
Citation: Jiang, H.; Tong, S.; Zhu, R.;

Wei, B. RNDLP: A Distributed

Framework for Supporting

Continuous k-Similarity Trajectories

Search over Road Network.

Mathematics 2024, 12, 270. https://

doi.org/10.3390/math12020270

Academic Editor: Pedro A. Castillo

Valdivieso

Received: 7 December 2023

Revised: 8 January 2024

Accepted: 9 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

RNDLP: A Distributed Framework for Supporting Continuous
k-Similarity Trajectories Search over Road Network
Hong Jiang 1,†, Sainan Tong 2,†, Rui Zhu 2,* and Baoze Wei 3

1 School of Management, Shenyang University of Technology, Shenyang 110870, China; jianghong@sut.edu.cn
2 School of Computer Science, Shenyang Aerospace University, Shenyang 110136, China;

tongsainan@stu.sau.edu.cn
3 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; bao@energy.aau.dk
* Correspondence: zhurui@sau.edu.cn; Tel.: +86-1864-039-8109
† These authors contributed equally to this work.

Abstract: Continuous k-similarity trajectories search over a data stream is an important problem in
the domain of spatio-temporal databases. Given a set of trajectories T and a query trajectory Tq over
road network G, the system monitors trajectories within T , reporting k trajectories that are the most
similar to Tq whenever one time unit is passed. Some existing works study k-similarity trajectories
search over trajectory data, but they cannot work in a road network environment, especially when
the trajectory set scale is large. In this paper, we propose a novel framework named RNDLP (Road
Network-based Distance Lower-bound-based Prediction) to support CKTRN over trajectory data.
It is a distributed framework based on the following observation. That is, given a trajectory Ti and
the query trajectory Tq, when we have knowledge of D(Ti), we can compute the lower-bound and
upper-bound distances between Tq and Ti, which enables us to predict the scores of trajectories in
T and employ these predictions to assess the significance of trajectories within T . Accordingly, we
can form a mathematical model to evaluate the excepted running cost of each trajectory we should
spend. Based on the model, we propose a partition algorithm to partition trajectories into a group
of servers so as to guarantee that the workload of each server is as the same as possible. In each
server, we propose a pair-based algorithm to predict the earliest time Ti could become a query result,
and use the predicted result to organize these trajectories. Our proposed algorithm helps us support
query processing via accessing a few points of a small number of trajectories whenever trajectories
are updated. Finally, we conduct extensive performance studies on large, real, and synthetic datasets,
which demonstrate that our new framework could efficiently support CKST over a data stream.

Keywords: trajectory stream; k-similarity trajectories search; distributed; continuous query

MSC: 68P20

1. Introduction

This paper addresses the challenge of continuous k-similarity trajectories (abbreviated
as CKTRN) search over road networks, a problem with various applications [1–5]. Notably,
CKTRN finds applications in diverse domains [6–9]. For instance, it proves beneficial in
identifying compressed representations of trajectories while preserving their essential char-
acteristics, leading to reduced storage requirements and transmission costs. Moreover,
CKTRN plays a pivotal role in traffic analysis by uncovering trajectories with consistent
patterns and behaviors. This information is valuable for predicting congestion, under-
standing traffic flow, and optimizing road networks. Lastly, it facilitates the clustering and
grouping of moving objects exhibiting similar movement patterns, providing insights for
urban planning, traffic analysis, and beyond.

Let G⟨V, E⟩ represent the road network with V being the vertex set and E the edge
set [1,10]. Each edge e is represented by the tuple ⟨vs, ve, w⟩, where vs and ve denote the
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starting and ending points of the edge e, respectively, and w refers to the weight of e,
which equals the distance between vs and ve within G. Consequently, the trajectory of a
moving object o across G is defined as the tuple T⟨o, P, n⟩. This includes a collection of
n points p1, p2, · · · , pn generated by o over the last n time units. Each point p ∈ P within
G is represented as p⟨e, v, d⟩, referring to the fact that p is positioned on edge e, arriving
at vertex v after covering a distance of d. In this paper, points in P are modeled by a
time-based window [11]. Under this setting, points are generated during the last n time
unit. Whenever one time unit is passed, the first point p1 ∈ P could be regarded as an
expired point, and we remove it from P. A newly generated point is inserted into P.

Let Tq represent a query trajectory [1,2,12], which monitors a set of trajectories denoted
as T . Whenever one time unit is passed, it performs a search among the trajectories in T
and returns the k trajectories with the lowest scores to the system. In this context, the score
of a trajectory Ti ∈ T , denoted as D(Ti), is determined by the distance between Ti and the
query trajectory Tq. Given a trajectory T ∈ T and a query trajectory Tq, the distance between
the corresponding point T(pi) and Tq(pi) is defined as the shortest distance between these
points within the road network G. The distance between trajectory T and query trajectory
Tq is calculated as the sum of distances among their corresponding points.

Take an example in Figure 1a. There are three trajectories {T1, T2, T3} contained in T .
Each trajectory Ti contains four GPS points generated by the moving object oi during the
last four time units, i.e., T2 contains four GPS points generated by the moving object o2,
which are {p1

2, p2
2, p3

2, p4
2}. Tq is the query trajectory, p1

q⟨e⟨v0, v1, 500⟩, v1, 100⟩ refers to the
fact that p1

q is the first GPS point of trajectory Tq and is positioned on edge e⟨v0, v1, 500⟩,
arriving at vertex v1 after covering a distance of 100 m. Assume that the moving objects
can travel up to 100 m per time unit. The distance between T2 and Tq equals 1600 (=100 +
300 + 500 + 700). The distances among Tq and these three trajectories are {2000, 1600, 2000},
respectively. As k = 1, the query result is {T2}. As shown in Figure 1b, after one time unit
is passed, points in T2 are updated to {p2

2, p3
2, p4

2, p5
2}, the distance between Tq and these

three trajectories are updated to {1200, 2300, 2000}, respectively, and the query results are
updated to {T1}.
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Figure 1. Continuous k-similarity trajectory search over road network (k = 1), where (a) denotes the
initial case of a given trajectory; (b) denotes the update of the trajectory and query results after one
unit of time has elapsed.

This approach also holds significant practical applications. For instance, it can play a
crucial role in a real-time anti-tracking system. Specifically, a user u might submit a request to
the system to check if there are any existing trajectories tracking u. The system can fulfill
this request by identifying k trajectories that are most similar to the real-time trajectory
generated by u. If certain trajectories closely resemble this trajectory, it suggests potential
tracking of u, and the system can promptly relay this information to u. Additionally, CKST
has the potential for extensions into other real-time systems such as online car sharing [13],
popular route identification, and more.

Numerous researchers have studied the problem of k-similarity trajectories search [14–18].
However, a major portion of these endeavors have primarily concentrated on addressing k-
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similarity trajectories search over static or historical trajectory datasets. Sacharidis et al. [13]
explored the CKTRN problem within the context of data streams, enabling the retrieval of
similar trajectories in real time. Yet, their approach measures similarity by considering the
distance between two representative points corresponding to these trajectories (as discussed
in Section 2). This method often fails to accurately evaluate trajectory similarity in various
scenarios. Another effort proposed by Zhu et al. [19] investigated CKTRN over GPS point-
based data streams. However, the similarity between two trajectories is measured based
on the Euclidean distance among the corresponding GPS points, which cannot effectively
work under a road network. Therefore, an efficient algorithm that could both accurately
evaluate similarity among trajectories and support CKTRN in real time is desired.

However, efficiently supporting CKTRN over a road network poses several challenges.
Firstly, the scale of each trajectory is typically large. In the context of data streams, where
trajectory points are frequently updated, efficiently updating trajectory scores in real
time becomes a challenging task. Secondly, the trajectory set scale is also extensive. As
the window slides (with each time unit passing), updating scores for all trajectories and
efficiently identifying new query result trajectories from a large set of trajectories involve
a substantial computational cost. Moreover, maintaining all trajectories in a single server
is challenging. Thirdly, in the context of road network environments, the computational
overhead involved in calculating the distance between two points introduces its own set of
challenges, further escalating the overall computational cost.

In this paper, we introduce a novel framework called RNDLP (Road Network-based
Distance Lower-bound-based Prediction) designed to support CKTRN over road networks.
This framework is distributed and relies on two key observations. Firstly, considering
a road network G⟨V, E⟩, both edges and vertices in E and V do not frequently update.
Consequently, we can pre-calculate the shortest distances among all vertices in G and
employ these pre-computed values to streamline distance calculations among trajectory
points.

Secondly, considering a non-query result trajectory Ti and the query trajectory Tq,
when we have knowledge of D(Ti), we can compute the lower-bound and upper-bound
distances between Tq and Ti. This computation enables us to predict the scores of trajectories
in T and use these predictions to assess the significance of trajectories within T . Essentially,
if the lower-bound score of Ti remains consistently high over numerous time units, it
indicates that this trajectory is not likely to become a query result for an extended period.
As a result, such a trajectory holds lower importance, and there is no need to closely monitor
it over the long term. Conversely, trajectories with fluctuating scores require more frequent
monitoring. In essence, only a small subset of trajectories needs score tracking with each
passing time unit. In summary, our contributions can be outlined as follows.

• Hash-based Distance Calculation. We introduce a hash-based index to manage dis-
tances between points within the road network G. Specifically, we pre-compute the
distances between vertices using the Floyd algorithm and use a hash table to maintain
distance among any two vertices. In this way, we need not to spend high running
costs in calculating the distance between two points. Alternatively, we can use O(1)
running cost in computing the distance between two GPS points over a road network.

• Pair-based Dynamic Prediction Algorithm. We introduce a novel algorithm called
PAIRDP (short for PAIR-based Dynamic Prediction) as an enhancement of the PDSP
algorithm discussed in [20]. PAIRDP brings improvements in two main aspects. Firstly,
it harnesses the inherent spatiotemporal correlation in GPS points to improve the ac-
curacy of predicting the optimal moment for trajectories to potentially become query
results. This correlation contributes to refining the prediction process and achieving
more precise results. Secondly, PAIRDP incorporates a dynamic adjustment mechanism
for predicting the moments when trajectories could potentially become query results.
This adjustment relies on the scores of the query result trajectories. By integrating this
dynamic adjustment, the algorithm can significantly reduce the frequency of trajectory
access, resulting in improved operational efficiency.
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• Model-based Partition Algorithm. Utilizing the prediction results, we can establish a
cost model to assess the anticipated running cost of each trajectory. Consequently, we
introduce a greedy algorithm to partition trajectories into different servers, ensuring
that the workload of each server is as evenly distributed as possible. Additionally,
we propose an incremental maintenance algorithm to adapt the partition under a
data stream.

The remainder of this paper is structured as follows. Section 2 provides an overview of
the existing literature in the field and outlines the problem definition. Section 3 introduces
our proposed framework. In Section 4, we present the outcomes of our comprehensive
experimental evaluation. Lastly, Section 5 offers concluding remarks by summarizing our
key findings.

2. Preliminary

In this section, we will first review some important existing results related to k-
similarity trajectory search. We will then introduce the problem definition.

2.1. Related Works

In recent years, researchers have focused on addressing the challenge of trajectory
similarity search [8,10,21]. The endeavors in this domain can be categorized into two parts:
ad hoc k-similarity trajectories queries and continuous k-similarity trajectories queries.
Ad hoc k-similarity trajectory queries concentrating on enhancing query result accuracy
through the design of similarity functions. For example, Lei Chen et al. [22] devised the
EDR (Edit Distance on Real sequence) similarity measure function. Gajanan Gawde [23]
leveraged trajectory polygon shapes for similarity comparisons.

The continuous k-similarity trajectories query can be further categorized into historical
trajectory data-based and streaming trajectory data-based methods. Historical trajectory
data-based approaches, exemplified by Güting et al. [20], utilize spatio-temporal indexes
like R-trees to support query processing. They consider each trajectory as a sequence of
units, constructing an index structure to facilitate a k-nearest neighbor search. On the other
hand, streaming trajectory data-based methodologies, as studied by Sacharidis et al. [13],
handle the continuous updating of trajectory data. These methods evaluate the distance
between a query object and other mobile objects within a time window based on their
maximum or minimum distance over timestamps. However, this approach utilizes only a
subset of GPS points to represent trajectory distances, potentially affecting query precision.

Zhu et al. [19] proposed a sketch-based prediction algorithm to support a GPS point-
based k-similarity trajectories search. The algorithm is based on the following observation.
That is, if the distance between the last points of the query trajectory, denoted as pn

q , and
the corresponding point in a trajectory Ti is large, the overall distance of Ti to Tq, denoted
as D(Ti), will also be large. The authors provide formal bounds for the upper bound (b(Ti))
and lower bound (b(Ti)) of Ti based on this observation. In addition to the score bounds
calculation, Zhu et al. propose a structure called Partition-based Distance Sketch (PDS). The
PDS is designed to summarize the distance distribution among GPS points in each trajectory
Ti and the query trajectory Tq. It provides a compact representation of the distances between
points within each trajectory, enabling efficient prediction and query result determination.
Using the PDS, the algorithm can avoid continuously monitoring every trajectory until
their predicted moments (Ti.t). Consequently, it can save lots of running costs, and the
corresponding GPS points generated within the time interval [Ti.s, Ti.t− 1] can be safely
deleted, further reducing the storage requirements.
Discussion. In summary, most algorithms are based on the historical trajectory database,
which cannot support query processing in real time. The algorithm proposed by Dimitris
et al. cannot accurately evaluate similarity among trajectories in many cases. The effort
proposed by Zhu et al. is based on GPS points. Therefore, an efficient algorithm that could
both accurately evaluate similarity among trajectories and support the k-similar trajectories
search in real time is desired.
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2.2. Problem Definition

A time-based [24] window can be formally defined as a data organization and man-
agement technique that partitions a continuous stream of data into fixed or variable time
intervals. Formally, a time-based window can be represented as a tuple W(T, ∆), where
T represents the current timestamp or time reference point. ∆ denotes the duration or
length of the time interval, which defines the size of the window. In this paper, we ap-
ply time-based sliding windows to model trajectory data over road network as stated in
Definition 1.

Definition 1 (Trajectory under Sliding Window). A trajectory T of an object o, represented
by the tuple T⟨o, ∆t, P, G⟩, contains a group of GPS points T.P traversing the road network G,
generated within the last ∆t time units.

To be more specific, let Ti be a trajectory within the trajectory set T . Ti.P can be denoted
as p1

i , p2
i , · · · , pn

i , respectively. With the passage of each time unit, a point is removed from
T.P and another point is inserted into it. Each GPS point p in Ti.P is defined as p⟨e, v, d⟩,
indicating that p resides on edge e and arrives at vertex v with a distance of d.

The distance between two trajectories, T and T′, is calculated using Equation (1). Here,
D(pi, p′i) represents the distance between two GPS points pi and p′i contained in T and T′,
respectively. This distance corresponds to the shortest distance between pi and p′i across
the road network G. pi (or p′i) signifies the i-th generated GPS point in T (or T′).

Take an example in Figure 1. Let T2 be the trajectory of an object o2 at the time unit t0.
It contains the set of the last four GPS points {p1

2, p2
2, p3

2, p4
2} generated by o2. After one time

unit is passed, p1
2 is removed from T2.P, and p5

2 is inserted into T2.P. In other words, T2.P is
updated to {p2

2, p3
2, p4

2, p5
2} at t1. The distance between p1

2 and p1
q equals 100, and D(Tq, T2) is

1600 m at t0. After one time unit, p1
2 is removed from T2.P, and p5

2 is inserted T2.P. D(T2, Tq)
is updated to 2300 m. In the following, we will formally introduce the problem definition.

D(T.P, T′.P) =
j=e

∑
j=s

D(pi, p′i) (1)

Definition 2 (CKTRN). Let T = {T1, T2, ..., TN} represent a set of N trajectories over road
network G. We consider a query q⟨k, Tq⟩ with Tq being the query trajectory and k being a query
parameter. The objective of a CKTRN is to monitor these N trajectories, and return k trajectories
with the smallest scores to the system whenever one time unit is passed.

Back to the example in Figure 1. At t0, the distances between Tq and these 3 trajec-
tories are {2000, 1600, 2000}, respectively. As k = 1, the query result is {T2}. After one
time unit is passed, the distances between Tq and these three trajectories are updated to
{1200, 2300, 2000}. The query result is updated to {T1}.

In essence, the CKST identifies the k trajectories with the smallest scores and presents
them as the top-k most similar trajectories to the query trajectory Tq. This process is
performed periodically to ensure continuous monitoring and retrieval of the most similar
trajectories over time. In this context, the score of each trajectory Ti, denoted as D(Ti), is
determined by the distance between Ti and the query trajectory Tq. The CKST constantly
computes and updates these scores based on the evolving positions of the trajectories in
real time.

3. The Framework RNDLP

In this section, we introduce a novel framework called RNDLP (Road Network-based
Distance Lower-bound-based Prediction) to address CKTRN over road networks. The
structure of this section is organized as follows: we provide an overview of the framework
initially. Subsequently, we detail the approach used to calculate distances among GPS
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points over road networks. Thirdly, we explain the partition-based initiation algorithm.
Last in this section is the incremental maintenance algorithm.

3.1. The Framework Overview

Let G = ⟨V, E⟩ represent the road network. The RNDLP framework initiates by pre-
processing the road network, calculating the shortest paths between any pair of vertices in
the vertex set V (Algorithm 1). This pre-processing involves constructing a hash table H to
store the shortest path lengths between each vertex pair in V (lines 1–4). The construction
process of this hash table will be explained in Section 3.2.

Algorithm 1: The Framework Overview
Input: G = (V, E), trajectory set T, query trajectory Tq, k, current window W
Output: Query result set Q, lists Iq, Ic

1 for i = 0 to |V| do
2 for j = 0 to |V| do
3 DSP(i, j)← H2H(vi, vj);
4 Hash map M← DSP(i, j);

5 while |T| ≥ k do
6 for each of Ti ∈ T do
7 b(Ti)←update b(Ti);
8 if b(Ti) is larger than θK then
9 Remove Ti to a no-query result set R′;

10 if |T| = k then
11 break;

12 else
13 b(Ti)← compute b(Ti, Tq);
14 if b(Ti)≤ θk then
15 θk ← update(θk);

16 for each of Ti ∈ T do
17 MODEL(Ti)←formModel(Ti);

18 Partition(T );
19 Return Q, Iq, Ic;

After construction, the RNDLP framework scans each trajectory, calculates the lower-
bound and upper-bound distances among each trajectory Ti in the trajectory set T and
the query trajectory Tq (lines 5–15). More precisely, an initial set R is formed, containing
all trajectories. Then, for each trajectory Ti ∈ T , if the lower bound b(Ti) is greater than a
threshold θk, it signifies that Ti cannot become a temporary query result trajectory at the
current moment. In this scenario, Ti is removed from the set R to another set R′. Here,
the threshold θk corresponds to the k-th lowest score among all trajectories in T , and the
manner of calculating b(Ti) and b(Ti) will be explained in the later section.

The aforementioned operations are iteratively executed until the number of trajectories
in the set R is reduced to k. At this stage, the remaining k trajectories in set R are deemed
the query result trajectories. Additionally, the framework predicts the moment when each
trajectory has the potential to become a query result trajectory. In this paper, we introduce
a pair-based algorithm to calculate b(Ti) and b(Ti) for each Ti, with a detailed explanation
provided in Section 3.3. The prediction algorithm will be discussed in Section 3.4.

Intuitively, the earlier the prediction moment of a trajectory, the more crucial it is to
the query trajectory, and the higher the running cost it incurs. To ensure the workload
(or communication cost) of each server is as evenly distributed as possible, we construct
a cost model based on the lower-bound score of each trajectory. We form this model to
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assess the running cost associated with each trajectory. Utilizing this model, we can allocate
trajectories based on their expected running cost, thereby minimizing the workload differ-
ences among different servers. Additionally, we present a greedy algorithm to partition
trajectories in T among a group of servers. The cost model and partition algorithm will be
elaborated upon in Section 3.5 (lines 19–20).

Once sets R and the partition are formed, the incremental algorithm is executed. In
comparison to the algorithm discussed in previous work, our proposed algorithm can
dynamically adjust the threshold value θk. This dynamic adjustment aids in reducing the
frequency of score calculations for trajectories in LT . In addition, we should dynamically
adjust the partition. Comprehensive explanations of the incremental maintenance algorithm
will be presented in Section 3.6.

Cost Analysis. As we need to use a hash table to maintain the shortest path among all
vertexes, the scale of the table is bounded by O(|E2|). As we should maintain the shortest
path, the size of each path is bounded by O(V). As we should maintain GPS points of each
trajectory in the worst case, this part of space cost is bounded by O(n · N), with n and N
being the number of GPS points contained in a trajectory and the number of trajectories.
Accordingly, the overall space cost is bounded by O(|V| · |E2|+ n · N).

We now analyze the running cost of our proposed algorithms. The running cost of
calculating the shortest path is bounded by O(1). Moreover, we use a binary search to find
the prediction moment. The search time is bounded by O(log n). As the cost of calculating
the lower-bound/upper-bound score of a trajectory is O(1), the prediction cost is O(log n).

3.2. Hash-Based Score Calculation Algorithm

As previously mentioned, the distance between two trajectories is calculated as the
sum of the shortest path distances between their corresponding GPS points within the
road network. When the positions of the GPS points along a trajectory are updated, the
trajectory’s distance needs to be recalculated, which involves multiple computations of
shortest path lengths.

To mitigate this computational cost, we pre-compute the shortest path distances
between all pairs of vertices in the road network and establish a hash table to store these pre-
computed values. This approach offers the advantage that, once the index is constructed,
the distance between two points can be efficiently computed by directly accessing the hash
table-based index. In the following sections, we provide a detailed explanation of how this
index is constructed and how the distance between two GPS points is computed.

Hash Table Construction. Given a road network G⟨V, E⟩, our first task is to compute the
shortest paths between all pairs of vertices in V. Once these calculations are complete, we
generate a set of pairs P{p(1, 2), p(1, 3), · · · , p(m− 1, m)}, where each pair P(i, j) consists
of two vertices, namely vi and vj in V. Its value equals the distance vi and vj within the
road network G.

After forming these pairs, the subsequent step involves the construction of the hash
table H. Specifically, we initiate an empty hash table H with the bucket size being |V|2.
Subsequently, we map each pair p(i, j) into H, utilizing a key computation through the
following equation: i× |V|+ j.

ID(i, j) = i× |V|+ j (2)

Hash-based Distance Calculation. Given two GPS points p(e, v, d) and p′(e, v, d), the
process of calculating the distance between them across the road network G involves the
following steps. Initially, we determine the key of the corresponding pair P(p, p′), which
corresponds to p(e) and p′(e), by employing Equation (2). Subsequently, we access the
hash table H to retrieve the pair P(p, p′), which allows us to acquire the distance between
p(v) and p′(v). Finally, the computation of the distance between p and p′ is calculated
based on Equation (3).
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ID(i, j) = D(p(v), p′(v)) + p(d) + p′(d) (3)

Back to the example in Figure 1. We map a set of pairs P{p(0, 1), p(0, 2), · · · , p(0, 6)}
into H. The key results calculated by Equation (2) are shown in Figure 2. Given two GPS
points p4

1(e⟨v0, v2, 500⟩, v0, 100) and p4
2(e⟨v1, v4, 400⟩, v4, 100), the key of the pair P(p4

1, p4
2)

equals ID(0, 4) = 0 · |7|+ 4 = 4. We access the key to find the value from hash table H,
i.e., we can obtain that the distance between p4

1(v0) and p4
2(v1) is 800 m. Finally, we can

calculate the distance between p4
1 and p4

2 equals 800 + 100 + 100 = 1000 m.

p(i, j)

(v0, v1)

(v0, v2)

(v0, v3)

(v0, v4)

(v0, v5)

(v0, v6)

i×|7| + j 

ID(i, j)

1

2

3

4

5

6

Value

500

500

500

800

900

1500

Figure 2. Hash table construction.

3.3. The Pair-Based Lower-Bound Score Calculation

Our approach is built on a key insight. When calculating the lower-bound score of
a trajectory, we can achieve more accurate results by considering both the start and end
points of the trajectory, as highlighted in Lemma 1 and Lemma 2. For simplicity, pi(1, n)
refers to the pair constructed by p1

i , pn
i ∈ Ti.P, and d(j)(1 ≤ j ≤ n) refers to the distance

between pi(j) and pq(j).
Intuitively, when we calculate the lower-bound score of a trajectory, if we only consider

one point within a trajectory, the difference between the lower-bound score and the real
score may be very large, especially when the size of a trajectory is large. As a contrast,
when we calculate the lower-bound score of a trajectory Ti via considering the start/end
point of a trajectory, as the start point and end point of the virtual trajectory are the same
as that of Ti, based on the spatio-temporal constraint, we can generate a more reasonable
virtual trajectory. Accordingly, we can tighten up the lower-bound score Ti. Intuitively,
as the cost model we form is based on the lower-bound score of each Ti, the pair-based
lower-bound score calculation makes the model more workable.

Lemma 1. Let Tq be the query trajectory, and Ti ∈ T be a trajectory. When d1 ≥ 2txUmax, the
lower-bound score of Ti, i.e., denoted as b(Ti), equals (n− 1)(d1 − txUmax) + dn.

Proof. We prove it via forming two virtual trajectories VTi and VTq based on Ti and Tq.
These virtual trajectories simulate the movement of objects. Initially, VTi and VTq are
located at p1

i and p1
q, respectively. After tx time units, they move towards each other

and reach pn
i and pn

q , respectively, by Ti.e. Along their paths, the distance between vpi(j)

and vpq(j) is d1 − 2(j − 1)Umax when j ≤ tx + 1, and 2txUmax(j−n)
n−tx−1 + d1 when j > tx + 1.

Accordingly, the distance sum D(VTi) is (n− 1)(d1 − txUmax) + dn.

Lemma 2. Let Tq be the query trajectory, and Ti ∈ T be a trajectory, when d1 ≤ 2txUmax, b(Ti)
equals d1

2 (
d1

2Umax
+ n− tx − 1) + dn.

Proof. We prove it via forming another two virtual trajectories VT′i and VT′q based on Ti and

Tq. Initially, VT′i and VT′q are located at p1
i and p1

q, respectively. After d1
2Umax time units, they

move towards each other and reach the same position vp. They stay at vp for t′x time units
and then move to pn

i and pn
q , with t′x being tx − d1

2Umax . Under these two paths, the distance
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between vpi(j) and vpq(j) equals d1 − 2(j− 1)Umax when j ≤ d1
2Umax + 1. Accordingly,

D(VTi) equals d1
2 (

d1
2Umax + n− tx − 1) + dn.

It is significant to find a suitable tx. Take the example in Figure 3a. If tx is set to 1, the
object o2 arrives at vp2

2 using 1 time unit, and then arrives at p8
2. The distance between vp2

2
and p8

2 equals
√
(1002 + 4002), which is smaller than (8− 1) · 100 = 700 m. It can arrive at

p8
2 before T2.e. Thus, if tx is set to 1, the lower-bound score is loose. If tx is set to 2, the object

o2 arrives at vp3
2 using 2 time units, and then arrives to p8

2. In addition, D(vp3
2, vp3

q) = 2.8 km,
D(vp3

2, p8
2)=

√
(2002 + 4002), which is smaller than (8− 2) · 100 = 600 m. It can arrive at p8

2
at T2.e. If tx is set to 3, the object o2 arrives at vp4

2 via 3 time units, and then arrives at p8
2.

D(vp4
2, vp4

q) = 2.6 km, and D(vp4
2, p8

2)=
√
(3002 + 4002), which equals (8− 3) · 100 = 500 m.

Thus, it can arrive at p8
2 at T2.e. Therefore, tx is set to 3. Note, in implementation, we could

use a binary search to find the maximal tx. As it is simple, for the limitation of space, we
will skip the details.

We also find that if the partition is applied, the corresponding lower-/upper-bound
score could be further tightened. Accordingly, we propose a partition-based method to
tighten the lower/upper-bound score of the trajectories. Formally, for each trajectory
contained in the trajectory set T , we partition into a group of sub-trajectories such that
{Ti(1, mi), Ti(2, mi), ... · · · , Ti(ni, mi)}. Here, Ti(j, mi) refers to the j-th sub-trajectory of
Ti, and its scale equals mi. Ti(j, mi) also contains a set of GPS points, which are the
{(j − 1) · mi + 1, (j − 1) · mi + 2, ...j · mi}-th generated GPS points in Ti. ni refers to
the number of sub-trajectories. Based on the partition result, we can update b(Ti) and
b(Ti) to ∑

j=ni
j=1 b(Ti(j, mi)) and ∑

j=ni
j=1 b(Ti(j, mi)), respectively. In addition, b(Ti(j, mi)) and

b(Ti(j, mi)) could be calculated based on Theorem 2.
Back to the example in Figure 3a. If the partition amount is 1, b(T2) is calculated as the sum

of the real location distance D(p1
2, p1

q), D(p8
2, p8

q) and the virtual location distance ∑i=7
i=2 D(vpi

2, vpi
q).

Because tx equals 3, D(vp2
2, vp2

q) = 3200 − 1·2·100 = 3 km, D(vp3
2, vp3

q) and D(vp4
2, vp4

q) is equal
2.8 km and 2.6 km, respectively. Then, D(vp4

2, p8
2) =

√
(3002 + 4002) = 500 m, divided into

4 parts. Each part is 125 m. So, D(vp5
2, vp5

q) is calculated as 2 · 300·125
500 + 2600 = 2750 m,

D(vp6
2, vp6

q) = 2900 m(=2 · 300·125·2
500 + 2600) and D(vp7

2, vp7
q) = 3050 m(= 2 · 300·125·3

500 + 2600).
To sum up, b(T2) is 23.5 km and b(T2) is 27.7 km. b(T2), and b(T2) are updated to 25 km and
26.2 km when the partition amount is 2.

Figure 3. Pair-based lower-bound score calculation, where (a) and (b) respectively represent the
graphical depiction of the distance from o2 to p8

2 over different time units.

Discussion. Pair-based partition can provide trajectories with tighter lower-bound score.
However, a natural question is how to form proper partitions for different trajectories.
Intuitively, if the partition amount is large, the running cost of maintaining the partition
is high, but the lower-/upper-bound score is tight. In contrast, the lower-bound score is
loose. It is significant to find a flexible method to self-adaptively partition trajectories based
on the distance relationship among them to the query trajectory.
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3.4. The Pair-Based Prediction Algorithm

In this section, we first explain the pair-based partition. Then, we explain the prediction
algorithm.
The Pair-based Partition Algorithms. It is to find query result trajectories via recursively
partitioning trajectories and tightening their lower-/upper-bound scores. In this way,
we can find query result trajectories, as well calculate the lower-bound score of other
trajectories. Intuitively, once the lower-bound scores of trajectories are computed, we can
use the model (discussed later) to evaluate the running cost we spend on it, which helps us
effectively assign trajectories.

In this section, we use Theorem 2 for calculating the lower-bound score of sub-
trajectories. Intuitively, if more pairs are considered for lower-bound score calculation, we
could obtain a tighter lower-bound score. Accordingly, we propose the concept of τ − L−
score. Here, we assume that each trajectory contains the set of n GPS points, with n being 2τ

and τ being an integer. In addition, the lower-bound score of each trajectory, i.e., denoted
as b(Ti, τ), is computed based on Equation (4), with r being n

2τ .

b(Ti, τ) =
j=2τ

∑
j=1

b(Tr(j−1)+1,rj
i , r(j− 1) + 1, rj) (4)

We now formally explain the partition algorithm. Firstly, we access each Ti ∈ T ,
and compute b(Ti) and b(Ti) as the manner discussed in Theorem 2. After calculating the
lower-bound scores/upper-bounds of all trajectories, we search Tk, i.e., the trajectory with
the k-th lowest upper-bound score, use b(Tk) for pruning trajectories in T . In other words,
for each trajectory Ti ∈ T , its lower-bound score is larger than b(Tk). It is not a query result
trajectory, and we remove it to the set T′.

For the reminders, we split each element in T into two sub-trajectories with an equal
scale, and update their lower-bound score based on Equation (4). Again, for each of them,
if existing k trajectories have an upper-bound score lower than it, it is removed from T to
the set T′. From then on, we repeat the above operations until the number of trajectories in
T reduces to k. At that moment, we can use these k trajectories as query result trajectories
in the current window. Note, during the partition, we can form the corresponding PDSP
structure for each trajectory.
The PDSP-based Prediction. After we form the PDSP for each trajectory, we are going to
predict the earliest moment, i.e., denoted as Ti.t, each trajectory Ti may become a query
result trajectory. In this way, we need not to monitor Ti before Ti.t. Specially, we scan each
trajectory Ti and calculate Ti.t based on Theorem 1. After calculation, we use a prior queue
to maintain these trajectories based on Ti.t of each Ti. As the algorithm is simple, we skip
the details to save space.

Theorem 1. Trajectories Ti, Tk, and Tq, D(Ti) are no smaller than D(Tk) after δ time units with δ
being computed based on the in-Equation b(Ti, τ)≤D(Tk).

Proof. We assume that Ti is partitioned into m(= 2τ) sub-trajectories {Ti(1, r), Ti(r +
1, 2r), · · · , Ti((m − 1)r + 1, mr)}. Theorem 1 is proved under the following two cases:
(i)δ > n; (ii) δ ≤ n. Under case (i), we use the manner discussed in Theorem 1 to
find the maximal δ. Under cases (ii), b(Ti, τ) equals b(Tδ,jr

i , δ, jr)+ b(Ti(n + 1, n + δ), pn
i )+

∑
j=m
u=j+1b(Ti(ur + 1, (u + 1)r)), while b(Tk) equals D(Tk(n− δ, n))+b(Tk(n + 1, n + δ)). We

could find the maximal δ via the Equation b(Ti, τ) ≤ D(Tk).

We want to highlight that, once Ti.t of each Ti is calculated, we can ensure that Ti
cannot become a query result trajectory before Ti.t. In addition, we can evaluate the running
cost we will spend on it. It is convenient to evaluate its importance to the query result sets
and make a reasonable partition based on the prediction result.
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3.5. Trajectory Set Partition Algorithm

As the number of trajectories is usually large, it is difficult to process a large number
of trajectories over a single server. Thus, in this section, we study how to form a reason
partition that partitions trajectories into a group of servers, making sure that the workload
of each server is as similar as possible. In order to achieve this goal, we first form a model
to evaluate the running cost of each trajectory.

Specially, let Ti be a trajectory in the trajectory set T , Ti(C) be the number of points we
access when evaluating its prediction moment, and Ti(t) be the prediction moment of Ti.
After n time units are passed, the excepted time we access Ti is n

W(t)−Ti(t)
. Accordingly, the

excepted running cost of maintaining Ti could be calculated via Equation (5). In addition,
the excepted running cost of maintaining all trajectories could be computed based on
Equation (6).

MODEL =
n

W(t)− Ti(t)
· Ti(C) (5)

MOD-ALL =
i=|T |

∑
i=1

n
W(t)− Ti(t)

· Ti(C) (6)

After explaining the cost model, we now formally explain the partition algorithm. Our
goal is to make the workload of each server is as the same as possible.

Let S be the set of servers. For each server Si ∈ S , we use Si(c) to record the current
workload of Si, and servers in S are sorted in ascended order by their workload. We use
the greedy algorithm to form the partition. Specially, we scan each trajectory Ti ∈ T ,
compute its excepted running cost via Equation (6), allocate it to the server Si with minimal
workload, and finally update Si(C).

3.6. The Incremental Maintenance Algorithms

In this section, we first discuss the incremental algorithm over each server, i.e., the local
incremental maintenance algorithm. Its function is to update the prediction moment of
trajectories in each server. Next, we explain the global incremental maintenance algorithm.
Its function is to guarantee the workload of each server is as similar as possible.

3.6.1. The Local Incremental Maintenance Algorithm

In the following, we propose the algorithm INC-PDSP, which explains how PDSP is
applied for supporting the data stream. Here, Ic and Iq are two inverted lists that maintain
non-query result trajectories and query result trajectories, respectively. Our algorithm is
proposed based on the following observation. That is, the prediction moment of a trajectory
is computed based on the assumption that trajectories in Iq move far away from Tq. It is
actually not true in real applications. A moment of thought could reveal that if θk is not
rapidly increased, we can delay the prediction moment updating of trajectories. Here, θk
refers to the k-th lowest score among all trajectories in the query result set.

η =
Umax + θ0

k − D(p1
k , p1

q)− θk

Umax
(7)

We now formally provide the algorithm details. We associate Ic with a variable named
Ic.g with Ic being the inverted list that maintains all non-query result trajectories. It records
the sum of time units we can delay. Its value is set to 0 at the moment Ic is constructed.
Whenever one time unit is passed, we update Ic.g to Ic.g + η, where η is computed based
on Equation (7). Here, θ0

k refers to the k-th highest score among elements in Iq at the last
time unit. Umax + θ0

k−D(p1
k , p1

q) refers to the predicted score of Tk at the current time unit.
Umax + θ0

k−D(p1
k , p1

q)− θk refers to the difference between the predicted θk and real θk. In
addition, we associate each element Ti ∈ Ic with a variable named Ti.l. Its value equals Ic.g
at the moment Ti’s prediction moment is updated. Whenever one time unit is passed, we
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update Ic.g based on Equation (7). Next, we check whether the element Ti located at the
top of Ic satisfying Ti.t ≤ tnow − Ic.g + Ti.l. If the answer is yes, we update its prediction
moment. Lastly, we set Ti.l to Ic.g.

3.6.2. The Global Incremental Maintenance Algorithm

We should monitor the workload of each server so as to guarantee the balance of the
system. Thus, we should update Si(C) of each server whenever one trajectory T in Si is
passed. Specially, let T be the trajectory we should evaluate. We first update its prediction
moment. Next, we re-calculate its excepted running cost and update Si(C) based on the
re-calculating result.

The reason we monitor the workload of each server is we should re-allocate trajectories
if the workload difference among different servers is so large. In our paper, if Smax > 2Smin,
we should re-allocate trajectories in the server Smax and Smin. Here, Smax and Smin refer
to the server with maximal and minimal workload in S . When re-allocating, we scan
trajectories in Smax and remove each scanned trajectory from Smax to Smin. When Smax is
reduced to less than Smin, the algorithm is terminated.

4. Performance Evaluation

In this section, we conduct extensive experiments to demonstrate the efficiency of the
RNDLP framework. The experiments are based on both real datasets and synthetic datasets.
In the following, we first explain the datasets used in our experiments and the settings of
our experiments and then report our findings.

4.1. Experiment Settings

Datasets. In total, four datasets are utilized in our experiments, comprising three real
datasets: BEIJING, PORTO, and NYC, and a synthetic dataset named NORMAL. BEIJING is
sourced from the Microsoft T-Drive project, encompassing GPS trajectories of 10,357 taxis
recorded from 2 February to 8 February 2008. PORTO consists of 1,710,671 trajectories,
describing the trajectory of 442 taxis from 7 January 2013 to 30 June 2014 in the city of Porto.
NYC is obtained from the New York City Taxi and Limousine Commission, containing
2.36 GB of trip records. Accordingly, we generate a group of trajectories based on these
records. Each record corresponds to a trajectory, where the start point and end point of the
trajectory is set based on the pick-up point and drop-off point of the record. The trajectory
is generated based on the shortest path based on the pick-up point and drop-off point of
the record.

NORMAL is a synthetic trajectory dataset created by simulating the trajectories of
moving objects on urban roads. The road network under these four datasets are shown
in Table 1. We pre-process these datasets by retaining only four attributes, namely taxi
ID, location longitude, location latitude, and timestamp. Note, the running time of our
proposed framework is unrelated with the scale of the graph. The reason behind it is we
use a hash table to maintain the shortest path among every two vertexes, and we can use
O(1) running cost to caluate the distance between two point over road network.

Table 1. Road network information.

Datasets Number of Vertices Number of Edges

PORTO 114,099 1,507,611
BEIJING 54,198 126,827

NYC 264,346 733,846
NORMAL 1000 499,500

Experimental Methodology. In our study, we first load the road network, the hash table,
as well as all trajectories into the memory. Next, we scan each trajectory Ti in the trajectory
set, compute its score or lower-bound score. After scanning, we assign these trajectories to
different servers based on the model discussed before. From then on, we monitor the alarm
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time of each trajectory and update the scores of trajectories with their alarm time being the
current time unit. When all trajectory are processed, we report the total running time.
Parameters. In our study, we evaluate the performance of different algorithms under four
parameters: N, n, k, and Umax. Here, N denotes the number of trajectories within the
trajectory set T ; n represents the number of GPS points within each trajectory; k is the input
parameter for CKTRN; and Umax denotes the maximal traveling speed of objects per time
unit. The parameter settings are presented in Table 2, with the default values bolded.

Table 2. Parameter settings.

Parameter Value

N 200 KB, 400 KB, 600 KB, 800 K, 1 M
n 200, 400, 600, 800, 1 K
k 20, 40, 60, 80, 100
Umax 20 km/h, 30 km/h, 40 km/h, 50 km/h, 60 km/h

Performance Metrics. The updating time is employed as the main performance metric. It
refers to the average time used to process newly generated GPS points.
Competitors. In addition to the algorithm included in the RNDLP framework, we also
implement a baseline algorithm named BASE. Note, the BASE algorithm updates scores of
all trajectories whenever one time unit is passed. All the algorithms are implemented with
C++, and all the experiments are conducted on 6226R CPU with 256 GB memory, running
Microsoft Windows 10.

4.2. Performance Comparison

Updating Cost Comparison. In this section, we compare the performance of RNDLP with
its competitors when supporting CKTRN under a data stream.

We present the running time of all algorithms under different k values in Figure 4a–d.
Across all evaluated k values, RNDLP consistently outperforms BASE for all four datasets.
For instance, in the PORTO dataset, the running time of RNDLP is only 0.58% of BASE,
in the BEIJING dataset, it is 0.81% of BASE, and in the NORMAL dataset, it is 0.69% of
BASE. The notable improvement arises from RNDLP considering spatio-temporal correlation
among GPS points in each trajectory. The corresponding virtual trajectory is closer to the
real trajectory, allowing it to provide trajectories with tight score bounds by accessing a
small number of GPS points. In addition, RNDLP uses hash table to maintain the distance
among every two vertexes over road network.

Furthermore, we report the running time of different algorithms under various N
values in Figure 4e–h. As N increases, the running time of BASE sharply rises because
BASE has to access all trajectories whenever the window slides. In contrast, RNDLP is not
sensitive to N values thanks to the predictive nature of its employed algorithms. It does not
need to maintain N trajectories in real time, resulting in a much more stable performance
under various parameter settings. Besides the reasons discussed above, another important
reason is we use a cost model to partition trajectories into different servers. In this way, the
overhead of each server is roughly the same. As a contrast, BASE does not consider how to
equally partition trajectories. Thus, in many cases, trajectories are skewed when distributed
in each server. Thus, the total running cost of BASE is higher than that of RNDLP.

The running time of different algorithms under various n values is reported in
Figure 4i–l. Here again, RNDLP outperforms its counterparts. Notably, BASE’s running
time gradually increases with the growth of n since it has to access more GPS points when
trajectories’ prediction moments are updated. Conversely, RNDLP’s running time does not
change significantly with increased n values. This is because the larger the n, the larger
the distance among starting points of objects’ trajectories to their end points. In this way,
RNDLP could accurately calculate score bounds of trajectories via setting τ to a small value.
In addition, as RNDLP could dynamically adjust prediction moment of trajectories, it could
further reduce the cost of incremental maintenance.
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(a) PORTO (b) NORMAL (c) BEIJING (d) NYC

(e) PORTO (f) NORMAL (g) BEIJING (h) NYC

(i) PORTO (j) NORMAL (k) BEIJING (l) NYC

(m) PORTO (n) NORMAL (o) BEIJING (p) NYC

Figure 4. Running time comparison of different algorithms under different datasets.

The running time of different algorithms under different Umax is reported in Figure 4m–p.
We find that RNDLP performed better again. In addition, BASE is not sensitive to Umax. The
reason is BASE does not consider speed constraint. The running time of RNDLP gradually
increases, but still spends much lower cost than the BASE algorithm. This is because the
larger the Umax, the looser the lower-bound score BASE could provide. However, as Umax is
usually not high in most applications, RNDLP is the most efficient in most cases (Table 3).

Table 3. Performance analysis of different similarity measures.

Running Time Analysis(s)
Measure Algorithm PORTO NORMAL BEIJING NYC

ED-SUM HRZ 0.36 0.38 0.37 0.37
RNDLP 0.0007 0.002 0.0008 0.003

ED-Max HRZ 0.19 0.35 0.23 0.36
RNDLP 0.04 0.12 0.04 0.12

Frechet HRZ 43.35 50.15 34.27 47.63
RNDLP 2.69 2.78 2.77 2.72

To sum up, RNDLP is both stable and efficient. It requires the lowest running time
to support continuous k-similarity search over road network compared with the BASE
algorithm.

5. Conclusions

In this paper, we propose a novel framework named SLBP to support continuous k-
similarity trajectories search over road network. The framework can efficiently return query
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result trajectories by accessing only a few GPS points from a subset of trajectories within the
entire trajectory set. Additionally, we propose a pair-based method to enhance algorithm
performance. Through the calculation of lower-bound scores for trajectories, we observe
that processing a small number of trajectories with each slide of the window is sufficient.
As a result, our framework efficiently supports continuous k-similarity trajectories search
over data streams. We conducted extensive experiments to evaluate the performance of our
proposed algorithms on several datasets. The results consistently demonstrate the superior
performance of our proposed algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

Ti the trajectory
Tq the query trajectory
D(Ti) the score of Ti
b(Ti) the lower-bound score of Ti
b(Ti) the upper-bound score of Ti

pj
i the j-th generated GPS point in Ti.P

Tα,β
i a sub-trajectory of Ti with first/last generated point pα

i / pβ
i

b(Ti, τ) the lower-bound score of Ti under τ − L-score
Ti.t the predicted moment of Ti
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