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Abstract: The labor dispute is one of the most common civil disputes. It can be resolved in the
order of the following steps, which include mediation in arbitration, arbitration award, first-instance
mediation, first-instance judgment, and second-instance judgment. The process can cease at any
step when it is successfully resolved. In recent years, due to the increasing rights awareness of
employees, the number of labor disputes has been rising annually. However, resolving labor disputes
is time-consuming and labor-intensive, which brings a heavy burden to employees and dispute
resolution institutions. Using artificial intelligence algorithms to identify and predict the critical
path of labor dispute resolution is helpful for saving resources and improving the efficiency of, and
reducing the cost of dispute resolution. In this study, a machine learning approach based on Shapley
Additive exPlanations (SHAP) and a soft voting strategy is applied to predict the critical path of labor
dispute resolution. We name our approach LDMLSV (stands for Labor Dispute Machine Learning
based on SHapley additive exPlanations and Voting). This approach employs three machine learning
models (Random Forest, Extra Trees, and CatBoost) and then integrates them using a soft voting
strategy. Additionally, SHAP is used to explain the model and analyze the feature contribution.
Based on the ranking of feature importance obtained from SHAP and an incremental feature selection
method, we obtained an optimal feature subset comprising 33 features. The LDMLSV achieves an
accuracy of 0.90 on this optimal feature subset. Therefore, the proposed approach is a highly effective
method for predicting the critical path of labor dispute resolution.

Keywords: labor dispute resolution; critical path prediction; machine learning model; SHapley
Additive exPlanations; soft voting strategy

MSC: 62H30; 94A16

1. Introduction

With the increasing awareness of labor rights among employees, the number of labor
disputes in China has been showing a year-on-year increase [1]. The large volume of
labor dispute cases imposes a heavy burden on both employees and dispute resolution
institutions. Labor disputes can be resolved through both non-litigation and litigation
methods. Specifically, employees can sequentially utilize five methods (mediation in
arbitration, arbitration awards, first-instance mediation, first-instance judgments, and
second-instance judgments) to resolve disputes until achieving a satisfactory outcome [2].
In practice, however, we do not know which critical path should be taken with the case
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in advance. Hence, this may take a lot of time and resources and can lead to protracted
legal disputes. Predicting the optimal critical path of resolving labor disputes assists
employees and dispute resolution institutions in making appropriate decisions. Hence,
it may expedite the dispute resolution process, save dispute resolution resources, and
reduce dispute-related costs, thereby alleviating the burden on both the dispute resolution
institutions and employees.

The introduction of Artificial Intelligence (AI) techniques has brought new oppor-
tunities to the legal domain. It can help legal professionals escape from repetitive tasks
(e.g., legal judgment prediction [3–5], legal question answering [6–8], and legal case re-
trieval [9–11]) and then have time to focus on more valuable things. Dispute resolution,
being a crucial component of the legal domain, has obtained considerable attention from
researchers regarding how artificial intelligence can be utilized to address issues related to
disputes, such as predicting dispute occurrences, dispute resolution methods, and dispute
resolution outcomes. Chou et al. [12] proposed an integrated method of a Support Vector
Machine, Artificial Neural Network, and decision tree C5.0 to predict the occurrence of
disputes at the initiation stage of Public–Private Partnership projects, achieving an accuracy
of 84.33%. Ayhan et al. [13] used majority voting technology to predict the occurrence of
disputes, and the accuracy rate reached 91.11%, which proved the effectiveness of machine
learning technology in the early prediction of the occurrence of disputes. Tsurel et al. [14]
used XGBoost to predict the outcome of e-commerce disputes, determining whether the
buyer or seller would prevail, which can achieve an accuracy of 86%.

In the prediction of dispute resolution methods, there have also been some research
studies conducted. Lokanan [15] used a machine learning algorithm to resolve financial
fraud disputes, treating disciplinary hearings as a binary classification problem between
settlement and contested hearings. They achieved 99% accuracy using the Gradient Boost-
ing classifier for prediction. Chou et al. [16] proposed a hybrid artificial intelligence system
that combines fuzzy logic, a fast and messy genetic algorithm, and support vector ma-
chines. This system treats project dispute resolution as a five-class classification problem,
encompassing mediation, arbitration, litigation, negotiation, and administrative appeals,
achieving an accuracy of 77.04%. Ayhan et al. [17] proposed an approach for the resolution
of construction project disputes as a six-class classification problem, with input variables
encompassing factors influencing dispute resolution. The output variables included six
dispute resolution methods: litigation, arbitration, dispute review boards, mediation, senior
executive appraisal, and negotiation. They conducted attribute reduction using the Chi-
square test and employed an ensemble classifier, achieving an accuracy of 89.44% through
ten-fold cross-validation. However, to the best of our knowledge, there is no prediction
model for labor dispute resolution methods, and the need for an AI method of predicting
labor dispute resolution is becoming increasingly apparent.

In this study, we introduce a prediction model called LDMLSV (stands for Labor
Dispute Machine Learning based on SHapley additive exPlanations and Voting). LDMLSV
focuses on utilizing machine learning algorithms to predict the critical path of resolving
labor disputes. We obtained 1255 legal documents from the court and arbitration committee
in the Yuhu district of Xiangtan city of China, which include legal documents of media-
tion in arbitration, arbitration awards, first-instance mediation, first-instance judgments,
and second-instance judgments. The resolution of labor disputes progresses sequentially
through mediation in arbitration, arbitration awards, first-instance mediation, first-instance
judgments, and second-instance judgments. The process can cease at any step when it is
successfully resolved. Consequently, this forms five paths of labor dispute resolutions of
lengths 1, 2, 3, 4, and 5. Because each stage cannot be skipped, these five paths can be
distinguished by predicting only the last step. Therefore, we can consider the predictive
problem of labor dispute resolution paths as a five-class classification problem for predict-
ing the ultimate resolution method. Firstly, we compared the classification performance of
10 machine learning algorithms under multiple sample-balancing methods. Leveraging
classifiers with an accuracy greater than 0.85, an ensemble method based on a soft voting
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strategy was used to predict the critical path for labor dispute resolution. Secondly, we ap-
plied a post hoc explanation method called SHapley Additive exPlanations (SHAP) [18,19],
and importance scores for all features were computed to reveal the decision logic behind
the model. Then, Incremental Feature Selection (IFS) [20] and Jackknife cross-validation
were employed to select optimal features. The predictive outcomes of the optimal feature
subset were compared with the original dataset on the soft voting classifier.

The main contributions of this work are listed in the following bullet points.

• This work provides a more effective and efficient way to predict the critical path of
labor dispute resolution. This prediction helps judges, lawyers, and relevant stake-
holders gain a better understanding of possible case development trends, enabling
them to make wiser decisions.

• Predicting the critical path of labor dispute resolution aids in seeking effective solu-
tions, significantly reducing both the time and costs associated with legal procedures.

• LDMLSV also aids in better resource allocation within the judicial system. It can assist
courts in managing caseloads more effectively, prioritizing cases that might have a
greater impact, thereby enhancing judicial efficiency and fairness.

• Overall, the contribution of predicting the critical path to labor dispute resolution
lies in providing a tool and method that can facilitate a more efficient and equitable
resolution of labor disputes within the judiciary, while optimizing resource utilization.

The organization of this work is as follows: Section 2 introduces the data sources,
methods of data preprocessing, model framework, and machine learning interpretation
tools. Section 3 presents the results, while Section 4 discusses these findings. Section 5
summarizes the primary discoveries of this work and outlines important directions for
future endeavors.

2. Materials and Methods
2.1. Dataset Description

The labor dispute dataset consists of 1255 legal documents from the court and arbitra-
tion committee spanning from 2014 to 2022 in the Yuhu district of Xiangtan city of China,
as illustrated in Figure 1. Among these documents, there are 93 documents of mediation
in arbitration, 72 documents of arbitration awards, 456 documents of first-instance medi-
ation, 362 documents of first-instance judgment, and 272 documents of second-instance
judgment. For each piece of data, they were assigned 57 attributes as characteristics (see
Appendix A Table A1 for details).

Mathematics 2024, 12, x FOR PEER REVIEW 3 of 18 
 

 

compared the classification performance of 10 machine learning algorithms under mul-
tiple sample-balancing methods. Leveraging classifiers with an accuracy greater than 
0.85, an ensemble method based on a soft voting strategy was used to predict the critical 
path for labor dispute resolution. Secondly, we applied a post hoc explanation method 
called SHapley Additive exPlanations (SHAP) [18,19], and importance scores for all fea-
tures were computed to reveal the decision logic behind the model. Then, Incremental 
Feature Selection (IFS) [20] and Jackknife cross-validation were employed to select opti-
mal features. The predictive outcomes of the optimal feature subset were compared with 
the original dataset on the soft voting classifier. 

The main contributions of this work are listed in the following bullet points. 
• This work provides a more effective and efficient way to predict the critical path of 

labor dispute resolution. This prediction helps judges, lawyers, and relevant stake-
holders gain a better understanding of possible case development trends, enabling 
them to make wiser decisions. 

• Predicting the critical path of labor dispute resolution aids in seeking effective solu-
tions, significantly reducing both the time and costs associated with legal proce-
dures. 

• LDMLSV also aids in better resource allocation within the judicial system. It can as-
sist courts in managing caseloads more effectively, prioritizing cases that might have 
a greater impact, thereby enhancing judicial efficiency and fairness. 

• Overall, the contribution of predicting the critical path to labor dispute resolution 
lies in providing a tool and method that can facilitate a more efficient and equitable 
resolution of labor disputes within the judiciary, while optimizing resource utiliza-
tion. 
The organization of this work is as follows: Section 2 introduces the data sources, 

methods of data preprocessing, model framework, and machine learning interpretation 
tools. Section 3 presents the results, while Section 4 discusses these findings. Section 5 
summarizes the primary discoveries of this work and outlines important directions for 
future endeavors. 

2. Materials and Methods 
2.1. Dataset Description 

The labor dispute dataset consists of 1255 legal documents from the court and arbi-
tration committee spanning from 2014 to 2022 in the Yuhu district of Xiangtan city of 
China, as illustrated in Figure 1. Among these documents, there are 93 documents of 
mediation in arbitration, 72 documents of arbitration awards, 456 documents of 
first-instance mediation, 362 documents of first-instance judgment, and 272 documents of 
second-instance judgment. For each piece of data, they were assigned 57 attributes as 
characteristics (see Appendix A Table A1 for details). 

 

Figure 1. The number distribution of five labor dispute resolutions.



Mathematics 2024, 12, 272 4 of 17

2.2. Data Preprocessing
2.2.1. Corpus Annotation

For the 1255 cases, the BRAT Rapid Annotation Tool (BRAT, version 1.3) [21] was used
to annotate all attributes. BRAT is an annotation software that supports Chinese and can be
downloaded from https://github.com/nlplab/brat/releases/tag/v1.3p1 (accessed on 12
August 2023). After annotation, attributes were transformed into numerical representations
suitable for machine learning, as described in Table A1 of Appendix A, while the five
methods of dispute resolution or the five critical paths of labor dispute resolution were
encoded as 0, 1, 2, 3, 4.

2.2.2. Feature Scaling

For each case, there are 57 attributes assigned. Compared with other attributes,
attributes like employees’ ages and lawsuit amounts exhibit significantly larger variations.
They would impact the effectiveness of model training. Normalization can help map all
data to a similar range, which is crucial for unstructured data that contain highly diverse
values. MinMaxScaler normalization has proven to be very effective for processing high-
dimensional data. MinMaxScaler is a type of normalization that scales all labor dispute
features to values between 0 and 1 through the following formula:

v′ = v − vmin

vmax − vmin
, (1)

where vmin and vmax represent the minimum and maximum value of the considered
feature, respectively.

2.2.3. Oversampling for Dataset

As can be seen from Figure 1, the labor dispute dataset is highly unbalanced, with more
than six times as many first-instance mediations as arbitration awards. To enhance predic-
tive performance and alleviate the impact of sample imbalance, we opted for the KMeansS-
MOTE [22] oversampling method to balance samples, comparing it against three other
oversampling techniques: Synthetic Minority Over-sampling Technique (SMOTE) [23],
Adaptive Synthetic Sampling (ADASYN) [24], and Support Vector Machine Synthetic
Minority Over-sampling Technique (SVMSMOTE) [25]. Figure 2 illustrates the sample dis-
tribution before and after KMeansSMOTE when selecting an automatic sampling strategy.
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2.3. Model Architecture

In this study, we apply a machine learning approach named LDMLSV, based on SHAP
and a soft voting strategy, to predict the critical path of labor dispute resolution. Figure 3
illustrates the entire workflow.
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2.3.1. Base Classifiers and Hyperparameter Tuning

Here, ten classifiers serve as base classifiers, namely: Gaussian Naive Bayes, (Gaus-
sianNB) [26], Support Vector Machine (SVM) [27], Decision tree (DT) [28], K-nearest neigh-
bors (KNN) [29], Random Forest (RF) [30], Logistic Regression (LR) [31], multilayer per-
ceptrons (MLPs) [32], Extra Trees (ET) [33], extreme gradient boosting (Xgboost) [34],
and Categorical gradient Boosting (CatBoost) [35]. Then, we randomly selected 80% of
the dataset for training and 20% for testing. Hyperparameters were selected using Grid-
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SearchCV with 10-fold cross-validation on the training set. Finally, we used the soft voting
strategy to integrate three classifiers with prediction accuracies exceeding 0.85.

2.3.2. Soft Voting Strategy

Ensemble learners utilize two or more classifiers to create a model that can provide
more accurate predictions. A voting classifier is a type of ensemble learner commonly
used for classification problems [36]. The voting classifier can employ two strategies: hard
voting and soft voting. In contrast to hard voting, soft voting predicts the output class
based on the probabilities assigned to classes by the classifiers. The soft voting strategy can
consider additional information about prediction probabilities, thereby generating more
accurate predictions. Equation (2) provides the definition:

ŷ = argmax(
1
m

m

∑
j=1

p0j,
1
m

m

∑
j=1

p1j . . .
1
m

m

∑
j=1

pij . . .
1
m

m

∑
j=1

pnj), (2)

where i is the value of class encoding, n + 1 is the number of class, m is the number of
classifiers, and pij represents the probability that the j-th classifier predicts the i-th class.
Figure 4 provides an illustration of soft voting.
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2.3.3. Explainable Artificial Intelligence Methods Based SHAP

Shapley Values [18], introduced by Shapley in 1953, are a concept from game theory
used to measure a fair distribution of rewards among a group based on players’ contribu-
tions to a particular outcome. In 2017, Lundberg and Lee [19] extended this game theory
concept into the explainable artificial intelligence and introduced SHAP. The introduction
of SHAP has been beneficial for transitioning machine learning models from black-box
models to glass-box models, enhancing their interpretability. In SHAP, the machine learning
model is viewed as the set of game rules, and the input features are considered as potential
players. The SHAP values can be calculated as follows:

ϕi = ∑
S⊆F\{xi}

|S|!(p−|S|−1)!
|p|!

[
fS∪{xi}(xS∪{xi})− fS(xS)

]
, (3)
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where F =
{

x1, x2 · · · xp
}

, p is the number of features. F\{xi} denotes the removal of xi
from F. Specifically, the marginal contribution of xi is the average value of fS∪{xi}(xS∪{xi})−
fS(xS) after iterating through S ⊆ F\{xi}.

2.3.4. The Optimal Feature Set Obtained from SHAP

An ordered feature ranking, denoted as A like Equation (4), can be obtained according
to SHAP values. The more important the feature, the smaller its corresponding index t is.

A =
{

f ′1, f ′2 · · · f ′t · · · f ′N
}

, (4)

To determine the optimal feature set in A, we construct N feature sets by incrementally
adding one feature at a time, following the Incremental Feature Selection (IFS) method
proposed by Huang et al. [20], as shown in Equation (5):

St =
{

f ′1, f ′2 · · · f ′t
}
(1 ≤ t ≤ N), (5)

For N feature sets, predictors are used in turn, and an IFS table containing the number
of features and feature performance is obtained by calculating Matthews Correlation
Coefficient (MCC) of Jackknife cross-validation. The subset corresponding to the highest
MCC is the optimal feature set we are looking for.

3. Results
3.1. Performance Evaluation Metrics

The prediction of critical paths of labor dispute resolution can be considered as a
five-class classification problem, and we evaluated the performance using four metrics:
accuracy, precision, recall, and F1-score.

Accuracy =
TP + TN

TP + FP + TN + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 − score =
2 · Precision · Recall
Precision + Recall

(9)

where TP stands for True Positives, TN stands for True Negatives, FP stands for False
Positives, and FN stands for False Negatives.

3.2. Comparison and Evaluation of Base Classifiers and Soft Voting Classifier
3.2.1. The Experimental Results of Hyperparameter Tuning

Hyperparameter optimization is a crucial step in improving model generalization,
reducing overfitting, and enhancing the classification performance. In this study, Grid-
SearchCV with 10-fold cross-validation was employed to obtain the optimal hyperparame-
ter values for the base models. Table 1 provides a list of hyperparameter tuning values for
the base classifiers when employing the KMeansSMOTE sample balancing method.
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Table 1. Best hyperparameters of base classifiers after Grid Search when selecting the KMeansSMOTE
sample balancing method.

Base Classifier Hyperparameters Search Range and Step
Count

Best Value for the
Hyperparameters

GaussianNB default

SVM
C [1, 10, 100, 1000] 1000

kernel [‘linear’, ‘rbf’] ‘rbf’
gamma (0.1, 0.9, 0.1) 0.5

DT

criterion [‘gini’, ‘entropy’] gini
max_depth (10, 100, 5) 20

min_samples_leaf (2, 11, 1) 2
min_samples_split (2, 11, 1) 5

KNN n_neighbors (3, 10, 1) 3

RF
max_depth (10, 100, 5) 15

n_estimators (10, 200, 10) 90

LR
C [10, 100, 1000] 10

penalty [‘l1’, ‘l2’] ‘l2’
l1_ratio [0.01, 0.02, 0.03] 0.01

MLPs
solver [‘lbfgs’, ‘sgd’, ‘adam’] ‘adam’

hidden_layer_sizes [(100, ), (200, )] (100, )
max_iter [300, 400, 500] 300

ET
max_depth (10, 100, 10) 30

n_estimators (10, 200, 10) 100
min_samples_leaf (1, 11, 1) 1

XGBoost
max_depth (2, 10, 1) 5

n_estimators (10,100,10) 70
learning_rate [0.1, 0.01, 0.05] 0.1

CatBoost
depth [4, 6, 10] 4

learning_rate [0.03, 0.05, 0.1] 0.03

3.2.2. Comparison between Base Classifiers and the Soft Voting Classifier

In this study, four oversampling methods were employed to balance the samples.
Evaluation of ten base classifiers was conducted using the test set, and those with an
accuracy exceeding 0.85 were selected to be integrated into a soft voting classifier, as
depicted in Table 2. Under the KMeansSMOTE oversampling method, the ensemble soft
voting classifier comprising RF, ET, and CatBoost exhibited the best predictive performance,
achieving an accuracy of 0.89. For all performance evaluation metrics, including accuracy,
precision, recall, and F1-score, the soft voting classifier based on RF, ET, and CatBoost
outperformed individual classifiers. Additionally, the soft voting classifier based on RF, ET,
and CatBoost surpassed the soft voting classifier based on RF, ET, and XGBoost, as well as
other classifier ensembles, across all evaluated performance metrics.

Since the prediction of critical paths of labor dispute resolution is a multi-classification
problem, it is crucial to avoid situations where the overall prediction is good while the
certain categories are poor. Table 3 presents the predictive results for each class. The results
indicate that the soft voting classifier exhibits similar performance across these five dispute
resolution paths, with F1-scores all surpassing 0.8. The soft voting classifier demonstrates
excellent performance in predicting the critical path of labor dispute resolution.
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Table 2. The performance of all models on the test set.

Classifiers Oversampling
Technique Accuracy Precision Recall F1-Score

GaussianNB

SMOTE 0.29 0.49 0.29 0.22
ADASYN 0.28 0.42 0.28 0.22

KMeansSMOTE 0.28 0.44 0.28 0.23
SVMSMOTE 0.38 0.54 0.38 0.34

SVM

SMOTE 0.75 0.76 0.75 0.75
ADASYN 0.69 0.70 0.69 0.69

KMeansSMOTE 0.85 0.85 0.85 0.85
SVMSMOTE 0.83 0.84 0.83 0.83

DT

SMOTE 0.69 0.70 0.69 0.69
ADASYN 0.69 0.69 0.69 0.69

KMeansSMOTE 0.80 0.81 0.80 0.80
SVMSMOTE 0.72 0.73 0.72 0.72

KNN

SMOTE 0.75 0.76 0.75 0.75
ADASYN 0.69 0.71 0.69 0.69

KMeansSMOTE 0.83 0.83 0.83 0.83
SVMSMOTE 0.77 0.77 0.77 0.77

RF

SMOTE 0.81 0.81 0.81 0.81
ADASYN 0.81 0.82 0.81 0.81

KMeansSMOTE 0.87 0.88 0.87 0.87
SVMSMOTE 0.85 0.86 0.85 0.85

LR

SMOTE 0.66 0.67 0.66 0.66
ADASYN 0.57 0.60 0.57 0.57

KMeansSMOTE 0.79 0.80 0.79 0.79
SVMSMOTE 0.73 0.74 0.73 0.73

MLPs

SMOTE 0.77 0.77 0.77 0.77
ADASYN 0.71 0.72 0.71 0.71

KMeansSMOTE 0.84 0.85 0.84 0.84
SVMSMOTE 0.83 0.83 0.83 0.83

ET

SMOTE 0.80 0.80 0.80 0.80
ADASYN 0.78 0.79 0.78 0.78

KMeansSMOTE 0.86 0.87 0.86 0.86
SVMSMOTE 0.84 0.84 0.84 0.84

XGBoost

SMOTE 0.80 0.80 0.80 0.80
ADASYN 0.74 0.75 0.74 0.74

KMeansSMOTE 0.87 0.88 0.87 0.87
SVMSMOTE 0.84 0.84 0.84 0.83

CatBoost

SMOTE 0.79 0.79 0.79 0.79
ADASYN 0.78 0.79 0.78 0.78

KMeansSMOTE 0.86 0.86 0.86 0.86
SVMSMOTE 0.84 0.84 0.84 0.84

VotingClassifier
(RF + ET +
XGBoost)

KMeansSMOTE 0.88 0.88 0.88 0.88

VotingClassifier
(RF + ET +
CatBoost)

KMeansSMOTE 0.89 0.89 0.89 0.89
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Table 3. The predictive outcomes among five dispute resolution paths.

Classifier Accuracy Class
Classification Report

Precision Recall F1-Score Support

VotingClassifier
(RF + ET +
CatBoost)

0.89

0 0.95 0.87 0.91 99
1 0.96 0.91 0.93 106
2 0.80 0.89 0.85 83
3 0.89 0.83 0.86 81
4 0.83 0.93 0.88 88

Note: Class 0: Mediation in arbitration, Class 1: Arbitration awards, Class 2: First-instance mediation, class 3:
First-instance judgments, class 4: Second-instance judgments, Support: The number of samples for each class.

Different oversampling steps can significantly impact the final classification results.
We kept classes 2, 3, and 4 fixed at the maximum class count, and then adjusted the ratios
of minority classes 0 and 1. Table 4 presents the results of the soft voting classifier for both
the unadjusted ratio and selected ratios of 0.25, 0.5, and 1. From the results, it is evident
that as the sampling ratio increases, there is an upward trend in the predictive outcomes
for the minority classes.

Table 4. Analysis of F1-score Sensitivity of KMeansSMOTE to Different Sampling Strategies.

Classifier Class
Sampling_Strategy (Ratios)

Unadjusted 0.25 0.5 0.75 1

VotingClassifier
(RF + ET +
CatBoost)

0 0.48 0.64 0.82 0.92 0.91
1 0.35 0.75 0.86 0.91 0.93
2 0.90 0.92 0.89 0.90 0.85
3 0.88 0.89 0.87 0.86 0.86
4 0.85 0.83 0.90 0.87 0.88

Note: Class 0: Mediation in arbitration, Class 1: Arbitration awards, Class 2: First-instance mediation, class 3:
First-instance judgments, class 4: Second-instance judgments, Support: The number of samples for each class.

3.3. Model Interpretation Based on SHAP

Compared to other classifiers, the soft voting classifier based on RF, ET, and CatBoost
demonstrates superior performance. In this study, SHAP is employed to interpret and ana-
lyze the predictions of these four models, thereby deducing the crucial features influencing
the models. RF, ET, and CatBoost utilize TreeExplainer for analysis, and the VotingClassifier
employs a KernelExplainer. To obtain a global importance chart of features, a summary
plot is employed to visualize features’ importance. Figure 5 illustrates the top 20 most
important features for each of these four classifiers. The features are arranged from top to
bottom, with each row representing a specific feature. For each base classifier, different
colors are used to denote the contribution of that feature to various categories. Given that
VotingClassifier is an amalgamation of individual classifiers, the overall contribution is
considered instead of categorical distinctions.
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3.4. The optimal Feature Set Based on SHAP

SHAP, in addition to explaining the model, can also be utilized for feature selection.
Appendix A Table A2 presents the SHAP results of the soft voting classifier. Based on this
importance ranking, we employed IFS to construct 57 feature subsets. Furthermore, we
conducted jackknife cross-validation on the training set and computed the MCC. Through
this calculation, we determine that the optimal feature set is the one containing the top
33 features sorted by SHAP feature importance, as shown in Figure 6. When the number of
features is 33, the highest MCC is 0.8540.
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Retraining the soft voting classifier with the optimal feature subset achieves an ac-
curacy of 0.90. From Table 5, it can be seen that the soft voting classifier performs better
on the optimal feature subset containing 33 features compared with the results on the
original dataset containing 57 features. Despite the reduction in the number of features,
the performance of the model is improved. This demonstrates that SHAP is an efficient
method for dimensionality reduction and eliminating redundancy.

Table 5. Comparison of soft voting classifiers trained on different feature dimensions.

Methods Features
Number Accuracy Precision Recall F1-score

VotingClassifier
(RF + ET + CatBoost) 57 0.89 0.89 0.89 0.89

SHAP +
VotingClassifier

(RF + ET + CatBoost)
33 0.90 0.90 0.90 0.90

3.5. Comparison with Other Methods

Research regarding the use of artificial intelligence to predict dispute resolution meth-
ods is still limited. Here, we apply two additional models, each predicting different types
of dispute resolution methods, to the problem of labor dispute resolutions and compare
their performance. Lokanan [15] utilized a Gradient Boosting classifier to predict resolution
methods for financial fraud disputes, while Ayhan et al. [17] integrated decision tree C4.5,
Naïve Bayes, and Multilayer Perceptron into a majority voting classifier to predict resolu-
tion methods for construction project disputes. We compare these two approaches with
LDMLSV on our dataset. Table 6 presents the results of the comparison. The experimental
results demonstrate that LDMLSV is better suited for our problem.
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Table 6. Comparison with previous research.

Methods Accuracy Precision Recall F1-score

Lokanan [15] 0.77 0.77 0.77 0.76
Ayhan et al. [17] 0.74 0.75 0.74 0.74
LDMLSV (ours) 0.90 0.90 0.90 0.90

4. Discussion

An increasing body of research suggests that utilizing artificial intelligence algorithms
to identify and predict critical paths in labor dispute resolutions contributes to efficiency
improvements, resource conservation, and cost reduction in this domain. This study
introduces a method combining a SHAP-based analysis and soft voting for predicting
critical paths in labor dispute resolutions. Given the highly imbalanced nature of labor
dispute samples, we opted for the KMeansSMOTE oversampling method and compared
it with SMOTE, SVMSMOTE, and ADASYN. The results indicate that, except for the
Gaussian Naive Bayes classifier, the performance of other classifiers under KMeansSMOTE
oversampling outperformed the results from the other three oversampling methods. This
can be attributed to KMeansSMOTE’s initial clustering of samples using K-means, followed
by SMOTE oversampling within each cluster. This method pays more attention to samples
near the boundaries between different classes, facilitating more accurate synthetic sample
generation while reducing noise introduction compared to other oversampling methods.

Comparing base classifiers and the soft voting classifier, RF, ET, XGBoost, and CatBoost
achieved accuracies exceeding 0.85. We integrated classifiers with accuracies above 0.85
using a soft voting strategy. A comparison was made between the soft voting classifier
integrating RF, ET, and XGBoost and the soft voting classifier integrating RF, ET, and
CatBoost, revealing superior performance in predicting critical paths in labor disputes
for the RF, ET, and CatBoost ensemble. Additionally, the ensemble of RF, ET, XGBoost,
and CatBoost using a soft voting strategy did not perform as well as the RF, ET, and
CatBoost ensemble.

SHAP, based on the Shapley values from cooperative game theory, offers more precise
and stable explanations for models by mathematically measuring the contribution of each
feature to predictions. Analyzing the results of four models—RF, ET, CatBoost, and the
soft voting classifier—provided insights into the contributions of features to the outcomes.
Across these models, No Employment Contract showed the highest contribution to out-
comes, followed by the amount of the lawsuit. Comparing the top 20 important features
across the four models revealed that 17 features were consistently present: Compensation,
Double Pay, Economic Compensation, Employee’s Age, Employment Relationship Termi-
nated, Lawsuit Amount, No Employment Contract, Overtime Pay, Sex, Salary, Signing
Employment Contract, Unemployment Insurance, Unpaid Medical Insurance Contribution,
Unpaid Pension Insurance Contribution, Unpaid Social Insurance Contribution, Unpaid
Wages, and Unpaid Maternity Insurance Contribution. The presence of these 17 features
suggests their crucial role in characterizing labor dispute cases.

SHAP not only provides a comprehensive assessment of feature importance and
explains the contributions of model features but also guides feature engineering and model
improvement. Hence, employing an incremental feature selection method based on the
SHAP importance rankings from the voting classifier, we obtained the optimal subset
containing the top 33 features. Despite reducing the features from 57 to 33, the accuracy
reached 0.90. This indicates that SHAP can identify features with minimal or negative
impact on the model, accurately eliminating those that do not contribute or may even harm
the model’s predictive capability. This enhances model simplicity and generalizability.

5. Conclusions

This paper applies an ensemble soft voting method based on RF, ET, and CatBoost for
predicting critical paths in labor dispute resolutions. Addressing sample imbalance using
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KMeansSMOTE utilizes SHAP and incremental feature selection to obtain the optimal
feature subset.

The results indicate that the predictive performance based on SHAP feature selec-
tion and the soft voting strategy outperforms individual algorithms significantly. The
ensemble model achieves an accuracy and F1-score of 0.90, demonstrating strong competi-
tiveness compared with previous proposed models. Additionally, balancing the data using
KMeansSMOTE contributed to enhancing the prediction of the model for individual classes.
SHAP’s explanation of the model also aids in understanding the underlying logic behind
the predictions. LDMLSV offers logical, reliable, and practical judgments, alleviating
pressure on judges and boosting confidence among laborers.

While the proposed model has yielded encouraging findings, its application in civil
dispute resolution requires further research. In this study, we considered only a few over-
sampling techniques. In future work, we aim to explore undersampling, as well as hybrid
sampling methods, to expand our sample set. Furthermore, the labor dispute attributes
were manually selected. Future attempts will involve utilizing natural language processing
methods for text representation, developing various types of ensemble models, among
other approaches, to further improve the model and enhance its predictive performance.
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Appendix A

Table A1. Attributes of labor disputes.

Attributes Description Attributes Description

Employee’s Age Age in years Nursing Care Expenses 1 = yes, 0 = no

Sex 0 = female,1 = male Transportation Expenses/Travel
Expenses 1 = yes, 0 = no

Salary/Wage 1 = yes, 0 = no Non_Compete Agreement Breach
Penalty 1 = yes, 0 = no

Overtime Pay 1 = yes, 0 = no Bonus 1 = yes, 0 = no
Performance Pay 1 = yes, 0 = no Termination of Employment 1 = yes, 0 = no
Annual Leave Pay 1 = yes, 0 = no Lawsuit Amount total amount
Double Pay 1 = yes, 0 = no Signing Employment Contract 1 = yes, 0 = no
Rest Day Pay 1 = yes, 0 = no No Employment Contract 1 = yes, 0 = no
Leave with Pay 1 = yes, 0 = no Nonexistent Employment Relationship 1 = yes, 0 = no
Sick Leave Pay 1 = yes, 0 = no Unpaid Wages 1 = yes, 0 = no
Social Insurance 1 = yes, 0 = no Bank Card 1 = yes, 0 = no
Pension Insurance 1 = yes, 0 = no Attendance Record 1 = yes, 0 = no
Medical Insurance 1 = yes, 0 = no Work Documents 1 = yes, 0 = no
Work Injury Insurance 1 = yes, 0 = no Social Insurance Contribution 1 = yes, 0 = no
Maternity Insurance 1 = yes, 0 = no Work Injury Insurance Contribution 1 = yes, 0 = no
Unemployment Insurance 1 = yes, 0 = no Medical Insurance Contribution 1 = yes, 0 = no
Housing Fund 1 = yes, 0 = no Pension Insurance Contribution 1 = yes, 0 = no
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Table A1. Cont.

Attributes Description Attributes Description

Confirmation of Illegal Termination 1 = yes, 0 = no Maternity Insurance Contribution 1 = yes, 0 = no

Confirmation of Termination 1 = yes, 0 = no Unemployment Insurance
Non_Contribution 1 = yes, 0 = no

Confirmation of Employment 1 = yes, 0 = no Unpaid Medical Insurance Contribution 1 = yes, 0 = no
Confirmation of Existence of
Employment 1 = yes, 0 = no Unpaid Pension Insurance Contribution 1 = yes, 0 = no

Economic Compensation 1 = yes, 0 = no Unpaid Maternity Insurance
Contribution 1 = yes, 0 = no

Compensation 1 = yes, 0 = no Unpaid Social Insurance Contribution 1 = yes, 0 = no
Lump Sum Disability Allowance 1 = yes, 0 = no Statute of Limitations Expired 1 = yes, 0 = no
Lump Sum Disability Employment
Allowance 1 = yes, 0 = no Employment Relationship Terminated 1 = yes, 0 = no

Lump Sum Work Injury Medical
Allowance 1 = yes, 0 = no Business Difficulty 1 = yes, 0 = no

Meal Allowance 1 = yes, 0 = no Job Transfer 1 = yes, 0 = no
Medical Expenses 1 = yes, 0 = no Hospitalization 1 = yes, 0 = no
Unpaid Work Injury Insurance
Contribution 1 = yes, 0 = no

Table A2. Average absolute SHAP values for the soft voting classifier.

Feature Name
The Mean Absolute
Value of the SHAP

Values
Feature Name

The Mean
Absolute Value

of the SHAP
Values

No Employment Contract 0.648959414 Confirmation of Existence of
Employment 0.01059931

Lawsuit Amount 0.346669272 Lump Sum Work Injury Medical
Allowance 0.009847109

Unpaid Social Insurance Contribution 0.199835268 Housing Fund 0.009541126
Employee’s Age 0.119818414 Medical Insurance 0.009512734
Unpaid Maternity Insurance
Contribution 0.09492057 Lump Sum Disability Allowance 0.009292651

Double Pay 0.092609688 Transportation Expenses/Travel
Expenses 0.009145641

Economic Compensation 0.083888036 Work Injury Insurance 0.009010271
Salary 0.081995194 Confirmation of Illegal Termination 0.008964941
Unpaid Wages 0.068425982 Confirmation of Termination 0.008838653
Employment Relationship Terminated 0.061327811 Leave with Pay 0.008766349
Unpaid Medical Insurance Contribution 0.055390951 Medical Expenses 0.008750366
Unemployment Insurance 0.050822899 Medical Insurance Contribution 0.008611888
Sex 0.048811927 Confirmation of Employment 0.008502667
Unpaid Pension Insurance Contribution 0.03665694 Bank Card 0.008446629
Signing Employment Contract 0.030486727 Maternity Insurance 0.008412141
Compensation 0.022131219 Social Insurance Contribution 0.008378908
Nonexistent Employment Relationship 0.021548357 Work Documents 0.008348484
Overtime Pay 0.01748199 Rest Day Pay 0.00826537

Social Insurance 0.016962045 Lump Sum Disability Employment
Allowance 0.008150623

Termination of Employment 0.016126691 Pension Insurance Contribution 0.007965058
Pension Insurance 0.015367977 Performance Pay 0.007916206
Statute of Limitations Expired 0.01400964 Maternity Insurance Contribution 0.007723693
Annual Leave Pay 0.012883244 Business Difficulty 0.007714222
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Table A2. Cont.

Feature Name
The Mean Absolute
Value of the SHAP

Values
Feature Name

The Mean
Absolute Value

of the SHAP
Values

Bonus 0.012705845 Attendance Record 0.007689007
Unemployment Insurance
Non-Contribution 0.011474051 Meal Allowance 0.007536683

Unpaid Work Injury Insurance
Contribution 0.011242743 Sick Leave Pay 0

Hospitalization 0.011026164 Job Transfer 0

Work Injury Insurance Contribution 0.010891424 Non-Compete Agreement Breach
Penalty 0

Nursing Care Expenses 0.010741868
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