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Abstract: This study proposes an efficient method for computing State Vectors in Sequence-to-
Sequence (SVSeq2Seq) architecture to improve the performance of sequence data forecasting, which
associates each element with other elements instead of relying only on nearby elements. First, the
dependency between two elements is adaptively captured by calculating the relative importance
between hidden layers. Second, tensor train decomposition is used to address the issue of dimension-
ality catastrophe. Third, we further select seven instantiated baseline models for data prediction and
compare them with our proposed model on six real-world datasets. The results show that the Mean
Square Error (MSE) and Mean Absolute Error (MAE) of our SVSeq2Seq model exhibit significant ad-
vantages over the other seven baseline models in predicting the three datasets, i.e., weather, electricity,
and PEMS, with MSE/MAE values as low as 0.259/0.260, 0.186/0.285 and 0.113/0.222, respectively.
Furthermore, the ablation study demonstrates that the SVSeq2Seq model possesses distinct advan-
tages in sequential forecasting tasks. It is observed that replacing SVSeq2Seq with LPRcode and
NMTcode resulted in an increase under an MSE of 18.05 and 10.11 times, and an increase under an
MAE of 16.54 and 9.8 times, respectively. In comparative experiments with support vector machines
(SVM) and random forest (RF), the performance of the SVSeq2Seq model is improved by 56.88 times
in the weather dataset and 73.78 times in the electricity dataset under the MSE metric, respectively.
The above experimental results demonstrate both the exceptional rationality and versatility of the
SVSeq2Seq model for data forecasting.

Keywords: sequential data forecasting; Recurrent Neural Network; sequence-to-sequence; state
vectors; tensor train

MSC: 68W40; 94D05; 68T07

1. Introduction

Sequential data forecasting is a fundamental inquiry in science: to what extent can we
anticipate the future from historical data? Forecasting future data states from past data
states is an intriguing and arduous task in numerous fields, such as energy and smart grid
management, sensor network monitoring, and disease propagation analysis [1].

At present, several forecasting techniques have been developed for sequential data
forecasting, such as Recurrent Neural Network (RNN)-based methods [2,3], Transformer-
based methods [4,5], Linear-based methods [6,7], and TCN-based methods [8,9], which
have achieved immense success in extensive fields. Transformer-based methods such as
Informer [10], Autoformer [4], and Crossformer [5] have great advantages in managing
remote and complex dependencies. Nevertheless, they often require substantial compu-
tational resources and memory, which increases the risk of overfitting large Transformer
models with limited data. Linear-based methods such as DLinear [6] and TiDE [7] exhibit
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high computational efficiency and strong interpretability; however, the dependency on
linear transformation makes them more suitable for dealing with simple sequence tasks,
but the feature extraction ability is weak. TCN-based methods such as SCINet [8] and
TimesNet [9] have obvious advantages in terms of computational efficiency and number of
parameters, but they tend to prioritize the capture of local features and may fall short in
identifying long-term dependencies.

Notably, in comparison to the above methods, RNN-based methods such as Long
Short-Term Memory (LSTM) [2] and Gated Recurrent Unit (GRU) [3] inherently model
sequential data with remarkable parameter efficiency and exhibit superior capabilities in
handling extended sequences. RNN-based methods have attracted increasing attention
in the field of sequential data forecasting due to their superior capabilities in handling
extended sequences. For example, in 2014, Cho et al. [3] proposed the RNN encoder—
decoder model using the hidden states as state vectors, which utilized one RNN to encode
a sequence of symbols as a fixed-length vector representation, and another RNN to decode
the representation as another sequence of symbols. In 2022, Li et al. [11] introduced the
Multi-Dimensional Spatial-Temporal Recurrent Neural Network (MST-RNN), an approach
that leveraged both the temporal duration and semantic tag dimensions of Points of
Interest (POISs) in each layer of the neural network framework. In 2023, Jadhav et al. [12]
introduced two methods for analyzing dynamic relationships within real-world sequential
data: the Internal Time-Varying sequence model (ITV model) and the External Time-
Varying sequence model (ETV model). Their models were distinguished by an automated
basis expansion module that dynamically adapted internal or external parameters with
each time step, thereby minimizing computational complexity. In addition, RNN-based
methods often use a Sequence-to-Sequence structure to handle dialogue, translation, and
prediction tasks [2]. In 2014, Google [13] proposed the Sequence-to-Sequence structure as a
common structure for RNN-based methods, which can be simply understood as consisting
of three parts: the encoder, the decoder, and the state vector connecting them. The encoder
comprehended the input sequence to produce the state vector, and the decoder utilized
the state vector as an input to eventually generate an output that satisfied the given task
requirements [2,3].

As one of the important components of RNN based on Sequence-to-Sequence structure,
improving the computation method of the state vector is crucial to enhance the perfor-
mance of complex forecasting, as it is the only channel connecting the encoder output
to the decoder input and thus has a significant impact on the final output result [14]. At
present, many elaborate designs of state vectors for RNN-based improvement models
have been proposed to solve the ubiquitous applications of serial forecasting. For ex-
ample, Serban et al. [15] and Sordoni et al. [16] both used a context RNN for efficient
sequence data prediction. Notably, these methods still struggle to capture global patterns
and exacerbate the negative impact of noisy data on long-term dependencies, resulting
in inadequate long-term forecasting. Furthermore, to improve the shortcomings of the
above models, Serban et al. proposed the Latent Variable Hierarchical Recurrent Encoder—
Decoder (VHRED) model [17], which incorporated a latent variable into the decoder and
was trained by maximizing the log-likelihood. In addition, Weston et al. [18] introduced
a class of memory networks that combined successful learning strategies with a memory
component. Further, Fernando et al. [19] proposed a tree memory network to jointly model
long-term relationships, where the method employed the output of the input module as a
state vector. The above methods lack personalized state vectors for the different hidden
layers of the decoder; consequently, they often strive to achieve superior performance in
complex prediction tasks. To further improve the performance of data forecasting, Sennrich
et al. [14] calculated the state vector by computing weight vectors and summing the hidden
states of the encoder. Although this method considered all the input vectors, it did not
consider the positional information of the vectors. In 2023, Cao et al. [20] introduced an end-
to-end encoder—decoder structure, which introduced the meta-path augmented residual
information matrix to preserve the structure evolution mechanism and semantics in HINs,
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and used it as input to the encoder to obtain a low-dimensional embedding representation
of the nodes.

Consequently, improving the state vector calculation method will enable RNN-based
methods to achieve commendable predictive performance in sequence forecasting. Google [13]
first introduced the Transformer, an approach that relied solely on the attention mechanism,
garnering significant achievements in areas such as natural language processing [21] and
computer vision [22]. Currently, many elaborate Transformer variants have been proposed,
such as Autoformer [4], non-stationary Transformers [23], and the PatchTST model [24],
to address ubiquitous serial forecasting applications. These attention mechanism-based
methods fully leverage the positional information of all vectors. Attention mechanism
has not only shown good performance in sequence data prediction but has also been used
to automatically synthesize high-quality images from textual descriptions. For example,
Chopra et al. [25] proposed the AttnGAN method, which used an attentional model to
generate sub-regions of an image based on the description. Inspired by the immense
success of the attention mechanism in extensive fields, the attention mechanism used to
compute the state vector in the Sequence-to-Sequence structure will effectively improve the
prediction performance.

In this paper, we propose an innovative and efficient method for computing State
Vectors in Sequence-to-Sequence (SVSeq2Seq) architecture. In this strategy, the attention
mechanism is meticulously designed as the computational method of state vectors for
Sequence-to-Sequence structure, which has enhanced capabilities in sequence modeling.
Consequently, the proposed SVSeq2Seq effectively exploits the relationship between the
hidden layers of the decoder and those of the encoder, thereby demonstrating superior
capabilities in predicting sequential data. SVSeq2Seq comprises state vector weighting and
tensor train networks. Our contribution can be summarized as follows:

(i) We use the relative significance between hidden layers to dynamically capture the
interdependent aspects among elements. We then compute weight vectors for the encoder’s
hidden layers based on these dependencies. We then provide adaptive state vector weights
based on the computed weight vectors.

(if) We apply tensor train decomposition to fit the expansion tensor, which successfully
counteracts the problem of high dimensionality.

(iii) We confirmed the outstanding performance of SVSeq2Seq on six authentic datasets,
showing significant advantages over the other seven baseline models in predicting the three
datasets. We also performed ablation experiments on three of these datasets, confirming
the rationality and generalizability of SVSeq2Seq. Finally, we compare the prediction effect
before and after deleting all state vector components in the experimental process, which
proves the importance of SVSeq2Seq in the Sequence-to-Sequence structure.

2. Model Descriptions and Preliminaries

In this study, we introduce an efficient computational method for state vectors in
Sequence-to-Sequence structure forecasting, i.e., SVSeq2Seq, which incorporates state
vector weights and tensor train networks. As shown in Figure 1, SVSeq2Seq records the
hidden layers of the encoder (red line) and computes their correlation with the hidden
layers of each decoder (green line), thus providing personalized state vectors for the hidden
layers of each decoder.
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Figure 1. The operational status of SVseq2seq within the Sequence-to-Sequence structure.

2.1. Encoder—Decoder Architecture of the RNN

First, the fundamental framework of the encoder—decoder architecture of the RNN is
outlined, and based on this, an efficient strategy for state vector computation is developed.

In the encoder—decoder architecture, the encoder processes the input vector x =
{x1,...,x7} and transforms it into a state vector c. The most common approach is to use
an RNN, as shown in Equations (1) and (2):

ht = f(xt, hi—q) )

and
c= q({hlr te /hT})/ (2)

where h1; € R" is a hidden state at time t, and ¢ is a vector generated from the sequence of
the hidden states. The function f can be a non-linear equation, with examples being naive
RNN, LSTM, or GRU, and gq({hy, - -- ,hr}) = hr.

The decoder derives the output vy, utilizing the state vector c. In the context of the
translation tasks, it is common for the decoder to establish a probability for the translation
y, which is achieved by decomposing the joint probability into ordered conditionals, as
shown in Equation (3):

p(v) =TTy P | {v1 -y }s0), 3)

where y = (yl, SR yTy). Using an RNN, each conditional probability is formulated, as
shown in Equation (4):

pye | {y1,- i1} 0) = g(Wi-1,he ), 4)

where g is a non-linear function that outputs the probability of y while # is the hidden state
of the RNN.

Within the Sequence-to-Sequence framework, the decoder has the capability to gener-
ate multiple iy by interpreting the state vector c.

As described above, the encoder produces the state vector ¢, which the decoder then
uses to output the desired result y. Given the significant influence of the state vector c on
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the output within the encoder-decoder framework, we propose an efficient approach to
compute the state vector in the Sequence-to-Sequence structure.

2.2. State Vector Computation

In our efficient state vector computation approach, we leverage the correlation between
the decoder’s hidden layer i’ and the encoder’s hidden layer & to compute the weight a
of distinct /. This method allows us to generate unique state vectors c corresponding to
different //'. Figure 2 illustrates the entire process of computing the state vector c.

h'i-l

extend
H;

Figure 2. The computation procedure of the state vector c.

The state vector ¢ depends on a sequence of {h’l, hl, s, hT} onto which an encoder
maps the input {xy,...,x7}. Each h; contains information about the whole input with a
strong focus on the parts surrounding the i-th input. The state vector ¢ is computed by a
weighted sum of {h{,h,,--- ,hr}, as shown in Equation (5):

T
Ci = Zj:l Uéljh] (5)

We assume that the decoder input is x/, x5, . .., x},. Since x| and k] are known, we can
calculate y;. This allows us to set x5 = yj, indicating that the output from one time step
becomes the input for the next. One might wonder about the origin of x}. Typically, we use
the special character “<BOS>" (beginning of sentence) to denote the beginning of an input
x}. The terminating condition reflects this approach. Specifically, the forecasting process
terminates when the output is a special character “<EOS>" (end of sentence).

Let us use /] as a case study to illustrate the computation of the weight a;;. To start

off, we establish two weight matrices, denoted as W9 and W¥, as shown in Equation (6):

1 _ o1 . pextend
{Zl - w’i‘ ~h%xl‘end hg = {hy, by, -y} (6)

Let us express this in vector form in Equation (7):

Q= W4. gextend
{K — Wk.Héxtend Hz'eand = {h;/hll' o /hT} 7)
i

We use Q and K to compute the correlation between 1} and the elements within the
set {y,- -+, hr} in H#**", denoted as agj and computed as Equation (8):

af = (a)7 ¥ ®)
Let us express this in vector form in Equation (9):

A'=K"Q 9)
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The softmax operation is applied to the A’ matrix, ensuring that its elements fall within
the range [0, 1], and the result is denoted as A in Equation (10):

A =softmax(A’) (10)

The state vector ¢ is computed by substituting the elements a;; of the matrix A into
Equation (5).

To illustrate the computation process of the state vectors ¢, Algorithm 1 is provided,
which shows the pseudocode in detail.

Algorithm 1: State vectors c

Input: The input vector {x1,...,xr} of Encoder and H¢xend
Output: State vectors ¢

1for x;in {x1,...,x7} do

Calculate qi and K/, Equation (7);

Calculate ag]», Equation (8);

Express ugj in vector form, Equation (9);

Make sure the elements in A’ within [0, 1], Equation (10);

6 Take the elements «;; of A into Equation (5);

7 ends

8 Get c; = Z};l Déljh]

g &= W N

2.3. Tensor Train Networks

As the number of hidden layers in the encoder and decoder increases, the size of Hextend
also expands rapidly. This expansion complicates the computation of Equations (7) and (9),
and consequently requires a larger size for training. To overcome this difficulty, we use
tensor networks to approximate H****"¥. Such networks encode a structural decomposition
of tensors into low-dimensional components and have been shown to provide the most
general approximation to smooth tensors (Figure 3) [26].

(Tensor Train Decomposition

.
H= . .
P
74
Q K
e

Al A? A

~

~~-—-——-—’

Figure 3. Schematic diagram of the working of tensor train networks.
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A tensor train model decomposes a P-dimensional tensor H**** into a network of
sparsely connected low-dimensional tensors { A” € R'»-1*"»*"7} such that Equation (11)

Hipip = Y agean o Ak i A2 AP (11)

apipan Y g ipng ap_1ipap

In Equation (11), &y = ap = 1. When rg = rp = 1, the {r, } is called the rank of the

tensor train. With tensor trains, we can reduce the number of parameters from (g + k)TJrl
to (q 4+ k)R?(T + 1), with R = max,r, as the upper bound of the tensor train rank. Thus, a
major advantage of tensor trains is that they do not suffer from the curse of dimensionality,
which is in sharp contrast to many classical tensor decomposition models, such as the
Tucker decomposition.

3. Experiment Results
3.1. Experimental Setup

To verify the effectiveness of our state vector computation method, we constructed a
Sequence-to-Sequence structure using an LSTM. For all experiments, we used an initial se-
quence of length ty as input and varied the prediction time horizon T. We trained all models
using stochastic gradient descent, with a regression loss function L(y,9) = Y{_; |19 — y¢| |3
applied to sequences of length T. In this case, y; = x;;1 represents the true values, while 7;
represents the predicted values from our model.

Two conventional machine learning-based methods, such as Support Vector Machines
(SVM) and Random Forest (RF), were selected as the baselines to compare the perfor-
mance with our proposed model. Further, we also selected seven popular prediction
models as benchmarks from three categories, including Transformer-based methods such
as Informer [10], FEDformer [27], and Crossformer [5]; Linear-based methods such as
DLinear [6] and TiDE [7]; TCN-based methods such as SCINet [8] and TimesNet [9].

3.2. Dataset Preparation

Six real-world datasets including Electricity Transformer Temperature (ETT), weather,
electricity, traffic used by Autoformer [4], solar-energy datasets proposed in LSTNet [28]
and Performance Measurement System (PEMS) evaluated in SCINet [8] were selected in
our experiments.

3.2.1. ETT Dataset

ETT dataset encompasses temperature recordings of electrical transformers over a pe-
riod and typically includes corresponding information on electricity usage. Spanning data
from several months to several years, the ETT dataset is recorded at regular intervals, such
as every 15 min, every half hour, or hourly. The applicability of the ETT dataset is extensive,
especially in areas where accurate short-term or long-term predictions of electrical demand
are needed. This includes analyzing and forecasting supply and demand dynamics in the
electricity market, predicting residential and industrial electricity consumption patterns
in energy usage, and conducting short-term and long-term load forecasting for power
systems.

3.2.2. Weather Dataset

The weather dataset comprehensively records meteorological indicators at 10 min
intervals throughout the year 2020, encompassing 21 variables including air temperature
and humidity. The dataset’s scope of application is exceptionally broad, ranging from
analyzing and forecasting climate change trends to tracking environmental shifts, assessing
pollution and ecosystem health, and utilizing historical and real-time data for predicting
both short-term and long-term weather conditions.
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3.2.3. Electricity Dataset

The electricity dataset encompasses hourly electricity consumption data for 321 cus-
tomers spanning from the year 2012 to 2014. The utility of this data is remarkably broad,
encompassing applications such as analyzing energy consumption patterns to drive effi-
ciency improvements, forecasting short-term or long-term loads in power systems, predict-
ing electricity prices in the energy market based on supply and demand conditions, and
monitoring anomalous behaviors within the electrical grid.

3.2.4. Traffic Dataset

The traffic dataset is a compilation of data collected by the California Department of
Transportation, characterizing road occupancy rates measured by various sensors located
on highways in the San Francisco Bay Area. This dataset is applicable to a wide range
of uses, such as forecasting traffic flow at specific times and locations, identifying bottle-
neck segments and periods of congestion, and supporting infrastructure planning and
development through the analysis of traffic patterns.

3.2.5. Solar-Energy Dataset

Solar-Energy dataset chronicles the solar energy production in the year 2006, with
samples collected every 10 min from 137 photovoltaic power stations in Alabama. This
dataset has a similarly extensive range of applications, such as forecasting the energy output
of solar power stations or photovoltaic systems, investigating the relationship between
solar radiation and climate change, and assessing the impact of different geographical
locations and seasons on the performance of photovoltaic systems.

3.2.6. PEMS Dataset

PEMS collects and stores real-time traffic data from across the entire highway system
in California, including metrics such as traffic volumes, vehicle speeds, and lane occupancy
rates. This information is primarily obtained through inductive loop detectors and other
sensors deployed on the highways. The system aggregates data both temporally (e.g.,
every 5 min) and spatially (e.g., per detection point or region), thereby supporting traffic
management, planning, and research initiatives. Spanning a wide network of California’s
highways, the dataset provides several years of historical data, proving invaluable for
transportation research, urban planning, traffic engineering, and environmental impact
assessments.

3.3. MAE and MSE Calculation

For the purposes of this experiment within the context of sequence prediction tasks, we
have selected two prevalent and extensively utilized evaluation metrics, i.e., MSE and MAE.
The MSE represents the average of the squares of the differences between the predicted
and actual values. The computational method for MSE is delineated in Equation (12):

MSE = 5" (5l — 94)? (12)
where m denotes the number of samples, ygéit represents the actual values, and yﬁlt signifies
the predicted values by the model. The squared term in MSE accentuates the impact of
larger errors, rendering it particularly sensitive to outliers. This attribute can be advanta-
geous in certain scenarios, such as when substantial prediction errors entail more severe
consequences than minor ones. As a differentiable function, MSE possesses favorable
mathematical properties during optimization processes, such as gradient descent, which
are crucial for model training.

The MAE is the average of the absolute differences between the predicted values and

the actual values. The MAE directly quantifies the average deviation between the predicted
values and the actual values and is straightforward to interpret and comprehend. Due
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to the absence of a squared term, MAE is less sensitive to outliers compared to the MSE,
offering a more robust error estimation in the presence of anomalous data points. The
method for calculating MAE is presented in Equation (13):

1 . (i
MAE = 7" [yjel — ik (13)

3.4. Comparison with Machine Learning-Based Methods

Traditional machine learning methods still hold advantages in sequence data forecast-
ing. Therefore, we conduct extensive experiments to evaluate the forecasting performance
of our proposed SVSeq2Seq model together with two conventional machine learning-based
baselines, such as Support Vector Machines and Random Forest. As shown in Table 1 and
Figure 4, our proposed SVSeq2Seq shows excellent prediction performance on the three
datasets, both MSE and MAE, compared with the SVM and REF. In particular, the perfor-
mance of the SVSeq25Seq model in the weather dataset was improved by 56.88 times in the
weather dataset and 73.78 times in the electricity dataset at the MSE level, respectively.

Table 1. The MSE and MAE values of the three models’ forecasting results.

MSE! MAE 2
Model
odels SVSeq2Seq  SVM RF SVSeq2Seq  SVM RF
ETT 0.528 12.971 14562 0.524 13518 12.057
Weather 0.259 14.732 11.604 0.260 12.351 11.943
Electricity 0.186 11.264 13.724 0.285 10.905 12.718

1 Bold indicated the MSE optimal value; 2 Bold indicated the MAE optimal value.

A 16
FEd ETT
149 pa Weather
12 Ed Electricity

10
84
6
4-
533

0 E L'_- =
SVSeq2Seq SVM Random Forest

Values

B 144 ©1 ETT
Ed Weather
124 pa Electricity

10 -
84

Values

6-
4-
2-

0 B I.'— =
SVSeq2Seq SVM Random Forest

Figure 4. Comparison of the forecasting results of the SVSeq2Seq model with SVM and RF at the
MSE (A) and MAE (B) level on three real-world datasets.
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3.5. Comparison with Several Up-to-Date Methods

Further, we also compared our proposed model with several up-to-date methods,
including Informer, FEDformer, Crossformer, DLinear, TiDE, SCINet, and TimesNet. The
prediction results are shown in Tables 2 and 3, with the best results in bold. Lower MSE
and MAE values indicate more accurate predictions. Our model outperforms other state-of-
the-art baseline models on three out of the six datasets while achieving comparable results
on the remaining three datasets. These results demonstrate the excellent performance of
our model in sequence prediction scenarios.

Table 2. The MSE values of the eight models’ forecasting results.

Models SVSeq2Seq TimesNet  SCINet TiDE DLinear Crossformer FEDformer  Informer
ETT 0.528 0.414 0.954 0.611 0.559 0.942 0.437 4431
Weather 0.259 0.259 0.292 0.271 0.265 0.259 0.309 0.634
Electricity 0.186 0.192 0.268 0.251 0.212 0.244 0.214 0.311
Traffic 0.737 0.620 0.804 0.760 0.625 0.550 0.610 0.764
Solar-Energy 0.280 0.301 0.282 0.347 0.330 0.641 0.291 0.235
PEMS 0.113 0.147 0.114 0.326 0.278 0.169 0.213 0.171
Bold indicated the MSE optimal value in different datasets.
Table 3. The MAE values of the eight models’ forecasting results.
Models SVSeq2Seq TimesNet  SCINet TiDE DLinear  Crossformer FEDformer Informer
ETT 0.524 0.427 0.723 0.550 0.515 0.684 0.449 1.729
Weather 0.260 0.287 0.363 0.320 0.317 0.315 0.360 0.548
Electricity 0.285 0.295 0.365 0.334 0.300 0.334 0.327 0.397
Traffic 0.502 0.336 0.509 0.473 0.383 0.304 0.376 0.416
Solar-Energy 0.301 0.319 0.375 0.417 0.401 0.639 0.381 0.280
PEMS 0.222 0.248 0.224 0.419 0.375 0.281 0.327 0.274

Bold indicated the MAE optimal value in different datasets.

As shown in Table 2, when evaluated using MSE as a metric, our proposed SVSeq2Seq
model outperforms all other baseline models on the weather, electricity, and PEMS datasets.
On the weather dataset, our proposed model performs comparable to TimesNet but out-
performs Informer by up to 59.15%. On the electricity dataset, the SVSeq2Seq model we
proposed performs up to 40.19% better than Informer. Similarly, the SVSeq2Seq model
delivers up to 65.34% improvement over TiDE on the PEMS dataset.

When evaluated with MAE as the metric, the performance of the SVSeq2Seq model
is essentially the same as when evaluated with MSE (Table 3). SVSeq2Seq shows an
improvement of up to 52.55% over Informer in the weather dataset, up to 28.21% over
Informer in the electricity dataset, and up to 47.01% over TiDE in the PEMS dataset.

Figure 5 illustrates the comparison of forecasting results between the SVSeq2Seq model
and the other seven models on the ETT, weather, electricity, traffic, solar energy, and PEMS
datasets. The results in Figure 5 show that the MSE and MAE of the SVSeq2Seq model
exhibit significant advantages over the other seven baseline models in predicting the three
datasets, i.e., weather, electricity, and PEMS. The MSE values are as low as 0.259, 0.186,
and 0.113 in the weather, electricity, and PEMS datasets, respectively. Correspondingly,
the MAE values were as low as 0.260, 0.285, and 0.222, respectively. In addition, the MAE
and MSE values of the SVSeq2Seq model also perform well in the three other datasets,
such as ETT, traffic, and solar energy. Therefore, our proposed SVSeq2Seq model displays
exceptional forecasting ability in the six datasets.
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Figure 5. Comparison of the forecasting results of the SVSeq2Seq model with other models on six
real-world datasets. (A) ETT dataset; (B) weather dataset; (C) electricity dataset; (D) traffic dataset;
(E) solar energy dataset; (F) PEMS dataset. The black and red colors of numbers indicated the MSE
and MAE values, respectively.

3.6. Ablation Experiment

To verify the rationality and generality of our proposed state vector computation
method, we performed detailed ablation experiments, including the replacement of differ-
ent encoders, decoders, and state vector computation methods. LPRcode is a state vector
computation method used in the reported study [3], where the output of the encoder is
used as a direct input for the decoder. On the other hand, the reported NMTcode computes
the state vector by summing the hidden states of the encoder [14]. The experimental results
are shown in Tables 4 and 5.

Table 4. The MSE of the models’ forecasting results in ablation experiments.

Models LSTM + RNN + LSTM + LSTM + RNN + RNN +
SVSeq2Seq SVSeq2Seq LPRcode NMTcode LPRcode NMTcode
ETT 0.528 0.833 9.533 8.286 8.600 8.425
Weather 0.259 0.629 8.476 8.332 8.459 9.762
Electricity 0.186 0.580 9.072 7.649 8.714 8.619

Bold indicated the MSE optimal value in different datasets.
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Table 5. The MAE of the models’ forecasting results in ablation experiments.
Models LSTM + RNN + LSTM + LSTM + RNN + RNN +
SVSeq2Seq SVSeq2Seq LPRcode NMTcode LPRcode NMTcode
ETT 0.524 0.933 8.825 8.637 9.146 8.902
Weather 0.260 0.795 9.601 7.212 9.702 8.316
Electricity 0.285 0.604 9.479 8.966 9.756 9.637

Bold indicated the MAE optimal value in different datasets.

The universality of the SVSeq2Seq model was confirmed in ablation experiments using
MSE as the evaluation metric. To achieve this goal, LSTM and RNN were employed as
encoders and decoders in sequential order. As shown in Table 4, the MSE of the ETT,
weather, and electricity datasets exhibited minimal variations of 0.305, 0.37, and 0.304,
respectively, demonstrating the robust universality of the SVSeq2Seq model. To provide
additional evidence of the reliability of the SVSeq2Seq model, we also conducted a series
of experiments using the LPRcode and NMTcode models, which resulted in a significant
decrease in forecasting accuracy. Specifically, when LSTM was used as both the encoder
and decoder on the ETT dataset, the MSE increased by 18.05 and 15.69 times, respectively.
Similarly, when RNN was employed as both the encoder and decoder, the MSE increased
by 10.32 times and 10.11 times, respectively. The significant increase in MSE after replacing
SVSeq2Seq highlights the soundness of the proposed SVSeq2Seq model in the Sequence-to-
Sequence framework.

The results of the ablation experiments were similar when using MAE as the evaluation
metric and MSE as the benchmark. The chosen evaluation metrics did not appear to have
a significant impact on the results. The LSTM and RNN were implemented sequentially
as the encoder and decoder. Minor fluctuations in the MAE were observed on the ETT,
weather, and electricity datasets, with values of 0.409, 0.535, and 0.319, correspondingly
(Table 5). This confirms the superior adaptability of the SVSeq2Seq model. After replacing
5VSeq2Seq with LPRcode and NMTcode, and using LSTM as both the encoder and decoder
in the ETT dataset, MAE increased by 16.54 and 16.48 times, respectively. Similarly, when
RNN was used as the encoder and decoder, the MAE increased by 9.8 folds and 9.5 times,
respectively. These results affirm the effectiveness of the proposed SVSeq2Seq model.

Figure 6 shows the comparison of forecasting results for the ablation experiments in
three real-world datasets, including ETT, weather, and electricity. As shown in Figure 6,
regardless of whether LSTM or RNN is used as the encoder and decoder for the SVSeq2Seq
model, the forecasting results are significantly superior to those obtained using LPRcode
and NMTcode models. The above results indicate that the proposed SVSeq25eq model has
outstanding universality and rationality compared to the LPRcode and NMTcode models.

Furthermore, to validate the efficacy of the state vector, we eliminated all components
of the state vector, such as SVSeq2Seq, LPRcode, and NMTcode. Compared with the
proposed model with SVSeq2Seq as a state vector (Tables 4 and 5), the MSE and MAE
values of the model without state vector components increased substantially in both the
LSTM and RNN models (Table 6). These results demonstrated the significant contribution
of the state vector, such as SVSeq2Seq, LPRcode, and NMTcode, within the Sequence-to-
Sequence architecture.

Table 6. The MSE and MAE of the models’ forecasting results.

MSE1 MAE 2
Models
LSTM RNN LSTM RNN
ETT 9.603 10.492 9.548 10.734
Weather 8.972 9.776 9.670 9.809
Electricity 9.747 10.946 9.249 10.385

1 Bold indicated the MSE optimal value; 2 Bold indicated the MAE optimal value.
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Figure 6. Comparison of forecasting results for ablation experiments in three real-world datasets.
(A) ETT dataset; (B) weather dataset; (C) electricity dataset. The black and red colors of numbers

indicated the MAE and MSE values, respectively.

4. Discussion

This study proposes an efficient method for computing state vectors in Sequence-to-
Sequence architecture that can serve as a foundation for further research and development
in sequence data forecasting. Even though we can mitigate the issue of gradient explosion
and enhance the predictive performance of SVSeq2Seq by optimizing the computation
of the state vector c and employing tensor train, we still encountered numerous limita-
tions and challenges during the early stages of modeling and development of SVSeq2Seq.
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Initially, computational and storage resources posed constraints on the model construc-
tion, hence we proposed the utilization of tensor train to alleviate this issue. Secondly,
in terms of dataset selection, a significant amount of time was devoted to addressing the
quality, quantity, and representativeness of the data. Lastly, the complexity of the model,
hyperparameter tuning, interpretability, and the generalization ability of the SVSeq2Seq
also presented considerable challenges throughout its development. After overcoming
the above challenges, the SVSeq2Seq model has excellent performance in sequence data
forecasting on multiple datasets.

Analyzing the above experimental results reveals that the SVSeq2Seq significantly
outperforms traditional machine learning methods (e.g., SVM and RF) in the prediction of
sequential data across ETT, weather, and electricity datasets. There are primarily two possi-
ble reasons for the suboptimal performance of machine learning algorithms in sequence
prediction tasks. First, conventional SVMs and RFs do not inherently capture this sequential
information as they assume the input features to be independent and identically distributed.
This implies that without proper feature engineering to incorporate temporal information
(such as using sliding windows, time lags, etc.), these models may fail to yield accurate
predictions. Second, many sequence datasets exhibit non-linearities and non-stationarities.
While RFs can capture a degree of non-linearity, they may not be sufficiently flexible for
sequences with complex temporal dynamics. SVMs can address non-linearity issues by
employing non-linear kernel functions, yet their predictive capacity might be compromised
if the sequence data demonstrate significant non-stationarity.

In addition, our proposed SVSeq2Seq model still shows satisfactory performance
compared with several up-to-date methods such as Informer, DLinear, and TimesNet in six
real-world datasets. This observed significance can be attributed to the advantage of the
tensor train network. A significant benefit of using a tensor train is that it is not affected
by dimension enlargement. So, in practice, we can use a tensor train to approximate f. In
SVSeq2Seq, we use the tensor train to reduce the parameter dimension from (g + k)TJrl to
(g + k)R%(T + 1). This effectively reduces the amount of computation that increases sharply
as He*tend jncreases. Let fe H’]j be a Sobolev function defined on Z = [} x I x -+ I3,
where each I; is a set of vectors as given in Equation (14).

Hy = {fe Lu(Z): Y i<k || DYF|2< +°°} 9

where D) f is i-th weak derivative of f and y > 0. Any Sobolev function can be decom-
posed by Equation (15):

f0) = Eilo VA@D(5) © i) (1s)

where {1} is the eigenvalue and () and ¢() are the eigenfunctions. Therefore, we will
denote f by Equation (16):

=Y. Al (wo, 21, 01)& - - - A (g1, %4, 24) (16)

o, 0g=1
where {Ad(ocd_l, Sa ) = VAd_1(ag_1)P(ag_1; sd)} is the basis function on each input di-

mension. Then, f(x) is truncated into a low-dimensional subspace (r < o) in Equation (17)
as follows:

=3 Al (ag,x1,01) -+ A (w1, %4, 04) (17)

L . ]

5. Conclusions

In this paper, we propose a novel and efficient state vector calculation method for
Sequence-to-Sequence architecture forecasting, in which the proposed SVSeq2Seq model
uses the correlation between the hidden layers of the decoder and the encoder to compute
the weight vector of the hidden layer of the encoder. It is worth noting that as the number
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of hidden layers in the encoder increases, the computational complexity of this method
grows exponentially. In addition, we introduce the use of tensor train decomposition to ap-
proximate the extended tensor, which effectively mitigates the curse of the dimensionality
problem. The experimental results demonstrate that the proposed SVSeq2Seq outperforms
the reported baseline models in most scenarios. When using the MSE as an evaluation
metric, the SVSeq2Seq model achieved the best results with scores of 0.259, 0.186, and
0.113 on the weather, electricity, and PEMS datasets, respectively. With the MAE as the
evaluation metric, SVSeq2Seq obtained optimal results with scores of 0.260, 0.285, and 0.222
on the datasets, respectively, demonstrating the effectiveness of SVSeq2Seq in sequence
prediction tasks. In the ablation experiment, regardless of whether MSE or MAE was
used as the evaluation criterion, the SVSeq2Seq group achieved the best performance on
the ETT, weather, and electricity datasets, indicating that our model possesses excellent
generalizability. The experimental results demonstrate that SVSeq2Seq exhibits superior
performance in sequence data prediction tasks, particularly in predicting long-term non-
linear sequence data. In the future, we plan to further enhance the flow of data within
the encoder and decoder, and optimize the computation of memory information weights
within the RNN to improve the sequence prediction capabilities of SVSeq2Seq. Regarding
machine learning approaches, we will explore the use of ensemble learning techniques in
conjunction with hyperparameter tuning to enhance the performance of machine learn-
ing methods in sequence prediction tasks. Additionally, we aim to further investigate
the application of the state vector in time series analysis tasks using Transformer-based
methods.
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