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Abstract: The axially symmetric solutions to the Navier—Stokes equations are considered in a bounded
cylinder Q C R3 with the axis of symmetry. S is the boundary of the cylinder parallel to the axis
of symmetry, and S; is perpendicular to it. We have two parts of S;. On S; and S, we impose
vanishing of the normal component of velocity and the angular component of vorticity. Moreover,
we assume that the angular component of velocity vanishes on S; and the normal derivative of the
angular component of velocity vanishes on S;. We prove the existence of global regular solutions.
To prove this, the coordinate of velocity along the axis of symmetry must vanish on it. We have to
emphasize that the technique of weighted spaces applied to the stream function plays a crucial role in
the proof of global regular axially symmetric solutions. The paper is a generalization of Part 1, where
the periodic boundary conditions are prescribed on Sy. The transformation is not trivial because it
needs to examine many additional boundary terms and derive new estimates.

Keywords: Navier-Stokes equations; axially symmetric solutions; cylindrical domain; existence of
global regular solutions
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1. Preliminary Remarks

The problem of the existence of global regular axially symmetric solutions to Navier—
Stokes equations has a long history. The first such results with vanishing swirl were proved
by O.A. Ladyzhenskaya [1] and by M.R. Ukhovskii and V.I. Yudovich [2], independently,
in 1968.

The case with nonvanishing swirl is still open. This paper is a step in this direction.
We prove the existence of global regular solutions with large swirl. Unfortunately, in the
proof the stream function divided by the radius, denoted by ;, must vanish on the axis
of symmetry. This means that the coordinate of velocity along the axis of symmetry must
vanish on the axis of symmetry too.

The main result of this paper is Theorem 1 and the global esitmate (24).

Since mathematicians were not able to prove the global estimate for regular solutions,
they prove it by assuming some different Serrin-type conditions. The conditions are such
that some coordinates either of velocity, or of derivatives of velocity, or of vorticity belong to
Ly(0, T; Ly(€))) spaces for appropriately chosen parameters p and g. A significant literature
of this kind is cited in the papers: [3-7].

In papers [8-11], it is shown that a suitable continuity of some coordinates of velocity
in a neighborhood of the axis of symmetry implies the regularity of axially symmetric
solutions.

In this section, we are going to show the main points of the paper that are crucial for
the proof of (24). For this purpose, we only recall the appropriate points of the paper.

Looking at the literature on the regularity problem of axially symmetric solutions, it
is clear that to prove it we need additional estimates and appropriate inequalitites. We
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found them in Sections 4, 6 and 7. The results are original. Let u = rvy, vy, the angular
component of velocity, be swirl.
In Section 6, we proved the estimate

(1) ||”\|Loo(o,t,-H1(Q)) + ”uHLz(O,t;HZ(Q)) < ¢(data),

where ¢ denotes an increasing positive function.
The most important inequality is proved in Section 7 (see (173)):
2
Wy
r

< cflull, (D1 + lully0,m2(0)))
(2) Ly (Q)

where w, and wy are radial and angular coordinates of vorticity.

Moreover, D; = ¢(data) bounds the weak solution (see Lemma 1), and the estimate
(see Lemma 2)

Lo + ¢(data),
Ly(0,6H (Q)))

r

©) [#ll1r) < @(data)

is well known.

The most important feature of (2) is such that norm of “* appears in the square but
also in the norm of # linearly.

Inequality (2) is crucial in the proof of global inequality (24). To prove (2), we need
inequalities from Sections 4, 6, and 7.

The main difficulty in the regularity theory of the Navier-Stokes equations is to handle
with the nonlinear terms. We need to tranform them in such a way that they can be absorbed
by the main linear terms.

In this paper, we consider problem (17)-(20) for functions ® = r, T’ = # defined
by (16). The problem was considered in [8].

Applying the energy method, we derive inequality (111) with the strongly nonlinear
term denoted by I3.

The main task of this paper is to estimate I3 by quantities that can be absorbed by the
terms from the Lh.s. of (111).

I3 is estimated in (122). Using notation (132)

X(t) = [®@llvian + [Tl

where
H“Hv(nf) = ””HLOO(O,t;Lz(Q)) + ||MHL2(0,t;H1(Q))/
we derive from (111) and (122) the inequality (see (134))

(4) X2 < g1 X270 + ¢(data),

where ¢; depends on |vp|; .t/ [Vpleoqt, d > 3and & > 0.
For 6 > 0, the Young inequality can be applied in (4) so (133) holds. We write it in
the form

4e
(5) X2 < clogl o (1+ [0g1% ) + (dlata),

wheree = €1+ ¢5,0 = (1 - %)81 — %82 and ¢ can be chosen as arbitrarily small.
The existence of such positive ¢ implies (122) is the form (4). For 6 = 0, we were not
able to apply the Young inequality in (4) so we were not be able to prove Theorem 1.
Applying (2), we were able to prove (4) with positive .
Hence, (2) is the most important inequality in this paper. It is a totally new result.
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In the next step, we eliminate [0y |; o, o, d = 12 from the rh.s. of (5). To perform this,
we have to enter into the proof of Lemma 13. To derive (141) from (140), we need to satisfy
the estimate

2
6) [ Pax < ey 0,
@)

where « < 6. (6) does not hold for & = 6 because (202) is not true for u = 0.
Hence, (202) implies that (6) holds for any number less than 6. It is denoted by 6'.
In the next step, we recall (147).

; de
7) 0p Sy < clopls g + 9(data)

To apply the Young inequality in (7), we require that 6’ > %. In Remark 4, it is shown that
the inequality holds for 6’ sufficiently close to 6. In this case, |45 o, can be eliminated
from the r.h.s. of (5).

Eliminating |0, |, o is easy because it appears with the power &y, which is assumed
to be arbitrarily small.

We have to emphasize that (137) is proved for such solutions to problem (6) that v, is
not very small. The existence of such local solutions is proved in Appendix A.

Hence, the global estimate (24) holds for these solutions. This means that the local
solution can be extended in time.

To describe the transformation from Part 1 to Part 2, we have to examine terms, where
the integration by parts with respect to z appears.

To derive the second term in (47), we need the following term to vanish:

S2
To satisfy (8), we see that 7i - Vv, - v;|g, = vy20r]s, = v2,0r|s, = 0 because we assumed

that v,|s, = 0 so also v|s, = 0.
Moreover, we used that wyl|s, = vz — vz

s, = 0. Next, we see that
i - VU(PU(P\SZ = U¢,ZU¢|52 =0
because

(9) U,z

5, = 0.

Finally, the last term in (8) vanishes because v;[g, = 0.
To show (53), we require that

/ﬁ - Vuu|u|*~2dS, = 0.
S2

It is true because (9) implies that u ; = rv,, = 0 on S».

In proofs of (62)-(64), we show that prescribed boundary conditions on S; imply the
vanishing of all the boundary terms that appeared on S,.

Comparing Part 2 with Part 1, we see that in (113) an additional boundary term on S;
appears. Fortunately, it vanishes because ®|s, = 0. To prove (138), a boundary term on S,
also appears. It vanishes because (9) holds.

The same argument works in (154) and in the proofs of (159) and (160).
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In (174), two boundary terms on S, appear:
I = / A Veoyw,dSydt!, I = / - Veo,wsdSydt'.
S S5
Since wy = —vy,z, then (9) implies I; = 0. To prove I = 0, wesee that u ;; = vy + Vg =0

on S by (9).

The boundary term on S; in J; vanishes because (9) holds. To vanish the boundary
term in J3, we need lpl,r‘Sz =0, P10 S, = 0, wl,zz‘52 = w1|52 =0.

We have to emphasize that condition (9) is crucial in the proof of Theorem 1.

Finally, we shortly describe the results of this paper.

In Section 2, the considered problem is formulated in Cartesian coordinates in (6), in
cylindrical coordinates of velocity in (7), and in cylindrical coordinates of vorticity in (9).
Moreover, we recalled very important relations between cylindrical coordinates of velocity,
vorticity, and the stream function (see (13), (15) and (21)). Next, (14) is the problem for the
stream function ¢ and (22) for the modified stream function ¢; = ¢ /.

Problem (17)-(20) for functions @, I' defined in (16), is the main problem in this
paper. For solutions to this problem, we derive the global estimate (24), which is proved
in Theorem 1. Finally, the end of this Section is devoted to the proof of Theorem 1.

In Section 3, there are introduced notations used in this paper. Moreover, we proved
the energy estimate (see Lemma 1), the estimate for swirl (see Lemma 2), and the energy
estimate for the modified stream function ¢; (see Lemma 4). Moreover, in Lemma 5 we
recall the interpolation inequality for weighted Sobolev spaces proved in [8]. The inequality
is crucial in the proof of (24). At the end of this Section, we recalled the definition and some
properties of weighted Sobolev spaces (see [12]).

In Section 4, we derive many new estimates for the modified stream function .
Since Equation (22); has a singular coefficient, the estimates can be derived either by the
energy method or by applying the technique of weighted Sobolev spaces developed by
Kondratiev [12].

Applying the energy method, some terms on the boundary and on the axis of symmetry
appear. The terms on the boundary vanish in view of the boundary conditions. To eliminate
the terms on the axis of symmetry, we need expansions of v;, vy, 1 near the axis of
symmetry proved by Liu-Wang (see [13]).

Moreover, the expansions hold for the sufficiently regular local solution. The existence
of such a local solution is proved in Appendix A.

Section 5 is the most important part in this paper. First, we apply the energy method
for solutions to problem (17)—(20). Next, we use the results from Sections 4, 6 and 7. The
main points of this proof are described in the proof of Theorem 1 from Section 2 and at the
beginning of “Preliminary results”.

First, we derive (111), where I3 is estimated by (122). Using (173) with simplified form
(2), we derive (4) with positive . Then, by the Young inequality we derive (5). Next, we
want to eliminate [0y|; o, r from the r.h.s. of (5). It is possible for d = 12 and inequality
(7) (see also (137)). In the r.h.s. of (7), |v(p|2 ot appears, where ¢ is small (see (151)). It is
estimated by (152). For ¢ small, we derive ('24).

In Section 6, we derive new estimates for swirl (see Lemma 15). The estimates are
necessary in the proof of (173) from Section 7.

Inequality (173) is crucial for the proof of (24). It is a new original result.

In Section 8, we proved some estimates for ¢ in weighted Sobolev spaces, which are
necessary in Section 4.

In Appendix A, we proved the existence of the local regular solutions necessary for
deriving expansions near the axis of symmetry shown in [13].

2. Introduction

The Section is divided into the following steps:
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The formulation of the considered problem in Cartesian coordinates.

2. Formulation in the cylindrical coordinates of velocity and vorticity. Moreover, the
important relation between the cylindrical coordinates of velocity, vorticity, and stream
function are recalled.

3. Proof of the global estimate.

In this paper, we prove the existence of global regular axially symmetric solutions to
the Navier-Stokes equations in a cylindrical domain Q0 C R3:

Q={xeR¥ 2+ <R |x3] <a},

where 4, R are given positive numbers. We denote by x = (x1, x, x3) Cartesian coordinates.
It is assumed that the x3-axis is the axis of symmetry of ) and 0 = S = 5 U S,.

Moreover,
Si={xeR* /3 +x3=R,x3 € (—aa)},
Sa(ag) = {x e R®: \/a} +x3 <R, x3=ap € {—a,a}},

where S is parallel to the axis of symmetry and S, (ag) is perpendicular to it. Sy (ag) meets
the axis of symmetry at ay.
To describe the considered problem, we introduce cylindrical coordinates r, ¢, z by
the relations
X] =7rcos@, Xxp=rsing, x3=z. (1)

The following orthonormal system:
e = (cos @, sin @, O), ep = (—sin @, cos ([),0), e; = (0, 0, 1) )

is connected with the cylindrical coordinates.
Any vector u for the axially symmetric motions can be decomposed as follows:

u=up(r,z,t)e +uy(r,z,t)e, + u(r,z,t)e,, 3)

where 1, Ug, Uy are cylindrical coordinates of u.
Therefore, velocity v and vorticity w = rotv are decomposed in the form

v="0,(1,2t)é + v(P(r, z, t)é(,, +v,(1,2,t)e; 4)

and
w = wy(1,2,t)8 + wy(r,z,t)ép + w:(r,z,t)e,. ()

The paper is devoted to a proof of global regular axially symmetric solutions to the problem

vi+v-Vo—vAv+Vp=f in 0T =Qx(0,T),
divo =0 in Q7 ©
v-7ils =0, wyls =0, vgls, =0, vg:ls, =0 on ST =5x(0,T),
v|t=0 = v(0) in Q,
where v = (v1(x,t),v2(x,t),03(x,t)) € R3 is the velocity of the fluid,

p = p(x,t) € Ris the pressure, f = (fi(x,t), f2(x,t), f3(x,t)) € R? is the external force
field, and v > 0 is the constant viscosity coefficient.
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Expressing problem (6) in the cylindrical coordinates of velocity yields

UZ(P Uy
Ut +0- Vo, — P vAv, tV = P + fr

v v
Vgt +0- VU + 7rv¢ —vAvy + vr—f = fo,
Ut +0- Vo, —vAv, = —p, + 12, ()
(rvr),y + (rvz),z == O
Z)r|5 = 0, U¢|51 = 0, vqjlz
Z7r|t:0 = Ur(o)/ U(plt:O = U(p(o)/ Z72|t:0 = Uz(o)/

S, = 0, vy — Z)z,r|5 =0,

and
0- V = (Ure_r + vze_z) . V == vrar + vzaz,
1 )
Au = ;(ru,,),, + Uz
Formulating problem (6) in terms of the cylindrical coordinates of vorticity implies
w
(Ur,t + (8 VCU;» - VAC(Jr + VTZ}’ - (Urvr,r + (Uzvr,z + Fr/
Uy we 2
wet+0v-Vwy — 7w(,, —vAwy + vr—z = ;vq,v(p,z + Fy, ©)
Wyt + 0 Vw, — VAW, = w0y, + w05, + F;,
wrli=0 = wr(0), wgli=o = we(0), w:z|i=o = w(0)
and we have boundary conditions (7)5 on S, where F = rot f and
F = F(r,z,t)é, + Fy(r,z,t)ep + F:(1, 2, t)e;. (10)
The function
u=ruy (11)
is called swirl. It is a solution to the problem
2v
up+v-Vu —vAu + = rfo = fo,
(12)

1/[|51 :0, M,Z|52 :0,
ul=o = u(0).

The cylindrical components of vorticity can be described in terms of the cylindrical compo-
nents of velocity and swirl in the following form

1
Wy = —0pz = *;”,z/

(,()(p = 'Ur,z - Uz,r/ (13)

v 1
¢
Wy = ;(rv@rr = Vg + - = ;u,r.

Equation (7)4 implies the existence of the stream function ¢, which is a solution to the problem

4
—A T = w,,
l/’"",,z We

Pls = 0.

(14)
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Moreover, cylindrical components of velocity can be expressed in terms of the stream
function in the following way:

r9)r =+ 2,

Urp = Pz, Urz = —P 2z, (15)

1
Uzz = Pz + %/ Uz = Py + ;lp,r - %

1
Uy =~ U= ;

Introduce the pair
(®,T) = (wr/1,wy /7). (16)

Formula (6) from [8] implies that quantities (16) satisfy the following equations:
Oi+0-VO— V(A + fa,><p — (wydy + wzaz)% =F/r=F 17)
and
v _
F,t+v-VF—v(A~|—i8r)l"+2:DCI>—F¢/75F¢. (18)
We add the following initial and boundary conditions to solutions of (17) and (18)
Pls =0, T|s=0, (19)
P@i—0 = ®(0), Tli=o =T(0). (20)
Next, we express the cylindrical coordinates of velocity in terms of ¢ = ¢ /r
Ur = =11z, vz = (r1) r + 1 = 11, + 291,

Uryr = P12 — P12, Urz = —TP1 22, (21)
Uzz7 = rlpl,rz + 211[’1,2/ Uz = 37701,7 + m,bl,rr

The aim of this paper is to prove the existence of global regular axially symmetric solutions
to problem (6). For this purpose, we have to find a global estimate guaranteeing the
existence of global regular solutions.

Function ¢, is a solution to the problem

— Ay — %4]1, —w, in Q=(0,R) % (—a,a),
lpl‘s - O/

(22)

where
wy = we/T. (23)

We have that wy =T.

This paper is a generalization of paper [14], where the periodic boundary conditions on
Sy are assumed. Since the periodic boundary conditions are mathematical-type conditions,
we replaced them in this paper by v - 7i|s, = 0, wyls, = 0, vy|s, = 0. This replacement is
not trivial because it needs many additional considerations.

To state the main result, we first introduce necessary assumptions.
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Assumption 1. Assume that the following quantities are finite:

P1lr—0 =0,

Dy = || fll L,y + 100 |, 2)-

D2 = [lfoll Ly, () + [4(0) [ L),

fo=r1fy, u=rvy,

D3 = DiD3 + [[uz (013 ,(ca) + I follZ, ey

D2 = D21+ D) + i, )12, + 101, ) = 1ol a0t (610

where Dy, Dy are introduced in (46) and (52), respectively, and D3, Dy in (159) and (160),
respectively. Let

Ds = D2(D1 + D, + D3),
D¢ = Dy D3,

where ¢ is arbitrary small positive number. Moreovet,

D7 = I IZ, 010 sy T 1E: Ty 0 526500
+wr(0)2, 0 + - O],

is defined in Lemma 16.
Next,

Dg = </>(Dz)(I\Frlﬁz(o,t,-Ls/S(n)) + ||F(P||%z(o,t;L6/5(0)>)
+ @ O)IIF, ) + ITO)F, 00

where F, = F,/r, Fy = Fy/r,® =%, T = # and Dg appears in (111).
In Lemma 13, the following quantity is defined:
Do (12) = 12| fol 1.1 (0,6:L55 05 (2)) + 120 (0) 1Ly (0)-
Finally, we have introduced in Lemma 14 the quantity
Dio = [|fp/7ll1, (06L0(0)) + 129 (0) || ()-

Theorem 1. Assume that Assumption 1 holds. Then, an increasing positive function ¢ exists
such that

[®llviay + ITllvary < ¢(Di, -+, Dio)- (24)

Remark 1. Estimate (24) implies any regularity of solutions to problem (6) assuming sufficient
reqularity of data.

To prove (24), we 1 and v, need to vanish on the axis of symmetry.

Proof of Theorem 1. Inequality (113) in the form

d _
G10Ba+ VOB < 1+ [ Fedx (25)
Q

is the first step of the proof of (24), where ® = — U‘%z, F = % and

1< [ fopdr 2oz |dx + [ |og0: 20, |dx = 1y + I
Q Q
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Our aim is to estimate I; and I by a product of norms || @ ||y ), [T]lvat)-
Since the Leo-estimate of swirl rv,, is bounded by D, (see Lemma 2) and &=y,
we obtain the estimates

h < Dy P

D 2|20,
¥e)

? (26)

D,
2,0

lpl,zz
L < Dz‘ - 2,0

To examine estimate (26), we recall that i; is a solution to problem (22).
We prove the existence of weak solutions to problem (22) in Lemma 4 and derive the
estimate (56)

[$1ll,a < clwile/s.0- (27)
In Section 4, we increase the regularity of weak solutions by deriving estimates for higher

derivatives.
From (82), we have

<c
2,0

10

‘4’; 20 (28)

The estimate holds for the weak solutions to problem (22) because [13] yields the expansion
of §; near the axis of symmetry

1 = ar(z,t) +aa(z, )r* +az(z, t)r* + - - - (29)
Hence, {1 , = 2a5(z, t)r and the norm ‘ l/)lr'” » o can be finite.
To estimate I, we need '
“”1 < cTabo. (30)
" 20

The estimate holds for such a class of regularized weak solutions to problem (22) that

¥1lr=0 = 0. 31)

It means that in expansion (29), we have that a1 (z, ) = 0.

The existence of solutions to problem (22) (see also (61)) satisfying restriction (31)
and estimate (30) follows from the theory developed by Kondratiev (see [12]) for elliptic
boundary value problems in domains with cones in weighted Sobolev spaces.

In this paper, the existence is proved in Lemmas 8 and 17. From [12], it also follows
that we can prove the existence of different solutions to problem (22) belonging to different
weighted Sobolev spaces.

The difference between two such solutions equals the expression that follows from the
Cauchy theorem for complex functions connected with the contour integration.

Restriction (31) means that we have to work with a very restricted class of weak
solutions to (22). This also means that v, must vanish on the axis of symmetry.

Using estimates (28) and (30) in (25) yields

d
E’q’@,n + |Vq>|%,n <cDy

I,

20| VP20 + / F.ddx. (32)
O

We have to emphasize that we are not able to prove estimate (24) without restriction (31).
Now, we integrate (120) with respect to time. Then, we obtain

T

2 2
20t <2

/ % oraxdr’
o (33)

+ C|F4’|é/5,2,0f +¢|T(0) |%,Q-
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Integrating (32) with respect to time and adding to (33) yields

v
@1 )+ T3 ) < c(D2)] [ “Lraxar
T
O (34)

+c(D2)(1FG 50,06 + [Fol/5.0,00) +c(D2)(12(0) 3.0 +IT(0) 3 0)-

Now, we have to estimate the first term on the r.h.s. of (34).
Introducing the quantity (see (132))

X(t) = [®llvay + Tl (35)

and recalling that constant Dy is introduced in Assumption 1, inequality (34) takes the form

X2(t) < ¢(Ds) +cDj3, (36)

(%
/ % o dxdr
Ot r

where the first integral is called I3.
Using estimate (123) and the estimate of L% in the proof of Lemma 11, we obtain from
(36) the inequality
X2(t) = c(D2) 09|} o | P15 1t [V P15 3t | VT | 00t + €D, (37)
where f = (1—3)e; — Jep,d >3, e =1+ < 1.
To derive any estimate from (37), we use (173) in the form
@[50 < (D5 + De|vg|22 ) IIT I 2,00t + D7, (38)
where ¢ can be assumed to be an arbitrarily small positive number and Ds, D¢, D7 are
defined in Assumption 1. This is a very important estimate because the square of |®|, s
depends linearly on ||T'[|1 iy
Using (38) in (37) yields (the estimate of I3 is described in (122))

1
7950

Xa(t) < clvg|§ o ele1 (1 + 0] 2 o) X2° + c2] X270 + cD3, (39)

where ¢y, c; depend on Ds, Dg, Djy.
Since 2 — %0, 2 — 0 are less than 2, Lemma 12 yields the inequality

2¢

4e 2
X2 < cofop |, o (1+ [0p[2Ty) + cologl T, o + D3, (40)

where ¢y = 4)(D2, Ds, Dg, D7).
Setting d = 12 and assuming that v, is not small, we derive (137) in the form

b
2 l12,00,0 < €lgl0 s + @(D2, D5, De, D7, Dg, Do), (41)

where by is a positive number.

The smallness of vy, which must be excluded in the proof of (41), is described
in Appendix A.

To prove (41), we have to pass from (140) to (141). Therefore, we need the estimate

2
/ %dxdt’ <l (42)
Qf

where 6/ < 6, and we are not able to replace 6’ by 6 (see Remark 8).
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Replacing 6’ by 6 estimate (42) takes the form

t

t
¥i 2
/ / axar' < c / 1712 ' 43)
Q 0

0

where the rh.s. can not be estimated by [|T'[|(qr).-
Estimate (42) follows from Lemma 18 and imposes the following additional restrictions

on y:

lPl ‘r:O - Or lpl,r r=0 — 0. (44)

However, the theory developed in [13] implies that ¢ ,|,—o = 0.
Exploiting (41) in (40) yields

d d
X S C(]- + |U(p|o;:€(0)t)‘vfﬂ|0§,2t +¢(D2/ D5/ D6/ D7l DS/ D9)/ (45)

where d1, d; are positive finite numbers.
Finally, we find the estimate for |0y, o (see (152)). Using (152) in (45) yields (24).
This ends the proof of Theorem 1. [

The problem of regularity of axially symmetric solutions to the Navier-Stokes equa-
tions has a long history. The first regularity results in the case of vanishing swirl are derived
in [1,2] by O. A Ladyzhenskaya and Ukhovskii-Yudovich independently. Many references
in the case of nonvanishing swirl can be found in [3].

We have to emphasize that we were able to prove Theorem 1 because the theory of
weighted Sobolev spaces developed in [15] was used.

3. Notation and Auxiliary Results

First, we introduce some notations
Definition 1. We use the following notation for Lebesque and Sobolev spaces

lully ) = Il Tl o) = [l o

||”|\Lp,q(0f) = H””Lq(o,t;LP(Q)) = |”|p,q,or/

where p,q € [1,00|. Next,

lullms ) = Nlullsar ullws o) = llullspor

||uHLq(o,t,~w§(Q)) = Hqu,p,q,Q" H”Hk,p,p,nf = H”Hk,p,otr
where s,k € NU {0}, H*(Q)) = W5(Q).

We need energy-type space V (Q') to be appropriate for a description of weak solutions
to the Navier-Stokes equations

[ullvany = ulpear + Vitlyar

We recall weighted Sobolev spaces defined by
koo , 1/2
||f“Hf,(R+) = < / 2 |9]rf|27’2(”+7k)rdr)
R, /=0

and

k 1/2
1515y = ( /X |D5,Zf|2r2<u+wk>rdrdz> ,

O lal=0
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where Q) contains the axis of symmetry, D* = 9593, |a| = a1 +ap, a; € NU{0},i = 1,2,
k € NU{0}, 4 € R4. Moreover, we have

and
£, ) = [fl2pu0-

Lemma 1. Let f € Ly1(QF), v(0) € Lo(Q). Then, solutions to (7) satisfy the estimate

lo®) 12,0 —0—1//(|er|2 +|Vog|? + | Vo [2)dxdt
Q[

Oy

2
v [ (%4 2 )axar <3Uf12, o +20000)I2, 0 = D}
2 g2 = Lr1(O) L(Q) = 71
Qt

(46)

Proof. Multiplying (7)1 by v, (7)2 by vy, (7)3 by v, adding the results, and integrating
over () yields

1d

24t /(”3 7 ”g)d"“/(lvvrlz + | Vog|? + Vo ) dx
o Q

2

Oy Z]é d d
+V/ 77+ 77 x+/(P,rUr+P,zvz) X
@) @)

= /(frvr + fpvg + fovz)dx.
Q

(47)

The last term on the Lh.s. of (47) vanishes in virtue of the equation of continuity (7)4 and
boundary conditions.

Using the fact that v> = v? + U%P + 02, (47) takes the form

1d
S0l +v (V0 + [ Vo + Vo P
Q

ZJZ ,02 (48)
+U/<7£ +;,;())dx—/(fr0r+f<p0(p+fzvz)dx.
Q Q

Applying the Holder inequality to the r.h.s. of (48) yields

d
Tl < Iflly) (49)

where f? = fZ + fo + 2.
Integrating (49) with respect to time gives

1ol 500) < £l 0ty + 10(0) ], () (50)
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Integrating (48) with respect to time, using the Holder inequality in the r.h.s. of (48) and
exploiting (50), we obtain

1
G +v/(|er|2 + Vo, |? + Vo, ?)dxdt

Ot
2

v v
[ (55 58 Yt < 10 (1Mo et 61
Ot

+ 0O l0y) + 5 120) 0
The above inequality implies (46). This concludes the proof. [
Lemma 2. Consider problem (12). Assume that fo € Leo1(Q) and u(0) € Leo(Q). Then,

[t ) < IfollLg, @) + [[1#(0) | (@) = D2 (52)
Proof. Multiplying (12); by u|u[*~2, s > 2, integrating over Q) and by parts, we obtain

1d 4v(s —1)
&2

212 v
<2 lully, o + 91l ) + 5 [ (uf*) ez
Q

(53)
= /f0u|u|5_2dx.
Q

From [13] it follows that u|,—g = 0. Moreover, using boundary conditions, (53) implies

d
EH“HLS(Q) < follr, - (54)

Integrating (54) with respect to time and passing with s — oo, we derive (52). This ends
the proof. O

Lemma 3. Let estimates (46) and (52) hold. Then,
||U¢||L4(Qt) < D%/ZD;/Z. (55)
Proof. We have
v2 v2
/|vq,|4dxdt’ = /rzv%or—;pdxdt’ < Hrv(PH%oo(Qt)/r—;odxdt’ < D3D?.
Of Of Of

This implies (55) and concludes the proof. [

Lemma 4. Consider problem (22). Assume that wy € Lg;5(Q)), where QO = (0,R) X (—a,a).
Then, there a weak solution to problem (22) exists such that y, € H'(Q) and the estimate

1,0 < clwile/sn (56)

|11
holds.

Proof. Multiplying (22); by ¢, and using the boundary conditions, we obtain

a
41 %,Q+/1P%|r:0dz= /wllPldx-
—a 9]
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Applying the Holder and Young inequalities to the rh.s. implies (56). The Fredholm
theorem gives existence. This ends the proof. O

Remark 2. We have to emphasize that the weak solution 1 of (22) does not vanish on the axis of
symmetry. It also follows from [13].

From Lemma 2.4 in [8], we also have

Lemma 5. Let f € C®((0,R) x (—a,a)), fl;>r = 0. Let 1 <r <3, 0<s<rs <2
(3 5)
qer,

>2|. Then, a positive constant ¢ = c(s, r) exists such that

|19 1/q 35 349 3_3s
(J%a)  <eava 57)
Q

where f does not depend on ¢.

Notation 1 (see [15]). First, we introduce the Fourier transform. Let f € S(R), where S(R) is
the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on R.
Then, the Fourier transform of f and its inverse are defined by

/\

p—iAT ;oo 1 AT £
fr F/ A f (v, f<r>—mR/eAf<A)dA (59)

andfzﬁ f.
H

(R4 ), we denote a weighted space with the norm
HuHHk(R / |azu‘2 2(u— k+l)rdr

In view of transformation T = —Inr,r = e~ 7, dr = —e™ "dt, we have the equivalence

2/|az ‘2 2(p—k+i) T’dT’N 2/|az ‘2 2T gt (59)

i=0p
which holds for v’ (t) = u'(—Inr) =u(r), h=k—1—pu.

In view of the Fourier transform (58) and the Parseval identity, we have

+oo+ih k

. k .
Y AP ]a(A) 2dA = / Y [oLulPe?dr. (60)
4 /5

—cotin 10

4. Estimates for the Stream Function

In this Section, we derive many estimates for ¢; = y/r, where ¥ is the stream function,
in terms of [|T||1 5 o + [T[3,00, ot (recall that ' = wy). Function ¢; was introduced by Thomas
Hou in [16]. Lemma 6 is proved by applying the energy-type method.

We have to emphasize that the proof of Lemma 6 is much more complicated than
the proof of Lemma 6 in [14] because here we need to handle the boundary terms on Ss.
Inequalities (85) and (93) are proved by applying the technique of weighted Sobolev spaces
developed by Kondratiev (see [12]) to problem (61). Inequalities (85) and (93) hold for 4
vanishing on the axis of symmetry. The inequalities are necessary in the proof of inequality
(173). Hence, to prove the global estimate (24) we require that ¢ |,—g = 0.
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Recall that ¢ is a solution to the problem
3 .
- lpl,rr - wl,zz - ;Ipl,r =w; in Q= (O/ R) X (_a/ ﬂ)/ ©61)
P1ls = 0.
Lemma 6. For sufficiently reqular solutions to (61), the following estimates hold
1 a
/(lp%,rr + lp%,rz + ¢%,zz)dx + / ﬁ¢%,rdx + / lp%,z|f=0dz
o) ) o) —a ©2)
2 2
+ / 1 lr=rdz < clwilyq
—a
and
a
/(lp%,zzr + lp%,zzz)dx + /lp%,zz|r:0d2 < c|w1,2‘%,0 (63)
Q —a
and
a
/ (lp%,rrz + lp%,rzz + lp%,zzz)dx + / lp%,zz |7:0dz
Q —a (64)

a
+ [ ¥R elerdz < clorzfq.
—a
Proof. First, we prove (62). Multiplying (61); by 1 ., and integrating over () yields
1
- / l/)l,rrlpl,zzdx - /lp%,zzdx - 3/ ;¢1,r¢1,zzdx = /wl lpl,zzdx-
Q Q Q Q

Integrating by parts with respect to  in the first term implies

- /(¢1,r¢1,zzr),rdrdz+/¢l,r¢l,zzrdx+/lpl,rlpl,zzdrdz
Q Q

Q

— /zpizzdx —3/1p1,rl,bl,zzdrdz = /wlzplrzzdx.
Q Q Q

Continuing, we obtain

a r=R
- /lpl,rlpl,zzr dz"‘/lpl,rlpl,zzrdx_/lp%,zzdx
—a r=0 Q Q

—2/1P1’rl/11,zzd1’dz = /(UlllJllzzdx.
QO [@)

(65)

(66)

The first integral in (66) vanishes because 1 ,7|,—0 = 0, {1 ,z|,—r = 0. Integrating by parts
with respect to z in the last term on the Lh.s. of (66) and using the fact that ¢, on S,

vanishes, we obtain

/lpl,rlpl,zzrdx_ /lp%,zzdx_FZ/lPl,rzlpl,zdrdz = /wllpl,zzdx-
@) (@) (@) @)

(67)
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Integrating by parts with respect to z in the first term in (67), we obtain

A z=a
— [vutna| it [+ dx = (9] drdz = = [wriprady, (69
0 = Q Q o}
where the first integral vanishes because 1 ,|s, = 0 and the last term on the Lh.s. equals
a r=R a
- / lp%,z dz = / lp%,z dz
“a r=0 2o r=0

because 1 ,|,—r = 0. Using this in (68) and applying the Holder and Young inequalities to
the r.h.s. of (68) yields

a
[ Wt wdx+ [ 9hulimodz < claro. (©9)
Q —a

Multiply (61); by %1})1,7 and integrate over (). Then, we have

1
3/L%f
Q

The first term on the r.h.s. of (70) equals

2
1 o1 1
dx = — /wl,rr;lpl,rdx — / ¢1,zz;¢1,rdX— /wl;lliudx. (70)
0 Q Q

1 1 a r=R 1 a
_E/a"lp%,rdrdz = ) /lp%,r dz = _E/lp%,r'Y:Rdzr
9] —a r=0 —a

because 1 ,|,—o = 0 (see [13]). Applying the Holder and Young inequalities to the last two
terms on the r.h.s. of (70) implies

2 a
1 1
[lsoldx 3 [vh] o< clmaia+lanBo) &
a r “a r=R
Inequalities (69) and (71) imply the estimate
1 /
/(lp%,rz +lp%,zz)dx+/ ’rlpl,r dx—i_/l/)%,z dz
a a “a r=0
. (72)
+[¥h az<cwBa
“a r=R
From (61)1, we have
1 2
[1,r %Q < [¥1,2 %,O + 3‘ ;lpl,r + |ewr ‘%Q (73)
2,0

Inequalities (72) and (73) imply (62).
Now, we show (63). Differentiate (61); with respect to z, multiply by — .., and
integrate over (). Then, we obtain

1
/¢1,rrzlpl,zzzdx +/¢%,zzzdx + 3/ ;wl,rz#)l,zzzdx = _/wl,zlpl,zzzdx- (74)
Q QO Q Q
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Integrating by parts with respect to z yields
/ lpl,rrzlpl,zzzdx = /(lpl,rrz ll"l,zz),zdx - / lljl,rrzzlpl,zzdx
Q Q Q
(75)

S2

t
= /lljl,rrzll)l,zz rdr—/lljl,rrzzlpl,zzdx~
0 Q

Projecting (61) on S, yields that —¢; ., = w;. Since w|g, = 0, it follows that ¢y ..|s, = 0
so the first term on the r.h.s. vanishes. Integrating by parts with respect to r in the second
integral in (75) gives

_/(lpl,rzzlpl,zzr),rdrdz+/¢%,rzzdx+/lpl,rzzlpl,zzdrdz/
QO @] Q

where the first integral vanishes because
¢1,rzzr|r:0 =0, lpl,zzlr:R = 0.
In view of the above considerations, (74) takes the form

/(q)irzz + w%,zzz)dx + / lpl,rzzwl,zzdrdz
Q

o (76)

+3/¢1,rzlp1,zzzdrdz = */wl,z#)l,zzzdx
Q Q

By integrating by parts with respect to z in the last term on the Lh.s. of (76) and using the
fact that ¢; ., = 0 on S, we obtain

/(ltb%,rzz + lp%,zzz)dx - /arlp%,zzdrdz = - /wl,ZlIJLZZde' (77)
Q @)

(@)

Applying the Holder and Young inequalities to the r.h.s. of (77) yields

dZ S C|w1,Z|%,Q/
0

r=

a
J W+ viedx+ [ i,
—a

QO

where we used that ¢y ,.|,—g = 0.

The above inequality implies (63).

Finally, we show (64). Differentiate (61); with respect to z, multiply by ¢y ,,,, and
integrate over (). Then, we have

1
_/lp%,rrzdx_ /¢1,zzzlp1,rrde—3/;l[]l,rzlpllrrzdx
’ N ? 78)
= /wl,thl,rrzdx-
Q
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Integrating by parts with respect to z in the second term in (78) and using the fact that
P1,22|s, = 0 implies

_/¢1,zzz¢l,rrzdx = /¢1,zz¢1,rrzzdx = /(lpl,zzlpl,rzzr)rdrdz
Q Q

Q

_/lp%,rzzdx_/lpl,zzlpl,rzzdrdzr
Q Q

where the first term vanishes because

l,bl,rzzr|r:0 =0, ¢1,zz|r:R =0.

Then, (78) takes the form

/(w%,rrz + lpirzz)dx + / lpl,zzwl,rzzdrdz
(@)

o (79)

+3/lp1,rz¢1,rrzdrdz = _/wl,zlpl,rrzdx-
Q Q
The second term in (79) equals

1 a
2
E/lpl,zz

—a

because 1 ,;|,=r = 0, and the last term on the Lh.s. of (79) has the form

R a
3

dz = E /wirz

=0 Za

dz

=R
0 r=0

r
r

a
1
dz = _E / lp%,zz
—a

dz
r=R

r=
r

a

3 3

E/arw%,rzdrdz = E /lp%,rz
Q —a

because {1 ,;|r=0 = 0.
Using the above expressions in (79) implies the equality

dz
r=R

a
1
/(lp%,rrz + lp%,rzz)dx - E /lp%,zz
—a

Q

= _/wl,zlpl,rrzdx'
Q

a
3
dz + 5 / IP%,rz
= “a (80)

Applying the Holder and Young inequalities in the r.h.s. of (80) gives

dz
r=0

a
1
/(lp%,rrz + ¢%,rzz)dx - 5 / lp%,zz
—a

Q

(81)

dz < C|w1,z|%,ﬂ'
r=R

37 ,
3 / P12
—a
Inequalities (81) and (63) imply (64). This ends the proof. O

Lemma 7. For sufficiently reqular solutions to (61) the following inequality:

< C‘wl,z

-
—Wi,rz
4 2,0

2,0 (82)

holds.



Mathematics 2024, 12, 263 19 of 50
Proof. Differentiating (61) with respect to z implies
3
_lpl,rrz - lpl,zzz - ;lpl,rz = W1,z (83)
From (83), we have
1
;lpl,rz < C(|7~P1,rrz 20+ ’lpl,zzz 20+ |w1,z’2,0)- (84)
2,0

Using (64) in (84) yields (82). This concludes the proof. [
lpl,zz

r

Now, we estimate ‘ 20

Lemma 8. Let ¢ be such a weak solution to problem (61) that it vanishes on the axis of symmetry.
Then, such sufficiently regular solutions to problem (61) satisfy the estimate

¥ , ¥
/ QZZ dx + / ¢1,zrr + rzzr +
Q QO

r

lp%,z 2
" dx < clwizl5 - (85)

Proof. Differentiating (61) with respect to z yields

3
- Al,bl,z - ;lpl,zr = W1,z

(86)
l,bl,z ST = 0, lpl,zz|52 =0.
Applying Lemma 17 (see also Lemma 3.1 from [15]) to problem (86) gives
2 lp%zr ‘P%,z 2 2 2
Vier T 5 T4 dx < c(lwizl30 + [P1222150) < clwizlza (87)
Q
where (63) is used in the last inequality.
To examine the solutions to (86), we use the notation
U=z (88)
Then, (86) takes the form
—Au — Eur = Wiz,
r’ ’ (89)

u|51 = 0, M,Z|52 =0.

Multiply (88); by ur~2, integrate over (), and express the Laplacian operator in cylindrical
coordinates. Then, we have

1 1
—/ (u,ﬂ + ;u,r + ulzz) ur2dx — 2/ ;u/rurfzdx = /wllzurfzdx. (90)
Q Q Q

By integrating by parts with respect to z in the third term under the first integral and using
the fact that ¢y .;[s, = 0, we obtain

2

u
/ rlzz dx = / (urrr + i’u,) ur2dx + /wlrzur_zdx. (91)
Q Q Q
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Applying the Holder and Young inequalities to the r.h.s. integrals, using the fact that
u = 11 ; and (87), we derive

lp%,zzd < 2 lp%,zr + IP%,Z d | |2 92
72 xX=c lpl,zrr + 72 A X+ clwy 2,00 (92)
Q Q

Using (87) in (92) implies (85). This concludes the proof. [

Remark 3. Lemma 8 is necessary in the proof of global reqular axially symmetric solutions to
problem (6). Howeuver, it imposes strong restrictions on solutions to (6) because the condition
Y1 |r—0 = 0 implies that v;|,—o = 0. We do not know how to omit the restriction in the presented
proof in this paper.

Lemma 9. Let u > 0and wy € H}L(Q) Then, for sufficiently smooth solutions to (61) the
following estimate is valid:

2 2
2 11[]1,rr lrbl,r 24 2u 2
lpl,rrr + 72 + A rfdx < cR ”wl”l,Q' (93)
Q

Proof. To prove the lemma, we introduce a partition of unity {{()(r)};—1 , such that

300 — 1
i=1
and 1 <
B = {0 s,
i = {g S

where ryp < Rand ¢ (i) (r),i=1,2, are smooth functions.
Introduce the notation

i =wt?, ) =a®, i=12 (04)
Then, functions (94) satisfy the equations
4 N3 v A S
=0, — 9L = 29l = 291,80 — a £ — 20
+ wii) = g(i), i=1,2,

(95)

where dot denotes the derivative with respect to r.
First, we consider the case i = 1. Differentiating (95) for i = 1 with respect to r yields

3 3
Pl — Phoee — 900+ 501, = g 96)

Introduce the notation

o=yp), f=gV. (97)
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Then, (96) takes the form
— Vg — Vg — %v,r + %v =f in Oy 1a,
Oly—ry = 0, (98)
vls, =0,
where O, 1y = {x € Q: 7€ (0,79+A),z€ (—a,a)} andrg + A < R.
Multiplying (98); by r? yields
—r%0,, — 310, + 30 = r*(f + v.,) = g(1,2)
or equivalently
—10,(rd,v) — 2rd,v 4+ 3v = g(r, 2). (99)
Introduce the new variable
T=—Inr, r=e".
Since 19, = —dr, Equation (99) takes the form
—020 +20:v+3v = g(e %, z) = §'(1,2). (100)
Applying the Fourier transform (58) to (100) gives
A2 +2iAo 430 = ¢ (101)
Looking for solutions to the algebraic equation
A2 42iA+3=0
we see that it has two solutions
A= =3i, Ay =1i.
For A ¢ {—3i,i}, we can write solutions to (101) in the form
0= ;.g” =R(1)¢. (102)
A2 +2iA+3

Since R(A) does not have poles on the line ImA = 1—pu = h, u € (0,1), we can use
Lemma 3.1 from [15]. Then, we obtain

oco+ih +ootih ,

2 , .

[ LA e [Y APEIR()E A
—co+ih j=0 —oco+ih j=0

Jrl+oo—~-ih l (103)
<c / 1§/ 7dA.

—oo+ih

By the Parseval identity, inequality (103) becomes

2
/Z |oLov|2e?TdT < c/ ¢’ [2e¥ T dr.
R /=0 i

Passing to variable  yields

2 . ,
) / |22 pdr < c/ |22 H =2 rdr.
j=0 R

N
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Using the fact that ¢ = ?(f + v ,,), we obtain
2 , ,
Y / | o222y < c/ |f + 0 22| *r?Hrdr. (104)
=0g,, R,
Recalling notation (97), we derive from (104) the inequality
2 — ‘ .
Y, / )i 2202 dx < ¢ / g Pt dx + ¢ / 1,122 dx. (105)
=06 0 0
In view of (63),
|lpl,rzz|2,Q S C‘wl,z|2,0- (106)
The first term on the r.h.s. of (105) can be estimated by
|8,(r1) 2,0 < c([¥1l20 + P10 + [W1l20 + w20 + lwil20)- (107)
Lemma 6 and inequalities (105)-(107) imply
D)2 12
W 2, [ V7Y 2
/ (|l,b1,m| + ;; + :4 rtrdrdz
0 (108)
+ [ pmePax < cllwr, B + lw0r:Ba + i o)
Q
Function 1/1%2) is a solution to the problem
2 . . 2 2
— a9 = 21, 8@ — @ + Ty
3 -
- ;1,1115(2) + w%z) in Oy,
109
¢§2)|r:R =0, (109)
1[)%2) =0 for r <y,
lp?) =0 on Sy,

where Qro ={x¢ R3:ry<r<R,zE€ (—a,a)} and dot denotes the derivative with respect
tor.
For solutions to (109), the following estimate holds:

2
Lo+ 1 lla + ol

3,0 < c([[91r

2
Iy
From (56), (108), and (110), inequality (93) follows. This ends the proof. [

10) < cllwill1,a- (110)

5. Estimates for ® and T’

Let O = {(r,z):r € (O,R),z € (—a,a)}. Let ® = w,/r,T = wy/r, and @, I be
solutions to problems (17)—(20).

Lemma 10. Assume that &(0),T(0) € Lp(Q), F;, Fp € Ly(0,t; Lg5(€Y)). Let Dy be defined by
(52), and let
I = /

Ot

0
7"’c1>r dxdt < oo.
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Then,
()50 + T (t)

20 T V(I®IT 50 +ITIT 500

o _
/7"’<I>I‘dxdt’ +¢(D2)(|Fr|§/5,2,0f
Qt
H1Ep2 50 o) + [ @(0) R + [T(0)2
9le/52,0! 20 20
= ¢(D,)I; + Dg.

< ¢(D2)

Proof. Multiplying (17) by ® and integrating over () yields

1d ., ) ¢ =R
§$|¢|2,0+ VO[3 q — /q’

—a

= /(wrar +wzaz)%®dx+ /F_,qux,
0 0

r=0

where we used that (6)3, (13); implies that ®|s = 0.

To derive the second term on the Lh.s. of (112), we consider (17) in

QO={xeR¥r<Rzec(-aa)¢c(0,2m)}

(111)

(112)

Then, by the Green theorem and boundary conditions we obtain the second term on the
Lh.s. of (112) on Q). Using the fact that all quantities in (112) do not depend on ¢, we can

drop integration with respect to ¢ and obtain (112).
Considering the first term on the r.h.s. of (112), we have

1d
2dt

0 _
< / (— v(,),zar% + r(:vfp)az?)q)rdrdz +/FrCI>dx
Q Q

O

R
v
= —/v¢a,7’q>

R o r=R
+/Fr<1>dx = —/v(,,a,lcb
) r

a
rdr+/rv¢azﬁ<1>
T
—a

52 r=0

(@)
Oy (% _
+ [ (arrazop - azrarcp) dx+ [ Fodx
Q Q
R

r=

v
= —/v¢ar7’q>
0

S

r=!

a
rdr—i—/rvq,azﬁd)
r
2 —a

PR+ IVOBo < [ (@ +w:d:) T dx+ [ Fbdx
Q

rdr + / Vg <azar”r> P+ a,vrazcb) dx
5 2 r r

0
Uy Oy Oy
+[a <rvq,azrq>) drdz ~ [ v, ( (aza,r> @+ azrarcp> dx
Q Q

R
dz+1+ / F.ddx,
0 19

(113)

where the boundary terms on S; and S, vanish because ®|s, = 0, v(p|r: R=0,0:],=r =0,

®|,—gr = 0and

a

v
/ rvq,BZ?r@

—a

dz=0
r=0
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because [13] implies the following expansions near the axis of symmetry
vy = ay(z, t)r + a(z,)r* + - -,
o = @1z, t)r + aa(z, )17 + - -

and ® = — 22

.
Finally, I < I; 4 I, where

v
v(Pa,?’qzz dx,

Ilé/
0
Izé/

Q

(114)
Oy

v(pE)Z?CD,, dx.

Now, we estimate I; and . Recall that & = —1; .. Then,

/

Q

g dx

”

lpl,rz o) )
r

I < [ logpra®aldx =
(@]

lpl,rz

[®
.

2,0

— 7l
2,0 = Il'

< |rvtp|oo,0

From (52) and (82), we have (recall that I' = wy)

I <chy

I,

D,

2,0 2,0 (115)

Similarly, we calculate

lpl,zz

r

dx < [rvg|eo 2,0

’

I §/|U(pll7l,zzq),r |¢)r
a 2,00

(116)
< cDo|T 2|20l @ 2,0,

where (85) is used.
Finally, the last term on the r.h.s. of (113) is bounded by

e| @2 o +c(1/€) |3 /5,0- (117)

Using estimates (115)—(117) in (113), assuming that ¢ is sufficiently small and applying the
Poincaré inequality we obtain

d

ik

Vo

%,0+ [P

2
10 Schh|T,

2,0|V®h0+clFl3/50- (118)

Multiplying (18) by I, integrating over (), and using the boundary conditions and explana-
tion about applying the Green theorem below (112), we obtain

1d r R
QE\H%,Q‘FWN%,Q_/FZ dz
“a r=0
) (119)
< 2'/;Pd>l“dx + [ Fprax.
Q Q
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Using the fact that I'|,—gr = 0, by applying the Holder and Young inequalities to the last
term on the r.h.s. of (119) and using the Poincaré inequality we derive

d v _
GIMBa+ T g <2 [ 22T +clFyl 5. (120)
(@)

From (118) and (120), we have

d
ﬁ(@\%n +TEq) + [®ia+ITIFq < ¢(D2)

/ %9 ST dxat’
5 " (121)

+ 47(D2)(|F,|§/5,Q + |F¢\é/5,n)r

where ¢ is an increasing positive function. Integrating (121) with respect to time yields
(111). This ends the proof. O

Lemma 11. Let the assumptions of Lemma 16 hold.
Let vy € Loo(0,£;Lg(Q)), d > 3. Let 0 = (1 — 3)e; — 3ep > 0, e = &1 + &5 Let g9 > O be
arbitrary small.
Then,
¢ 30z 30
I3 < c|vg[g oo, le1(1 4 0915 G ITIT 5 o 122)
+ c7] |VCI>|;/_QG,f |VF|2,Qt,

where ¢q, ¢ depending on Ds, Dg, Dy are introduced in L‘l1 below.

Proof. We examine

dxdt’

oT
13 = / 1"04)7;

Qf

< [ Irogl' oyl
Ot

()
71—81

r
;/1_82

dxdt' = 13,

where ¢ = £1 + ey and ¢;, i = 1,2, are positive numbers.
Using (52) and applying the Holder inequality in I} yields

2 1/2
I < D;E( / vg|* dxdt’)
Ot

= D} LT/ = .

r
r17£2

7’1781

2,0t

By the Hardy inequality, we obtain

E

< c|[VT |, () < cR?[VT |y (123)
L2,£2 (Qt) "2

Now, we estimate L,

t- "
L= (/ / 0]
00
< { |U<p%§a,o(/
O

7"1781

2 1/2
dxdﬂ)

q 2/q 1/2
dx> dt/:| =1,

oo}

1’1781

o—_ _
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where1/0+1/0" =1,q =20". Letd = 2¢0. Then,

o d 2
Td—2 01T i
Continuing,
t 2 1/2
L < e N ARV
1 > sup |Uq0|d,0 T—¢; = Lily-
t 0 r 7.0

Now, we estimate the second factor L%.
For this purpose, we use Lemma 5 for r = 2. Let 2 = 1 —¢;. Then g € [2,2(3—9)].
Since s = (1 — ¢1)q we have the restriction2 < g < 6 —2s = 6 — 2(1 — ¢1)g. Then,

6

2<g< 124
=9=377, (124)
and ﬁ > 2forany ¢; € (0,1).
Hence, Lemma 5 implies
f 2 1/2
)
L3 = (/ -— dt’>
riTa
0 9.2
! (3=s_1) 2(3—3=5) 1/2
§c</|<1>|2 T vepe dt’)
0
3—s 3—s 3
< |l |V<1>Imf =Ly,
where we used that for 6 = 3‘1;5 —-31-0=3- Sf;s so the Holder inequality can

be applied.
Using (173) in L3, we have

1o 1o Loeg lg
L3<C(D2 ‘vr|20t+D2 | (P|2 t||FH120t 72 ) |vq)|20t
— 36¢ o —
= la(1+ I%I;,&)I\Flhm +0] VOl = L,

where ¢, ¢ depend on Ds, Dg, Dy.
To justify the above inequality, we have to know that the following inequalities hold:

3—s5 1
6= - = 12
g 2>0 (125)
and 3 3
1-6=>— —* . (126)
Consider (125). Using the form of g and % we have
3 s 1 3(d — 2¢) 1

Hence,

3 3 1
f—fs—1+sl—§>0 SO &1 —

3
277 *(81-1—82) > 0.

d
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Therefore, the following inequality
3 3
1-Z)e -2 127
< d)el d€2 >0 (127)
holds for d > 3 and € small. Moreover, (127) implies
d 3
To exmine (126), we calculate
3 3(d—2e) 3 3 3
R S —— 1— =1 —£& — =1—(1—-= —&n. 12
> 2 +1—¢ +d£ €1 ( d)81+d82 (129)
Since (129) must be positive, we have the restriction
3 3
1+E€2 > (1 d>€1. (130)
Using (128) in (130) implies
1+ gs > gs
d*"d?
so there is no contradiction.
Hence, we have
0= (1 - Z)sl — %Ez, s
1—0=1—(1-2)e + e
where d > 3.
Finally,
€ %950 %9 1-0
s < cloglf o ulc1 (1 + [0 268 TS o + 2] VOIS - [ VT .
This implies (122) and ends the proof. O
Introduce the quantity
X(t) = [1@llvar) + ITllvian- (132)

Lemma 12. Let the assumptions of Lemmas 10 and 11 hold. Let = (1 — 3 )&y — 3¢5, & = €1 + £2.
Then,

4e b 2e
X2 < colvg| S, o (1+ [092%0) + colvg| ¥, o + D3, (133)

where co = ¢(Ds, Dg, Dy).

Proof. In view of notation (132), inequalities (111) and (122) imply

Lge _1
X? < c|vgl c1(1+ [vg]2 )X 2°
<c| <p|d,oo,gr[ 1( | ‘P‘oo,Q“)l (134)
+ X X + Dg = a X220 + ap X270 + D

Applying the Young inequality in (134) implies

4 2
2 0 i 2
X* <caj +cay + Dg.
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This yields (133) and concludes the proof. [
Remark 4. Consider exponents in (133). Then,
4e 4e 2¢
b= =—e————, = ——. (135)
0 (1 - 3)81 — %82 (1 — 3)81 - %82
For &5 small, we have
4 2
0= _é‘f’g*/ 50:1_§+80*/
d d
where €., €. are positive numbers that can be chosen very small.
For d = 12 it follows that
16 8

This ends the remark.

1646/ 3 _ _2:6/(3¢1-¢2)

Lemma 13. Assume that €1 > aey, s > 1,a = 3016’ 63—16) (63—

L and we choose 6’ as
arbitrarily close to 6 and

D3(s) = Lfpl' s + [0p(0) 20 < 0

Then, excluding cases in which either vy, = 0 or v, is small, we have

/ b
106/05 00 < €l0pl ety + $(Ds, Dg, D7) + ¢(Ds + Dg?). (137)
Proof. Multiply (7), by v,|v,|°~2, integrate over (), and exploit the relation 2 = —y ,.
Then, we obtain
1d 4v(s —1)
S 0ol t 372|V|U<p|s/2 0= /lpl,z Vg dx
Q

(138)
+ /f¢v¢|vq)|s_2dx.
Q

Integrating by parts in the first term on the r.h.s. of (138) and applying the Holder and
Young inequalities yields

R
2
/1/;1,Z|Uq,|sdx g/¢1|v¢|5|52rdr+e|az|vq,|s/2|m+c(1/s)/¢§|v(,,|5dx,
[@) 0 [@)

where the boundary term vanishes because 1], = 0.
By the Poincaré inequality,
212
V]wg|*2 3.0 > cloglsn
so we can estimate the second term on the r.h.s. of (138) by

ol

—1
23j1,0|v¢‘§s,0 < e1]vgl3sn + C(1/€1)|fgo|525%,0-



Mathematics 2024, 12, 263

29 of 50

By using the above estimates with sufficiently small ¢, €1 in (138), we derive the inequality

1d, ., 1 1
5 dt|v"’|50 * 3 g\v¢|3s,n
) . (139)
< cs/tpl\v¢| dx+cs|f¢|2s%,0.
In view of Lemma 2, the first term on the r.h.s. of (139) is bounded by
cs\u|w0t / lpl A dx < csDz 109, / lpl -dx,
where 6/ < 6, but 6/ may be assumed to be arbitrarily close to 6.
Using the estimate in (139) yields
1d i
; dt|vq’|50 < csD2 |vq, / 1¢:lx+cs|f4,|525%,0. (140)
By integrating (140) with respect to time and using Lemma 18, we obtain
l0pl50 < e157DS [vgl5, 5
+ C52|f<p|s2§%’slgt + [09(0)[5 0 (141)
= c152D5 [vg |3, 5(5),
c1 = cR? (1+ (= 6’) )
Dividing (141) by |v(p|s Qt implies
- 2196 (17112 ¢
Dol e qualsn < 18” D3 |TIIF o + —— =g D3(s)- (142)
@ loo, 0 |v§0|oo,ﬂt

The division by |0,|«, ¢ is justified because the following two cases are excluded from

this paper:

(1)  In the case in which v, = 0, the existence of global regular solutions to problem (6) is
proved in [1,2,17].

(2) The existence of global regular solutions to problem (6) for v, sufficiently small is
proved in Appendix A.

Since cases (1) and (2) are not considered in this paper, we can show the existence of
positive constants cg and c¢; such that

/

|qu

5,00, > & (143)
|v!P|oo,Qf
and 1
e =0 (144)
|U‘P 0,0t

In view of (143) and (144), inequality (142) takes the form

/
C_0|U¢|S,oo,nt < c152||1"||i2,0t + cc1 D5 (s). (145)
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Letd = 12. Then, § = 1(3e; — ¢») and (133) for d = 12 takes the form
) 3 16¢ 5 3 8e
€1 —¢€ € €1 —¢€
X° < C0|U§"|12ioo,§)’(l + |v¢|oo,00f) + CO|U(P|12100,§Y + Ds. (146)
Taking (145) for s = 12 and using (146) yields
E ‘6/ < olv |3si6fsz (1+o |2£o )
0 Of >
?112,00,0) 4 12,00,8(S)t P loo, 0t (147)
+ cz|v(p\f;f°:§)t + ¢Dg + ¢D&?,
where C; = 1445&'
To derive any estimate from (147), we need
16¢
6. 148
381 — & < ( )
We see that (148) holds for
16 + 6/
—— & = 14
€1>3X6/_1682 agy, (149)
where a > 11.
In view of the Young inequality, (147) implies
/ b
|Uq0|?2,w’0t < c|vq,|0§?0t + ¢+ ¢(Dg + D&?), (150)

where b = (6’%?/1(2%' The above inequality implies (137) and concludes the proof. [

Remark 5. Exploiting (150) in (146) implies the inequality

d
X2 < e(1+|og|2%,)0g|%%, + ¢(Ds, D7, Dg, Dy), (151)

where d = 381163882 and X is introduced in (132).

To prove Theorem 1, we need an estimate for |vy|q, - For this purpose, we need
the result.

Lemma 14. Assume that quantities Dy, D5, D7, Dg, and Dg are bounded. Assume that f,/r €
L1(0,t; Lo (Q)), v4(0) € Loo(QY).
Then, an increasing positive function ¢ exists such that

[0g|eo,0f < @(D2, D5, D7, D3, Do, || fo /7|1, (0,10 (02))7 [09(0)|e0,0)- (152)

Proof. Recall Equation (7); for v,

1
Vgt +0-Voy —v (Av(P — rzv(P) = 1,99 + fo, (153)

where & = —¢; ..
Multiplying (153) by v4|v,|*~? and integrating over ) yields

1d 4v(

s—1) 212 v
§E|%|§,0+T|V|%|S/ 50 +V/
0

‘P|sd
2 X

) (154)
= /wlrzvfo|v¢|5_2dx+/f¢v¢|vq,|s_2dx,
Q Q
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where we used that vy|s, = 0, vy:[s, = 0.
The first term on the r.h.s. of (154) is bounded by

s/2 |v‘P|S/2d < |v({7|sd 1 2 sd
9zl vpl "= —dx < e [ —5=dx+c(1/e) | yr[opl*dx,
Q o) o)

where the second integral is bounded by

rogo [ 1912 logl*2dx < D3l Eologls
Q
The second term on the r.h.s. of (154) is estimated by
' s—1d _ fi" s—ld
ol vl X = . r|og] X
Q Q
f(l’ -2 ffP -2
< \”’(P\oo,ﬂ/ - [vp|*"“dx < D, - velia-
Q 4

Using the above estimates in (154) and assuming that ¢ is sufficiently small, we obtain

the inequality

1d
ga“’q)‘:n < D%(W’l,z

2 5—2 5—2
s0ltelsa +|7° 29 s,Q)‘
s/2,0)

Simplifying, we obtain

24t¢

2 2 2 fo
50 < D2(|1P1,z|s,n 5 >
s/2,0)

Integrating with respect to time and passing with s — oo, we derive

fo
p

%

t t
000 < D3( [ Ipraatt + |
0 0

Since fot |1/J1,Z|go,0dt’ < X2, we can apply (151). Then, (155) takes the form

96¢
e1—1ley €0

\U¢|§O,Qt < D5(1+ |v¢|ij?gt)|vq)|oo,0t + Dy¢(Ds, D7, Dg, Dg)

t
orf
0

Hence, for ¢ sufficiently small we derive (152). This ends the proof. [

dt' + 0 (0)[2 q-
00,0

Remark 6. Inequalities (151) and (152) imply

X < ¢(D2,Ds,D7,Ds, Dy, | fo /1

00,1,Qt 1 |U<p(0) 0, 0)-

The above inequality proves Theorem 1.

dt’) T lop ()P
0,0}

(155)

(156)

(157)
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6. Estimates for the Swirl

Applying the energy method and using the estimate for the weak solution (see Lemma 1)
and Le-estimate for swirl (see Lemma 2), we derive the estimate

11l 0,0 () + Nl Ly 0.602(0)) < P(data).

This is a new result, and it is necessary in the proof of (173).
In this Section, we find estimates for solutions to the problem

u,t+v~Vu—vAu+2v% =rfp=fo in O,

u, =0 on Sé,
ulp—o = u(0) in Q.

Lemma 15. Assume that Dy, D, are described by (46) and (52), respectively. Let u-(0),
M,r(()) € Lz(Q),fo € Lz(Qt).
Then, the solutions to (158) satisfy the estimates

luz(D)50 +vIVizls o < ¢(DIDF +uz(0)l50 + Ifol3 o) = cD3, (159)

U yy

() By + V(0 By + [tz

+ u,r(0)[3 0 + |f0|%,nt +

%/Qt) < CD%(l + D%)
(160)

2 — 2
f0|4/3,2,sg = cDy.

Proof. Differentiate (158) with respect to z, multiply by u ., and integrate over ). To apply
the Green theorem, we have to consider problem (158) in domain Q) = {x € R3:r<R,z€
(—a,a),¢ € (0,27) }. Then, we obtain

%%WZEQ —1//div(Vu,zu,Z)df+v/|Vu,z|2df
Q

Q
v / 2yt drdzd (161)
Q
= - / vz Vi udi — / v-Viuudi+ / fo,z4 4%,
o} o} a

where dx = dxdg.

The second term on the Lh.s. of (161) equals —v [s7 - Vuu.dSdp = 0 because
u,z|5 - 0.

The last term on the Lh.s. of (161) takes the form

27 a

+v/8ru?zdrdzd¢ :v//ulzz
Q

0 —a

r=R
dzdp =0
=0

r

because u ;|,—g = 0, and [13] implies that u ;|,—o = 0.
Integrating by parts in the first term on the r.h.s. of (161) gives

—/ V.- V(u-uz)dx + / V- Vuudi =1L+ I,
Q Q
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where
27
L= —//v,z -fAuu ,dSde =0
0 S
because u;|s = 0. Applying the Holder and Young inequalities to I, yields

\bLSs/»Vudei+cU/sﬂuixh/viii

Q Q
The second term on the r.h.s. of (161) takes the form
1 1 -
—5 /U-Vu,zzda? =3 /v-ﬁu?zds
Q S

which vanishes because v - ii|g = 0.
Integrating by parts in the last term on the r.h.s. of (161) yields

/MMW:/%MhW—/MWﬁEh+h
Q Q

0
where
27t R
L= //foulz rdrdp =0
00 52
because 1|5, = 0 and
2| <e ”,zzg,() + C(1/€)|f0|%,()'

Using the above results in (161), assuming that ¢ is sufficiently small and performing
integration with respect to ¢, we obtain

d
Elu,z‘%,ﬂ +v|[Vuzl3q < clulZ gluzl50 +clfols - (162)
Integrating (162) with respect to time gives
uz(H50 + vV, %,Qf < C|”|§O/Qt Uz %,Qt +uz(0)50 + C|f0|%,Qt (163)
< ¢D7D;3 + |u,:(0) %Q +¢clfo %,Qf'
Using Lemmas 1 and 2, we have
ulz(t)|%,0 +v|Vu, %Qt < cD%D%
) o (164)
+clfoly o +1uz(0)[2.0-
The above inequality implies (159).
Differentiating (158) with respect to r gives
2v 2v
Up+0-Viuy+0v,-Vu—v(Au),+ = r—zu, = for- (165)
Multiplying (165) by u , and integrating over () yields
1 d 2 ~ ~
§E|u,r|2,0 + / vy Vuu,dx + /v -V, udx —v /(Au),,u,rdx
Q Q Q
(166)

1 uz
+2v/;u,r,u,dx—2v/r—’2dx = /forru,dx.
Q Q Q
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Now, we examine the particular terms in (166). The second term equals

/U,r -Vuu,rdrdz = /(v,,,aru + Uy 07U )U prdrdz
Q Q

= /(rv”u,, + 10U U pdrdz = /(rvr,ru,ru,, + 1o )drdz
Q Q

= /(rvr,ru,ru),rdrdz + /(rvz,,u,ru),zdrdz
Q Q

- /[(”Ur,r”,r),r + (rvzpuy) Zudrdz = J1 + Jo
O

- /[(rvr,u,r), + (rvg,uy) Judrdz =1+ o+ 1,
Q
where we used that
r=R
dz=20
r=0

Ji=

—a

rvr,yu,ru

s

because u|s, = 0 and
z=a

dr=20

R
b= / T05 U U
0

zZ=—a

because v ,|s, = 0 (see [13]). Continuing, we write I in the form

I=— /Krv?’,r),r + (sz,r),z]u,rudrdz
Q

— / [1Or 1l gy + YOz Ul pr|udrdz = I + D.
Q

To estimate I, we calculate
1
I} = (10r0) 4+ (r02) 2 = TOrpr + Upp + 1022

Since v = v,é, + v,€; is divergence-free, we have

[
O 77 = 0. (167)

Since Equation (167) is satisfied identically in ), we can differentiate (167) with respect to r.
Then, we obtain

v v
Urrr + Uzzr + % - 7; =0.

Hence o
L=-=
r
Then, I; equals

L =- / %urrudrdz.

o)
Therefore,
t
v u
/ nat| < |20 |20 julg o (168)
Pt T lot




Mathematics 2024, 12, 263

35 of 50

Next,
L] < &(

2
20T

The third integral in (166) equals

J= —v/(Au),ru,rdx = —1// (u,m + <1u,r) + u,m> u,rdrdz
Q Q ’

= —v/ Kuﬂ + 1u,r> u,rr}

Q ' ’

a
1 1
+v/ ;u,(u,,r),,drdz + /u/zrzdx = —1// (u,rr + ru,) U, r
Q Q

Uy wrzl3.00) +c(1/€)|u

go,Q(|07J’ %Q + |02,r %,Q)'

r

drdz + v/u/,,(u/,r)/,drdz
Q

r=R
dz
r=0

2
u
+v /(“,er +ud, )dx + v/ r—’zrdx +2v / U it pdrdz,
o ) O

where the last term equals

v/(u?,),drdz = v/ulzr

Q —a r= —a

because u,|,—g = (vy + Vg, 7)|r=0 = 0.

(169)

To examine the boundary term in ], we recall the expansion of v, near the axis of

symmetry (see [13])
vy = a1(z, ) +ay(z, )P + - - -,

SO
u=ay(z,)r* +ax(z, t)r* + - -

Then, (u,rr + %u,) u,t|,—o = 0, and we have to emphasize that all calculations in this paper

are performed for sufficiently regular solutions.
Therefore, the boundary term in | equals

’ 1
Ji= —V/ Uy + S it

—a

dz.
r=R

Projecting (158); on S yields

u
r’r =fp on 5.

u 1
s, = (rr - va)

a
= —21//1/!%,

—a

1
—v u,rr+;u,r +2v

Hence,

U rr

S1

Using the expression in J; gives

dz.
r=R

a
dz+/f0u,,r
r=R Za

The fourth term in (166) equals (169).
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Using the above estimates and expressions in (166) yields

2
u
2 2 2 S
2,0 + V/(u,rr + u,rz)dx + V/ 72 dx
Q Q
2
T

u v
—21// 2dx§/'ru,ru
T r
Q Q

+ ¢(

1d
2dt

Uy

drdz

(170)

3o+ wrel3n) +c(1/e)|ulz o (o3 0 + 02[5.0)

a
/fO“,r”
—a

Integrating (170) with respect to time and assuming that ¢ is sufficiently small, we obtain

dz.
r=R

+c(1/e)lfol3o +

2

Uy
r

U ry

2
20t T

(D30 +v( Wrzly o) SV

2,0t
Oy
T

Uy

/

r

+c

|M|O°,Qt + C‘ulilatﬂvr,r %/Qt + |Uz,r %/Qt)

2,0t

2,0t

(171)
dxdt’

t a
+elfoBoy + OB +v [ [l
r=R

0 —a
t a
| [ fousr

0 —a

012 2
/ Tr dxdt’ < / (|v(,,,,|2 + g)dxdt’ < cD?
o ot ’

+

dxdt’
r=R

Using

and
a

t
[ [
0 —

a

dxdt’ < e[ Viuyl3 o +c(1/8)1rl3 o,
r=R

t a

e

0 —a
< g

dxdt’ < 81‘”'7|421,2,s§ + C(1/€1)|fo|i/3,2,s§
r=R

Uy

2 2 2
s T luezly ) +e(1/€1) |f0|4/3,2,s§

and Lemmas 1 and 2 we have
1 (1) 5,0+ V(|5 0 + 1,213 ) < (DT + DID; + DID3)

(172)
+ C|f0|%,0t + C|f0|421/3,2,5§ + |”,r(0)|%,0‘

This inequality implies (160) and concludes the proof. [

7. Estimates for w,, w,

Inequality (173) is the most important inequality in this paper. To prove it, we need
results from Sections 4 and 6 and from Lemma 2. By the energy method, we derive (174),
where the first term on the r.h.s., denoted by J, is nonlinear. The aim of the proof of
Lemma 16 is to show that

(*) J < clttle 0 (D1 + [ull 0,112 IT a0, () = -
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Using (46), (52), (160), and (161), we obtain

(%) < ¢(data)[IT 0,611 ()

so it is linear with respect to the norm of I'.

To show (%), we replace w;, w; in | by derivatives of u described by (13) and express
components of velocity vy, v, by derivatives of ¢ using (15). Performing appropriate
integration by parts in ], we are able to extract the norm |u|, iy

Then, ] becomes bilinear. Then, estimates (46), (159), and (160) imply () by the Holder
inequality.

Lemma 16. Assume that Ds = D(D1 + D3 + Dy), D¢ = D;EO D3, where Dy, D, are intro-
duced in (46) and (52) and D3, Dy are introduced in (159) (160), respectively. Let

D7 = |Fr|é/5,z,gt + |F2|é/5,2,0r + \wr(O)ﬁQ + |Wz(0)|%,0
+ |f<ﬂ|2,s§ (D3 + Dy) < oo.
Let &y be an arbitrary small positive number, and let vy € Loo(QF).

LetT € Ly(0,t; H(Q)).
Then,

||‘Ur||%/(gt) + HwZH%/(Qt) + |q>|§,0t <cDs

+ Delog| o IT

Lzl

(173)

12,0t + CD7.

Proof. Multiplying (9); by wy, (9)3 by w;, integrating over (), and adding yield

1
5 (lwr(B)B o+ w:(D ) +v(IVwr o + [Vezl5 o)

2
—v / fi - Vwyw,dSidt — v / fi - Vwgw,dS,dt’
2,0t st

Wy
r

+v

= / (07,02 + 0, w2 + (0,2 + V, )Wy, ] dxdt!
Of

1
+ [ (Fror + Bwos)dxdt' + 2 (10 (0) B + |w: (0) B )
Ot

(174)

1
=]+ [ (For + Fws)dxat + 5 (jo 0 o+ [w:(0) B ).
Ot

Now, we examine the boundary terms from the Lh.s.
Since wy = —vy; and vy |,—g = 0, we obtain

. / i - Vaw,w,dS; =0
51
and
- /ﬁ . V(Urwrdsz = 0
S2
because v,.|s, = 0.

. v .
Using w; = vy, + ¥, we derive

a

t
—v/ﬁ - Vw,w,dSdt' = —1// 9, <ZJW + U;P) (Uw + v:,>
0

t —a
Sl

Rdzdt' = 11 .
r=R
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Since vy |,—g = 0 I; takes the form

t
11:—1//
0

Projecting (7), on S; yields

|
&\a
7 N
Q!
e
3
+
‘cﬁ
~ 8
N
~
S
e
N

1
—v <UW, + rvw> = fp on 5.

Hence,
t a t a 1
L =R / / Fovgy|  dzdt = / / fo <u,— u) dzdt’
: r=R R r=R
0 —a 0 —a
o (175)
://f(P”,f dxdt’.
0 —a r=R
Finally,

—1//7’1 - Vwaw,dSydt = —1// %ulzr%urrdszdt/ =0
S5 S5

because v,,|s, = 0.
Using (13) and (21) in ] implies

2
J= / [_ rlzu,zz(lpl,z + ﬂpl,rz) + (1”,1’) (VllJl,zr + 21‘/J1/Z)

Ot

1
- r—zu,ru,z(—rt,bLZZ + 3¢y, + rlpl,ﬂ)] dxdt' = 1 + o + J5.

We integrate by parts in J; and use the boundary conditions on S,. Then, we have

u -1
i=~— / [”;(l/)l,z + r¢1,rz):| rdrdzdt’ + / r—zuu,zz(wllz + 1’1/?1,72)dxdt’
Qf Z o
1
+ / ﬁuu,z(wl,zz + rlpllrzz)dxdt/.
Qf

Since 1, |s, = 0 the boundary term vanishes.
Now, we estimate the particular terms in Jj,

1 1
Jiu = /uu,zzlpl,rzdx‘it/‘ < |u|00,0’ ”,ZZ‘Z,Qt ~Pr ’
Ot r ’ 2
Uy Uz
Ji2 = /u¢1,rzzdxdt/’ < |u|00,0t |ltb1/722 2,0t
o r 2,0t
u u
]13 _ /u—'z lpl,zz dxdt/ S |u|oo,Qf Z lljl,zz ,
ror "laath 7 o
1
J1a = /rj”u,zzlpl,zdxm/ = /uu,zzi’[;}z’zdxdt/
ot Ot
lljl,z
< uloarltzzbar | 75|
™ oot
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Next, we consider J,

1 1
I, = /ﬁ“?r(rlpl,zr + 241, )rdrdzdt’ = /;uﬁ(rlpllzr + 24y, )drdzdt’
Ot Of

:/t/” {1””1(“/]1,21""21#1,2)} -

dzdt'
0 ~a 0

1 2
_ /Llu’rr (rgblrzr + T-ZIIJLZ> dxdt/

Ot

r=!

2 2
- /uu,r (lpl,zrr - rj‘Pl,z + rllil,zr> di’dzdt/,

Ot

where the boundary term for r = R vanishes because u|,—g = 0. To examine the boundary
term at r = 0, we recall from [13] the expressions near the axis of symmetry

u=ay(z,)r* +ay(z,t)r* 4+,

SO
u, = 2a1(z,t)r +4ay(z, t)r* + - - -
Then,
1
;uu,r (rlpl,zr + 27101,2) ~ Crz (rlpl,zr + 21/)1,2)‘

The above expression vanishes for » = 0 because 1 , is bounded near the axis of symmetry.
Now, we estimate the particular terms in J5,

1 1
1 = /Mulrr*l/Jerdth/ < |u|oo,Qf u,rr|2,Qf’1/J1,zr ’
Ot r ' 20
1 , 1
Joo = | [ w1 zdxdt’| < ul oplmlar| 512
a2 r r 2,0t
Uy Uy
Joz = /Mlpl,zrrdx‘itl‘ < [t oo, 0 ’ Y1zrl2,00
Ot r g 20
uy 1 Uy 1
Jos = /”rzll’l,zdxdf" < lulwor| 57| \E¥1z|
a2 7 2,017 2,0
u,r ]. / u,l’ 1
Jos = /u 7lp1,zrdxdt ‘ < |u|00’0t *lpl,zr .
o "ol ot

Finally, we examine J3. Integrating by parts with respect to z, we have
1 '
Js=— / rju,r(_rwl,zz + 31, + 11y )u| dxdt
Z

Ot

1
+ / urfz”,rz(*“/]l,zz + 3y, + “,bl,rr)dth,
Ot

1
+ / urju,r(_rlpl,zzz + 31/J1,rz + rl/’l,rrz)dxdt//
Ot

where the boundary term vanishes because

lPl,rlSQ =0, lpl,rrlSz =0 and lpl,zz‘Sz = _w1|52 =0.
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Now, we estimate the particular terms in J3,

1 lpl
I31 = /”u,rz¢1,zdedt/’ < |u‘oo Ot = ’
o r 2,0
1 / u P, ’
Js2 = /ur—zu,rzlpl,rdxdt = ‘/rs[}uﬂﬂso dxdt
Qf Of
1—¢ 1/J1 r
S |u‘oo,00t|v§0|000t ’

La(0,55Lp, (€)))

where ¢y > 0 can be chosen to be as small as we want. Thus,

u 1—¢ lpl rr
Jaz = /reourz T—eo P, rdxdt’| < |u|oo’()0t|v§0|000t . K
Qt
u u
Jas = /u’rlpl,zzzdxcztl‘ < |u|oo,0f"r’ |’~/J1,zzz
r r o
ol ’
u u
Jas = /u dxdt" < it o 00t |2 Yirz ,
o 20t T o0
u u
J36 = /u’rll)l,rrzdxdt/’ < |u‘oo,Qt —= |lpl,rrz|2,Qf-
r 2,0t
Q[
Summarizing the above estimates, we obtain
1<l | (el + )
1 1 1
: *lpl,rz + *1/71,zz + 7¢1,Z
4 20t 17T 20t T 2,0t
u u
+ ( ,r + ,Z ) (|
" loar Tl ar
1 1
+ |1P1 ~P1,2z + | =P1zr + 74’1,2
4 20t T 20t T 2,0
+C|M|l 80‘.0(/)'00 (‘lp:” + 11;/12,7' )
Ly(0,5Lp,4 () Ly(0,tL2,,()))
Using (52), (159), (160), and the estimates from (46)
u v
- <|-t + [vgrlp0r < ¢D1,
VYol " ot ’
u
i S |U¢,Z Z’Qf S CD]
" o0t
we obtain the following estimate for |,
|]| < C[DZ(DS + D4) + DlDZ} (|7~/J1,rrz
1 1 1
+ |¢1,zzz *Ebl,rz + *le,zz + 7¢1,z
r 20t 1T 20t T 2,0t
1—¢p 1 1 — 7/
+CD D |U(P|000t ;lpl/ﬂ + rleIJLr = ] .
L(0,tL2, () La(0,Lo 6, (€2))
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From (64), we have (recall that w; = T)
[¥1rz 2,06 + [P102z0,00 + (Y1222 0,00 < €T zlp 0 (176)
Estimates (82) and (85) imply
’W IR | AT . (177)
LX) "o i Yol
Finally, (93) yields
1 1 .
WYL Tz ¥ < cRO|T|y 0,00t (178)
Ly (0,t;La,e () Ly(0,5:La,e, ()

Recall that (177) is valid for ¢4 |,—9 = 0.

This restriction implies that v;|,—¢ = 0, so it is a strong restriction on the solutions
proved in this paper.

Using (176)-(178) in |’ yields

J' < cDy(D1 4 D3+ Dy)|T 2]y + CD;_£0D3|Z’<P|22,@ T

1,2,Qt-

In view of Lemma 15, the term [; introduced in (175) is bounded by

I < clfplysillullapor < clfplyst (D3 + Dy).

Using the estimates in (174), we obtain

||(’JVH%/(Q?) + HwZH%/(Qf) + [P oy

< ¢Dy(Dy + D3 + D) [Tz, + Dy~ D3[og |2 o [Tl 2.0
+e(|B G sp0r T ElE/5000) +c(wr(0)30
+ |w(0)50) +clfy 2,55(D3 + Dy),

(179)

where we used

/ (Fowr + oo )dxdt | < e(Jwrl2 g+ |w2[20)
(@)
+c(1/e)(|1Fl3 /50 + IEl/50)-

Hence, (179) implies (173) and concludes the proof. [

8. Estimates for the Stream Function in Weighted Sobolev Spaces

Recall that the stream function ; is a solution to problem (22). To increase the
regularity of the weak solutions to (22), we need appropriate estimates for 1; assuming the
sufficient regularity of vorticity wy.

Remark 7. In Lemma 4, the existence of weak solutions to problem (22) satisfying estimate (56) is
proved. Inequality (62) implies that the weak solution belongs to H(Q)) and the estimate holds

#1120 < clwilzn. (180)

Assuming that wy, € Ly(Q)) estimates (63) and (64) increase the regularity of . such that
1. € H2(Q) and the estimate holds

9121l 2(0) < c(lwizla0 + |wilan)- (181)
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Estimate (181) is derived by the technique of the energy method. The method is not sufficiently
strong to derive an estimate for |1 1v|2 Q-

Moreover, estimate (181) is not sufficient to prove estimate (24) of Theorem 1. To prove
Theorem 1, we need estimated (85) and (93). To prove the estimates, we need the theory of
weighted Sobolev spaces developed by Kondratiev [12] that are used to examine elliptic
boundary value problems in domains with cones.

Unfortunately, estimates (85) and (93) hold for such weak solutions that 1; vanishes
on the axis of symmetry. This implies that the v, coordinate of velocity must also vanish on
the axis of symmetry. Therefore, Theorem 1 holds for a smaller class than the class of weak
solutions. This means that the regularity problem for axially symmetric solutions to the
Navier-Stokes equations is solved only partially.

Now, we show the existence of solutions to problem (22) in weighted Sobolev spaces.

Lemma 17. Assume that 1y is a solution to (61). Assume that wy ,, w1 € Ly(Q}).
Then,

1 1
/ (lpizrr + ﬁ¢%,zr + 1,4'*/%,2) dx + /lp%,zzzdx
0 o (182)
< [ (@i + wr P
Q

Proof. To prove the lemma, we need weighted Sobolev spaces defined by Fourier transform
(58) and introduced in (59) and (60). Therefore, to examine problem (22) in weighted
Sobolev spaces we have to derive estimates with respect to r and z, separately. To derive an
estimate with respect to r, we have to examine solutions to (22) independently as well in a
neighborhood of the axis of symmetry as in a neighborhood located in a positive distance
from it. To perform such considerations, we treat z as a parameter and we introduce a
partition of unity {¢(1)(r), 7 (r)} such that

N

¢ =1
1

i

and

1 forr<r 0 forr<r
¢ = 0, A= .
0 forr > 2rg 1 forr > 2r,

where 0 < rp is fixed in such a way that 2ry < R.
Let 1/}51) = lplg("), wgl) = wlg(i) and é(i) = %g(ﬂ, g(i) = %g(i),i = 1,2. Moreover,
functions {(V), (2) are smooth.

Then, we obtain from (22) the following two problems:

2 .
—apy! = Sl = wft) 2, g0

r
_ - %M(” in QM) (183)
lpil) =0 on Sgl),

where
QW ={(r,z): r>0,z€ (—a,a)},

Sél) ={(r,z):r>0,z€ {—a,a}}
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and 5
2 2 2 ;
_Alp§ ) _ ;lp§/r) — w; ) _ 24}1”‘5(2)
. 2 .
_ @ _ 2.7 i )
018 =g in (O, (184)
1p§2) =0 on Sy,
1/)52) =0 on Séz),
where
0 = {(r,z):ro<r<R,z€(—a,a)},
552) ={(r,z):ro<r<Rze€{-aa}}
We temporarily simplify the notation using
u=y®, w=y®,
. . 2 .
f= wgl) - 2¢1’rg(1) — ¢1€(1) - ;l/hg(l), (185)
. . 2 .
b= = 21,8 — pd® = 29y 2@.
Then, (183) and (184) become
—Au — gu,r =f in QW),
r (186)
U= on SS)
and )
—Aw — TWr = b in QO
w=0 on S, (187)
w=0 on Séz).
First, we consider problem (186). We rewrite it in the form
—Uypr — §Mr :f+“zz in Q(l)r
’ r’ ’ (188)

u=20 on S3.
For a fixed z € (—a,a) and given rh.s. of (188), we obtain the ordinary differential equation

3 .
— Uy — ;urr =f+uz, in Ri. (189)

Properties of solutions to (189) depend on the behavior of u at ¥ = 0.
Multiplying (189) by r? yields
1?1y —Bru, = 1 (f +uz) = g(r,2) (190)

or equivalently
—r9y(ro,u) — 2rd,u = g(r,z). (191)

Introduce the new variable
T=—Inr, r=e¢ " (192)

Since rd;, = —dr, we see that (191) takes the form

—2u +20.u = g(e” %, z) = ¢'(1,2). (193)
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Utilizing the Fourier transform (58) to (193), we obtain
A%+ 2iM0 = ¢
For A ¢ {0, —2i}, we have
- I N
=——— ¢ =R . 194
b= Yoy ad =RAG (194)
Introduce the quantity
Wk, p) =14k —p. (195)

Consider the case k = 0, 4 = 0. Then, 4(0,0) = 1. Theorem 1.1 from Section 1 in [12] (see
also Lemma 3.1 from [15]) yields.

Let f +u., € Lp(R4), and R(A) does not have poles on the line Im A = 1.

Then, we have

+oo+ih(00) “+oo+ih(0,0)
Y ARCD|adA < c / 18/ |2dA. (196)
—cotih(0,0) =0 —cotih(0,0)

Using (60) and that /1(0,0) = 1, we obtain
2.
/ Y |PruffeTdT < c/ |¢'|%e*TdT.
R /=0 R
Passing to variables r and using the definition of g in (190) yields

1 1
/ <|u,rr|2 + r—2|u,y|2 + r4|u|2> rdr <c / |f + w2z |*rdr. (197)
Ry R

Using notation (185) and the estimate for the weak solutions, we obtain from (197)
the inequality

1 1 1 1
24 r—2|¢§) 24 r—4|l/J§ )|zrdr

(1)
|Il]1,rr
R Nsupp ¢

<c / |w1|zrdr +c / (|1/J1,r|2 + |91 ‘2)7‘17’ (198)

R Nsupp ¢V R Nsupp ¢

+c / |1/J1,zz |27d7'

R Nsupp ¢

For solutions to (187), we have the estimate

1201122 (0,R) rsupp 2@y < €NBll L, (0,R)nsupp @)

(199)
el o r)nsuppc®)-
In view of notation (185), we obtain
2 2 2
[ P+ 1) P 1y Pyrar
0,R )
(0,R)Nsupp ¢ (200)

2+ |1 [*)rdr.

<c [ (P +lpaP+ v,

(0,R)supp ¢(?)
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Adding (198) and (200) and integrating the result with respect to z and using (56) yields

1 1
/ <¢%,rr + ﬁw%,r + 1,4¢%> dx
Q (201)

< [ (@l + g1z P
Q

Replacing ¢ by ¥; ; and w; by w; ; we obtain, from (201) and (63), estimate (182). This
ends the proof. [

Lemma 18. Assume that ¥y is a solution to (61). Assume that u € (0,1), w; € H'(Q), and
Q= (0,R) x (—a,a).
Then,

1 1 1
/ (w%,rrr + ﬁw%,rr + },744)%,1' + 1’64]%> rtdx + le H%IZ(Q)
0 . (202)
+ /(lp%,zrr + lp%,zzr + lp%,zzz)dx < C<l + ‘1/12> ”le%ﬂ(Q)
Q

Proof. Recall the partition of unity introduced in the proof of Lemma 17. Recall also the
local problems (183), (184), and notation (185). Then, we can examine problems (186) and
(187). First, we examine problem (186).

Applying the Mellin transform any solution to (189) reads in the form (194).

In this case, we introduce the quantity

h(l,p) =2—p. (203)

Since operator R(A) does not have poles on the line Im A = h(1, i) we have (see Theorem 1.1
from Section 1 in [12]) (see also Lemma 3.1 from [15])

ootih(Lp) o ooih(Lu) |
Y A2G-D|adA < c / Y A2 2d, (204)
—oo+ih(1,u) j=0 —oo—l—.ih(l,‘u) j=0

Using (60) for h(1, ) = 2 — u, we obtain
3. ) 1. .
/ Z | u|2e?C-DTgr < c/ Z kg [22 01T, (205)
R /=0 R /=0

In view of equivalence (59), inequality (205) takes the form

1 1 1
e P+ = e |+ S Jup P+ [ul? ) rPHrdr
72 4 76

o (206)
= / |(f + tizz) o |Pr¥trdr + ¢ / |f + wzz |2rH2rdr,
R, £

where z € (—a,a) and u € (0,1).
Integrating (206) with respect to z and exploiting notation (185) yields
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/ 1 1 1
1 1 1 1
Jor [ (R R+ el + o ) P
—4 RN @
a+ supp ¢ (207)
<c / dz / (197 (@1 + $1,22) P + |1 + 1 22|~ 2)rH rdr.
~7  RyNsuppl
For solutions to problem (187) and notation (185), we obtain
a
(2))2
/dZWl ”H,E(Rmsuppdz))
—a
. (208)
2 2
<c / dZ( le ||Hl (R Nsupp C(2>) + ||¢1,ZZ ||H1 (R Nsupp g(Z)))
—a
From (207), (208), and the Hardy inequality (see [18] (Ch. 1, Sect. 2.16))
1
[ leor e Pr2rdr < = [ (w1 + ) P (209)
I3
R+ Ry
we obtain
(2 15 T o 1 92\ 2
lpl,rrr + 724’1,” + ]714)1,1’ + 1’76#]1 rfdx
Q (210)

1
<ot ) [lorlay + [ e+ 92|
Q
Using estimates (56), (62), and (63) in (210) implies (202) and ends the proof. O

Remark 8. Since y > 0, the Hardy inequality (209) does not require that wq + 1 zz|r—0 = 0.

9. Conclusions

The main result of this paper is the proof of (24). Since I' = w,, /r, we obtain from (24)
the estimate

lwo | 051,(0)) < P(data), (211)

where we used that » < R and R is finite. This means that (211) does not hold for the
Cauchy problem.
Using problem (14) and relations (15), we obtain

19" | L 0,:16(0)) < €l llie012(00))

(212)
< cllwg L0410 < ¢(data),
where v/ = (v, 0;).
Consider the Stokes problem implied by (6)
v —vAv+Vp=—0 -Vo+f in OF,
divo =0 in O,
T (213)
v-fls =0, c")§0|5 =0, U(p|51 =0, U(p,z‘Sz =0 on §°,
v]t=0 = v(0) in Q.

Using (212) and the energy estimate (46), we have

10" Vol L, 015 0(0)) < ¢(data). (214)
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Assuming more regularity on data that was needed in the proof of Theorem 1 and using [19]
(see also [20]), we obtain the following estimate for solutions to problem (213):

Hvuwgr/lzz(m) < ¢(data). (215)

By the imbedding and (215), we have
Vol 0 < cllollyzy_ o) < p(data). @16
The above inequality and (212) imply

L vz)|Ls/z(O,f;L30/17(Q)) < ¢(data). (217)

Applying [19] (see also [20]), we obtain

<
HUHW3261/17,5/2(01‘) + |vp‘%,g,0t < ¢(data), (218)
where an additional regularity on data is imposed.
This means that (24) implies any regularity of solutions to problem (6) assuming the
appropriate regularity of data.
The existence of solutions can be proved by appropriately choosing a fixed-point

theorem.
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Appendix A. Existence of Regular Local Solutions to (1)

Recall the quantities

% = Ve v oe_ o Fo.

¢
=f = =L , F = Al
m=-- wr=-F =0 =0 B= o (A1)
In view of the fact that [16] system (6) is equivalent to the following one:
2
U +o- Vg — V(Aul + r”l,r) =2u11z + f1,
2

w1 +v-Vw —v| Awy + ;wl,r = 2ujuy, + Fy,

(A2)

2
=AYy — ;lpl,r = wy,

utls, =0, uizls, =0, ¢P1[s =0, wils =0,
ut|i=o = u1(0),
w1|t=0 = w1(0).

Multiplying (A2); by uq|u1|?, integrating over (), and using boundary conditions yields

d
Elulliﬂ +vlurliq < cwr3gluilia +clfilia: (A3)

Multiply (A2); by wy, integrate over (), and exploit the boundary conditions. Then, we have

d
gl satvlwlag <clulig+clRl3a (A4)
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Introduce the quantity
X(t) = [u (|30 + lwr (B 30 (A5)
Then, (A3) and (A4) imply
%X +vX < X*+G, (A6)
where
G(t) = c(lfi)ia + R B)Eq)- (A7)

Lemma A1l. Assume that f; € Ly(QF), Fi € Ly(QF), u1(0) € Ly(Q), w1 € Ly(Q), and t < T.
Let H(t) = |fil3 o + [F113 o + [u1(0)[5 o + [w1(0)[3 . Assume that T is so small that

1
T<—rrrr,
< ZecoH(T)

where c appears in (A3), (A4), and cy in (A6).
Then, for t < T a local solution to the problem (A2) exists such that uy € Leo(0,t; Ls(QY)),
w1 € Leo(0,1L4(Q)), t < T, and

sup(|u1(t)|30 + lwi(t)[3q) < 2cH = ¢ (A8)
t

Proof. Integrating (A6) with respect to time and introducing the quantity

X(t) = sup X(t) (A9)
p<t
we obtain t
X(t) +v/)'((t’)dt’ < cot?X2(t) + cH(t). (A10)
0

Dropping the second term on the Lh.s. yields
X(t) < cot?X?(t) 4 cH(t). (A11)

Let X’ be such that
X' = cot?(X')? + cH(t) (A12)

and X < X'. To show the existence of solutions to (A12), we use the following method of
successive approximations:

2
1o = cot? Xy +cH

Assume that X/, < 2cH and t is so small that 4cc 2H < 1. Assuming that X6 = 0, we obtain
X], <2cH foralln € N. (A13)

To show convergence, we introduce the differences Y}, = X}, — X;l_l, which are solutions to
the problem
Y,

n

11 < ot (X + Xp_1) Y (A14)

Assuming that f is so small that 4ccotH < 1, we have the convergence of the sequence { X, }.
Hence, a solution to problem (A2) exists such that #; € Le(0,Ls(Q))), w1 € Leo
(0,t;Ly(Q2)) and (A8) holds. This ends the proof. [I
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References

Lemma A2. Let the assumptions of Lemma Al hold. Let f € Wzl’l/z(Qt), v(0) € W3(Q).

Then, there exists a solution to problem (6) such that v € W3~/*(Qt), Vp € WyV/2(Q)f) and the
estimate holds

1ol wasrz ey + IV Pllya2 ey < €Clfllyaarz

(A15)
+ 1Oz + 001 72y 10Oz H),
where t < T, and where ¢ is an increasing positive function.
Proof. From (A8), we have
[0l c0,00 < clltr1 0,00 < clwtlpoar < 1, (A16)
where v’ = (v, v;). From (46), we have
|Volpqr < Dy. (A17)
Estimates (A16) and (A17) imply
‘U/ . Vv|%,210t < (PlDl' (A18)
Now, we consider the Stokes problem
vy —vAv+Vp=—0-Vo+f,
divo =0,
v-iils =0, (vrz—0z:)|s =0, (A19)
U(p‘sl = 0, U¢,z|52 = O,
0lt=0 = v(0).

Applying the theory of Sobolev spaces with mixed norm developed in [19], we have the
existence of solutions to (A19) and the estimate

320 <c(|f

||v||w§,12(0t) +1Vp 320t

(A20)
+ 10001, (o) +91D1) = D
z,
In view of the imbedding
|VU|%,Qt < CHUHW?Z(W)
we obtain
|ZJ/ . VU|%’%,Qt < ¢1D>.

Since

Ls (0,4 Ly (€)) C La(0,; Ly (02))

5
2

we have an increase in the regularity of solutions to (A19). Continuing the considerations,
we obtain (A15). This ends the proof. O
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