BIRECTv-l [27], BIRECTv [27], BIRECT-l(new), and BIRECT(new) algorithms.

Problem BIRECTv-l (impr.) BIRECTv (impr.) BIRECTv-l [27] BIRECTv [27] BIRECT-l (New) BIRECT (New)

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

1 1.22 × 10−5 129 1.22 × 10−5 153 1.22 × 10−5 156 1.22 × 10−5 192 1.22 × 10−5 134 1.22 × 10−5 158
2 1.22 × 10−5 387 1.22 × 10−5 1135 1.22 × 10−5 422 1.22 × 10−5 1578 1.22 × 10−5 358 1.22 × 10−5 1062
3 1.22 × 10−5 1000 1.22 × 10−5 47, 311 1.22 × 10−5 1000 1.22 × 10−5 72, 804 1.22 × 10−5 766 1.22 × 10−5 41, 654
4 8.77 × 10−5 474 8.77 × 10−5 742 8.77 × 10−5 638 8.77 × 10−5 1034 9.17 × 10−5 434 9.17 × 10−5 434
5 1.83 × 10−6 192 1.83 × 10−6 209 1.83 × 10−6 254 1.83 × 10−6 284 3.68 × 10−5 496 3.68 × 10−5 496
6 1.53 × 10−6 189 1.53 × 10−6 211 1.53 × 10−6 252 1.53 × 10−6 284 3.07 × 10−5 682 3.07 × 10−5 682
7 2.88 × 10−6 186 2.88 × 10−6 209 2.88 × 10−6 248 2.88 × 10−6 282 4.03 × 10−5 852 4.03 × 10−5 849
8 2.99 × 10−6 228 2.99 × 10−6 249 2.99 × 10−6 300 2.99 × 10−6 334 2.99 × 10−6 330 2.99 × 10−6 330
9 0.39791 480 0.39791 370 0.39791 652 0.39791 490 0.39790 242 0.39790 242
10 9.82 × 10−5 1614 9.82 × 10−5 1337 9.82 × 10−5 2318 9.82 × 10−5 1868 9.82 × 10−5 794 9.82 × 10−5 794
11 4.41 × 10−5 263 3.18 × 10−5 431 4.41 × 10−5 346 3.18 × 10−5 578 4.41 × 10−5 234 4.41 × 10−5 234
12 7.35 × 10−5 1932 7.35 × 10−5 2087 7.35 × 10−5 2652 7.35 × 10−5 2912 6.59 × 10−5 6103 6.59 × 10−5 6125
13 9.55 × 10−5 28, 871 8.17 × 10−5 19, 418 9.55 × 10−5 38, 460 9.55 × 10−5 44, 114 8.83 × 10−5 8202 8.83 × 10−5 8282
14 −0.99999 138 −0.99999 716 −0.99999 180 −0.99999 1082 −0.99999 110 −0.99999 558
15 3.00000 25 3.00000 25 3.00000 28 3.00000 28 3.00019 274 3.00019 274
16 4.61 × 10−7 3440 3.697 × 10−7 4700 4.61 × 10−7 5192 3.697 × 10−7 5756 7.76 × 10−7 3236 9.86 × 10−3 > 500, 000
17 −3.86245 162 −3.86245 169 −3.86245 200 −3.86245 208 −3.86243 352 3.86243 352
18 −3.32214 490 −3.32214 490 −3.32214 542 −3.32214 542 −3.32207 764 3.32207 764
19 −1.03154 162 −1.03154 254 −1.03154 202 −1.03154 334 −1.03154 190 1.03154 196
20 9.03 × 10−6 103 9.03 × 10−6 116 9.03 × 10−6 136 9.03 × 10−6 154 9.03 × 10−5 80 9.03 × 10−6 80
21 1.83 × 10−5 388 1.83 × 10−5 459 1.83 × 10−5 454 1.83 × 10−5 558 1.83 × 10−5 264 1.83 × 10−5 354
22 3.54 × 10−5 1133 3.54 × 10−5 6246 3.54 × 10−5 1182 3.54 × 10−5 7440 3.54 × 10−5 766 3.54 × 10−5 2302
23 2.71 × 10−5 119 2.71 × 10−5 163 2.71 × 10−5 148 2.71 × 10−5 208 2.71 × 10−5 90 2.71 × 10−5 90
24 −1.80130 142 −1.80130 231 −1.80130 184 −1.80130 314 −1.80120 136 −1.80120 126
25 −4.68744 5654 −4.68744 5051 −4.68766 8484 −4.68766 7526 −4.68757 49, 160 −4.68752 47, 196
26 −8.60559 > 500, 000 −7.55576 > 500, 000 −8.60559 > 500, 000 −7.55576 > 500, 000 −7.32708 > 500, 000 −7.32708 > 500, 000
27 0.00000 43, 889 0.0521989805 > 500, 000 0.00000 65, 536 0.00000 48, 724 0.00203 > 500, 000 0.00203 > 500, 000
28 4.59 × 10−5 1837 4.59 × 10−5 1223 4.59 × 10−5 2518 4.59 × 10−5 1624 8.34 × 10−5 1814 4.86 × 10−5 2108
29 9.75 × 10−5 2583 9.75 × 10−5 2867 9.75 × 10−5 3058 9.75 × 10−5 3400 9.12 × 10−5 20, 672 9.12 × 10−5 21, 260
30 0.00000 159 0.00000 159 0.00000 204 9.97 × 10−5 40, 788 9.00 × 10−5 4932 9.00 × 10−5 5623
31 4.81 × 10−5 523 4.81 × 10−5 809 4.81 × 10−5 688 4.81 × 10−5 820 4.81 × 10−5 154 4.81 × 10−5 178
32 1.29 × 10−5 5237 1.29 × 10−5 6511 1.29 × 10−5 8512 1.29 × 10−5 10, 978 1.29 × 10−5 66, 462 1.29 × 10−5 82, 546

Mathematics 2024, 12, 283 13 of 24

Table 1. Cont.

Problem BIRECTv-l (impr.) BIRECTv (impr.) BIRECTv-l [27] BIRECTv [27] BIRECT-l (New) BIRECT (New)

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

33 1.98 × 10−5 124 1.98 × 10−5 1439 1.98 × 10−5 124 1.98 × 10−5 1454 2.36 × 10−5 1240 2.36 × 10−5 15, 544
34 9.65 × 10−5 540 9.65 × 10−5 544 9.65 × 10−5 700 9.65 × 10−5 716 9.65 × 10−5 242 9.65 × 10−5 242
35 2.41 × 10−5 1950 2.41 × 10−5 2231 2.41 × 10−5 2528 2.41 × 10−5 3058 2.41 × 10−5 1494 2.41 × 10−5 1692
36 3.05 × 10−5 17, 176 3.05 × 10−5 27, 256 3.05 × 10−5 18, 922 3.05 × 10−5 31, 756 7.61 × 10−5 6104 7.61 × 10−5 10, 766
37 2.56 × 10−5 384 1.37 × 10−5 413 1.37 × 10−7 486 1.37 × 10−7 564 2.56 × 10−5 214 2.56 × 10−5 268
38 6.398 × 10−5 17, 061 6.398 × 10−5 10, 362 3.42 × 10−7 25, 904 3.42 × 10−7 16, 754 6.3981 × 10−5 704 6.398 × 10−5 3780
39 1.77 × 10−8 1366 1.77 × 10−8 55, 701 1.77 × 10−8 1366 1.77 × 10−8 84, 784 4.14 × 10−5 2248 4.14 × 10−5 265, 002
40 −10.15234 4002 −10.15234 3665 −10.15234 6146 −10.15234 5604 −10.15307 1254 −10.15307 1220
41 −10.40201 1536 −10.40201 1655 −10.40201 2256 −10.40201 2456 −10.402696 1186 −10.402696 1184
42 −10.53545 1740 −10.53545 2238 −10.53545 2476 −10.53545 3332 −10.53618 1138 −10.53618 1108
43 −186.72139 432 −186.72139 181 −186.72139 570 −186.72139 226 −186.72102 766 −186.72102 642
44 1.15 × 10−5 92 1.15 × 10−5 143 1.15 × 10−5 112 1.15 × 10−5 190 1.15 × 10−5 106 1.15 × 10−5 118
45 2.87 × 10−5 364 2.87 × 10−5 987 2.87 × 10−5 392 2.87 × 10−5 1400 2.87 × 10−5 294 2.87 × 10−5 602
46 5.74 × 10−5 1043 5.74 × 10−5 19, 418 5.74 × 10−5 1054 5.74 × 10−5 27, 566 5.74 × 10−5 784 5.74 × 10−5 8742
47 3.89 × 10−6 348 3.89 × 10−6 328 3.89 × 10−6 494 3.89 × 10−6 460 3.89 × 10−6 226 3.89 × 10−6 214
48 8.94 × 10−7 880 8.94 × 10−7 1141 8.94 × 10−7 1102 8.94 × 10−7 1484 3.04 × 10−5 1006 3.04 × 10−5 1134
49 3.28 × 10−6 2147 3.28 × 10−6 5331 3.28 × 10−6 2452 3.28 × 10−6 6066 0.062500 > 500, 000 0.062500 > 500, 000
50 −49.99979 1164 −49.99979 1414 −49.99979 1312 −49.99979 1662 −49.99864 1322 −49.99864 1462
51 −209.98779 2965 −209.98779 10, 470 −209.98779 3114 −209.98779 11, 880 −209.98627 2300 −209.98627 3122
52 2.88 × 10−5 122 2.88 × 10−5 125 2.88 × 10−5 156 2.88 × 10−5 162 2.88 × 10−5 118 2.88 × 10−5 118
53 6.43 × 10−5 2805 6.43 × 10−5 2948 6.43 × 10−5 3710 6.43 × 10−5 3958 9.62 × 10−5 1858 9.62 × 10−5 1920
54 1.79278 > 500, 000 1.79278 > 500, 000 2.607286 > 500, 000 2.607286 > 500, 000 17.62154 > 500, 000 17.62154 > 500, 000

Average 21, 488.333 32, 445.204 22, 602.2595 27, 088.333 40, 623.833 56, 374.611
Median 531.500 1138.000 694.000 1531.000 766.000 1085.000

Mathematics 2024, 12, 283 14 of 24

4.2. Discussion

In this subsection, we explore the performance evaluation of three DIRECT-type al-
gorithms and their respective variations. These variations distinguish themselves from
their predecessors by introducing a selection mechanism: if multiple rectangles are tied
for potential optimality, only one is chosen. These algorithms are tailored for addressing
global optimization problems using the Hedar test set [44].

The improved versions (indicated by “impr”.) represent refinements of the origi-
nal BIRECTv and BIRECTv-l algorithms from [27]. Additionally, we introduce two novel
algorithmic variations, namely “BIRECT-l (new)” and “BIRECT” (new). The enhanced ver-
sion of BIRECTv-l(impr.) consistently outperformed its previously published counterparts
(BIRECTv-l and BIRECTv, respectively), achieving the lowest average objective function
value among all six algorithms. This improvement was evident in both the objective
function value and the number of function evaluations, suggesting that the algorithmic
enhancements successfully optimized the problems more efficiently. However, BIRECTv-
l(impr.) exhibited a comparable performance to BIRECTv-l in some cases, indicating that
the modification of the optimization domain may not always be necessary. Similarly,
BIRECTv(impr.) generally performed well on certain problems (often requiring fewer func-
tion evaluations) but may not be as efficient on others, as illustrated in problem 27, where
the algorithm failed to achieve a feasible objective function value, contrary to the BIRECTv
and BIRECTv-l algorithms.

The versions BIRECTv-l and BIRECTv were evaluated based on results from [27] but
with a tolerance level of 10−4. For the first algorithm, both metrics (average and median) in-
dicate that this was the second-best algorithm. Specifically, it outperformed BIRECTv(impr.)
and excelled across all other problems.

The new versions of BIRECT-l(new) and BIRECT(new), introduced in Table 2, exhibited
competitive performances compared to their predecessors [26,41], especially in terms of
the number of function evaluations required. The average value was smallest using
BIRECT-l(new) and BIRECT(new) from Table 2 (37, 230.593 and 40, 529.259, respectively)
compared to the same algorithms from Table 1 (40, 623.833 and 56, 374.611, respectively).
Furthermore, the average was smaller for BIRECT-l(new) (36, 641.963) from Table 3 without
the domain modification than from Table 1 with the same tolerance 10−4. This suggests
that the modification of the optimization domain is not necessary for the BIRECT algorithm.

While these algorithms may not consistently achieve the best objective function value,
they often strike a good balance between solution quality and computational effort. The
term failed in Table 3 indicates no improvement in the objective function value during many
successive iterations or an increasing number of evaluations per iteration. In both cases,
the number of function evaluations exceeded ×105. The performance of each algorithm
varied across the different optimization problems, highlighting the importance of selecting
an algorithm based on the specific characteristics of the optimization task.

• The improved versions of BIRECTv appear to be reliable choices for optimization tasks,
as they consistently outperformed the previously published versions and demon-
strated competitive performances in terms of both objective value and computa-
tional effort.

• The new algorithms, BIRECT-l (new) and BIRECT (new), show promise and are particu-
larly efficient in terms of the number of function evaluations. However, their objective
function values may vary depending on the problem.

• The choice of algorithm should be problem-dependent. Some algorithms may be more
suitable for specific problem characteristics, such as unimodal or multimodal objective
functions, and global or local optimization.

• These sets of information provide a comprehensive assessment of the algorithms’ perfor-
mance across various aspects, including solution quality and computational efficiency.

In our examination, we assessed the influence and sensitivity of each parameter in
relation to the others, contingent on the type of problem considered—whether multi-

Mathematics 2024, 12, 283 15 of 24

modal, uni-modal, symmetrical, or (convex) quadratic problems. Specifically, our attention
was drawn to parameter ∆, as introduced in Algorithm 2, which evidently affected all
algorithms. However, the extent of this influence varied among them. Notably, the
utilization of the special vertex database was relevant solely to the two enhanced versions of
BIRECTv. Interestingly, our observations revealed that the modification of the optimization
domain did not significantly impact the BIRECT algorithm, and in certain cases, it had no
effect at all.

Table 2. Comparison between BIRECT-(new), BIRECT from [26,41], BIRECT-l-(new), and BIRECT-l
from [26].

Problem BIRECT-(New) BIRECT [26,41] BIRECT-l-(New) BIRECT-l [26]

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

1 2.54 × 10−5 202 2.54 × 10−5 202 2.54 × 10−5 176 2.54 × 10−5 176
2 2.54 × 10−5 1256 2.54 × 10−5 1268 2.54 × 10−5 454 2.54 × 10−5 454
3 2.54 × 10−5 45, 128 2.54 × 10−5 47, 792 2.54 × 10−5 874 2.54 × 10−5 874
4 9.17 × 10−5 436 9.17 × 10−5 436 9.17 × 10−5 436 9.17 × 10−5 436
5 4.02 × 10−5 468 4.02 × 10−5 476 4.02 × 10−5 468 4.02 × 10−5 468
6 3.35 × 10−5 472 3.35 × 10−5 478 3.35 × 10−5 472 3.35 × 10−5 472
7 3.67 × 10−5 474 3.67 × 10−5 480 3.67 × 10−5 474 3.67 × 10−5 474
8 6.10 × 10−5 188 6.10 × 10−5 194 6.10 × 10−5 188 6.10 × 10−5 188
9 0.39790 242 0.39790 242 0.39790 242 0.39790 242
10 9.82 × 10−5 794 9.82 × 10−5 794 9.82 × 10−5 794 9.82 × 10−5 794
11 4.84 × 10−5 722 4.84 × 10−5 722 4.84 × 10−5 722 4.84 × 10−5 722
12 7.15 × 10−5 4060 7.15 × 10−5 4060 7.15 × 10−5 4060 7.15 × 10−5 4060
13 9.52 × 10−5 161, 928 9.52 × 10−5 164, 826 9.52 × 10−5 158, 880 9.52 × 10−5 1, 628, 682
14 −0.99999 558 −0.99999 16420 −0.99999 110 −0.99999 480
15 3.00019 274 3.00019 274 3.00019 274 3.00019 274
16 7.76 × 10−7 4982 7.76 × 10−7 5106 7.76 × 10−7 4982 7.76 × 10−7 5106
17 −3.86242 352 −3.86242 352 −3.86242 352 −3.86242 352
18 −3.32206 764 −3.32206 764 −3.32206 764 −3.32206 764
19 −1.03154 196 −1.03154 334 −1.03154 190 −1.03154 190
20 9.09 × 10−5 152 9.09 × 10−5 152 9.09 × 10−5 152 9.09 × 10−5 152
21 1.83 × 10−5 968 1.83 × 10−5 1024 1.83 × 10−5 656 1.83 × 10−5 660
22 3.55 × 10−5 6402 3.55 × 10−5 7904 3.55 × 10−5 1698 3.55 × 10−5 1698
23 2.71 × 10−5 90 2.71 × 10−5 94 2.71 × 10−5 90 2.71 × 10−5 90
24 −1.80118 126 −1.80118 126 −1.80118 126 −1.80118 126
25 −4.68736 82, 562 −4.68736 73, 866 −4.68736 101900 −4.68736 101, 942
26 −7.32591 > 500, 000 −7.32591 > 500, 000 −7.32591 > 500, 000 −7.32591 > 500000
27 0.00203 > 500, 000 0.00203 > 500, 000 0.00203 > 500, 000 0.00203 > 500, 000
28 4.86 × 10−5 2114 4.86 × 10−5 2114 4.86 × 10−5 1820 4.86 × 10−5 1832
29 9.87 × 10−5 44, 950 9.71 × 10−5 99, 514 9.87 × 10−5 91, 954 9.71 × 10−5 92, 884
30 9.00 × 10−5 5664 9.00 × 10−5 10, 856 9.00 × 10−5 4994 9.00 × 10−5 1718
31 4.81 × 10−5 180 4.81 × 10−5 180 4.81 × 10−5 156 4.81 × 10−5 154
32 1.18 × 10−5 1162 1.18 × 10−5 1394 1.18 × 10−5 474 1.18 × 10−5 472
33 2.36 × 10−5 15, 658 2.36 × 10−5 40, 254 2.36 × 10−5 1250 2.36 × 10−5 1250
34 9.65 × 10−5 242 9.65 × 10−5 242 9.65 × 10−5 242 9.65 × 10−5 242
35 2.41 × 10−5 1690 2.41 × 10−5 1700 2.41 × 10−5 1496 2.41 × 10−5 1494
36 5.42 × 10−5 9100 5.42 × 10−5 10, 910 5.42 × 10−5 4620 5.42 × 10−5 4590
37 3.09 × 10−5 236 5.64 × 10−5 236 3.09 × 10−5 214 5.64 × 10−5 210
38 7.73 × 10−5 3730 6.41 × 10−5 7210 7.73 × 10−5 1074 6.41 × 10−5 1422
39 1.02 × 10−6 208, 670 1.30 × 10−6 315, 960 1.02 × 10−6 58, 000 1.30 × 10−6 58, 058
40 −10.15307 1272 −10.15307 1200 −10.15307 1248 −10.15307 1286
41 −10.40269 1204 −10.40269 1180 −10.40269 1224 −10.40269 1224

Mathematics 2024, 12, 283 16 of 24

Table 2. Cont.

Problem BIRECT-(New) BIRECT [26,41] BIRECT-l-(New) BIRECT-l [26]

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

42 −10.53618 1140 −10.53618 1140 −10.53618 1162 −10.53618 1158
43 −186.72441 1780 −186.72441 1780 −186.72441 2114 −186.72441 2114
44 1.15 × 10−5 118 1.15 × 10−5 118 1.15 × 10−5 106 1.15 × 10−5 108
45 2.87 × 10−5 602 2.87 × 10−5 712 2.87 × 10−5 294 2.87 × 10−5 288
46 5.74 × 10−5 8742 5.74 × 10−5 16, 974 5.74 × 10−5 784 5.74 × 10−5 784
47 7.94 × 10−6 226 7.94 × 10−6 244 7.94 × 10−6 226 7.94 × 10−6 226
48 3.97 × 10−5 1000 3.97 × 10−5 1034 3.97 × 10−5 836 3.97 × 10−5 836
49 9.11 × 10−6 5538 9.11 × 10−6 7688 9.11 × 10−6 3366 9.11 × 10−6 3366
50 −49.99512 1170 −49.99512 1506 −49.99512 992 −49.99512 1138
51 −209.98007 32, 170 −209.98007 30, 100 −209.98007 24, 704 −209.98007 24, 716
52 2.88 × 10−5 338 2.88 × 10−5 502 2.88 × 10−5 338 2.88 × 10−5 338
53 6.44 × 10−5 26, 088 6.44 × 10−5 20, 974 6.44 × 10−5 27, 230 6.44 × 10−5 27, 364
54 9.41133 > 500, 000 9.41133 > 500, 000 9.41133 > 500, 000 9.41133 > 500, 000

Average 40, 529.259 44, 520.52 37, 230.593 37, 283.85
Median 1151.000 1190.00 789.000 789.00

Table 3. Number of function evaluations using BIRECT-l(new) for different values of ∆.

Problem BIRECT-l

No./∆ 10−2 10−3 10−4 10−5 10−6 10−7

1 168 166 182 178 174 176
2 530 448 484 448 454 454
3 840 842 852 874 872 874
4 370 424 434 436 436 436
5 328 424 456 468 468 468
6 328 432 462 472 472 472
7 f ailed f ailed 942 474 474 474
8 172 188 188 188 188 188
9 256 242 242 242 242 242
10 722 790 794 790 794 794
11 f ailed 732 718 722 722 722
12 f ailed 5352 4038 4060 4060 4060
13 f ailed 186, 694 144, 268 152, 402 156, 448 158, 880
14 110 110 110 110 110 110
15 236 272 274 274 274 274
16 f ailed 2480 3236 3452 4148 4982
17 346 354 352 352 352 352
18 752 764 764 764 764 764
19 188 190 190 190 190 190
20 136 152 152 152 152 152
21 608 644 656 656 656 656
22 1590 1698 1698 1698 1698 1698
23 88 90 90 90 90 90
24 110 126 126 126 126 126
25 38, 282 49, 488 90, 504 101, 900 101, 900 101, 900
26 f ailed f ailed f ailed f ailed f ailed f ailed
27 f ailed f ailed f ailed f ailed f ailed f ailed
28 2440 2102 1814 1820 1820 1820
29 f ailed 39, 584 87, 502 90, 162 92, 028 91, 954
30 f ailed 4810 5024 5014 5002 4994
31 146 152 154 156 156 156
32 338 436 474 474 474 474

Mathematics 2024, 12, 283 17 of 24

Table 3. Cont.

Problem BIRECT-l

No./∆ 10−2 10−3 10−4 10−5 10−6 10−7

33 940 1166 1240 1250 1250 1250
34 236 242 242 242 242 242
35 1390 1470 1498 1496 1496 1496
36 4196 4510 4612 4620 4620 4620
37 172 204 214 214 214 214
38 1148 1280 1400 1434 1434 1074
39 41, 502 49, 516 57, 452 57, 994 58, 000 58, 000
40 666 810 1254 1248 1248 1248
41 636 818 1186 1224 1224 1224
42 632 766 1138 1162 1162 1162
43 1748 1880 2044 2086 2114 2114
44 104 106 106 106 106 106
45 286 294 294 294 294 294
46 786 784 784 784 784 784
47 202 226 226 226 226 226
48 728 826 836 836 836 836
49 2712 3162 3332 3366 3366 3366
50 1152 988 992 992 992 992
51 f ailed 28, 268 24, 578 24, 704 24, 704 24, 704
52 260 320 338 338 338 338
53 f ailed 25, 522 27, 720 27, 286 27, 230 27, 230
54 f ailed f ailed f ailed f ailed f ailed f ailed

Average 13, 121.852 44, 876.741 36, 641.963 37, 056.407 37, 178.222 37, 230.593
Median 725.000 787.000 815.000 787.000 789.000 789.000

4.3. Examining the Success Rate of Algorithms and Function Evaluation Metrics

The graphical representations on the left side of Figure 4 furnish a comprehensive
overview of the algorithmic performance under the prescribed computational limitations.
Within a limited budget of function evaluations not exceeding 5 × 105, the number of eval-
uations for each test problem was set as = n × 10k, where n is the problem dimension, and
0 ≤ k ≤ 4 + log10 5. The parameter k = h × i varied with a step-size h = (4 + log10 5)/20,
and i = 0, 1, ..., 20. The maximum number of function evaluations was reached for n = 10,
and k = 4 + log10 5, which exactly gives 5 × 105 = n × 10k. We computed the percentage
of the test problems for each algorithm to achieve successful solution. We can observe
that all algorithms failed when 0 ≤ k ≤ 4 × h. However, the success rates of all algo-
rithms exhibited a gradual ascent within evaluations, from the value k = 5 × h, even with
quite small rates, except the algorithm BIRECT that remained at a low level until the value
k = 7 × h. For the value of k = 11 × h, the success rate for three DIRECT-type algorithms
(BIRECTv(impr.), BIRECT-l, and BIRECTv-l) exceeded the threshold of 50 % in solving the
test problems, while the remaining algorithms were below this threshold. When the budget
of function evaluations was expanded to the prescribed limit of 5 × 105 maximum, the
BIRECTv-l(impr.) algorithm achieved the highest success rate with 90 %, closely followed
by BIRECTv(impr.), for k = 14 × h, and the two BIRECTv-l, and BIRECT-l algorithms,
BIRECT-l for k = 15× h, consistently maintaining the highest success rate among all the six
algorithms. The remaining algorithms were BIRECTv with k = 17 × h, and last BIRECT with
k = 19 × h. We observe that, for i = 20, we can count a total of 21 points in the graphical
representation for all methods.

To investigate the impact of dimensionality on the number of evaluations of the objec-
tive function, we have categorized all the problems in Table 1 based on their dimensions.
Subsequently, we computed the average number of evaluations for each algorithm and
represent the results graphically on the right side of Figure 4. It is evident from the analysis
that the BIRECT algorithm yielded the least favorable results across all dimensions, fol-
lowed by the BIRECT-l and BIRECTv algorithms. Conversely, the most favorable outcomes
were observed with the two algorithms BIRECT-l(impr.) and BIRECTv-l, followed by the
BIRECTv(imp) algorithm. Figure 4 also indicates that all algorithms faced challenges in the
case of dimension 4. This issue is attributed to the presence of challenging test problems
with this dimension.

Mathematics 2024, 12, 283 18 of 24

Figure 4. Profiles of data and performance metrics for evaluating function performance across various
problems from Table 1.

4.4. Statistical Analysis of the Results

The results of the algorithms on the benchmarks are presented in Table 4, where
bold font indicates the best performance. In terms of algorithmic performance assessed
through statistical characteristics, the proposed BIRECTv-l(impr.) consistently outper-
formed all other algorithms across all test problems. BIRECTv-l and BIRECT excelled in
success and failure rates, securing the top positions. BIRECTv-l(impr.) attained the high-
est results in only one specific characteristic (min .eval.). Additionally, certain values of
BIRECT-l and BIRECT are deemed insignificant. When considering standard deviation
and median, BIRECTv-l(impr.) stands out as the optimal performer, closely followed
by BIRECTv-l. In conclusion, both aspects underscore the superior performance of the
proposed BIRECTv-l(impr.).

To evaluate the stability of the various algorithms from Table 4, we present a boxplot
depicting the results in Figure 5. The central line of the BIRECT-vl(impr.) algorithm boxplot
consistently exhibits the lowest values across all datasets, indicating exceptionally accurate
results. Additionally, the proposed BIRECT-vl(impr.) algorithm exhibits fewer outliers.

Considering the outcomes of the Friedman mean rank test presented in Table 5,
BIRECT-vl(impr.) secured the top rank across all budget levels in the objective function
evaluation. The evaluation budgets are expressed as n × 10ki , where n represents the
problem dimension, ki is calculated as i × (4 + log10 5)/10, and i = 6, 7, 8, 9, 10. As an
example, for k10 and n = 10, we obtained n × 10ki = 10 × 10k10 = 500, 000. Notably,
the algorithm proved most beneficial with smaller evaluation budgets. The conducted
Friedman test, at a 5% significance level, revealed significant performance differences
among the various algorithms. As the evaluation budgets were increased, the Friedman
mean rank values displayed diminished variability, indicating a convergence point where
the algorithms may demonstrate comparable performance.

The significance levels (p-values) obtained from the Wilcoxon signed test, with a
5% threshold, were analyzed for BIRECTv-l(impr.) compared to the other competitors
across various objective function evaluation budgets (see Table 6). If the p-value exceeds
0.05, this implies insignificance in the difference between the results of the two methods.
However, in few cases, the p-values were below 0.05, indicating a weak significance in the
performance of the BIRECTv-l(impr.) algorithm compared to the alternative techniques.

Mathematics 2024, 12, 283 19 of 24

Figure 5. Boxplots of the results for all algorithms.

Table 4. The statistical characteristics using different objective function evaluation budgets.

Algorithm BIRECTv-l(impr.) BIRECTv(impr.) BIRECTv-l BIRECTv BIRECT-l BIRECT

Success % 96.296 94.444 96.296 96.296 92.593 90.741
Fails % 3.704 5.556 3.704 3.704 7.407 9.259
max f.eval. 28, 871 55, 701 38, 460 84, 784 66, 462 265, 002
min f.eval. 25 25 28 28 80 80
average f.eval. 2263.143 4734.898 3006.980 8208.653 3886.755 11, 106.714
Standard
Deviation (std) 5196.638 11, 027.286 6965.689 17, 874.922 11, 833.665 39, 800.355

median f.eval. 480.000 809.000 638.000 1400.000 764.000 794.000

Table 5. Friedman mean rank values, using different objective function evaluation budgets.

Algorithm n × 10k6 n × 10k7 n × 10k8 n × 10k9 n × 10k10

BIRECTv-l(impr.) 2.313 2.321 2.398 2.344 2.327
BIRECTv(impr.) 3.594 3.641 3.636 3.531 3.541
BIRECTv-l 4.031 3.987 4.011 3.938 3.888
BIRECTv 5.250 5.282 5.273 5.229 5.224
BIRECT-l 2.594 2.513 2.432 2.563 2.571
BIRECT 3.219 3.256 3.250 3.396 3.449

p-value 4.0031 × 10−10 6.3283 × 10−13 1.2718 × 10−14 8.7793 × 10−15 5.4166 × 10−15

Table 6. p-values (5 % significance) of Wilcoxon signed test: BIRECTv-l(impr.) vs. competitors at
various evaluation budgets n × 10ki .

Algorithm n × 10k6 n × 10k7 n × 10k8 n × 10k9 n × 10k10

BIRECTv(impr.) 3.210169 × 10−4 7.024763 × 10−4 1.683462 × 10−3 1.683462 × 10−3 1.683462 × 10−3

BIRECTv-l 5.249434 × 10−8 7.609271 × 10−9 3.520127 × 10−9 3.520127 × 10−9 3.520127 × 10−9

BIRECTv 7.190828 × 10−6 4.480184 × 10−7 2.046605 × 10−7 5.146379 × 10−8 5.146379 × 10−8

BIRECT-l 2.975178 × 10−1 3.657377 × 10−1 2.875319 × 10−1 6.049617 × 10−1 6.049617 × 10−1

BIRECT 4.005684 × 10−1 2.348613 × 10−1 2.892280 × 10−1 1.383033 × 10−1 9.273076 × 10−2

5. Conclusions and Future Prospects

This paper introduced a novel DIRECT-type algorithm, BIRECTv. Incorporating recent
partitioning and selection techniques proved essential for enhancing its performance in
addressing global optimization problems. The improvements demonstrated that BIRECTv

Mathematics 2024, 12, 283 20 of 24

outperformed existing DIRECT-type algorithms, displaying higher efficiency and superior
performance in terms of convergence rates and the number of required function evaluations.

In contrast, the conventional DIRECT-type algorithms often exhibited slower conver-
gence rates and required a significantly higher number of function evaluations, partic-
ularly when the optimal solution lay at the boundaries of feasibility. The effectiveness
of BIRECTv relies on sampling points at the vertices of hyper-rectangles. While heavily
depending on vertex sampling may limit its performance in scenarios where the optimal
solution is not near the hyper-rectangle vertices, this limitation was addressed in [29] by
applying a mapping technique to the BIRECTv algorithm to eliminate infeasibility. Conse-
quently, computations are confined to valid solutions within the feasible region defined by
linear constraints.

The experimentation results confirmed the algorithm’s superior performance, espe-
cially in cases where solutions were located at the boundary of feasible regions. This
research opens up new possibilities for addressing global optimization problems, sug-
gesting that BIRECTv has the potential to make significant contributions in this field. The
new algorithm is expected to occupy a pivotal place among all DIRECT-type algorithms,
possibly becoming a standard choice for solving global optimization problems with the
mentioned characteristics.

In conclusion, this paper lays the groundwork for future research by proposing that
BIRECTv opens up new possibilities, potentially leading to further advancements in the field.
Future investigations will focus on expanding the comparison of the new algorithm with
various algorithms, using different benchmarks. All these observations may be considered
as potential directions for future research.

Author Contributions: Conceptualization, L.C.; Data curation, L.C.; Formal analysis, L.C. and M.L.;
Funding acquisition, M.L.; Investigation, N.-E.B. and L.C.; Methodology, N.-E.B. and L.C.; Project
administration, M.L. and L.C.; Software, N.-E.B. and L.C.; Supervision, L.C. and M.L.; Validation,
L.C. and M.L.; Writing—original draft, L.C.; writing-review and editing, L.C. and M.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data underlying this article are available on GitHub reposi-
tory from BIRECTv v1.1.0—https://github.com/lchiter/Algorithm-BIRECTv/releases (accessed on
20 September 2023), and used under the MIT license, or at Zenodo: https://zenodo.org/record/7416
231 (accessed on 20 July 2023). The first codes for the algorithms BIRECT(new) and BIRECT-l(new)
are made available from https://data.mendeley.com/datasets/t6vv9yknbc/1.

Acknowledgments: Grateful acknowledgment is given to the reviewers for their valuable insights
and constructive feedback on our manuscript. Their expertise greatly contributed to enhancing the
quality of our work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

xj Elements of the vector x = (x1, . . . , xn)
D Search domain: an n-dimensional hyper-rectangle
D̄ Normalized search space (unit hyper-cube)
D̄i

k Hyper-rectangle in normalized search space at iteration k

https://github.com/lchiter/Algorithm-BIRECTv/releases
https://zenodo.org/record/7416231
https://zenodo.org/record/7416231
https://data.mendeley.com/datasets/t6vv9yknbc/1

Mathematics 2024, 12, 283 21 of 24

δ̄i
k Measure (size) of hyper-rectangle D̄i

k
f (x) Objective function
f ∗ Known optimal value: f ∗ = f (x)
f .eval Number of function evaluations
f (x̄) The best-found function value
Pk Hyper-rectangles representing the current partitioning at iteration k
L Lipschitz constant
Ik Index set identifying the current partition Pk
POH Potentially optimal hyper-rectangle
pe Percent error
εpe Tolerance threshold: pe ≤ εpe
xmin Current optimal solution vector
fmin Current best-known function value: fmin = f (xmin)

Appendix A

Table A1. Key characteristics of the Hedar test problems [44], with modified test problems denoted
by a star.

Problem Problem Dimension Feasible Region No. of Local Optimum
No. Name n D = ([aj, bj], j = 1, . . . , n) Minima f∗

1 ∗, 2 ∗, 3 ∗ Ackley 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5 ∗ Bohachevsky 1 2 [−100, 110]2 multimodal 0.0
6 ∗ Bohachevsky 2 2 [−100, 110]2 multimodal 0.0
7 ∗ Bohachevsky 3 2 [−100, 110]2 multimodal 0.0
8 Booth 2 [−10, 10]2 unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 multimodal 0.0
11, 12, 13 Dixon & Price 2, 5, 10 [−10, 10]n unimodal 0.0
14 Easom 2 [−100, 100]2 multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16 ∗ Griewank 2 [−600, 700]2 multimodal 0.0
17 Hartman 3 [0, 1]3 4 −3.86278
18 Hartman 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20, 21, 22 Levy 2, 5, 10 [−10, 10]n multimodal 0.0
23 ∗ Matyas 2 [−10, 15]2 unimodal 0.0
24 Michalewics 2 [0, π]2 2! −1.80130
25 Michalewics 5 [0, π]5 5! −4.68765
26 Michalewics 10 [0, π]10 10! −9.66015
27 Perm 4 [−4, 4]4 multimodal 0.0
28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
30 Power Sum 4 [0, 4]4 multimodal 0.0
31 ∗, 32 ∗, 33 ∗ Rastrigin 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39 ∗ Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44 ∗, 45 ∗, 46 ∗ Sphere 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47 ∗, 48 ∗, 49 ∗ Sum squares 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52 ∗, 53 ∗, 54 ∗ Zakharov 2, 5, 10 [−5, 11]n multimodal 0.0

Mathematics 2024, 12, 283 22 of 24

Table A2. Comparison between BIRECT-(new), BIRECT, DIRECT-l, and DIRECT.

Problem BIRECT-(New) BIRECT DIRECT-l DIRECT

No. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval. f (x̄) f.eval.

1 2.54× 10−5 202 2.54× 10−5 202 7.53× 10−5 135 7.53× 10−5 255
2 2.54× 10−5 1256 2.54× 10−5 1268 7.53× 10−5 1777 7.53× 10−5 8845
3 2.54× 10−5 45, 128 2.54× 10−5 47, 792 357, 445 > 500, 000 7.53× 10−5 80, 927
4 9.17× 10−5 436 9.17× 10−5 436 9.29× 10−5 247 9.29× 10−5 655
5 4.02× 10−5 468 4.02× 10−5 476 3.09× 10−6 205 3.09× 10−5 327
6 3.35× 10−5 472 3.35× 10−5 478 2.58× 10−6 233 2.58× 10−5 345
7 3.67× 10−5 474 3.67× 10−5 480 8.21× 10−5 573 8.21× 10−5 693
8 6.10× 10−5 188 6.10× 10−5 194 6.58× 10−5 215 6.58× 10−5 295
9 0.39790 242 0.39790 242 0.39789 159 0.39789 195
10 9.82× 10−5 794 9.82× 10−5 794 3.83× 10−5 3379 6.08× 10−5 6585
11 4.84× 10−5 722 4.84× 10−5 722 5.32× 10−5 485 6.25× 10−5 513
12 7.15× 10−5 4060 7.15× 10−5 4060 6.45× 10−5 54, 843 6.45× 10−5 19, 661
13 9.52× 10−5 161, 928 9.52× 10−5 164, 826 0.66667 > 500, 000 5.79× 10−5 372, 619
14 −0.99999 558 −0.99999 16, 420 −0.99999 6851 −0.99999 32, 845
15 3.00019 274 3.00019 274 3.00009 115 3.00009 191
16 7.76× 10−7 4982 7.76× 10−7 5106 4.84× 10−6 8379 4.84× 10−6 9215
17 −3.86242 352 −3.86242 352 −3.86245 111 −3.86245 199
18 −3.32206 764 −3.32206 764 −3.32207 295 −3.32207 571
19 −1.03154 196 −1.03154 334 −1.03162 137 −1.03162 321
20 9.09× 10−5 152 9.09× 10−5 152 2.10× 10−5 77 2.10× 10−5 105
21 1.83× 10−5 968 1.83× 10−5 1024 3.65× 10−5 359 3.65× 10−5 705
22 3.55× 10−5 6402 3.55× 10−5 7904 3.55× 10−5 5297 6.23× 10−5 5589
23 2.71× 10−5 90 2.71× 10−5 94 3.81× 10−5 71 3.81× 10−5 107
24 −1.80118 126 −1.80118 126 −1.80127 45 −1.80127 69
25 −4.68736 82, 562 −4.68736 73, 866 −4.68721 26, 341 −4.68721 13, 537
26 −7.32591 > 500, 000 −7.32591 > 500, 000 −7.84588 > 500, 000 −7.87910 > 500, 000
27 0.00203 > 500, 000 0.00203 > 500, 000 0.04054 > 500, 000 0.04355 > 500, 000
28 4.86× 10−5 2114 4.86× 10−5 2114 6.52× 10−5 32, 331 9.02× 10−5 14, 209
29 9.87× 10−5 44, 950 9.71× 10−5 99, 514 0.02488 > 500, 000 0.02142 > 500, 000
30 9.00× 10−5 5664 9.00× 10−5 10, 856 0.03524 > 500, 000 0.00215 > 500, 000
31 4.81× 10−5 180 4.81× 10−5 180 2.30× 10−5 1727 2.30× 10−5 987
32 1.18× 10−5 1162 1.18× 10−5 1394 4.97479 > 500, 000 4.97479 > 500, 000
33 2.36× 10−5 15, 658 2.36× 10−5 40, 254 5.01600 > 500, 000 9.94967 > 500, 000
34 9.65× 10−5 242 9.65× 10−5 242 9.65× 10−5 285 9.65× 10−5 1621
35 2.41× 10−5 1690 2.41× 10−5 1700 5.75× 10−5 2703 8.80× 10−5 20, 025
36 5.42× 10−5 9100 5.42× 10−5 10, 910 8.29× 10−5 74, 071 8.29× 10−5 174, 529
37 3.09× 10−5 236 5.64× 10−5 236 2.88× 10−5 341 2.88× 10−5 255
38 7.73× 10−5 3730 6.41× 10−5 7210 7.21× 10−5 322, 039 7.21× 10−5 31, 999
39 1.02× 10−6 208, 670 1.30× 10−6 315, 960 1269.34444 > 500, 000 1187.63199 > 500, 000
40 −10.15307 1272 −10.15307 1200 −10.15234 147 −10.15234 155
41 −10.40269 1204 −10.40269 1180 −10.40196 141 −10.40196 145
42 −10.53618 1140 −10.53618 1140 −10.53539 139 −10.53539 145
43 −186.72441 1780 −186.72441 1780 −186.72153 2043 −186.72153 2967
44 1.15× 10−5 118 1.15× 10−5 118 8.74× 10−5 91 8.74× 10−5 209
45 2.87× 10−5 602 2.87× 10−5 712 7.49× 10−5 465 9.39× 10−5 4653
46 5.74× 10−5 8742 5.74× 10−5 16, 974 9.63× 10−5 2057 6.32× 10−5 99, 123
47 7.94× 10−6 226 7.94× 10−6 244 3.53× 10−5 77 3.52× 10−5 107
48 3.97× 10−5 1000 3.97× 10−5 1034 7.19× 10−5 411 7.19× 10−5 833
49 9.11× 10−6 5538 9.11× 10−6 7688 7.76× 10−6 1809 7.76× 10−5 8133
50 −49.99512 1170 −49.99512 1506 −49.99525 8731 −49.99525 5693
51 −209.98007 32, 170 −209.98007 30, 100 −209.92644 > 500, 000 −209.98085 90, 375
52 2.88× 10−5 338 2.88× 10−5 502 7.95× 10−5 209 7.95× 10−5 237
53 6.44× 10−5 26, 088 6.44× 10−5 20, 974 0.11921 > 500, 000 9.71× 10−5 316, 827
54 9.41133 > 500, 000 9.41133 > 500, 000 16.47703 > 500, 000 28.96394 > 500, 000

Average 40, 529.26 44, 520.52 12, 1484.19 98, 677.70
Median 1151.00 1190.00 1752.00 3810.00

Mathematics 2024, 12, 283 23 of 24

References
1. Ma, K.; Rios, L.M.; Bhosekar, A.; Sahinidis, N.V.; Rajagopalan, S. Branch-and-Model: A derivative-free global optimization

algorithm. Comput. Optim. Appl. 2023, 85, 337–367.
2. Liuzzi, G.; Lucidi, S.; Piccialli, V. Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization.

Comput. Optim. Appl. 2016, 65, 449–475.
3. Stripinis, L.; Paulavičius, R. Gendirect: A generalized direct-type algorithmic framework for derivative-free global optimization.

arXiv 2023, arXiv:2309.00835.
4. Stripinis, L.; Paulavičius, R. Lipschitz-inspired HALRECT algorithm for derivative-free global optimization. J. Glob. Opt. 2023,

88, 139–169.
5. Stripinis, L.; Paulavičius, R. An extensive numerical benchmark study of deterministic vs. stochastic derivative-free global

optimization algorithms. arXiv 2022, arXiv:2209.05759.
6. Stripinis, L.; Paulavičius, R. Derivative-Free DIRECT-Type Global Optimization: Applications and Software; Springer Nature: Cham,

Switzerland, 2023.
7. Floudas, C.A. Deterministic Global Optimization: Theory, Methods and Applications; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2013; Volume 37.
8. Horst, R.; Pardalos, P.M.; Thoai, N.V. Introduction to Global Optimization; Nonconvex Optimization and Its Application; Kluwer

Academic Publishers: Berlin, Germany, 1995.
9. Horst, R.; Tuy, H. Global Optimization: Deterministic Approaches; Springer: Berlin/Heidelberg, Germany, 1996.
10. Sergeyev, Y.D.; Kvasov, D.E. On deterministic diagonal methods for solving global optimization problems with Lipschitz gradients.

In Optimization, Control, and Applications in the Information Age: In Honor of Panos M. Pardalos’s 60th Birthday; Springer International
Publishing: Berlin/Heidelberg, Germany, 2015; pp. 315–334.

11. Sergeyev, Y.D.; Kvasov, D.E. Deterministic Global Optimization: An Introduction to the Diagonal Approach; SpringerBriefs in Optimiza-
tion; Springer: Berlin, Germany, 2017. [CrossRef]

12. Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Oper. Res. 2005, 12,
263–285.

13. Zhigljavsky, A.; Žilinskas, A. Stochastic Global Optimization; Springer: New York, NY, USA, 2008.
14. Paulavičius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Zilinskas, J. Globally-biased DISIMPL algorithm for expensive global optimization.

J. Glob. Optim. 2014, 59, 545–567.
15. Paulavičius, R.; Zilinskas, J. Simplicial Lipschitz optimization without Lipschitz constant. J. Glob. Optim. 2014, 59, 23–40.
16. Paulavičius, R.; Žilinskas, J.; Grothey, A. Parallel branch and bound for global optimization with combination of Lipschitz bounds.

Optim. Methods Softw. 2011, 26, 487–498.
17. Paulavičius, R.; Žilinskas, J. Simplicial Global Optimization; Springer: New York, NY, USA, 2014.
18. Sergeyev, Y.D. Efficient strategy for adaptive partition of N-dimensional intervals in the framework of diagonal algorithms.

J. Optim. Theory Appl. 2000, 107, 145–168.
19. Sergeyev, Y.D. Efficient partition of N-dimensional intervals in the framework of one-point-based algorithms. J. Optim. Appl.

2005, 124, 503–510.
20. Sergeyev, Y.D.; Kvasov, D.E. Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim.

2006, 16, 910–937.
21. Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian optimization without the Lipschitz constant. J. Optim. Appl. 1993,

79, 157–181.
22. Jones, D.R. The DIRECT global optimization algorithm. In The Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.;

Kluwer Academic Publishers: Dordrect, The Netherlands, 2001; pp. 431–440.
23. Stripinis, L.; Paulavičius, R.; Žilinskas, J. Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT. Optim.

Lett. 2018, 12, 1699–1712.
24. Stripinis, L.; Paulavičius, R. An empirical study of various candidate selection and partitioning techniques in the DIRECT

framework. J. Glob. Optim. 2022, 1–31.
25. Jones, D.R.; Martins, J.R.R.A. The DIRECT algorithm: 25 years Later. J. Glob. Optim. 2021, 79, 521–566.
26. Paulavičius, R.; Sergeyev, Y.D. Globally-biased BIRECT algorithm with local accelerators for expensive global optimization.

Expert Syst. Appl. 2020, 144, 113052.
27. Guessoum, N.; Chiter, L. Diagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling Scheme. MENDEL

2023, 29, 131–146.
28. Liu, H.; Xu, S.; Wang, X.; Wu, J.; Song, Y. A global optimization algorithm for simulation-based problems via the extended

DIRECT scheme. Eng. Optim. 2015, 47, 1441–1458.
29. Stripinis, L.; Paulavičius, R. Novel algorithm for linearly constrained derivative free global optimization of lipschitz functions.

Mathematics 2023, 11, 2920.
30. Chiter, L. Experimental Data for the Preprint “Diagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling

Scheme”. Mendeley Data, V2. 2023. Available online: https://data.mendeley.com/datasets/x9fpc9w7wh/2 (accessed on
16 June 2023).

http://doi.org/10.1007/978-1-4939-7199-2
https://data.mendeley.com/datasets/x9fpc9w7wh/2

Mathematics 2024, 12, 283 24 of 24

31. Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc.
1937, 32, 675–701.

32. Hollander, M.; Wolfe, D. Nonparametric Statistical Methods, Solutions Manual; Wiley Series in Probability and Statistics; Wiley:
Hoboken, NJ, USA, 1999.

33. Phan, D.T.; Liu, H.; Nguyen, L.M. StepDIRECT-A Derivative-Free Optimization Method for Stepwise Functions. In Proceedings
of the 2022 SIAM International Conference on Data Mining (SDM), Society for Industrial and Applied Mathematics, Alexandria,
VA, USA, 28–30 April 2022; pp. 477–485.

34. Stripinis, L.; Paulavičius, R. Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization
DIRECT-Type Algorithms. Mathematics 2022, 10, 3760. [CrossRef]

35. Gablonsky, J.M.; Kelley, C.T. A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 2001, 21, 27–37.
36. Baker, C.A.; Watson, L.T.; Grossman, B.M.; Mason, W.H.; Haftka, R.T. Parallel Global Aircraft Configuration Design Space Exploration;

High Performance Computing Symposium 2000; Tentner, A., Ed.; Soc. for Computer Simulation Internat: Blacksburg, VA, USA,
2000; pp. 54–66.

37. Mockus, J.; Paulavičius, R.; Rusakevixcxius, D.; Sešok, D.; Žilinskas, J. Application of Reduced-set Pareto-Lipschitzian Optimiza-
tion to truss optimization. J. Glob. Optim. 2017, 67, 425–450.

38. Liu, Q.; Zeng, J.; Yang, G. MrDIRECT: A multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Opt. 2015,
62, 205–227.

39. Stripinis, L.; Kůdela, J.; Paulavičius, R. DIRECTGOLib—Direct Global Optimization Test Problems Library. 2023. Available online:
https://github.com/blockchain-group/DIRECTGOLib (accessed on 16 June 2023).

40. Stripinis, L.; Paulavičius, R. DIRECTGO: A new DIRECT-type MATLAB toolbox for derivative-free global optimization. ACM
Trans. Math. Softw. 2022, 48, 1–46.

41. Paulavičius, R.; Chiter, L.; Žilinskas, J. Global optimization based on bisection of rectangles, function values at diagonals, and a
set of Lipschitz constants. J. Glob. Optim. 2018, 71, 5–20.

42. Tuy, H. Convex Analysis and Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
43. Tsvetkov, E.A.; Krymov, R.A. Pure Random Search with Virtual Extension of Feasible Region. J. Optim. Theory Appl. 2022,

195, 575–595.
44. Hedar, A. Test Functions for Unconstrained Global Optimization; System Optimization Laboratory, Kyoto University: Kyoto, Japan,

2013. Available online: http://www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGO.htm (accessed on
26 February 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math10203760
https://github.com/blockchain-group/DIRECTGOLib
http://www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

	Introduction
	Overview of Existing Methods for Selecting (POHs) in Various DIRECT-Type Approaches
	From BIRECT to BIRECTv(impr.)
	The Original BIRECT
	Selection Criterion
	Division and Sampling Criterion

	Description of the BIRECTv Algorithm
	Integration Scheme for Identification of Potentially Optimal Hyper-Rectangles in DIRECT-Based Frameworks

	Results and Discussion
	Implementation
	Discussion
	Examining the Success Rate of Algorithms and Function Evaluation Metrics
	Statistical Analysis of the Results

	Conclusions and Future Prospects
	
	References

