
Citation: El-Zahar, E.R.; Al-Boqami,

G.F.; Al-Juaydi, H.S. Approximate

Analytical Solutions for Strongly

Coupled Systems of Singularly

Perturbed Convection–Diffusion

Problems. Mathematics 2024, 12, 277.

https://doi.org/10.3390/

math12020277

Academic Editor: Mariano Torrisi

Received: 30 November 2023

Revised: 1 January 2024

Accepted: 12 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Approximate Analytical Solutions for Strongly Coupled Systems
of Singularly Perturbed Convection–Diffusion Problems
Essam R. El-Zahar 1,2,* , Ghaliah F. Al-Boqami 1 and Haifa S. Al-Juaydi 1

1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz
University, Al-Kharj 11942, Saudi Arabia; Galiahfr@gmail.com (G.F.A.-B.); hs.aljuaydi@psau.edu.sa (H.S.A.-J.)

2 Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University,
Shebin El-Kom 32511, Egypt

* Correspondence: er.elzahar@psau.edu.sa

Abstract: This work presents a reliable algorithm to obtain approximate analytical solutions for
a strongly coupled system of singularly perturbed convection–diffusion problems, which exhibit
a boundary layer at one end. The proposed method involves constructing a zero-order asymp-
totic approximate solution for the original system. This approximation results in the formation of
two systems: a boundary layer system with a known analytical solution and a reduced terminal
value system, which is solved analytically using an improved residual power series approach. This
approach combines the residual power series method with Padé approximation and Laplace trans-
formation, resulting in an approximate analytical solution with higher accuracy compared to the
conventional residual power series method. In addition, error estimates are extracted, and illustrative
examples are provided to demonstrate the accuracy and effectiveness of the method.
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1. Introduction

Singular perturbation problems (SPPs) arise in diversified areas of applied mathemat-
ics and engineering, such as aerodynamics, fluid mechanics, elasticity, optimal control and
more [1–7]. It is widely recognized that solutions to such problems exhibit a multiscale
nature, characterized by the presence of thin layers where the solution undergoes rapid
variations, while outside of these layers, the solution behaves smoothly and changes slowly.
Numerous analytical and numerical approaches have been developed to handle and solve
SPPs, as examined in the studies conducted by O’Malley [6], Miller et al. [7], Ross et al. [8]
and other referenced works [9–37].

Traditional numerical methods often struggle to provide accurate approximate solu-
tion of SPPs due to the presence of thin layer regions. To overcome this challenge, some
numerical techniques treat second-order singularly perturbed boundary value problems
(SPBVPs) by transforming them into appropriate initial value problems (IVPs). This is
because that the numerical treatment of corresponding IVPs is comparatively easier than
that of BVPs. Various initial value techniques for solving SPBVPs have been developed in
the literature, as discussed in papers [9–15].

While there are many works on SPPs in the literature, most of the computational as-
pects have focused on second-order SPBVPs. Only a few works have been reported for
higher orders and systems of SPBVPs although these problems have many applications [1–5].
In recent years, non-classical methods have been developed for different classes of sin-
gularly perturbed boundary value systems (SPBVSs). Some scholars have studied a
class of reaction–diffusion SPBVSs [16–21], while others have examined strongly coupled
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convection–diffusion SPBVSs [22–31], and weakly coupled SPBVS have been considered
in [32–34]. However, most methods developed for SPBVSs are based on numerical fitted
mesh methods, underscoring the demand for alternative approaches that provide accurate
approximate analytical solutions.

Among different methods that have been developed to obtain analytical approximations
for the solutions to differential equations, we can use the homotopy analysis method [37–40],
homotopy perturbation method [41,42], differential transform method [43–48] and residual
power series method (RPSM) [49–55], among others.

The RPSM is a powerful technique for solving IVPs without linearization, perturbation
or discretization [49–58]. It stands apart from classical power series methods, which can be
computationally expensive. However, the RPSM and other Taylor series approximation
methods face limitations and challenges, particularly when applied to problems that span a
substantial time interval or involve high solution gradients, such as those containing bound-
ary layers [52–54]. To overcome this, an enhanced version of the RPSM called the improved
RPSM (IRPSM) is proposed. The IRPSM utilizes Padé approximants, which are known for
their superior convergence compared to series approximations [37,45,56–60]. Moreover,
by combining the Laplace transform method with Padé approximations [42,52,56], we can
obtain more accurate solutions that closely approach exact solutions.

This paper presents an efficient algorithm designed to obtain approximate analyti-
cal solutions for a complex system of strongly coupled singularly perturbed convection–
diffusion problems. These problems exhibit a boundary layer phenomenon at one end,
which poses significant challenges in finding accurate solutions. The proposed method
involves constructing a zero-order asymptotic approximate solution for the given system,
followed by the analytical solution of the reduced terminal value system (RTVS) using the
IRPSM technique. To improve accuracy and convergence properties of RPSMs, the IRPSM
combines an RPSM with Padé approximation and Laplace transformation. Compared to
the conventional RPSM method, the proposed IRPSM offers higher accuracy and a larger
convergence region. This paper also addresses error estimation and demonstrates the
effectiveness of the present method through illustrative examples.

2. Description of the Method

Consider the following strongly coupled system of two singularly perturbed convection–
diffusion boundary value problems [24,29,30]{

εy′′
1 + a11y′1 + a12y′2 + b11y1 + b12y2 = f1

εy′′
2 + a21y′1 + a22y′2 + b21y1 + b22y2 = f2

. (1)

with the following Dirichlet boundary conditions

yi(a) = αi and yi(b) = βi for i = 1, 2. (2)

where 0 < ε ≪ 1, yi = yi(x), aij = aij(x), bij = bij(x) and fi = fi(x) for i = 1, 2
are assumed to be sufficiently continuously differentiable functions for x ∈ (a, b), with
aii > 0, aij ≤ 0, i ̸= j, and with αi, βi as given constants [24,29,30]. Under these conditions,
the problem exhibits overlapping boundary layers at x = a with a width of O(ε) [24]. The
equations in (1) are strongly coupled through their convective terms [22]. The analytical
behavior of the solution to the SPBVS (1) is influenced by the nature of the boundary
conditions, and it has been noted in [8] that the most challenging case arises when these
conditions are of the Dirichlet type, like those described in (2). For more details about
analytical results such as existence, uniqueness and asymptotic solution approximation,
one may refer to the work presented in Refs. [22–31].

The coupled SPBVS (1)–(2) finds numerous practical applications in modeling com-
plex physical phenomena [1–5,25]. These include the turbulent interaction of waves and
currents [2], diffusion processes involving chemical reactions [3], optimal control prob-
lems in resistance–capacitor electrical circuits [1], magnetohydrodynamic duct flow prob-
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lems [4,5,61,62] and more. Obtaining accurate analytical solutions for this SPBVS is crucial
as it allows researchers to carefully study how different physical parameters affect the be-
havior of the solutions. Having these solutions available helps improve our understanding
and analysis of the system’s dynamics, leading to advancements in scientific knowledge.

2.1. A Zeroth-Order Asymptotic Expansion

By applying well-known perturbation methods [6–8,35,36], it is possible to construct
an asymptotic expansion for the solution of the SPBVS (1)–(2). Let

→
u = (u1, u2)

T denote
the solution of the RTVS associated with the SPBVS (1)–(2), and subject to

a11u′
1 + a12u′

2 + b11u1 + b12u2 = f1,
a21u′

1 + a22u′
2 + b21u1 + b22u2 = f2

ui(b) = βi, i = 1, 2.
, (3)

the solution of RTVS (3) satisfies the original SPBVS (1)–(2) on most of the interval [a, b]
and away from x = a [6–8,35,36].

Further, the SPBVS (1)–(2) can be written as follows:
εy′′

1 + (a11y1)
′ + (a12y2)

′ = F(x, y1, y2),
εy′′

2 + (a21y1)
′ + (a22y2)

′ = G(x, y1, y2)
yi(a) = αi and yi(b) = βi f or i = 1, 2.

, (4)

where
F(x, y1, y2) = f1 + a′11y1 + a′12y2 − b11y1 − b12y2,

G(x, y1, y2) = f2 + a′21y1 + a′22y2 − b21y1 − b22y2.

Through the process of substitution, specifically by replacing the solutions y1 and y2
with u1 and u2, respectively, on the right-hand side of Equation (4), an asymptotically
equivalent approximation is obtained. This substitution technique has been discussed and
referenced in previous works [5,10,12–15,35,36].

εy′′
1 + (a11y1)

′ + (a12y2)
′ = F(x, u1, u2) + O(ε),

εy′′
2 + (a21y1)

′ + (a22y2)
′ = G(x, u1, u2) + O(ε),

yi(a) = αi and yi(b) = βi, i = 1, 2.
(5)

By utilizing the RTVS (3), the SPBVS (5) can be reformulated as follows:
εy′′

1 + (a11y1)
′ + (a12y2)

′ = (a11u1)
′ + (a12u2)

′ + O(ε),
εy′′

2 + (a21y1)
′ + (a22y2)

′ = (a21u1)
′ + (a22u2)

′ + O(ε)
yi(a) = αi and yi(b) = βi, i = 1, 2.

, (6)

By integrating (6) from b to x, we obtain the following singularly perturbed initial
value system: 

εy′1 + a11(y1 − u1) + a12(y 2 − u2
)
= O(ε) + K1,

εy′2 + a21(y 1 − u1)+a22(y 2 − u2) = O(ε) + K2,
yi(a) = αi, i = 1, 2 ,

(7)

where Ki, i = 1, 2 are constants of the integration and

Ki = −
(
εy′i(b) + ai1(y1(b)− u1(b)) + ai2(y 2(b)− u2(b))

)
, i = 1, 2., i.e.,

Ki = εy′i(b) = O(ε) [10,12–15,35,36].

Now, let yi(x)= ui(x)+vi(t) + O(ε), i = 1, 2, where t = (x − a)/ε [10,13,15,35,36];
then, the SPBVS (7) results in the following linear layer correction problem:

.
v1 + a11(a)v1(t) + a12(a)v2(t) = O(ε),
.
v2 + a21(a)v1(t) + a22(a)v2(t) = O(ε),
vi(a) = αi − ui(a), i = 1, 2.

(8)
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with the asymptotic approximate solution given by
v1(t) =

(
e(

1
2)t

√
φ(δ

√
φ−γ1)+(δ

√
φ+γ1)e−(12)t

√
φ

)
e−(12)t(a11(a)−a22(a))

2
√

φ + O(ε),

v2(t) =

(
e(

1
2)t

√
φ(µ

√
φ+γ2)+(µ

√
φ−γ2)e−(12)t

√
φ

)
e−(12)t(a11(a)−a22(a))

2
√

φ + O(ε).

(9)

where δ = α1 −u1(a), µ = α2 −u2(a), φ = a11(a)2 − 2a22(a)a11(a)+ a22(a)2 + 4a12(a)a21(a),
γ1 = (a11(a)− a22(a))δ + 2a12(a)µ and γ2 = (a11(a)− a22(a))µ − 2a21(a)δ.

Thus, we have yi(x) = yi,as(x) + O(ε), where yi,as(x) = ui(x)+vi(t), i = 1, 2.
From the above steps, we have proved the following theorem.

Theorem 1. The solution
→
y (x) = ( y1(x), y2(x))T of (1) has a zero-order asymptotic approxima-

tion
→
y as(x) = ( y1,as(x), y2,as(x))T , where

y1,as(x) = u1(x) +

(
e(

x−a
2ε )

√
φ(δ

√
φ−γ1)+(δ

√
φ+γ1)e(

a−x
2ε )

√
φ
)

e(
a−x
2ε )(a11(a)−a22(a))

2
√

φ ,

y2,as(x) = u2(x) +

(
e(

x−a
2ε )

√
φ(µ

√
φ+γ2)+(µ

√
φ−γ2)e(

a−x
2ε )

√
φ
)

e(
a−x
2ε )(a11(a)−a22(a))

2
√

φ ,

(10)

and ∥∥∥→
y (x)− →

y as(x)
∥∥∥ ≤ C1 ε.

Now, to obtain an approximate analytical solution of the SPBVS (1)–(2), we only need
to obtain an approximate analytical solution of the RTVS (3).

2.2. RPSM for the RTVS (3)

In this subsection, the RPSM is introduced for solving the RTVS (3). The RPSM consists
of expressing the solution of the RTVS (3) as a power series expansion about the terminal
point x = b [49,55]. To achieve our goal, we suppose that the solution of the RTVS (3) takes
the following form:

ui(x) = ∑∞
n=0 ci,n(x − b)n, i = 1, 2. (11)

and can be approximated using the following kth truncated series.

uk
i (x) = ∑k

n=0 ci,n(x − b)n, i = 1, 2. (12)

Applying the RPSM to the RTVS (3) leads to the following definitions of the kth-residual
functions and the ∞th-residual functions, respectively, as proposed by [49,51,53,55]:

→
Res

k

x = A
d

dx
→
u + B

→
u −

→
f , (13)

where
→

Res
k

x = (
Resk

1(x)
Resk

2(x)
),

→
u = (u1(x)

u2(x)), A = (a11 a12
a21 a22

), B = (b11 b12
b21 b22

) and
→
f = ( f1

f2
).

→
Res

∞

x = lim
k→∞

→
Res

k

x= A
d

dx
→
u + B

→
u −

→
f . (14)

It is easy to see that
→

Res
∞

x = 0 for each x ∈ [a, b] are infinitely differentiable functions
at x = b. Moreover,

dm

dxm
→

Res
k

b
=

dm

dxm
→

Res
∞

b
, m = 1, 2, .., k, (15)

which is a basic rule in the RPSM.
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By using (15), the unknown coefficients ci,n, i = 1, 2, and n = 0...k are determined and
the approximate series solution (12) is obtained [49–55].

3. Improved RPSM

To enhance the accuracy and expand the convergence region of the series solution
obtained from the RPSM, we recommend employing the Laplace–Padé combination ap-
proach for the truncated series solution of the RPSM (12). We assume that the solution of
the RTVS (3) and its corresponding series expansion (12) satisfy the conditions of Laplace
transformability and a Padé approximant [42,52,56–60].

3.1. Padé Approximant at x = b

Padé approximants are the best rational approximations of power series [57–60]. The
truncated power series solution uk

i (x) defined by (12) can by approximated through Padé
approximation as follows [37,56–60]:

Let the rational approximation of uk
i (x) be the quotient of two polynomials pi,l(x) and

qi,m(x) of degrees l and m, respectively, as defined by

ul,m
i (x) =

Pi,l(x)
Qi,m(x)

, i = 1, 2 and l + m ≤ k, (16)

where

Pi,l(x) = ∑l
r=0 pi,r(x − b)r, Qi,m(x) = ∑m

r=0 qi,r(x − b)r, qi,0 = 1, i = 1, 2. (17)

The polynomials in (17) are constructed so that ui(x) and ul,m
i (x) agree at x = b and

their derivatives up to l + m ≤ k. Consequently, the subsequent expression

ui(x)−
Pi,l(x)

Qi,m(x)
= O

(
(x − b)l+m+1

)
, (18)

determines the coefficients of Pi,l(x) and Qi,m(x) [37,56–60]. Multiplying (18) by Qi,m(x)
results in(

∑∞
r=0 ci,r(x − b)n

)(
∑m

r=0 qi,r(x − b)r
)
−

(
∑l

j=0 pi,j(x − b)j
)
= ∑∞

r=l+m+1 ci,r(x − b)r, i = 1, 2. (19)

When the left side of (19) is multiplied out and the coefficients of the powers of (x − b)r

are set equal to zero for r = 0, 1, . . . , l + m, the result is a system of 2(l + m + 1) linear
equations in the 2(l + m + 1) unknown coefficients of Pi,l(x) and Qi,m(x). By solving this
linear system, we obtain the rational approximation ul,m

i (x).
Although Padé approximation ul,m

i (x) agree with truncated Taylor expansions ul+m
i (x)

up to order O(l + m), Padé approximation can outperform truncated Taylor expansion
because it can accurately represent functions with poles or singularities outside the region
of convergence of a Taylor expansion, resulting in more accurate approximation and a
larger convergence region [42,52,56–60].

3.2. Laplace–Padé Algorithm

The Laplace–Padé
[

l
m

]
algorithm can be described as follows:

Step 1. Begin by replacing x − b with t in the power series (12) and then apply Laplace
transformation, resulting in a transformed series Ui(s), i = 1, 2.
Step 2. Substitute s with 1/τ in the transformed series Ui(s).
Step 3. Convert the resulting series into a Padé approximant ul,m

i (τ).
Step 4. Replace τ with 1/s in ul,m

i (τ).
Step 5. Lastly, apply the inverse Laplace transform and replace t with x − b to obtain the
approximate augmented solution ui,ap(x), i = 1, 2.
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Finally, the approximate analytical solution of the SPBVS (1)–(2) can be expressed by

y1,ap(x) = u1,ap(x) +

(
e(

x−a
2ε )

√
φ(δ

√
φ−γ1)+(δ

√
φ+γ1)e

a−x
2ε

√
φ
)

e
a−x
2ε (a11(a)−a22(a))

2
√

φ ,

y2,ap(x) = u2,ap +

(
e(

x−a
2ε )

√
φ(µ

√
φ+γ2)+(µ

√
φ−γ2)e

a−x
2ε

√
φ
)

e
a−x
2ε (a11(a)−a22(a))

2
√

φ .

(20)

3.3. Error Estimate of the Method

The numerical error of the present method has two sources: one from the asymptotic
approximation and the other from the analytical approximation by the IRPSM.

Theorem 2. The solution
→
y (x) = ( y1(x), y2(x))T of (1) and the approximate analytical solu-

tion
→
y ap(x) =

(
y1,ap(x), y2,ap(x)

)Tin (20) satisfy the inequality.

∥∥∥ →
y (x)− →

y ap(x)
∥∥∥ ≤ C

(
ε +

1
(l + m + 1)!

)
. (21)

Proof. We have∥∥∥ →
y (x)− →

y ap(x)
∥∥∥ ≤

∥∥∥ →
y (x)− →

y as(x)
∥∥∥+ ∥∥∥ →

y as(x)− →
y ap(x)

∥∥∥,

and ∥∥∥ →
y as(x)− →

y ap(x)
∥∥∥ ≤

∥∥∥ →
u (x)−→

u ap(x)
∥∥∥ ≤

∥∥∥∥ →
u (x)−→

u
l,m

(x)
∥∥∥∥,

≤
∥∥∥∥ →

u (x)−→
u

l,m
(x)

∥∥∥∥,

where
→
u ap(x) =

(
u1,ap(x), u2,ap(x)

)T and
→
u

l,m
(x) =

(
ul,m

1 (x), ul,m
2 (x)

)T
.

And since Padé approximant
→
u

l,m
(x) has a bounded error given by [57–60]∥∥∥∥ →

u (x)−→
u

l,m
(x)

∥∥∥∥ ≤ T
(l + m + 1)!

, T ≤
∥∥∥ u(l+m+1)(π)

∥∥∥, 0 ≤ π ≤ 1 ,

then, from Theorem 1 and the above bounded errors, we have∥∥∥ →
y (x)− →

y ap(x)
∥∥∥ ≤ C

(
ε +

1
(l + m + 1)!

)
.

It is worth highlighting that the IRPSM often provides the exact solution for the RTVS
(3) and eliminates the second term in the error inequality (21). Conversely, when the
asymptotic boundary layer solution (9) accurately represents the boundary layer solution
of the original SPBVS (1)–(2), the first term in the error inequality (21) is eliminated. In such
a case, the remaining error becomes independent of the perturbation parameter ε and is
solely determined by the methods used to solve the RTVS (3). □

4. Numerical Results

This section provides illustrative examples that demonstrate the method’s accuracy
and efficiency in solving the considered problems. The selected examples have been
carefully chosen from the literature and have known exact solutions, allowing for a compre-
hensive comparison. They include both two- and three-dimensional linear examples with
constant or variable coefficients. Furthermore, these examples involve non-homogeneous
source terms that can be constant, exponential or trigonometric in nature. Additionally,
we have considered examples with both Dirichlet and Robin boundary conditions, and
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we have included cases with known or unknown exact solutions. These selections aim to
facilitate a thorough analysis of the proposed method and provide a comprehensive under-
standing of its applicability and effectiveness. Throughout this section, we will refer to the
combination of the asymptotic approximation and RPSM as A-RPSM, and the combination
of the asymptotic approximation and IRPSM as A-IRPSM. All symbolic calculations were
conducted using MAPLE 14, while numerical simulations were performed using MATLAB
2017b.

Example 1. Consider the following SPBVS [24,32]{
εy′′

1(x) + y′1(x)− 2y1(x) + y2(x) = f1(x) ,
εy′′

2(x) + 2y′2(x) + y1(x)− 4y2(x) = f2(x) ,
(22)

with Dirichlet boundary conditions

y1(0) = y1(1) = y2(0) = y2(1) = 0,

and where f1(x) and f2(x) are given by

f1(x) =
4e−

x
ε − sin

(
πx
2
)
π2ε2

(
1 − e−

1
ε

)
2ε
(
−1 + e−

1
ε

) +
2e−

x
ε

ε
(

1 − e−
1
ε

) − πcos
(πx

2

)
+

4 − 4e−
x
ε

−1 + e−
1
ε

+ 4sin
(πx

2

)
+

1 − e−
2x
ε

1 − e−
2
ε

− xex−1,

f2(x) =
−4e−

2x
ε − ex−1ε2

(
1 − e−

2
ε

)
(x + 2)

ε
(

1 − e−
2
ε

) +
4e−

2x
ε

ε
(

1 − e−
2
ε

) + 2(x − 1)ex−1 +
2 − 2e−

x
ε

1 − e−
1
ε

− 2sin
(πx

2

)
+

4 − 4e−
2x
ε

−1 + e−
2
ε

.

The exact solution to SPBVS (22) is given by

y1(x) = 2
(

1−e−x/ε

1−e−1/ε − sin
(

πx
2
))

,

y2(x) = 1−e−2x/ε

1−e−2/ε − xex−1 .

The RTVS of (22) is given by

u′
1(x)− 2u1(x) + u2(x) = 4sin

(
πx
2
)
− πcos

(
πx
2
)
− 3 − xex−1 ,

2u′
2(x) + u1(x)− 4u2(x) = 2(x − 1)ex−1 − 2sin

(
πx
2
)
− 2 .

u1(1) = u2(1) = 0 .
(23)

When applying the RPSM with the 10th order to the RTVS (23), the result series solution is
given by

u10
1 = 1

4 π2(x − 1)2 − 1
192 π4(x − 1)4 + 1

23040 π6(x − 1)6 − 1244
676631 (x − 1)8 ++ 139

2757713 (x − 1)10

+O
(
(x − 1)11

)
,

u10
2 = −2(x − 1)− 3

2 (x − 1)2 − 2
3 (x − 1)3 − 5

24 (x − 1)4 − 1
20 (x − 1)5 − 7

720 (x − 1)6−
− 1

630 (x − 1)7 − 1
4480 (x − 1)8 − 1

36288 (x − 1)9 − 11
3628800 (x − 1)10 + O

(
(x − 1)11

)
.

(24)

When applying the Laplace–Padé [5/5] algorithm to (24), this results in

u1,ap = 250000000000001
125000000000000 − 7

22637359266701 cos
(

37404834
24569305 x − 37404834

24569305

)
− 6644518272423

3322259136212 cos
(

75297710
47936011 x − 75297710

47936011

)
,

u2,ap = 1 − xex−1 .

(25)
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Thus, we have an approximate analytical solution to the SPBVS (22), given by

y1,ap = 250000000000001
125000000000000 − 7

22637359266701 cos
(

37404834
24569305 x − 37404834

24569305

)
− 6644518272423

3322259136212 cos
(

75297710
47936011 x − 75297710

47936011

)
− 2e−

x
ε ,

y2,ap = 1 − xex−1 − e−
2x
ε .

(26)

To portray the solution behavior inside the boundary layer, Figure 1 presents the
profiles of the exact solution (solid line) and the approximate solution (dotted marked line)
in Example 1 over (left) the problem domain [0, 1] and (right) a boundary layer region
for different values of ε. This shows that the solution exhibits a high gradient within the
boundary layer, which poses a challenge for classical numerical methods to accurately
capture without special treatment.
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Figure 1. Exact solution (solid line) and approximate solution (dotted marked line) profiles of
Example 1 at different values of ε: (left) global region, (right) boundary region.

Figure 2 illustrates the distribution of the maximum pointwise error, denoted as

∥ . ∥∞ = Error( xω) =
∥∥∥ →

y (xω)−
→
y ap(xω)

∥∥∥
∞

, xω ∈ [a, b], ω = 0 : K, where K represents
a suitable number of grid points chosen for the purpose of comparison. The error is
computed for the approximate solution (26) at various values of ε. The results depicted
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in Figure 2 demonstrate that as the perturbation parameter decreases, the accuracy of the
approximate solution improves. Indeed, our results indicate that for ε ≤ 2−5, the maximum
error in the approximate solution remains in the order O

(
10−15).
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Table 1 presents the maximum error, denoted as Emax = ∥ Error( xω) ∥∞, for both
the A-RPSM and A-IRPSM in solving Example 1 at different values of ε and for k = 10,
while Table 2 presents the maximum error at ε = 10−9 and for different values of k. The
results from both tables confirm that as ε decreases, the accuracy of both methods increases,
particularly when the first error term in (21) dominates due to larger ε values. Furthermore,
the numerical results support the notion that increasing the number of series terms k
improves the accuracy of both methods, especially when the first error term is negligible,
due to smaller ε values, and the second error term becomes dominant, highlighting a
significant difference in accuracy between the RPSM and IRPSM, especially with increasing
k. The results in Tables 1 and 2 confirm that the A-IRPSM exhibits higher accuracy and
demonstrates greater improvement in accuracy when compared to the A-RPSM.

Table 1. Numerical results with A-RPSM and A-IRPSM for Example 1 at k = 10.

ε
Emax

A-RPSM A-IRPSM

2−1 2.6885 × 10−1 2.6885 × 10−1

2−2 3.6571 × 10−2 3.6571 × 10−2

2−3 6.7088 × 10−4 6.7088 × 10−4

2−4 9.3072 × 10−7 2.2507 × 10−7

2−5 9.3072 × 10−7 2.5616 × 10−14

2−6 9.3072 × 10−7 3.5206 × 10−15

2−10 9.3072 × 10−7 3.5250 × 10−15

2−20 9.3072 × 10−7 3.5527 × 10−15
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Table 2. Numerical results with A-RPSM and A-IRPSM for Example 1 at ε = 10−9.

k
Emax

A-RPSM A-IRPSM

4 4.1665 × 10−2 5.2873 × 10−3

6 1.3888 × 10−3 1.1470 × 10−11

8 4.9468 × 10−5 3.5198 × 10−15

10 9.3555 × 10−7 3.5198 × 10−15

12 1.2641 × 10−8 3.5198 × 10−15

14 1.1470 × 10−11 3.5198 × 10−15

16 1.0518 × 10−12 3.5198 × 10−15

Table 3 provides a comparison of the maximum error results for the A-RPSM,
A-IRPSM and two other methods, namely a parameter-uniform finite difference method [32]
and a spectral collocation method [24]. The comparison is conducted for the numerical
results obtained in [24,32] at ε = 10−8 and various numbers of grid points N, and the
results of the A-RPSM and A-IRPSM at k = 10. The results in Table 3 confirm that the
A-IRPSM achieves significantly higher accuracy compared to the results of the A-RPSM
and those presented in [24,32], even for the large number of grid points employed in [24,32]
for accuracy improvement. This demonstrates the efficiency of the A-IRPSM in achieving
accurate results with reduced computational effort.

Table 3. Maximum error Emax in [24,32] and with A-RPSM and A-IRPSM for Example 1.

N Uniform Finite
Difference [32]

Collocation
Method [24] A-RPSM A-IRPSM

128 9.49 × 10−2 1.85 × 10−3

9.31 × 10−7 3.5198 × 10−15256 5.76 × 10−2 2.40 × 10−6

512 3.35 × 10−2 5.47 × 10−9

1024 1.90 × 10−2 5.41 × 10−9

Example 2. Consider the following SPBVS [13]{
εy′′

1(x) + y′1(x)− 3y1(x) + y2(x) = −2 ,
εy′′

2(x) + y′2(x) + y1(x)− 3y2(x) = −3 .
(27)

with boundary conditions

y1(0) = y1(1) = y2(0) = y2(1) = 0

whose exact solution is given by

y1(x) =
9
8
+

5
4

[
em2 − 1

em1 − em2

]
em1x +

5
4

[
1 − em1

em1 − em2

]
em2x − 1

8

[
em4 − 1

em3 − em4

]
em3x − 1

8

[
1 − em3

em3 − em4

]
em4x,

and

y2(x) =
11
8

+
5
4

[
em2 − 1

em1 − em2

]
em1x +

5
4

[
1 − em1

em1 − em2

]
em2x − 1

8

[
em4 − 1

em3 − em4

]
em3x − 1

8

[
1 − em3

em3 − em4

]
em4x .

where

m1 = (−1 +
√

1 + 8ε)/2ε, m2 = (−1 −
√

1 + 8ε)/2ε, m3 = (−1 +
√

1 + 16ε)/2ε, m4 = (−1 −
√

1 + 8ε)/2ε .
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The RTVS of (27) is given by
u′

1(x)− 3u1(x) + u2(x) = −2 ,
u′

2(x) + u1(x)− 3u2(x) = −3 ,
u1(1) = u2(1) = 0 .

(28)

When applying the RPSM with the 10th order to the RTVS (28), the result series solution is
given by

u10
1 = −2(x − 1)− 3

2 (x − 1)2 − 1
3 (x − 1)3 + 1

2 (x − 1)4 + 11
15 (x − 1)5 + 3

5 (x − 1)6

+ 118
315 (x − 1)7 + 41

210 (x − 1)8 + 251
2835 (x − 1)9 + 169

4725 (x − 1)10 + O
(
(x − 1)11

)
,

u10
2 = −3(x − 1)− 7

2 (x − 1)2 − 3(x − 1)3 − 13
6 (x − 1)4 − 7

5 (x − 1)5 − 37
45 (x − 1)6

− 46
105 (x − 1)7 − 19

90 (x − 1)8 − 29
315 (x − 1)9 − 517

14175 (x − 1)10 + O
(
(x − 1)11

)
.

(29)

Applying the Laplace–Padé [5/5] algorithm to (29) results in{
u1,ap = 1

8 e4x−4 − 5
4 e2x−2 + 9

8 ,
u2,ap = − 5

4 e2x−2 − 1
8 e4x−4 + 11

8 .
(30)

Thus, we have an approximate analytical solution of the SPBVS (27), given by y1,ap = 1
8 e4x−4 − 5

4 e2x−2 + 9
8 +

(
− 1

8 e−4 + 5
4 e−2 − 9

8

)
e−

x
ε ,

y2,ap = − 5
4 e2x−2 − 1

8 e4x−4 + 11
8 +

(
1
8 e−4 + 5

4 e−2 − 11
8

)
e−

x
ε .

(31)

Figure 3 presents the profiles of the exact solution (solid line) and the approximate
solution (dotted marked line) in Example 2 over (left) the problem domain [0, 1] and (right)
a boundary layer region for different values of ε. Figure 4 illustrates the distribution of the
maximum pointwise error for the approximate solution (31) at various values of ε.
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The results in Figure 4 and Table 4 show that as the perturbation parameter decreases,
the A-RPSM, A-IRPSM and the initial value method [13] exhibit an increase in accuracy.
Furthermore, the accuracy of the A-IRPSM shows a greater improvement compared to the
A-RPSM and the method in [13]. Indeed, similar results were obtained when comparing
our results with the results presented in [13] for the remaining examples in that study.

The results in Table 5 validate that increasing the value of k leads to improved accu-
racy for both methods, with the A-IRPSM outperforming the A-RPSM in terms of higher
accuracy and demonstrating a greater improvement in accuracy.

The present method can be extended to problems with specific Robin boundary
conditions of the form yi(a) + ε ∝i y′ i(a) = αi, yi(a) + εϑiy′ i(a) = αi, i = 1, 2, where ∝i and
ϑi are constants. To illustrate this, let us consider the following example.
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Table 4. Maximum error, Emax, in [13] and with A-RPSM and A-IRPSM for Example 2.

ε Initial Value Method [13] A-RPSM A-IRPSM

2−1 2.5466 × 10−1 1.4192 × 10−1 1.6288 × 10−1

2−3 9.8552 × 10−2 8.9335 × 10−2 8.9453 × 10−2

2−5 3.0295 × 10−2 3.0222 × 10−2 3.0261 × 10−2

2−7 8.1371 × 10−3 1.1951 × 10−2 8.1045 × 10−3

2−9 2.0972 × 10−3 1.0026 × 10−2 2.0647 × 10−3

2−11 5.5161 × 10−4 9.9961 × 10−3 5.1865 × 10−4

2−13 1.6232 × 10−4 9.9152 × 10−3 1.2982 × 10−4

2−15 6.4966 × 10−5 9.8703 × 10−3 3.2465 × 10−5

2−17 4.0617 × 10−5 9.8591 × 10−3 8.1169 × 10−6

2−19 3.4529 × 10−5 9.8563 × 10−3 2.0293 × 10−6

2−21 3.3007 × 10−5 9.8554 × 10−3 5.0732 × 10−7

2−23 3.2625 × 10−5 9.8554 × 10−3 1.2683 × 10−7

Table 5. Numerical results with A-RPSM and A-IRPSM for Example 2 at ε = 10−9.

k
Emax

A-RPSM A-IRPSM

4 8.7015 × 10−1 1.1797 × 10−1

6 2.9240 × 10−1 5.6345 × 10−10

8 6.5438 × 10−2 5.6345 × 10−10

10 9.8533 × 10−3 5.6345 × 10−10

12 1.0447 × 10−3 5.6345 × 10−10

14 8.1210 × 10−5 5.6345 × 10−10

16 4.4168 × 10−6 5.6345 × 10−10

Example 3. Consider the following SPBVS [28]{
εy′′

1(x) + (2x + 1)y′1(x)− x2y′2(x) + 2y1(x)− 2xy2(x) = f1(x) ,
εy′′

2(x)− x2y′1(x) + y′2(x)− 2xy1(x) = f2(x) ,
(32)

with Robin boundary conditions

y1(0) + εy′1(0) = 1, y1(1) + εy′1(1) = 2 + 2ε ,
y2(0) + εy′2(0) = 2, y2(1) + εy′2(1) = 4 + 3ε − ε cos(1)− sin(1) ,

and where f1(x) and f2(x) are given by

f1(x) = ((−2+4x)ε+2x−2x2)e−
x
ε

ε + 2ε+ 2 − 4x3 + x2(3 + cos(x)) + 2x(sin(x)− 1),

f2(x) = − x(x−2ε)e−
x
ε

ε + 2ε+ εsin(x)− 4x3 + 1 − cos(x).

The exact solution of the SPBVS (32) is given by

y1(x) = 1 + x2 − e−
x
ε ,

y2(x) = 2 + x(1 + x)− sin x − 2e−
x
ε .

(33)

The RTVS of (32) is given by
(2x + 1)u′

1(x)− x2u′
2(x) + 2u1(x)− 2xu2(x) = 2 − 2x
+3x2 − 4x3 + x2 cos(x) + 2xsin(x) ,

−x2u′
1(x) + u′

2(x)− 2xu1(x) = 1 − 4x3 − cos(x) ,
u1(1) = 2, u2(1) = 4 − sin(1) .

(34)
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Applying the RPSM with the 10th order to the RTVS (34) results in

u10
1 = x2 + 1 ,

u10
2 = 61067

19334 + 79249
32219 (x − 1) + 38904

27383 (x − 1)2 + 8704
96657 (x − 1)3 − 4236

120817 (x − 1)4

− 2176
483285 (x − 1)5 ++ 706

604085 (x − 1)6 + 1070
9981079 (x − 1)7 − 375

17968534 (x − 1)8

− 130
87311121 (x − 1)9 + 25

107811204 (x − 1)10 + O
(
(x − 1)11

)
.

(35)

Applying the Laplace–Padé [5/5] algorithm to (35) results in{
u1,ap = x2 + 1 ,

u2,ap = 2 + x(1 + x)− 2069535434
2459425781 cos(x − 1)− 1114525615

2062781526 sin(x − 1) .

Thus, we have an approximate analytical solution to the SPBVS (32), given by{
y1,ap = 1 + x2 − e−

x
ε ,

y2,ap = 2 + x(1 + x)− 2069535434
2459425781 cos(x − 1)− 1114525615

2062781526 sin(x − 1)− 2e−
x
ε .

(36)

Figure 5 presents the profiles of the exact solution (solid line) and the approximate
solution (dotted marked line) in Example 3 over (left) the problem domain [0, 1] and
(right) a boundary layer region for different values of ε. Figure 6 illustrates the maximum
pointwise error of the solution (36) across different values of ε. Moreover, Table 6 presents
the maximum error in Example 3 with the A-RPSM and A-IRPSM for different values of
ε and at k = 10. As mentioned in Section 3.3, and from (33) and (36), we note that the
asymptotic approximation yields the exact solution of the boundary layer of problem (32).
Consequently, the remaining error is unaffected by the perturbation parameter and is solely
determined by the method employed to solve the RTVS.
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Table 6. Maximum error, Emax, with A-RPSM and A-IRPSM for Example 3.

ε A-RPSM A-IRPSM

2−1 1.6845 × 10−8 6.6657 × 10−15

2−5 1.6845 × 10−8 6.6613 × 10−15

2−10 1.6845 × 10−8 6.6613 × 10−15

2−20 1.6845 × 10−8 8.8818 × 10−15

Notably, the maximum pointwise error in the approximate solution (36) remains in
the order of O(10−15) even at ε = 1. Therefore, the obtained approximate solution serves
as an exceptional representation of the exact solution.

The maximum error of the A-RPSM and A-IRPSM in solving Example 3 for different
values of k and at ε = 10−9 is presented in Table 7. The results in Table 7 corroborate the
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results from Tables 2 and 5, confirming that increasing the value of k leads to enhanced ac-
curacy for both methods. Additionally, the results validate that the A-IRPSM demonstrates
a greater improvement in accuracy compared to the A-RPSM.

Table 7. Numerical results with A-RPSM and A-IRPSM for Example 3 at ε = 10−9.

k
Emax

A-RPSM A-IRPSM

4 5.5445 × 10−3 9.9663 × 10−3

6 1.2636 × 10−4 1.3804 × 10−4

8 1.7054 × 10−6 9.7456 × 10−6

10 1.5194 × 10−8 2.0000 × 10−14

12 9.5953 × 10−11 6.0000 × 10−14

14 4.5167 × 10−13 3.0000 × 10−14

16 1.6454 × 10−15 2.9952 × 10−15

Example 4. Consider the following SPBVS [34]{
εy′′

1(x) + y′1(x)− 2y1(x) + y2(x) = −ex

εy′′
2(x) + 2y′2(x) + y1(x)− 4y2(x) = − cos x

, (37)

with boundary conditions

y1(0) = y1(1) = y2(0) = y2(1) = 0

The exact solution of the SPBVS (37) is not unavailable.
The RTVS of (37) is given by

u′
1(x)− 2u1(x) + u2(x) = −ex ,

2u′
2(x) + u′

1(x)− 4u2(x) = −cos(x),
u1(1) = 0, u2(1) = 0 .

(38)

Applying the RPSM with the 10th order to the RTVS (38) results in
u10

1 = − 49171
18089 x + 49171

18089 − 44174
11205 (x − 1)2 − 63719

19380 (x − 1)3 − 38383
18852 (x − 1)4 − 104319

101549 (x − 1)5 − 20601
46486 (x − 1)6

− 17861
106840 (x − 1)7 − 5217

93446 (x − 1)8 − 4063
243619 (x − 1)9 − 1720

382297 (x − 1)10 + O(x − 1)11 ,
u10

2 = − 8704
32219 x + 8704

32219
55241
89129 (x − 1)2 + 24913

22338 (x − 1)3 + 29383
30894 (x − 1)4 + 28998

49843 (x − 1)5 + 8047
28727 (x − 1)6

+ 10245
91684 (x − 1)7 + 9991

260361 (x − 1)8 + 2162
185925 (x − 1)9 + 1211

383268 (x − 1)10 + O(x − 1)11 .

(39)

Applying the Laplace–Padé [5/5] algorithm to (39) results in
u1,ap =

(
− 9473

209200 cos
(

126896
126897 x − 126896

126897

)
− 5831

60839 sin
(

126896
126897 x − 126896

126897

))
e−

77
27226394 x+ 77

27226394

− 15571
3369 e

24760
19151 x− 24760

19151 − 21873
28414 e

66205
24456 x− 66205

24456 + 28359
5216 e

86476
86475 x− 86476

86475 ,
u2,ap =

(
12563

2382837 cos
( 3278689

3278688 x − 3278689
3278688

)
− 22754

96023 sin
( 3278689

3278688 x − 3278689
3278688

))
e

16
48992101 x− 16

48992101

+ 5974
10975 e

99229
36655 x− 99229

36655 − 242455
74193 e

16699
12916 x− 16699

12916 + 45613
16780 e

1795333
1795332 x− 1795333

1795332 .

(40)

Thus, we have an approximate analytical solution to the SPBVS (37), given by
y1,ap =

(
− 9473

209200 cos
(

126896
126897 x − 126896

126897

)
− 5831

60839 sin
(

126896
126897 x − 126896

126897

))
e−

77
27226394 x+ 77

27226394

− 15571
3369 e

24760
19151 x− 24760

19151 − 21873
28414 e

66205
24456 x− 66205

24456 + 28359
5216 e

86476
86475 x− 86476

86475 − 7363274623
10000000000 e−

x
ε ,

y2,ap =
(

12563
2382837 cos

( 3278689
3278688 x − 3278689

3278688
)
− 22754

96023 sin
( 3278689

3278688 x − 3278689
3278688

))
e

16
48992101 x− 16

48992101

+ 5974
10975 e

99229
36655 x− 99229

36655 − 242455
74193 e

16699
12916 x− 16699

12916 + 45613
16780 e

1795333
1795332 x− 1795333

1795332 − 683232499
2000000000 e−

2x
ε .

(41)
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Due to the unavailability of the exact solution to the SPBVS (37), we adopted the
numerical solution obtained using the bvp4c built-in function in MATLAB [63] with Abstol
and Reltol values set to 10−10 as our reference solution for this test problem. To handle the
challenges posed by steep gradients in the SPBVS, we augmented the bvp4c function with a
continuation technique that allows for the solution of a BVP via a continuous transformation
from an easier problem to the desired problem [64,65].

Figure 7 presents the profiles of the reference solution (solid line) and the approximate
solution (dotted marked line) in Example 4 over (left) the problem domain [0, 1] and (right)
a boundary layer region for different values of ε. Figure 8 illustrates the distribution of the
maximum pointwise error for the approximate solution (41) at various values of ε.
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merical solution obtained using the bvp4c built-in function in MATLAB [63] with Abstol 
and Reltol values set to 10  as our reference solution for this test problem. To handle 
the challenges posed by steep gradients in the SPBVS, we augmented the bvp4c function 
with a continuation technique that allows for the solution of a BVP via a continuous trans-
formation from an easier problem to the desired problem [64,65]. 

Figure 7 presents the profiles of the reference solution (solid line) and the approxi-
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Figure 8. Maximum pointwise error for Example 4 with A-IRPSM at different values of ε.

The results in Table 8 corroborate the results from Tables 2, 5 and 7, confirming that
increasing the value of k leads to enhanced accuracy for both methods. Additionally,
the results validate that the A-IRPSM demonstrates a greater improvement in accuracy
compared to the A-RPSM.

Table 8. Maximum error Emax with A-RPSM and A-IRPSM for Example 4.

ε A-RPSM A-IRPSM

10−1 9.6405 × 10−2 9.6406 × 10−2

10−2 1.2536 × 10−2 1.2536 × 10−2

10−3 1.2920 × 10−3 1.2922 × 10−3

10−4 8.9957 × 10−4 1.2962 × 10−4

10−5 8.9957 × 10−4 1.2963 × 10−5

10−6 8.9957 × 10−4 1.2932 × 10−6

10−7 8.9957 × 10−4 1.2620 × 10−7

This method can be extended to higher dimensions of SPBVS, as demonstrated by the
following three-dimensional example.

Example 5. Consider the following system of the SPBVS [22,26,27]
εy′′

1(x) + 3y′1(x)− y′2(x)− y′3(x) = 4 ,
εy′′

2(x)− y′1(x) + 4y′2(x)− 2y′3(x) = −11 ,
εy′′

3(x)− y′1(x)− 2y′2(x) + 4y′3(x) = 7 ,
(42)

with boundary conditions
y1(0) = −1, y1(1) = e−1/ε − 2e−4/ε + 1 ,
y2(0) = 4 , y2(1) = e−1/ε + e−4/ε + 2e−6/ε − 2 ,
y3(0) = −1 , y3(1) = e−1/ε + e−4/ε − 2e−6/ε .

The exact solution of the SPBVS (42) is given by
y1 = x + e−x/ε − 2e−4x/ε ,
y2 = −2x + e−x/ε + e−4x/ε + 2e−6x/ε ,
y3 = x − 1 + e−x/ε + e−4x/ε − 2e−6x/ε .

(43)
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The RTVS of (42) is obtained by settingε = 0 in (42) and given by
3u′

1(x)− u′
2(x)− u′

3(x) = 4 ,
−u′

1(x) + 4u′
2(x)− 2u′

3(x) = −11 ,
−u′

1(x)− 2u′
2(x) + 4u′

3(x) = 7 ,
u1(1) = 1, u1(1) = −2, u1(1) = 0.

(44)

Applying the RPSM with the 6th order to the RTVS (44) results in
u6

1 = x ,
u6

2 = −2x ,
u6

3 = x − 1 .
(45)

And consequently, the result of the Laplace–Padé [5/5] algorithm is

u1,ap = x ,
u2,ap = −2x ,
u3,ap = x − 1 .

. (46)

Using the same procedure presented in Section 2.1, the boundary layer correction problem of
the SPBVS (42) can be easily obtained and have a similar form to that presented in Equation (8) and
for i = 1, 2, 3. The resulting boundary layer correction problem is given by

.
v1(t) + 3v1(t)− v2(t)− v3(t) = O(ε), v1(0) = −1 − u1,ap(0) ,
.
v2(t)− v1(t) + 4v2(t)− 2v3(t) = O(ε), v2(0) = 4 − u2,ap(0) ,
.
v3(t)− v1(t)− 2v2(t) + 4v3(t) = O(ε), v3(0) = −1 − u3,ap(0) ,

(47)

Problem (47) is a linear system of differential equations with constant coefficients that has an
exact solution given by 

v1(t) = e−t − 2e−4t + O(ε) ,
v2(t) = e−t + e−4t + 2e−6t + O(ε) ,
v3(t) = e−t + e−4t − 2e−6t + O(ε) .

(48)

From the reduced solution (46) and the boundary layer solution (48), after replacing t with x
ε in

(48), we have 
y1,ap = x + e−x/ε − 2e−4x/ε ,
y2,ap = −2x + e−x/ε + e−4x/ε + 2e−6x/ε ,
y3,ap = x − 1 + e−x/ε + e−4x/ε − 2e−6x/ε .

(49)

which is the exact solution (43) to the SPBVS (42).

For this example, as the solution of the RTVS (44) is a polynomial, both the A-RPSM
and A-IRPSM methods yield the exact same polynomial solution. Consequently, these
methods produce the same approximate solution (49) for the given problem (42).

Figure 9 shows the solution profile of Example 5 over (left) the problem domain [0, 1]
and (right) a boundary layer region for different values of ε.
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5. Conclusions

In this paper, an efficient method for solving strongly coupled singularly perturbed
convection–diffusion systems is presented. This method utilizes the reduced terminal
value system and the boundary layer system, which has a known exact solution, to derive
an approximate analytical solution for the original system. These systems have practical
applications, and an approximate analytical solution is needed to gain insights into their
behavior and analyze practical scenarios considering different physical parameters. The
proposed method combines the RPSM, Padé approximation and Laplace transformation,
resulting in a more accurate solution compared to traditional RPSM. The accuracy of the
method is validated through error estimates, illustrative examples and comparisons with
the existing literature. The numerical results demonstrate that decreasing the perturbation
parameter or increasing the number of considered series terms improves the accuracy of
this method, in agreement with the theoretical results presented in this paper. Further-
more, the A-IRPSM exhibits higher accuracy and greater improvement compared to the
A-RPSM and other methods discussed in the literature. This method also demonstrates
its reliability by yielding exact solutions for specific solved examples, highlighting its
accuracy and trustworthiness. Additionally, the capability of extending this method to
higher-dimensional singularly perturbed convection–diffusion systems is demonstrated
through a three-dimensional test problem. The results clearly indicate the high accuracy of
the method and its ability to provide continuous approximate or exact solutions for such
systems. Future work will focus on extending this method to nonlinear problems and other
types of singularly perturbed systems.
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