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Abstract: The axially symmetric solutions to the Navier–Stokes equations are considered in a bounded
cylinder Ω ⊂ R3 with the axis of symmetry. S1 is the boundary of the cylinder parallel to the axis
of symmetry, and S2 is perpendicular to it. We have two parts of S2. On S1 and S2, we impose
vanishing of the normal component of velocity and the angular component of vorticity. Moreover,
we assume that the angular component of velocity vanishes on S1 and the normal derivative of the
angular component of velocity vanishes on S2. We prove the existence of global regular solutions.
To prove this, the coordinate of velocity along the axis of symmetry must vanish on it. We have to
emphasize that the technique of weighted spaces applied to the stream function plays a crucial role in
the proof of global regular axially symmetric solutions. The paper is a generalization of Part 1, where
the periodic boundary conditions are prescribed on S2. The transformation is not trivial because it
needs to examine many additional boundary terms and derive new estimates.

Keywords: Navier–Stokes equations; axially symmetric solutions; cylindrical domain; existence of
global regular solutions
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1. Preliminary Remarks

The problem of the existence of global regular axially symmetric solutions to Navier–
Stokes equations has a long history. The first such results with vanishing swirl were proved
by O.A. Ladyzhenskaya [1] and by M.R. Ukhovskii and V.I. Yudovich [2], independently,
in 1968.

The case with nonvanishing swirl is still open. This paper is a step in this direction.
We prove the existence of global regular solutions with large swirl. Unfortunately, in the
proof the stream function divided by the radius, denoted by ψ1, must vanish on the axis
of symmetry. This means that the coordinate of velocity along the axis of symmetry must
vanish on the axis of symmetry too.

The main result of this paper is Theorem 1 and the global esitmate (24).
Since mathematicians were not able to prove the global estimate for regular solutions,

they prove it by assuming some different Serrin-type conditions. The conditions are such
that some coordinates either of velocity, or of derivatives of velocity, or of vorticity belong to
Lq(0, T; Lp(Ω)) spaces for appropriately chosen parameters p and q. A significant literature
of this kind is cited in the papers: [3–7].

In papers [8–11], it is shown that a suitable continuity of some coordinates of velocity
in a neighborhood of the axis of symmetry implies the regularity of axially symmetric
solutions.

In this section, we are going to show the main points of the paper that are crucial for
the proof of (24). For this purpose, we only recall the appropriate points of the paper.

Looking at the literature on the regularity problem of axially symmetric solutions, it
is clear that to prove it we need additional estimates and appropriate inequalitites. We

Mathematics 2024, 12, 263. https://doi.org/10.3390/math12020263 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020263
https://doi.org/10.3390/math12020263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1229-2162
https://doi.org/10.3390/math12020263
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020263?type=check_update&version=3


Mathematics 2024, 12, 263 2 of 50

found them in Sections 4, 6 and 7. The results are original. Let u = rvφ, vφ, the angular
component of velocity, be swirl.

In Section 6, we proved the estimate

(1) ∥u∥L∞(0,t;H1(Ω)) + ∥u∥L2(0,t;H2(Ω)) ≤ ϕ(data),

where ϕ denotes an increasing positive function.
The most important inequality is proved in Section 7 (see (173)):

(2)

∥∥∥∥ωr

r

∥∥∥∥2

L2(Ωt)

≤ c∥u∥L∞(Ωt)(D1 + ∥u∥L2(0,t;H2(Ω)))·

·
∥∥∥∥ωφ

r

∥∥∥∥
L2(0,t;H1(Ω))

+ ϕ(data),

where ωr and ωφ are radial and angular coordinates of vorticity.
Moreover, D1 = ϕ(data) bounds the weak solution (see Lemma 1), and the estimate

(see Lemma 2)

(3) ∥u∥L∞(Ωt) ≤ ϕ(data)

is well known.
The most important feature of (2) is such that norm of ωr

r appears in the square but
also in the norm of ωφ

r linearly.
Inequality (2) is crucial in the proof of global inequality (24). To prove (2), we need

inequalities from Sections 4, 6, and 7.
The main difficulty in the regularity theory of the Navier–Stokes equations is to handle

with the nonlinear terms. We need to tranform them in such a way that they can be absorbed
by the main linear terms.

In this paper, we consider problem (17)–(20) for functions Φ = ωr
r , Γ =

ωφ

r defined
by (16). The problem was considered in [8].

Applying the energy method, we derive inequality (111) with the strongly nonlinear
term denoted by I3.

The main task of this paper is to estimate I3 by quantities that can be absorbed by the
terms from the l.h.s. of (111).

I3 is estimated in (122). Using notation (132)

X(t) = ∥Φ∥V(Ωt) + ∥Γ∥V(Ωt),

where
∥u∥V(Ωt) = ∥u∥L∞(0,t;L2(Ω)) + ∥u∥L2(0,t;H1(Ω)),

we derive from (111) and (122) the inequality (see (134))

(4) X2 ≤ ϕ1X2−δ + ϕ(data),

where ϕ1 depends on |vφ|d,∞,Ωt , |vφ|∞,Ωt , d > 3 and δ > 0.
For δ > 0, the Young inequality can be applied in (4) so (133) holds. We write it in

the form

(5) X2 ≤ c|vφ|
4ε
θ

d,∞,Ωt(1 + |vφ|ε0
∞,Ωt) + (data),

where ε = ε1 + ε2, θ =
(
1 − 3

d
)
ε1 − 3

d ε2 and ε0 can be chosen as arbitrarily small.
The existence of such positive δ implies (122) is the form (4). For δ = 0, we were not

able to apply the Young inequality in (4) so we were not be able to prove Theorem 1.
Applying (2), we were able to prove (4) with positive δ.
Hence, (2) is the most important inequality in this paper. It is a totally new result.
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In the next step, we eliminate |vφ|d,∞,Ωt , d = 12 from the r.h.s. of (5). To perform this,
we have to enter into the proof of Lemma 13. To derive (141) from (140), we need to satisfy
the estimate

(6)
∫
Ω

ψ2
1

rα
dx ≤ c∥Γ∥2

H1(Ω),

where α ≤ 6. (6) does not hold for α = 6 because (202) is not true for µ = 0.
Hence, (202) implies that (6) holds for any number less than 6. It is denoted by 6′.
In the next step, we recall (147).

(7) |vφ|6
′

12,∞,Ωt ≤ c|vφ|
4ε
θ

12,∞,Ωt + ϕ(data).

To apply the Young inequality in (7), we require that 6′ > 4ε
θ . In Remark 4, it is shown that

the inequality holds for 6′ sufficiently close to 6. In this case, |vφ|12,∞,Ωt can be eliminated
from the r.h.s. of (5).

Eliminating |vφ|∞,Ωt is easy because it appears with the power ε0, which is assumed
to be arbitrarily small.

We have to emphasize that (137) is proved for such solutions to problem (6) that vφ is
not very small. The existence of such local solutions is proved in Appendix A.

Hence, the global estimate (24) holds for these solutions. This means that the local
solution can be extended in time.

To describe the transformation from Part 1 to Part 2, we have to examine terms, where
the integration by parts with respect to z appears.

To derive the second term in (47), we need the following term to vanish:

(8)
∫
S2

(n̄ · ∇vrvr + n̄ · ∇vφvφ + n̄ · ∇vzvz)dS2 = 0.

To satisfy (8), we see that n̄ · ∇vr · vr|S2 = vr,zvr|S2 = vz,rvr|S2 = 0 because we assumed
that vz|S2 = 0 so also vz,r|S2 = 0.

Moreover, we used that ωφ|S2 = vr,z − vz,r|S2 = 0. Next, we see that

n̄ · ∇vφvφ|S2 = vφ,zvφ|S2 = 0

because

(9) vφ,z|S2 = 0.

Finally, the last term in (8) vanishes because vz|S2 = 0.
To show (53), we require that∫

S2

n̄ · ∇uu|u|s−2dS2 = 0.

It is true because (9) implies that u,z = rvφ,z = 0 on S2.
In proofs of (62)–(64), we show that prescribed boundary conditions on S2 imply the

vanishing of all the boundary terms that appeared on S2.
Comparing Part 2 with Part 1, we see that in (113) an additional boundary term on S2

appears. Fortunately, it vanishes because Φ|S2 = 0. To prove (138), a boundary term on S2
also appears. It vanishes because (9) holds.

The same argument works in (154) and in the proofs of (159) and (160).
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In (174), two boundary terms on S2 appear:

I1 =
∫
St

2

n̄ · ∇ωrωrdS2dt′, I2 =
∫
St

2

n̄ · ∇ωzωzdS2dt′.

Since ωr = −vφ,z, then (9) implies I1 = 0. To prove I2 = 0, we see that u,zr = vφ,z + vφ,zr = 0
on S2 by (9).

The boundary term on S2 in J1 vanishes because (9) holds. To vanish the boundary
term in J3, we need ψ1,r|S2 = 0, ψ1,rr|S2 = 0, ψ1,zz|S2 = ω1|S2 = 0.

We have to emphasize that condition (9) is crucial in the proof of Theorem 1.
Finally, we shortly describe the results of this paper.
In Section 2, the considered problem is formulated in Cartesian coordinates in (6), in

cylindrical coordinates of velocity in (7), and in cylindrical coordinates of vorticity in (9).
Moreover, we recalled very important relations between cylindrical coordinates of velocity,
vorticity, and the stream function (see (13), (15) and (21)). Next, (14) is the problem for the
stream function ψ and (22) for the modified stream function ψ1 = ψ/r.

Problem (17)–(20) for functions Φ, Γ defined in (16), is the main problem in this
paper. For solutions to this problem, we derive the global estimate (24), which is proved
in Theorem 1. Finally, the end of this Section is devoted to the proof of Theorem 1.

In Section 3, there are introduced notations used in this paper. Moreover, we proved
the energy estimate (see Lemma 1), the estimate for swirl (see Lemma 2), and the energy
estimate for the modified stream function ψ1 (see Lemma 4). Moreover, in Lemma 5 we
recall the interpolation inequality for weighted Sobolev spaces proved in [8]. The inequality
is crucial in the proof of (24). At the end of this Section, we recalled the definition and some
properties of weighted Sobolev spaces (see [12]).

In Section 4, we derive many new estimates for the modified stream function ψ1.
Since Equation (22)1 has a singular coefficient, the estimates can be derived either by the
energy method or by applying the technique of weighted Sobolev spaces developed by
Kondratiev [12].

Applying the energy method, some terms on the boundary and on the axis of symmetry
appear. The terms on the boundary vanish in view of the boundary conditions. To eliminate
the terms on the axis of symmetry, we need expansions of vr, vφ, ψ1 near the axis of
symmetry proved by Liu-Wang (see [13]).

Moreover, the expansions hold for the sufficiently regular local solution. The existence
of such a local solution is proved in Appendix A.

Section 5 is the most important part in this paper. First, we apply the energy method
for solutions to problem (17)–(20). Next, we use the results from Sections 4, 6 and 7. The
main points of this proof are described in the proof of Theorem 1 from Section 2 and at the
beginning of “Preliminary results”.

First, we derive (111), where I3 is estimated by (122). Using (173) with simplified form
(2), we derive (4) with positive δ. Then, by the Young inequality we derive (5). Next, we
want to eliminate |vφ|d,∞,Ωt from the r.h.s. of (5). It is possible for d = 12 and inequality
(7) (see also (137)). In the r.h.s. of (7), |vφ|ε0

∞,Ωt appears, where ε0 is small (see (151)). It is
estimated by (152). For ε0 small, we derive (24).

In Section 6, we derive new estimates for swirl (see Lemma 15). The estimates are
necessary in the proof of (173) from Section 7.

Inequality (173) is crucial for the proof of (24). It is a new original result.
In Section 8, we proved some estimates for ψ1 in weighted Sobolev spaces, which are

necessary in Section 4.
In Appendix A, we proved the existence of the local regular solutions necessary for

deriving expansions near the axis of symmetry shown in [13].

2. Introduction

The Section is divided into the following steps:
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1. The formulation of the considered problem in Cartesian coordinates.
2. Formulation in the cylindrical coordinates of velocity and vorticity. Moreover, the

important relation between the cylindrical coordinates of velocity, vorticity, and stream
function are recalled.

3. Proof of the global estimate.

In this paper, we prove the existence of global regular axially symmetric solutions to
the Navier–Stokes equations in a cylindrical domain Ω ⊂ R3:

Ω = {x ∈ R3 : x2
1 + x2

2 < R2, |x3| < a},

where a, R are given positive numbers. We denote by x = (x1, x2, x3) Cartesian coordinates.
It is assumed that the x3-axis is the axis of symmetry of Ω and ∂Ω = S = S1 ∪ S2.

Moreover,

S1 = {x ∈ R3 :
√

x2
1 + x2

2 = R, x3 ∈ (−a, a)},

S2(a0) = {x ∈ R3 :
√

x2
1 + x2

2 < R, x3 = a0 ∈ {−a, a}},

where S1 is parallel to the axis of symmetry and S2(a0) is perpendicular to it. S2(a0) meets
the axis of symmetry at a0.

To describe the considered problem, we introduce cylindrical coordinates r, φ, z by
the relations

x1 = r cos φ, x2 = r sin φ, x3 = z. (1)

The following orthonormal system:

ēr = (cos φ, sin φ, 0), ēφ = (− sin φ, cos φ, 0), ēz = (0, 0, 1) (2)

is connected with the cylindrical coordinates.
Any vector u for the axially symmetric motions can be decomposed as follows:

u = ur(r, z, t)ēr + uφ(r, z, t)ēφ + uz(r, z, t)ēz, (3)

where ur, uφ, uz are cylindrical coordinates of u.
Therefore, velocity v and vorticity ω = rot v are decomposed in the form

v = vr(r, z, t)ēr + vφ(r, z, t)ēφ + vz(r, z, t)ēz (4)

and
ω = ωr(r, z, t)ēr + ωφ(r, z, t)ēφ + ωz(r, z, t)ēz. (5)

The paper is devoted to a proof of global regular axially symmetric solutions to the problem

v,t + v · ∇v − ν∆v +∇p = f in ΩT = Ω × (0, T),

div v = 0 in ΩT ,

v · n̄|S = 0, ωφ|S = 0, vφ|S1 = 0, vφ,z|S2 = 0 on ST = S × (0, T),

v|t=0 = v(0) in Ω,

(6)

where v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid,
p = p(x, t) ∈ R is the pressure, f = ( f1(x, t), f2(x, t), f3(x, t)) ∈ R3 is the external force
field, and ν > 0 is the constant viscosity coefficient.



Mathematics 2024, 12, 263 6 of 50

Expressing problem (6) in the cylindrical coordinates of velocity yields

vr,t + v · ∇vr −
v2

φ

r
− ν∆vr + ν

vr

r2 = −p,r + fr,

vφ,t + v · ∇vφ +
vr

r
vφ − ν∆vφ + ν

vφ

r2 = fφ,

vz,t + v · ∇vz − ν∆vz = −p,z + fz,

(rvr),r + (rvz),z = 0

vr|S = 0, vφ|S1 = 0, vφ,z|S2 = 0, vr,z − vz,r|S = 0,

vr|t=0 = vr(0), vφ|t=0 = vφ(0), vz|t=0 = vz(0),

(7)

and
v · ∇ = (vr ēr + vz ēz) · ∇ = vr∂r + vz∂z,

∆u =
1
r
(ru,r),r + u,zz.

(8)

Formulating problem (6) in terms of the cylindrical coordinates of vorticity implies

ωr,t + v · ∇ωr − ν∆ωr + ν
ωr

r2 = ωrvr,r + ωzvr,z + Fr,

ωφ,t + v · ∇ωφ − vr

r
ωφ − ν∆ωφ + ν

ωφ

r2 =
2
r

vφvφ,z + Fφ,

ωz,t + v · ∇ωz − ν∆ωz = ωrvz,r + ωzvz,z + Fz,

ωr|t=0 = ωr(0), ωφ|t=0 = ωφ(0), ωz|t=0 = ω(0)

(9)

and we have boundary conditions (7)5 on S, where F = rot f and

F = Fr(r, z, t)ēr + Fφ(r, z, t)ēφ + Fz(r, z, t)ēz. (10)

The function
u = rvφ (11)

is called swirl. It is a solution to the problem

u,t + v · ∇u − ν∆u +
2ν

r
u,r = r fφ ≡ f0,

u|S1 = 0, u,z|S2 = 0,

u|t=0 = u(0).

(12)

The cylindrical components of vorticity can be described in terms of the cylindrical compo-
nents of velocity and swirl in the following form

ωr = −vφ,z = −1
r

u,z,

ωφ = vr,z − vz,r,

ωz =
1
r
(rvφ),r = vφ,r +

vφ

r
=

1
r

u,r.

(13)

Equation (7)4 implies the existence of the stream function ψ, which is a solution to the problem

− ∆ψ +
ψ

r2 = ωφ,

ψ|S = 0.
(14)
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Moreover, cylindrical components of velocity can be expressed in terms of the stream
function in the following way:

vr = −ψ,z, vz =
1
r
(rψ),r = ψ,r +

ψ

r
,

vr,r = −ψ,zr, vr,z = −ψ,zz,

vz,z = ψ,rz +
ψ,z

r
, vz,r = ψ,rr +

1
r

ψ,r −
ψ

r2 .

(15)

Introduce the pair
(Φ, Γ) = (ωr/r, ωφ/r). (16)

Formula (6) from [8] implies that quantities (16) satisfy the following equations:

Φ,t + v · ∇Φ − ν

(
∆ +

2
r

∂r

)
Φ − (ωr∂r + ωz∂z)

vr

r
= Fr/r ≡ F̄r (17)

and

Γ,t + v · ∇Γ − ν

(
∆ +

2
r

∂r

)
Γ + 2

vφ

r
Φ = Fφ/r ≡ F̄φ. (18)

We add the following initial and boundary conditions to solutions of (17) and (18)

Φ|S = 0, Γ|S = 0, (19)

Φ|t=0 = Φ(0), Γ|t=0 = Γ(0). (20)

Next, we express the cylindrical coordinates of velocity in terms of ψ1 = ψ/r

vr = −rψ1,z, vz = (rψ1),r + ψ1 = rψ1,r + 2ψ1,

vr,r = −ψ1,z − rψ1,rz, vr,z = −rψ1,zz,

vz,z = rψ1,rz + 2ψ1,z, vz,r = 3ψ1,r + rψ1,rr.

(21)

The aim of this paper is to prove the existence of global regular axially symmetric solutions
to problem (6). For this purpose, we have to find a global estimate guaranteeing the
existence of global regular solutions.

Function ψ1 is a solution to the problem

− ∆ψ1 −
2
r

ψ1,r = ω1 in Ω = (0, R)× (−a, a),

ψ1|S = 0,
(22)

where
ω1 = ωφ/r. (23)

We have that ω1 = Γ.
This paper is a generalization of paper [14], where the periodic boundary conditions on

S2 are assumed. Since the periodic boundary conditions are mathematical-type conditions,
we replaced them in this paper by v · n̄|S2 = 0, ωφ|S2 = 0, vφ,z|S2 = 0. This replacement is
not trivial because it needs many additional considerations.

To state the main result, we first introduce necessary assumptions.



Mathematics 2024, 12, 263 8 of 50

Assumption 1. Assume that the following quantities are finite:

ψ1|r=0 = 0,

D1 = ∥ f ∥L2(Ωt) + ∥v(0)∥L2(Ω),

D2 = ∥ f0∥L∞,1(Ωt) + ∥u(0)∥L∞(Ω),

f0 = r fφ, u = rvφ,

D2
3 = D2

1D2
2 + ∥u,z(0)∥2

L2(Ω) + ∥ f0∥2
L2(Ωt),

D2
4 = D2

1(1 + D2) + ∥u,r(0)∥2
L2(Ω) + ∥ f0∥2

L2(Ωt) + ∥ f0∥L2(0,t;L4/3(S1))
,

where D1, D2 are introduced in (46) and (52), respectively, and D3, D4 in (159) and (160),
respectively. Let

D5 = D2(D1 + D2 + D3),

D6 = D1−ε0
2 D3,

where ε0 is arbitrary small positive number. Moreover,

D7 = ∥Fr∥2
L2(0,t;L6/5(Ω)) + ∥Fz∥2

L2(0,t;L6/5(Ω))

+ ∥ωr(0)∥2
L2(Ω) + ∥ωz(0)∥2

L2(Ω)

is defined in Lemma 16.
Next,

D8 = ϕ(D2)(∥F̄r∥2
L2(0,t;L6/5(Ω)) + ∥F̄φ∥2

L2(0,t;L6/5(Ω)))

+ ∥Φ(0)∥2
L2(Ω) + ∥Γ(0)∥2

L2(Ω),

where F̄r = Fr/r, F̄φ = Fφ/r, Φ = ωr
r , Γ =

ωφ

r and D8 appears in (111).

In Lemma 13, the following quantity is defined:

D9(12) = 12∥ fφ∥L12(0,t;L36/25(Ω)) + ∥vφ(0)∥L12(Ω).

Finally, we have introduced in Lemma 14 the quantity

D10 = ∥ fφ/r∥L1(0,t;L∞(Ω)) + ∥vφ(0)∥L∞(Ω).

Theorem 1. Assume that Assumption 1 holds. Then, an increasing positive function ϕ exists
such that

∥Φ∥V(Ωt) + ∥Γ∥V(Ωt) ≤ ϕ(D1, · · · , D10). (24)

Remark 1. Estimate (24) implies any regularity of solutions to problem (6) assuming sufficient
regularity of data.

To prove (24), we ψ1 and vz need to vanish on the axis of symmetry.

Proof of Theorem 1. Inequality (113) in the form

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤ I +

∫
Ω

F̄rΦdx (25)

is the first step of the proof of (24), where Φ = − vφ,z
r , F̄r =

Fr
r and

I ≤
∫
Ω

∣∣∣∣vφ∂r
vr

r
Φ,z

∣∣∣∣dx +
∫
Ω

∣∣∣∣vφ∂z
vr

r
Φ,r

∣∣∣∣dx ≡ I1 + I2.
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Our aim is to estimate I1 and I2 by a product of norms ∥Φ∥V(Ωt), ∥Γ∥V(Ωt).
Since the L∞-estimate of swirl rvφ is bounded by D2 (see Lemma 2) and vr

r = −ψ1,z,
we obtain the estimates

I1 ≤ D2

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω

|Φ,z|2,Ω,

I2 ≤ D2

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω

|Φ,r|2,Ω.
(26)

To examine estimate (26), we recall that ψ1 is a solution to problem (22).
We prove the existence of weak solutions to problem (22) in Lemma 4 and derive the

estimate (56)
∥ψ1∥1,Ω ≤ c|w1|6/5,Ω. (27)

In Section 4, we increase the regularity of weak solutions by deriving estimates for higher
derivatives.

From (82), we have ∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω

≤ c|Γ,z|2,Ω. (28)

The estimate holds for the weak solutions to problem (22) because [13] yields the expansion
of ψ1 near the axis of symmetry

ψ1 = a1(z, t) + a2(z, t)r2 + a3(z, t)r4 + · · · (29)

Hence, ψ1,r = 2a2(z, t)r and the norm
∣∣ψ1,rz

r

∣∣
2,Ω can be finite.

To estimate I2, we need ∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω

≤ c|Γ,z|2,Ω. (30)

The estimate holds for such a class of regularized weak solutions to problem (22) that

ψ1|r=0 = 0. (31)

It means that in expansion (29), we have that a1(z, t) = 0.
The existence of solutions to problem (22) (see also (61)) satisfying restriction (31)

and estimate (30) follows from the theory developed by Kondratiev (see [12]) for elliptic
boundary value problems in domains with cones in weighted Sobolev spaces.

In this paper, the existence is proved in Lemmas 8 and 17. From [12], it also follows
that we can prove the existence of different solutions to problem (22) belonging to different
weighted Sobolev spaces.

The difference between two such solutions equals the expression that follows from the
Cauchy theorem for complex functions connected with the contour integration.

Restriction (31) means that we have to work with a very restricted class of weak
solutions to (22). This also means that vz must vanish on the axis of symmetry.

Using estimates (28) and (30) in (25) yields

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤ cD2|Γ,z|2,Ω|∇Φ|2,Ω +

∫
Ω

F̄rΦdx. (32)

We have to emphasize that we are not able to prove estimate (24) without restriction (31).
Now, we integrate (120) with respect to time. Then, we obtain

|Γ|22,Ω + ∥Γ∥2
1,2,Ωt ≤ 2

∣∣∣∣ ∫
Ωt

vφ

r
ΦΓdxdt′

∣∣∣∣
+ c|F̄φ|26/5,2,Ωt + c|Γ(0)|22,Ω.

(33)
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Integrating (32) with respect to time and adding to (33) yields

∥Φ∥2
V(Ωt) + ∥Γ∥2

V(Ωt) ≤ c(D2)

∣∣∣∣ ∫
Ωt

vφ

r
ΦΓdxdt′

∣∣∣∣
+ c(D2)(|F̄r|26/5,2,Ωt + |F̄φ|26/5,2,Ωt) + c(D2)(|Φ(0)|22,Ω + |Γ(0)|22,Ω).

(34)

Now, we have to estimate the first term on the r.h.s. of (34).
Introducing the quantity (see (132))

X(t) = ∥Φ∥V(Ωt) + ∥Γ∥V(Ωt) (35)

and recalling that constant D8 is introduced in Assumption 1, inequality (34) takes the form

X2(t) ≤ c(D2)

∣∣∣∣ ∫
Ωt

vφ

r
ΦΓdxdt′

∣∣∣∣+ cD2
8, (36)

where the first integral is called I3.
Using estimate (123) and the estimate of L2

1 in the proof of Lemma 11, we obtain from
(36) the inequality

X2(t) = c(D2)|vφ|εd,∞,Ωt |Φ|θ2,Ωt |∇Φ|1−θ
2,Ωt |∇Γ|2,Ωt + cD2

8, (37)

where θ =
(
1 − 3

d
)
ε1 − 3

d ε2, d > 3, ε = ε1 + ε2 < 1.
To derive any estimate from (37), we use (173) in the form

|Φ|22,Ω ≤ c(D5 + D6|vφ|ε0
∞,Ωt)∥Γ∥1,2,Ωt + cD7, (38)

where ε0 can be assumed to be an arbitrarily small positive number and D5, D6, D7 are
defined in Assumption 1. This is a very important estimate because the square of |Φ|2,Ωt

depends linearly on ∥Γ∥1,2,Ωt .
Using (38) in (37) yields (the estimate of I3 is described in (122))

X2(t) ≤ c|vφ|εd,∞,Ωt [c1(1 + |vφ|
1
2 θε0
∞,Ωt)X

1
2 θ + c2]X2−θ + cD2

8, (39)

where c1, c2 depend on D5, D6, D7.
Since 2 − 1

2 θ, 2 − θ are less than 2, Lemma 12 yields the inequality

X2 ≤ c0|vφ|
4ε
θ

d,∞,Ωt(1 + |vφ|2ε0
∞,Ωt) + c0|vφ|

2ε
θ

d,∞,Ωt + cD2
8, (40)

where c0 = ϕ(D2, D5, D6, D7).
Setting d = 12 and assuming that vφ is not small, we derive (137) in the form

|vφ|12,∞,Ωt ≤ c|vφ|b0ε0
∞,Ωt + ϕ(D2, D5, D6, D7, D8, D9), (41)

where b0 is a positive number.
The smallness of vφ, which must be excluded in the proof of (41), is described

in Appendix A.
To prove (41), we have to pass from (140) to (141). Therefore, we need the estimate

∫
Ωt

ψ2
1

r6′ dxdt′ ≤ c∥Γ∥2
1,2,Ωt , (42)

where 6′ < 6, and we are not able to replace 6′ by 6 (see Remark 8).



Mathematics 2024, 12, 263 11 of 50

Replacing 6′ by 6 estimate (42) takes the form

t∫
0

∫
Ω

ψ2
1

r6 dxdt′ ≤ c
t∫

0

∥Γ∥2
H1

0 (Ω)
dt′, (43)

where the r.h.s. can not be estimated by ∥Γ∥V(Ωt).
Estimate (42) follows from Lemma 18 and imposes the following additional restrictions

on ψ1:
ψ1|r=0 = 0, ψ1,r|r=0 = 0. (44)

However, the theory developed in [13] implies that ψ1,r|r=0 = 0.
Exploiting (41) in (40) yields

X ≤ c(1 + |vφ|d1ε0
∞,Ωt)|vφ|d2ε0

∞,Ωt + ϕ(D2, D5, D6, D7, D8, D9), (45)

where d1, d2 are positive finite numbers.
Finally, we find the estimate for |vφ|∞,Ωt (see (152)). Using (152) in (45) yields (24).

This ends the proof of Theorem 1.

The problem of regularity of axially symmetric solutions to the Navier–Stokes equa-
tions has a long history. The first regularity results in the case of vanishing swirl are derived
in [1,2] by O. A Ladyzhenskaya and Ukhovskii–Yudovich independently. Many references
in the case of nonvanishing swirl can be found in [3].

We have to emphasize that we were able to prove Theorem 1 because the theory of
weighted Sobolev spaces developed in [15] was used.

3. Notation and Auxiliary Results

First, we introduce some notations

Definition 1. We use the following notation for Lebesque and Sobolev spaces

∥u∥Lp(Ω) = |u|p,Ω, ∥u∥Lp(Ωt) = |u|p,Ωt ,

∥u∥Lp,q(Ωt) = ∥u∥Lq(0,t;Lp(Ω)) = |u|p,q,Ωt ,

where p, q ∈ [1, ∞]. Next,

∥u∥Hs(Ω) = ∥u∥s,Ω, ∥u∥Ws
p(Ω) = ∥u∥s,p,Ω,

∥u∥Lq(0,t;Wk
p(Ω)) = ∥u∥k,p,q,Ωt , ∥u∥k,p,p,Ωt = ∥u∥k,p,Ωt ,

where s, k ∈ N∪ {0}, Hs(Ω) = Ws
2(Ω).

We need energy-type space V(Ωt) to be appropriate for a description of weak solutions
to the Navier–Stokes equations

∥u∥V(Ωt) = |u|2,∞,Ωt + |∇u|2,Ωt .

We recall weighted Sobolev spaces defined by

∥ f ∥Hk
µ(R+)

=

( ∫
R+

k

∑
j=0

|∂j
r f |2r2(µ+j−k)rdr

)1/2

and

∥ f ∥Hk
µ(Ω) =

( ∫
Ω

k

∑
|α|=0

|Dα
r,z f |2r2(µ+|α|−k)rdrdz

)1/2

,
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where Ω contains the axis of symmetry, Dα = ∂α1
r ∂α2

z , |α| = α1 + α2, αi ∈ N∪ {0}, i = 1, 2,
k ∈ N∪ {0}, µ ∈ R+. Moreover, we have

H0
0(Ω) = L2,0(Ω) = L2(Ω),

H0
µ(Ω) = L2,µ(Ω)

and
∥ f ∥L2,µ(Ω) = | f |2,µ,Ω.

Lemma 1. Let f ∈ L2,1(Ωt), v(0) ∈ L2(Ω). Then, solutions to (7) satisfy the estimate

∥v(t)∥2
L2(Ω) + ν

∫
Ωt

(|∇vr|2 + |∇vφ|2 + |∇vz|2)dxdt′

+ ν
∫

Ωt

(
v2

r
r2 +

v2
φ

r2

)
dxdt′ ≤ 3∥ f ∥2

L2,1(Ωt) + 2∥v(0)∥2
L2(Ω) ≡ D2

1.
(46)

Proof. Multiplying (7)1 by vr, (7)2 by vφ, (7)3 by vz, adding the results, and integrating
over Ω yields

1
2

d
dt

∫
Ω

(v2
r + v2

φ + v2
z)dx + ν

∫
Ω

(|∇vr|2 + |∇vφ|2 + |∇vz|2)dx

+ ν
∫
Ω

(
v2

r
r2 +

v2
φ

r2

)
dx +

∫
Ω

(p,rvr + p,zvz)dx

=
∫
Ω

( frvr + fφvφ + fzvz)dx.

(47)

The last term on the l.h.s. of (47) vanishes in virtue of the equation of continuity (7)4 and
boundary conditions.

Using the fact that v2 = v2
r + v2

φ + v2
z , (47) takes the form

1
2

d
dt
∥v∥2

L2(Ω) + ν
∫
Ω

(|∇vr|2 + |∇vφ|2 + |∇vz|2)dx

+ ν
∫
Ω

(
v2

r
r2 +

v2
φ

r2

)
dx =

∫
Ω

( frvr + fφvφ + fzvz)dx.
(48)

Applying the Hölder inequality to the r.h.s. of (48) yields

d
dt
∥v∥L2(Ω) ≤ ∥ f ∥L2(Ω), (49)

where f 2 = f 2
r + f 2

φ + f 2
z .

Integrating (49) with respect to time gives

∥v∥L2(Ω) ≤ ∥ f ∥L2,1(Ωt) + ∥v(0)∥L2(Ω). (50)
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Integrating (48) with respect to time, using the Hölder inequality in the r.h.s. of (48) and
exploiting (50), we obtain

1
2
∥v(t)∥2

L2(Ω) + ν
∫

Ωt

(|∇vr|2 + |∇vφ|2 + |∇vz|2)dxdt′

+ ν
∫

Ωt

(
v2

r
r2 +

v2
φ

r2

)
dxdt′ ≤ ∥ f ∥L2,1(Ωt)(∥ f ∥L2,1(Ωt)

+ ∥v(0)∥L2(Ω)) +
1
2
∥v(0)∥2

L2(Ω).

(51)

The above inequality implies (46). This concludes the proof.

Lemma 2. Consider problem (12). Assume that f0 ∈ L∞,1(Ωt) and u(0) ∈ L∞(Ω). Then,

∥u(t)∥L∞(Ω) ≤ ∥ f0∥L∞,1(Ωt) + ∥u(0)∥L∞(Ω) ≡ D2. (52)

Proof. Multiplying (12)1 by u|u|s−2, s > 2, integrating over Ω and by parts, we obtain

1
s

d
dt
∥u∥s

Ls(Ω) +
4ν(s − 1)

s2 ∥∇|u|s/2∥2
L2(Ω) +

ν

s

∫
Ω

(|u|s),rdrdz

=
∫
Ω

f0u|u|s−2dx.
(53)

From [13] it follows that u|r=0 = 0. Moreover, using boundary conditions, (53) implies

d
dt
∥u∥Ls(Ω) ≤ ∥ f0∥Ls(Ω). (54)

Integrating (54) with respect to time and passing with s → ∞, we derive (52). This ends
the proof.

Lemma 3. Let estimates (46) and (52) hold. Then,

∥vφ∥L4(Ωt) ≤ D1/2
1 D1/2

2 . (55)

Proof. We have∫
Ωt

|vφ|4dxdt′ =
∫

Ωt

r2v2
φ

v2
φ

r2 dxdt′ ≤ ∥rvφ∥2
L∞(Ωt)

∫
Ωt

v2
φ

r2 dxdt′ ≤ D2
2D2

1.

This implies (55) and concludes the proof.

Lemma 4. Consider problem (22). Assume that ω1 ∈ L6/5(Ω), where Ω = (0, R)× (−a, a).
Then, there a weak solution to problem (22) exists such that ψ1 ∈ H1(Ω) and the estimate

∥ψ1∥1,Ω ≤ c|ω1|6/5,Ω (56)

holds.

Proof. Multiplying (22)1 by ψ1 and using the boundary conditions, we obtain

∥ψ1∥2
1,Ω +

a∫
−a

ψ2
1 |r=0dz =

∫
Ω

ω1ψ1dx.
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Applying the Hölder and Young inequalities to the r.h.s. implies (56). The Fredholm
theorem gives existence. This ends the proof.

Remark 2. We have to emphasize that the weak solution ψ1 of (22) does not vanish on the axis of
symmetry. It also follows from [13].

From Lemma 2.4 in [8], we also have

Lemma 5. Let f ∈ C∞((0, R) × (−a, a)), f |r≥R = 0. Let 1 < r ≤ 3, 0 ≤ s ≤ r, s ≤ 2,
q ∈

[
r, r(3−s)

3−r
]
. Then, a positive constant c = c(s, r) exists such that

( ∫
Ω

| f |q
rs dx

)1/q

≤ c| f |
3−s

q − 3
r +1

r,Ω |∇ f |
3
r −

3−s
q

r,Ω , (57)

where f does not depend on φ.

Notation 1 (see [15]). First, we introduce the Fourier transform. Let f ∈ S(R), where S(R) is
the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on R.
Then, the Fourier transform of f and its inverse are defined by

f̂ (λ) =
1√
2π

∫
R

e−iλτ f (τ)dτ, ˇ̂f(τ) =
1√
2π

∫
R

eiλτ f̂ (λ)dλ (58)

and ˇ̂f = ˆ̌f = f .
By Hk

µ(R+), we denote a weighted space with the norm

∥u∥Hk
µ(R+)

=
k

∑
i=0

∫
R+

|∂i
ru|2r2(µ−k+i)rdr.

In view of transformation τ = − ln r, r = e−τ , dr = −e−τdτ, we have the equivalence

k

∑
i=0

∫
R+

|∂i
ru|2r2(µ−k+i)rdr ∼

k

∑
i=0

∫
R

|∂i
τu′|2e2hτdτ (59)

which holds for u′(τ) = u′(− ln r) = u(r), h = k − 1 − µ.

In view of the Fourier transform (58) and the Parseval identity, we have

+∞+ih∫
−∞+ih

k

∑
j=0

|λ|2j|û(λ)|2dλ =
∫
R

k

∑
j=0

|∂j
τu|2e2hτdτ. (60)

4. Estimates for the Stream Function ψ1

In this Section, we derive many estimates for ψ1 = ψ/r, where ψ is the stream function,
in terms of ∥Γ∥1,2,Ωt + |Γ|2,∞,Ωt (recall that Γ = ω1). Function ψ1 was introduced by Thomas
Hou in [16]. Lemma 6 is proved by applying the energy-type method.

We have to emphasize that the proof of Lemma 6 is much more complicated than
the proof of Lemma 6 in [14] because here we need to handle the boundary terms on S2.
Inequalities (85) and (93) are proved by applying the technique of weighted Sobolev spaces
developed by Kondratiev (see [12]) to problem (61). Inequalities (85) and (93) hold for ψ1
vanishing on the axis of symmetry. The inequalities are necessary in the proof of inequality
(173). Hence, to prove the global estimate (24) we require that ψ1|r=0 = 0.
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Recall that ψ1 is a solution to the problem

− ψ1,rr − ψ1,zz −
3
r

ψ1,r = ω1 in Ω = (0, R)× (−a, a),

ψ1|S = 0.
(61)

Lemma 6. For sufficiently regular solutions to (61), the following estimates hold

∫
Ω

(ψ2
1,rr + ψ2

1,rz + ψ2
1,zz)dx +

∫
Ω

1
r2 ψ2

1,rdx +

a∫
−a

ψ2
1,z|r=0dz

+

a∫
−a

ψ2
1,r|r=Rdz ≤ c|ω1|22,Ω

(62)

and ∫
Ω

(ψ2
1,zzr + ψ2

1,zzz)dx +

a∫
−a

ψ2
1,zz|r=0dz ≤ c|ω1,z|22,Ω (63)

and ∫
Ω

(ψ2
1,rrz + ψ2

1,rzz + ψ2
1,zzz)dx +

a∫
−a

ψ2
1,zz|r=0dz

+

a∫
−a

ψ2
1,rz|r=Rdz ≤ c|ω1,z|22,Ω.

(64)

Proof. First, we prove (62). Multiplying (61)1 by ψ1,zz and integrating over Ω yields

−
∫
Ω

ψ1,rrψ1,zzdx −
∫
Ω

ψ2
1,zzdx − 3

∫
Ω

1
r

ψ1,rψ1,zzdx =
∫
Ω

ω1ψ1,zzdx. (65)

Integrating by parts with respect to r in the first term implies

−
∫
Ω

(ψ1,rψ1,zzr),rdrdz +
∫
Ω

ψ1,rψ1,zzrdx +
∫
Ω

ψ1,rψ1,zzdrdz

−
∫
Ω

ψ2
1,zzdx − 3

∫
Ω

ψ1,rψ1,zzdrdz =
∫
Ω

ω1ψ1,zzdx.

Continuing, we obtain

−
a∫

−a

ψ1,rψ1,zzr
∣∣∣∣r=R

r=0
dz +

∫
Ω

ψ1,rψ1,zzrdx −
∫
Ω

ψ2
1,zzdx

− 2
∫
Ω

ψ1,rψ1,zzdrdz =
∫
Ω

ω1ψ1,zzdx.

(66)

The first integral in (66) vanishes because ψ1,rr|r=0 = 0, ψ1,zz|r=R = 0. Integrating by parts
with respect to z in the last term on the l.h.s. of (66) and using the fact that ψ1,r on S2
vanishes, we obtain∫

Ω

ψ1,rψ1,zzrdx −
∫
Ω

ψ2
1,zzdx + 2

∫
Ω

ψ1,rzψ1,zdrdz =
∫
Ω

ω1ψ1,zzdx. (67)



Mathematics 2024, 12, 263 16 of 50

Integrating by parts with respect to z in the first term in (67), we obtain

−
r∫

0

ψ1,rψ1,zr

∣∣∣∣z=a

z=−a
rdr +

∫
Ω

(ψ2
1,zr + ψ2

1,zz)dx −
∫
Ω

(ψ2
1,z),rdrdz = −

∫
Ω

ω1ψ1,zzdx, (68)

where the first integral vanishes because ψ1,r|S2 = 0 and the last term on the l.h.s. equals

−
a∫

−a

ψ2
1,z

∣∣∣∣r=R

r=0
dz =

a∫
−a

ψ2
1,z

∣∣∣∣
r=0

dz

because ψ1,z|r=R = 0. Using this in (68) and applying the Hölder and Young inequalities to
the r.h.s. of (68) yields

∫
Ω

(ψ2
1,rz + ψ2

1,zz)dx +

a∫
−a

ψ2
1,z|r=0dz ≤ c|ω1|22,Ω. (69)

Multiply (61)1 by 1
r ψ1,r and integrate over Ω. Then, we have

3
∫
Ω

∣∣∣∣1
r

ψ1,r

∣∣∣∣2dx = −
∫
Ω

ψ1,rr
1
r

ψ1,rdx −
∫
Ω

ψ1,zz
1
r

ψ1,rdx −
∫
Ω

ω1
1
r

ψ1,rdx. (70)

The first term on the r.h.s. of (70) equals

−1
2

∫
Ω

∂rψ2
1,rdrdz = −1

2

a∫
−a

ψ2
1,r

∣∣∣∣r=R

r=0
dz = −1

2

a∫
−a

ψ2
1,r|r=Rdz,

because ψ1,r|r=0 = 0 (see [13]). Applying the Hölder and Young inequalities to the last two
terms on the r.h.s. of (70) implies

∫
Ω

∣∣∣∣1
r

ψ1,r

∣∣∣∣2dx +
1
2

a∫
−a

ψ2
1,r

∣∣∣∣
r=R

dz ≤ c(|ψ1,zz|22,Ω + |ω1|22,Ω). (71)

Inequalities (69) and (71) imply the estimate

∫
Ω

(ψ2
1,rz + ψ2

1,zz)dx +
∫
Ω

∣∣∣∣1
r

ψ1,r

∣∣∣∣2dx +

a∫
−a

ψ2
1,z

∣∣∣∣
r=0

dz

+

a∫
−a

ψ2
1,r

∣∣∣∣
r=R

dz ≤ c|ω1|22,Ω.

(72)

From (61)1, we have

|ψ1,rr|22,Ω ≤ |ψ1,zz|22,Ω + 3
∣∣∣∣1

r
ψ1,r

∣∣∣∣2
2,Ω

+ |ω1|22,Ω. (73)

Inequalities (72) and (73) imply (62).
Now, we show (63). Differentiate (61)1 with respect to z, multiply by −ψ1,zzz, and

integrate over Ω. Then, we obtain∫
Ω

ψ1,rrzψ1,zzzdx +
∫
Ω

ψ2
1,zzzdx + 3

∫
Ω

1
r
ψ1,rzψ1,zzzdx = −

∫
Ω

ω1,zψ1,zzzdx. (74)
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Integrating by parts with respect to z yields∫
Ω

ψ1,rrzψ1,zzzdx =
∫
Ω

(ψ1,rrzψ1,zz),zdx −
∫
Ω

ψ1,rrzzψ1,zzdx

=

t∫
0

ψ1,rrzψ1,zz

∣∣∣∣
S2

rdr −
∫
Ω

ψ1,rrzzψ1,zzdx.

(75)

Projecting (61) on S2 yields that −ψ1,zz = ω1. Since ω1|S2 = 0, it follows that ψ1,zz|S2 = 0
so the first term on the r.h.s. vanishes. Integrating by parts with respect to r in the second
integral in (75) gives

−
∫
Ω

(ψ1,rzzψ1,zzr),rdrdz +
∫
Ω

ψ2
1,rzzdx +

∫
Ω

ψ1,rzzψ1,zzdrdz,

where the first integral vanishes because

ψ1,rzzr|r=0 = 0, ψ1,zz|r=R = 0.

In view of the above considerations, (74) takes the form∫
Ω

(ψ2
1,rzz + ψ2

1,zzz)dx +
∫
Ω

ψ1,rzzψ1,zzdrdz

+ 3
∫
Ω

ψ1,rzψ1,zzzdrdz = −
∫
Ω

ω1,zψ1,zzzdx.
(76)

By integrating by parts with respect to z in the last term on the l.h.s. of (76) and using the
fact that ψ1,zz = 0 on S2, we obtain∫

Ω

(ψ2
1,rzz + ψ2

1,zzz)dx −
∫
Ω

∂rψ2
1,zzdrdz = −

∫
Ω

ω1,zψ1,zzzdx. (77)

Applying the Hölder and Young inequalities to the r.h.s. of (77) yields

∫
Ω

(ψ2
1,rzz + ψ2

1,zzz)dx +

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz ≤ c|ω1,z|22,Ω,

where we used that ψ1,zz|r=R = 0.
The above inequality implies (63).
Finally, we show (64). Differentiate (61)1 with respect to z, multiply by ψ1,rrz, and

integrate over Ω. Then, we have

−
∫
Ω

ψ2
1,rrzdx −

∫
Ω

ψ1,zzzψ1,rrzdx − 3
∫
Ω

1
r

ψ1,rzψ1,rrzdx

=
∫
Ω

ω1,zψ1,rrzdx.
(78)
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Integrating by parts with respect to z in the second term in (78) and using the fact that
ψ1,zz|S2 = 0 implies

−
∫
Ω

ψ1,zzzψ1,rrzdx =
∫
Ω

ψ1,zzψ1,rrzzdx =
∫
Ω

(ψ1,zzψ1,rzzr)rdrdz

−
∫
Ω

ψ2
1,rzzdx −

∫
Ω

ψ1,zzψ1,rzzdrdz,

where the first term vanishes because

ψ1,rzzr|r=0 = 0, ψ1,zz|r=R = 0.

Then, (78) takes the form∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx +
∫
Ω

ψ1,zzψ1,rzzdrdz

+ 3
∫
Ω

ψ1,rzψ1,rrzdrdz = −
∫
Ω

ω1,zψ1,rrzdx.
(79)

The second term in (79) equals

1
2

a∫
−a

ψ2
1,zz

∣∣∣∣r=R

r=0
dz = −1

2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz

because ψ1,zz|r=R = 0, and the last term on the l.h.s. of (79) has the form

3
2

∫
Ω

∂rψ2
1,rzdrdz =

3
2

a∫
−a

ψ2
1,rz

∣∣∣∣r=R

r=0
dz =

3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz

because ψ1,rz|r=0 = 0.
Using the above expressions in (79) implies the equality

∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx − 1
2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz +
3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz

= −
∫
Ω

ω1,zψ1,rrzdx.

(80)

Applying the Hölder and Young inequalities in the r.h.s. of (80) gives

∫
Ω

(ψ2
1,rrz + ψ2

1,rzz)dx − 1
2

a∫
−a

ψ2
1,zz

∣∣∣∣
r=0

dz

+
3
2

a∫
−a

ψ2
1,rz

∣∣∣∣
r=R

dz ≤ c|ω1,z|22,Ω.

(81)

Inequalities (81) and (63) imply (64). This ends the proof.

Lemma 7. For sufficiently regular solutions to (61) the following inequality:∣∣∣∣1
r

ψ1,rz

∣∣∣∣
2,Ω

≤ c|ω1,z|2,Ω (82)

holds.
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Proof. Differentiating (61) with respect to z implies

−ψ1,rrz − ψ1,zzz −
3
r

ψ1,rz = ω1,z. (83)

From (83), we have ∣∣∣∣1
r

ψ1,rz

∣∣∣∣
2,Ω

≤ c(|ψ1,rrz|2,Ω + |ψ1,zzz|2,Ω + |ω1,z|2,Ω). (84)

Using (64) in (84) yields (82). This concludes the proof.

Now, we estimate
∣∣ψ1,zz

r

∣∣
2,Ω.

Lemma 8. Let ψ1 be such a weak solution to problem (61) that it vanishes on the axis of symmetry.
Then, such sufficiently regular solutions to problem (61) satisfy the estimate

∫
Ω

ψ2
1,zz

r2 dx +
∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx ≤ c|ω1,z|22,Ω. (85)

Proof. Differentiating (61) with respect to z yields

− ∆ψ1,z −
3
r

ψ1,zr = ω1,z,

ψ1,z|S1 = 0, ψ1,zz|S2 = 0.
(86)

Applying Lemma 17 (see also Lemma 3.1 from [15]) to problem (86) gives

∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx ≤ c(|ω1,z|22,Ω + |ψ1,zzz|22,Ω) ≤ c|ω1,z|22,Ω, (87)

where (63) is used in the last inequality.
To examine the solutions to (86), we use the notation

u = ψ1,z. (88)

Then, (86) takes the form

− ∆u − 2
r

u,r = ω1,z,

u|S1 = 0, u,z|S2 = 0.
(89)

Multiply (88)1 by ur−2, integrate over Ω, and express the Laplacian operator in cylindrical
coordinates. Then, we have

−
∫
Ω

(
u,rr +

1
r

u,r + u,zz

)
ur−2dx − 2

∫
Ω

1
r

u,rur−2dx =
∫
Ω

ω1,zur−2dx. (90)

By integrating by parts with respect to z in the third term under the first integral and using
the fact that ψ1,zz|S2 = 0, we obtain

∫
Ω

u2
,z

r2 dx =
∫
Ω

(
u,rr +

3
r

u,r

)
ur−2dx +

∫
Ω

ω1,zur−2dx. (91)
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Applying the Hölder and Young inequalities to the r.h.s. integrals, using the fact that
u = ψ1,z and (87), we derive

∫
Ω

ψ2
1,zz

r2 dx ≤ c
∫
Ω

(
ψ2

1,zrr +
ψ2

1,zr

r2 +
ψ2

1,z

r4

)
dx + c|ω1,z|22,Ω. (92)

Using (87) in (92) implies (85). This concludes the proof.

Remark 3. Lemma 8 is necessary in the proof of global regular axially symmetric solutions to
problem (6). However, it imposes strong restrictions on solutions to (6) because the condition
ψ1|r=0 = 0 implies that vz|r=0 = 0. We do not know how to omit the restriction in the presented
proof in this paper.

Lemma 9. Let µ > 0 and ω1 ∈ H1
µ(Ω). Then, for sufficiently smooth solutions to (61) the

following estimate is valid:

∫
Ω

(
ψ2

1,rrr +
ψ2

1,rr

r2 +
ψ2

1,r

r4

)
r2µdx ≤ cR2µ∥ω1∥2

1,Ω. (93)

Proof. To prove the lemma, we introduce a partition of unity {ζ(i)(r)}i=1,2 such that

2

∑
i=1

ζ(i)(r) = 1

and

ζ(1)(r) =

{
1 r ≤ r0,
0 r ≥ r0 + λ,

ζ(2)(r) =

{
0 r ≤ r0,
1 r ≥ r0 + λ,

where r0 < R and ζ(i)(r), i = 1, 2, are smooth functions.
Introduce the notation

ψ
(i)
1 = ψ1ζ(i), ω

(i)
1 = ω1ζ(i), i = 1, 2. (94)

Then, functions (94) satisfy the equations

− ψ
(i)
1,rr − ψ

(i)
1,zz −

3
r

ψ
(i)
1,r = −2ψ1,r ζ̇(i) − ψ1ζ̈(i) − 3

r
ψ1ζ̇(i)

+ ω
(i)
1 ≡ g(i), i = 1, 2,

(95)

where dot denotes the derivative with respect to r.
First, we consider the case i = 1. Differentiating (95) for i = 1 with respect to r yields

−ψ
(1)
1,rrr − ψ

(1)
1,rzz −

3
r

ψ
(1)
1,rr +

3
r2 ψ

(1)
1,r = g(1),r . (96)

Introduce the notation
v = ψ

(1)
1,r , f = g(1),r . (97)
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Then, (96) takes the form

− v,rr − v,zz −
3
r

v,r +
3
r2 v = f in Ωr0+λ,

v|r=r0 = 0,

v|S2 = 0,

(98)

where Ωr0+λ = {x ∈ Ω : r ∈ (0, r0 + λ), z ∈ (−a, a)} and r0 + λ < R.
Multiplying (98)1 by r2 yields

−r2v,rr − 3rv,r + 3v = r2( f + v,zz) ≡ g(r, z)

or equivalently
−r∂r(r∂rv)− 2r∂rv + 3v = g(r, z). (99)

Introduce the new variable
τ = − ln r, r = e−τ .

Since r∂r = −∂τ , Equation (99) takes the form

−∂2
τv + 2∂τv + 3v = g(e−τ , z) ≡ g′(τ, z). (100)

Applying the Fourier transform (58) to (100) gives

λ2v̂ + 2iλv̂ + 3v̂ = ĝ′. (101)

Looking for solutions to the algebraic equation

λ2 + 2iλ + 3 = 0

we see that it has two solutions

λ1 = −3i, λ2 = i.

For λ ̸∈ {−3i, i}, we can write solutions to (101) in the form

v̂ =
1

λ2 + 2iλ + 3
ĝ′ ≡ R(λ)ĝ′. (102)

Since R(λ) does not have poles on the line Im λ = 1 − µ = h, µ ∈ (0, 1), we can use
Lemma 3.1 from [15]. Then, we obtain

∞+ih∫
−∞+ih

2

∑
j=0

|λ|2(2−j)|v̂|2dλ ≤ c
+∞+ih∫

−∞+ih

2

∑
j=0

|λ|2(2−j)|R(λ)ĝ′|2dλ

≤ c
+∞+ih∫

−∞+ih

|ĝ′|2dλ.

(103)

By the Parseval identity, inequality (103) becomes

∫
R

2

∑
j=0

|∂j
τv|2e2hτdτ ≤ c

∫
R

|g′|2e2hτdτ.

Passing to variable r yields

2

∑
j=0

∫
R+

|∂j
rv|2r2(µ+j−2)rdr ≤ c

∫
R+

|g|2r2(µ−2)rdr.
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Using the fact that g = r2( f + v,zz), we obtain

2

∑
j=0

∫
R+

|∂j
rv|2r2(µ+j−2)rdr ≤ c

∫
R+

| f + v,zz|2r2µrdr. (104)

Recalling notation (97), we derive from (104) the inequality

2

∑
j=0

∫
Ω

|∂j
rψ

(1)
1,r |

2r2(µ+j−2)dx ≤ c
∫
Ω

|g(1),r |2r2µdx + c
∫
Ω

|ψ1,rzz|2r2µdx. (105)

In view of (63),
|ψ1,rzz|2,Ω ≤ c|ω1,z|2,Ω. (106)

The first term on the r.h.s. of (105) can be estimated by

|g(1),r |2,µ,Ω ≤ c(|ψ1,rr|2,Ω + |ψ1,r|2,Ω + |ψ1|2,Ω + |ω1,r|2,Ω + |ω1|2,Ω). (107)

Lemma 6 and inequalities (105)–(107) imply

∫
Ω

(
|ψ(1)

1,rrr|
2 +

|ψ(1)
,rr |2
r2 +

|ψ(1)
,r |2
r4

)
r2µrdrdz

+
∫
Ω

|ψ1,rzz|2dx ≤ c(|ω1,r|22,Ω + |ω1,z|22,Ω + |ω1|22,Ω).
(108)

Function ψ
(2)
1 is a solution to the problem

− ∆ψ
(2)
1 = −2ψ1,r ζ̇(2) − ψ1ζ̈(2) +

2
r

ψ
(2)
1,r

− 3
r

ψ1ζ̇(2) + ω
(2)
1 in Ω̄r0 ,

ψ
(2)
1 |r=R = 0,

ψ
(2)
1 = 0 for r ≤ r0,

ψ
(2)
1 = 0 on S2,

(109)

where Ω̄r0 = {x ∈ R3 : r0 ≤ r ≤ R, z ∈ (−a, a)} and dot denotes the derivative with respect
to r.

For solutions to (109), the following estimate holds:

∥ψ
(2)
1 ∥3,Ω ≤ c(∥ψ1,r∥1,Ω + ∥ψ1∥1,Ω + ∥ω

(2)
1 ∥1,Ω) ≤ c∥ω1∥1,Ω. (110)

From (56), (108), and (110), inequality (93) follows. This ends the proof.

5. Estimates for Φ and Γ

Let Ω = {(r, z) : r ∈ (0, R), z ∈ (−a, a)}. Let Φ = ωr/r, Γ = ωφ/r, and Φ, Γ be
solutions to problems (17)–(20).

Lemma 10. Assume that Φ(0), Γ(0) ∈ L2(Ω), F̄r, F̄φ ∈ L2(0, t; L6/5(Ω)). Let D2 be defined by
(52), and let

I3 =
∫

Ωt

∣∣∣∣vφ

r
ΦΓ

∣∣∣∣dxdt′ < ∞.
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Then,
|Φ(t)|22,Ω + |Γ(t)|22,Ω + ν(∥Φ∥2

1,2,Ωt + ∥Γ∥2
1,2,Ωt)

≤ ϕ(D2)

∣∣∣∣ ∫
Ωt

vφ

r
ΦΓdxdt′

∣∣∣∣+ ϕ(D2)(|F̄r|26/5,2,Ωt

+ |F̄φ|26/5,2,Ωt) + |Φ(0)|22,Ω + |Γ(0)|22,Ω

≡ ϕ(D2)I3 + D8.

(111)

Proof. Multiplying (17) by Φ and integrating over Ω yields

1
2

d
dt
|Φ|22,Ω + |∇Φ|22,Ω −

a∫
−a

Φ
∣∣∣∣r=R

r=0
dz

=
∫
Ω

(ωr∂r + ωz∂z)
vr

r
Φdx +

∫
Ω

F̄rΦdx,
(112)

where we used that (6)3, (13)1 implies that Φ|S = 0.
To derive the second term on the l.h.s. of (112), we consider (17) in

Ω̄ = {x ∈ R3 : r < R, z ∈ (−a, a), φ ∈ (0, 2π)}.

Then, by the Green theorem and boundary conditions we obtain the second term on the
l.h.s. of (112) on Ω̄. Using the fact that all quantities in (112) do not depend on φ, we can
drop integration with respect to φ and obtain (112).

Considering the first term on the r.h.s. of (112), we have

1
2

d
dt
|Φ|22,Ω + |∇Φ|22,Ω ≤

∫
Ω

(ωr∂r + ωz∂z)
vr

r
Φdx +

∫
Ω

F̄rΦdx

≤
∫
Ω

(
− vφ,z∂r

vr

r
+

∂r(rvφ)

r
∂z

vr

r

)
Φrdrdz +

∫
Ω

F̄rΦdx

= −
R∫

0

vφ∂r
vr

r
Φ
∣∣∣∣
S2

rdr +
∫
Ω

vφ

(
∂z∂r

vr

r

)
Φ + ∂r

vr

r
∂zΦ

)
dx

+
∫
Ω

∂r

(
rvφ∂z

vr

r
Φ
)

drdz −
∫
Ω

vφ

((
∂z∂r

vr

r

)
Φ + ∂z

vr

r
∂rΦ

)
dx

+
∫
Ω

F̄rΦdx = −
R∫

0

vφ∂r
vr

r
Φ
∣∣∣∣
S2

rdr +
a∫

−a

rvφ∂z
vr

r
Φ
∣∣∣∣r=R

r=0
dz

+
∫
Ω

vφ

(
∂r

vr

r
∂zΦ − ∂z

vr

r
∂rΦ

)
dx +

∫
Ω

F̄rΦdx

≡ −
R∫

0

vφ∂r
vr

r
Φ
∣∣∣∣
S2

rdr +
a∫

−a

rvφ∂z
vr

r
Φ
∣∣∣∣r=R

r=0
dz + I +

∫
Ω

F̄rΦdx,

(113)

where the boundary terms on S1 and S2 vanish because Φ|S2 = 0, vφ|r=R = 0, vr|r=R = 0,
Φ|r=R = 0 and

a∫
−a

rvφ∂z
vr

r
Φ
∣∣∣∣
r=0

dz = 0
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because [13] implies the following expansions near the axis of symmetry

vφ = a1(z, t)r + a2(z, t)r3 + · · · ,

vr = ā1(z, t)r + ā2(z, t)r3 + · · ·

and Φ = − vφ,z
r .

Finally, I ≤ I1 + I2, where

I1 ≤
∫
Ω

∣∣∣∣vφ∂r
vr

r
Φ,z

∣∣∣∣dx,

I2 ≤
∫
Ω

∣∣∣∣vφ∂z
vr

r
Φ,r

∣∣∣∣dx.
(114)

Now, we estimate I1 and I2. Recall that vr
r = −ψ1,z. Then,

I1 ≤
∫
Ω

|vφψ1,rzΦ,z|dx =
∫
Ω

∣∣∣∣rvφ
ψ1,rz

r
Φ,z

∣∣∣∣dx

≤ |rvφ|∞,Ω

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ω

|Φ,z|2,Ω ≡ I1
1 .

From (52) and (82), we have (recall that Γ = ω1)

I1
1 ≤ cD2|Γ,z|2,Ω|Φ,z|2,Ω. (115)

Similarly, we calculate

I2 ≤
∫
Ω

|vφψ1,zzΦ,r|dx ≤ |rvφ|∞,Ω

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ω

|Φ,r|2,Ω

≤ cD2|Γ,z|2,Ω|Φ,r|2,Ω,

(116)

where (85) is used.
Finally, the last term on the r.h.s. of (113) is bounded by

ε|Φ|26,Ω + c(1/ε)|F̄r|26/5,Ω. (117)

Using estimates (115)–(117) in (113), assuming that ε is sufficiently small and applying the
Poincaré inequality we obtain

d
dt
|Φ|22,Ω + ∥Φ∥2

1,Ω ≤ cD2|Γ,z|2,Ω|∇Φ|2,Ω + c|F̄r|26/5,Ω. (118)

Multiplying (18) by Γ, integrating over Ω, and using the boundary conditions and explana-
tion about applying the Green theorem below (112), we obtain

1
2

d
dt
|Γ|22,Ω + |∇Γ|22,Ω −

a∫
−a

Γ2
∣∣∣∣r=R

r=0
dz

≤ 2
∣∣∣∣ ∫

Ω

vφ

r
ΦΓdx

∣∣∣∣+ ∫
Ω

F̄φΓdx.

(119)
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Using the fact that Γ|r=R = 0, by applying the Hölder and Young inequalities to the last
term on the r.h.s. of (119) and using the Poincaré inequality we derive

d
dt
|Γ|22,Ω + ∥Γ∥2

1,Ω ≤ 2
∫
Ω

vφ

r
ΦΓdx + c|F̄φ|26/5,Ω. (120)

From (118) and (120), we have

d
dt
(|Φ|22,Ω + |Γ|22,Ω) + ∥Φ∥2

1,Ω + ∥Γ∥2
1,Ω ≤ ϕ(D2)

∣∣∣∣ ∫
Ω

vφ

r
ΦΓdxdt′

∣∣∣∣
+ ϕ(D2)(|F̄r|26/5,Ω + |F̄φ|26/5,Ω),

(121)

where ϕ is an increasing positive function. Integrating (121) with respect to time yields
(111). This ends the proof.

Lemma 11. Let the assumptions of Lemma 16 hold.
Let vφ ∈ L∞(0, t; Ld(Ω)), d > 3. Let θ =

(
1 − 3

d
)
ε1 − 3

d ε2 > 0, ε = ε1 + ε2. Let ε0 > 0 be
arbitrary small.

Then,

I3 ≤ c|vφ|εd,∞,Ωt [c1(1 + |vφ|
1
2 θε0
∞,Ωt)∥Γ∥

1
2 θ

1,2,Ωt

+ c2]|∇Φ|1−θ
2,Ωt |∇Γ|2,Ωt ,

(122)

where c1, c2 depending on D5, D6, D7 are introduced in L4
1 below.

Proof. We examine

I3 =
∫

Ωt

∣∣∣∣rvφ
Φ
r

Γ
r

∣∣∣∣dxdt′

≤
∫

Ωt

|rvφ|1−ε|vφ|ε
∣∣∣∣ Φ
r1−ε1

∣∣∣∣∣∣∣∣ Γ
r1−ε2

∣∣∣∣dxdt′ = I1
3 ,

where ε = ε1 + ε2 and εi, i = 1, 2, are positive numbers.
Using (52) and applying the Hölder inequality in I1

3 yields

I1
3 ≤ D1−ε

2

( ∫
Ωt

|vφ|2ε

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2dxdt′
)1/2∣∣∣∣ Γ

r1−ε2

∣∣∣∣
2,Ωt

≡ D1−ε
2 L|Γ/r1−ε2 |2,Ωt ≡ I2

3 .

By the Hardy inequality, we obtain∥∥∥∥Γ
r

∥∥∥∥
L2,ε2 (Ω

t)

≤ c∥∇Γ∥L2,ε2 (Ω
t) ≤ cRε2 |∇Γ|2,Ωt . (123)

Now, we estimate L,

L =

( t∫
0

∫
Ω

|vφ|2ε

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2dxdt′
)1/2

≤
[ t∫

0

|vφ|2ε
2εσ,Ω

( ∫
Ω

∣∣∣∣ Φ
r1−ε1

∣∣∣∣qdx
)2/q

dt′
]1/2

≡ L1,
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where 1/σ + 1/σ′ = 1, q = 2σ′. Let d = 2εσ. Then,

σ′ =
d

d − 2ε
so q =

2d
d − 2ε

.

Continuing,

L1 ≤ sup
t

|vφ|εd,Ω

( t∫
0

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2
q,Ω

dt′
)1/2

≡ L1
1L2

1.

Now, we estimate the second factor L2
1.

For this purpose, we use Lemma 5 for r = 2. Let s
q = 1 − ε1. Then q ∈ [2, 2(3 − s)].

Since s = (1 − ε1)q we have the restriction 2 ≤ q ≤ 6 − 2s = 6 − 2(1 − ε1)q. Then,

2 ≤ q ≤ 6
3 − 2ε1

(124)

and 6
3−2ε1

> 2 for any ε1 ∈ (0, 1).
Hence, Lemma 5 implies

L2
1 =

( t∫
0

∣∣∣∣ Φ
r1−ε1

∣∣∣∣2
q,Ω

dt′
)1/2

≤ c
( t∫

0

|Φ|
2( 3−s

q − 1
2 )

2,Ω |∇Φ|
2( 3

2−
3−s

q )

2,Ω dt′
)1/2

≤ c|Φ|
3−s

q − 1
2

2,Ωt |∇Φ|
3
2−

3−s
q

2,Ωt ≡ L3
1,

where we used that for θ = 3−s
q − 1

2 , 1 − θ = 3
2 − 3−s

q so the Hölder inequality can
be applied.

Using (173) in L3
1, we have

L3
1 ≤ c(D

1
2 θ
5 |∇Γ|

1
2 θ

2,Ωt + D
1
2 θ
6 |vφ|

1
2 θε0
∞,Ωt∥Γ∥

1
2 θ

1,2,Ωt + D
1
2 θ
7 ) · |∇Φ|1−θ

2,Ωt

≡ [c1(1 + |vφ|
1
2 θε0
∞,Ωt)∥Γ∥

1
2 θ

1,2,Ωt + c2]|∇Φ|1−θ
2,Ωt ≡ L4

1,

where c1, c2 depend on D5, D6, D7.
To justify the above inequality, we have to know that the following inequalities hold:

θ =
3 − s

q
− 1

2
> 0 (125)

and
1 − θ =

3
2
− 3 − s

q
> 0. (126)

Consider (125). Using the form of q and s
q we have

3
q
− s

q
− 1

2
> 0 so

3(d − 2ε)

2d
− (1 − ε1)−

1
2
> 0.

Hence,
3
2
− 3

d
ε − 1 + ε1 −

1
2
> 0 so ε1 −

3
d
(ε1 + ε2) > 0.
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Therefore, the following inequality(
1 − 3

d

)
ε1 −

3
d

ε2 > 0 (127)

holds for d > 3 and ε2 small. Moreover, (127) implies

ε1 >
3
d

d
d − 3

ε2 =
3

d − 3
ε2. (128)

To exmine (126), we calculate

3
2
− 3(d − 2ε)

2d
+ 1 − ε1 = 1 +

3
d

ε − ε1 = 1 −
(

1 − 3
d

)
ε1 +

3
d

ε2. (129)

Since (129) must be positive, we have the restriction

1 +
3
d

ε2 >

(
1 − 3

d

)
ε1. (130)

Using (128) in (130) implies

1 +
3
d

ε2 >
3
d

ε2

so there is no contradiction.
Hence, we have

θ =

(
1 − 3

d

)
ε1 −

3
d

ε2,

1 − θ = 1 −
(

1 − 3
d

)
ε1 +

3
d

ε2,
(131)

where d > 3.
Finally,

I3 ≤ c|vφ|εd,∞,Ωt [c1(1 + |vφ|
1
2 θε0
∞,Ωt)∥Γ∥

1
2 θ

1,2,Ωt + c2]|∇Φ|1−θ
2,Ωt · |∇Γ|2,Ωt .

This implies (122) and ends the proof.

Introduce the quantity

X(t) = ∥Φ∥V(Ωt) + ∥Γ∥V(Ωt). (132)

Lemma 12. Let the assumptions of Lemmas 10 and 11 hold. Let θ =
(
1− 3

d
)
ε1 − 3

d ε2, ε = ε1 + ε2.
Then,

X2 ≤ c0|vφ|
4ε
θ

d,∞,Ωt(1 + |vφ|2ε0
∞,Ωt) + c0|vφ|

2ε
θ

d,∞,Ωt + D2
8, (133)

where c0 = ϕ(D5, D6, D7).

Proof. In view of notation (132), inequalities (111) and (122) imply

X2 ≤ c|vφ|εd,∞,Ωt [c1(1 + |vφ|
1
2 θε0
∞,Ωt)X1− 1

2 θ

+ c2X1−θ ]X + D8 ≡ α1X2− 1
2 θ + α2X2−θ + D2

8.
(134)

Applying the Young inequality in (134) implies

X2 ≤ cα
4
θ
1 + cα

2
θ
2 + D2

8.
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This yields (133) and concludes the proof.

Remark 4. Consider exponents in (133). Then,

δ =
4ε

θ
=

4ε

(1 − 3
d )ε1 − 3

d ε2
, δ0 =

2ε

(1 − 3
d )ε1 − 3

d ε2
. (135)

For ε2 small, we have

δ =
4

1 − 3
d
+ ε∗, δ0 =

2
1 − 3

d
+ ε0∗,

where ε∗, ε0∗ are positive numbers that can be chosen very small.
For d = 12 it follows that

δ =
16
3

+ ε∗, δ0 =
8
3
+ ε0∗. (136)

This ends the remark.

Lemma 13. Assume that ε1 > aε2, s > 1, a = 16+6′
3·6′−16 , b = 2·6′(3ε1−ε2)

(6′ ·3−16)(ε1−aε2)
, and we choose 6′ as

arbitrarily close to 6 and

Ds
9(s) = s2| fφ|s 3s

2s+1 ,s,Ωt + |vφ(0)|ss,Ω < ∞.

Then, excluding cases in which either vφ = 0 or vφ is small, we have

|vφ|6
′

12,∞,Ωt ≤ c|vφ|bε0
∞,Ωt + ϕ(D5, D6, D7) + c(D8 + D12

9 ). (137)

Proof. Multiply (7)2 by vφ|vφ|s−2, integrate over Ω, and exploit the relation vr
r = −ψ1,z.

Then, we obtain

1
s

d
dt
|vφ|ss,Ω +

4ν(s − 1)
s2 |∇|vφ|s/2|22,Ω =

∫
Ω

ψ1,z|vφ|sdx

+
∫
Ω

fφvφ|vφ|s−2dx.
(138)

Integrating by parts in the first term on the r.h.s. of (138) and applying the Hölder and
Young inequalities yields

∣∣∣∣ ∫
Ω

ψ1,z|vφ|sdx
∣∣∣∣ ≤ R∫

0

ψ1|vφ|s|S2 rdr + ε
∣∣∂z|vφ|s/2∣∣2

2,Ω + c(1/ε)
∫
Ω

ψ2
1 |vφ|sdx,

where the boundary term vanishes because ψ1|S2 = 0.
By the Poincaré inequality,

|∇|vφ|s/2|22,Ω ≥ c|vφ|s3s,Ω

so we can estimate the second term on the r.h.s. of (138) by

| fφ| 3s
2s+1 ,Ω|vφ|s−1

3s,Ω ≤ ε1|vφ|s3s,Ω + c(1/ε1)| fφ|s 3s
2s+1 ,Ω.
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By using the above estimates with sufficiently small ε, ε1 in (138), we derive the inequality

1
s

d
dt
|vφ|ss,Ω +

1
s
|∇|vφ|s/2|22,Ω +

1
s
|vφ|s3s,Ω

≤ cs
∫
Ω

ψ2
1 |vφ|sdx + cs| fφ|s 3s

2s+1 ,Ω.
(139)

In view of Lemma 2, the first term on the r.h.s. of (139) is bounded by

cs|u|6′∞,Ωt

∫
Ω

ψ2
1

r6′ |vφ|s−6′dx ≤ csD6′
2 |vφ|s−6′

∞,Ω

∫
Ω

ψ2
1

r6′ dx,

where 6′ < 6, but 6′ may be assumed to be arbitrarily close to 6.
Using the estimate in (139) yields

1
s

d
dt
|vφ|ss,Ω ≤ csD6′

2 |vφ|s−6′
∞,Ω

∫
Ω

ψ2
1

r6′ dx + cs| fφ|s 3s
2s+1 ,Ω. (140)

By integrating (140) with respect to time and using Lemma 18, we obtain

|vφ|ss,Ω ≤ c1s2D6′
2 |vφ|s−6′

∞,Ωt∥Γ∥2
1,2,Ωt

+ cs2| fφ|s 3s
2s+1 ,s,Ωt + |vφ(0)|ss,Ω

≡ c1s2D6′
2 |vφ|s−6′

∞,Ωt∥Γ∥2
1,2,Ωt + cDs

9(s),

(141)

c1 = cR2µ
(
1 + 4

(6−6′)2

)
.

Dividing (141) by |vφ|s−6′
∞,Ωt implies

∣∣∣∣ |vφ|s,∞,Ωt

|vφ|∞,Ωt

∣∣∣∣s−6′

|vφ|6
′

s,Ω ≤ c1s2D6′
2 ∥Γ∥2

1,Ωt +
c

|vφ|s−6′
∞,Ωt

Ds
9(s). (142)

The division by |vφ|∞,Ωt is justified because the following two cases are excluded from
this paper:

(1) In the case in which vφ = 0, the existence of global regular solutions to problem (6) is
proved in [1,2,17].

(2) The existence of global regular solutions to problem (6) for vφ sufficiently small is
proved in Appendix A.

Since cases (1) and (2) are not considered in this paper, we can show the existence of
positive constants c0 and c1 such that∣∣∣∣ |vφ|s,∞,Ωt

|vφ|∞,Ωt

∣∣∣∣s−6′

≥ c̄0 (143)

and
1

|vφ|s−6′
∞,Ωt

≤ c̄1. (144)

In view of (143) and (144), inequality (142) takes the form

c̄0|vφ|6
′

s,∞,Ωt ≤ c1s2∥Γ∥2
1,2,Ωt + cc̄1Ds

9(s). (145)
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Let d = 12. Then, θ = 1
4 (3ε1 − ε2) and (133) for d = 12 takes the form

X2 ≤ c0|vφ|
16ε

3ε1−ε2
12,∞,Ωt(1 + |vφ|2ε0

∞,Ωt) + c0|vφ|
8ε

3ε1−ε2
12,∞,Ωt + D8. (146)

Taking (145) for s = 12 and using (146) yields

|vφ|6
′

12,∞,Ωt ≤ c2|vφ|
16ε

3ε1−ε2
12,∞,Ωt(1 + |vφ|2ε0

∞,Ωt)

+ c2|vφ|
8ε

3ε1−ε2
12,∞,Ωt + cD8 + cD12

9 ,
(147)

where C2 = 144c1c0
c̄0

.
To derive any estimate from (147), we need

16ε

3ε1 − ε2
< 6′. (148)

We see that (148) holds for

ε1 >
16 + 6′

3 × 6′ − 16
ε2 ≡ aε2, (149)

where a > 11.
In view of the Young inequality, (147) implies

|vφ|6
′

12,∞,Ωt ≤ c|vφ|bε0
∞,Ωt + c + c(D8 + D12

9 ), (150)

where b = 2×6′(3ε1−ε2)
(6′×3−16)(ε1−aε2)

. The above inequality implies (137) and concludes the proof.

Remark 5. Exploiting (150) in (146) implies the inequality

X2 ≤ c(1 + |vφ|2ε0
∞,Ωt)|vφ|dε0

∞,Ωt + ϕ(D5, D7, D8, D9), (151)

where d = 16bε
3ε1−ε2

and X is introduced in (132).

To prove Theorem 1, we need an estimate for |vφ|∞,Ωt . For this purpose, we need
the result.

Lemma 14. Assume that quantities D2, D5, D7, D8, and D9 are bounded. Assume that fφ/r ∈
L1(0, t; L∞(Ω)), vφ(0) ∈ L∞(Ω).

Then, an increasing positive function ϕ exists such that

|vφ|∞,Ωt ≤ ϕ(D2, D5, D7, D8, D9, ∥ fφ/r∥L1(0,t;L∞(Ω)), |vφ(0)|∞,Ω). (152)

Proof. Recall Equation (7)2 for vφ

vφ,t + v · ∇vφ − ν

(
∆vφ − 1

r2 vφ

)
= ψ1,zvφ + fφ, (153)

where vr
r = −ψ1,z.

Multiplying (153) by vφ|vφ|s−2 and integrating over Ω yields

1
s

d
dt
|vφ|ss,Ω +

4ν(s − 1)
s2 |∇|vφ|s/2|22,Ω + ν

∫
Ω

|vφ|s

r2 dx

=
∫
Ω

ψ1,zv2
φ|vφ|s−2dx +

∫
Ω

fφvφ|vφ|s−2dx,
(154)
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where we used that vφ|S1 = 0, vφ,z|S2 = 0.
The first term on the r.h.s. of (154) is bounded by

∫
Ω

|ψ,z| |vφ|s/2 |vφ|s/2

r
dx ≤ ε

∫
Ω

|vφ|s

r2 dx + c(1/ε)
∫
Ω

ψ2
,z|vφ|sdx,

where the second integral is bounded by

|rvφ|2∞,Ω

∫
Ω

|ψ1,z|2|vφ|s−2dx ≤ D2
2 |ψ1,z|2s,Ω|vφ|s−2

s,Ω .

The second term on the r.h.s. of (154) is estimated by

∫
Ω

| fφ| |vφ|s−1dx =
∫
Ω

∣∣∣∣ fφ

r

∣∣∣∣r|vφ|s−1dx

≤ |rvφ|∞,Ω

∫
Ω

∣∣∣∣ fφ

r

∣∣∣∣ |vφ|s−2dx ≤ D2

∣∣∣∣ fφ

r

∣∣∣∣
s/2,Ω

|vφ|s−2
s,Ω .

Using the above estimates in (154) and assuming that ε is sufficiently small, we obtain
the inequality

1
s

d
dt
|vφ|ss,Ω ≤ D2

2

(
|ψ1,z|2s,Ω|vφ|s−2

s,Ω +

∣∣∣∣ fφ

r

∣∣∣∣
s/2,Ω

|vφ|s−2
s,Ω

)
.

Simplifying, we obtain

1
2

d
dt
|vφ|2s,Ω ≤ D2

2

(
|ψ1,z|2s,Ω +

∣∣∣∣ fφ

r

∣∣∣∣
s/2,Ω

)
.

Integrating with respect to time and passing with s → ∞, we derive

|vφ(t)|2∞,Ω ≤ D2
2

( t∫
0

|ψ1,z|2∞,Ωdt′ +
t∫

0

∣∣∣∣ fφ

r

∣∣∣∣
∞,Ω

dt′
)
+ |vφ(0)|2∞,Ω. (155)

Since
∫ t

0 |ψ1,z|2∞,Ωdt′ ≤ X2, we can apply (151). Then, (155) takes the form

|vφ|2∞,Ωt ≤ D2
2(1 + |vφ|2ε0

∞,Ωt)|vφ|
96ε

ε1−11ε2
ε0

∞,Ωt + D2ϕ(D5, D7, D8, D9)

+ D2
2

t∫
0

∣∣∣∣ fφ

r

∣∣∣∣
∞,Ω

dt′ + |vφ(0)|2∞,Ω.
(156)

Hence, for ε0 sufficiently small we derive (152). This ends the proof.

Remark 6. Inequalities (151) and (152) imply

X ≤ ϕ(D2, D5, D7, D8, D9, | fφ/r|∞,1,Ωt , |vφ(0)|∞,Ω). (157)

The above inequality proves Theorem 1.
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6. Estimates for the Swirl

Applying the energy method and using the estimate for the weak solution (see Lemma 1)
and L∞-estimate for swirl (see Lemma 2), we derive the estimate

∥u∥L∞(0,t;H1(Ω)) + ∥u∥L2(0,t;H2(Ω)) ≤ ϕ(data).

This is a new result, and it is necessary in the proof of (173).
In this Section, we find estimates for solutions to the problem

u,t + v · ∇u − ν∆u + 2ν
u,r

r
= r fφ ≡ f0 in Ωt,

u|S1 = 0, in St
1,

u,z = 0 on St
2,

u|t=0 = u(0) in Ω.

(158)

Lemma 15. Assume that D1, D2 are described by (46) and (52), respectively. Let u,z(0),
u,r(0) ∈ L2(Ω), f0 ∈ L2(Ωt).

Then, the solutions to (158) satisfy the estimates

|u,z(t)|22,Ω + ν|∇u,z|22,Ωt ≤ c(D2
1D2

2 + |u,z(0)|22,Ω + | f0|22,Ωt) ≡ cD2
3, (159)

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ cD2
1(1 + D2

2)

+ |u,r(0)|22,Ω + | f0|22,Ωt + | f0|24/3,2,St
1
≡ cD2

4.
(160)

Proof. Differentiate (158) with respect to z, multiply by u,z, and integrate over Ω. To apply
the Green theorem, we have to consider problem (158) in domain Ω̄ = {x ∈ R3 : r < R, z ∈
(−a, a), φ ∈ (0, 2π)}. Then, we obtain

1
2

d
dt
|u,z|22,Ω̄ − ν

∫
Ω̄

div (∇u,zu,z)dx̄ + ν
∫
Ω̄

|∇u,z|2dx̄

+ 2ν
∫
Ω̄

u,zru,zdrdzdφ

= −
∫
Ω̄

v,z · ∇u · u,zdx̄ −
∫
Ω̄

v · ∇u,zu,zdx̄ +
∫
Ω̄

f0,zu,zdx̄,

(161)

where dx̄ = dxdφ.
The second term on the l.h.s. of (161) equals −ν

∫
S̄ n̄ · ∇u,zu,zdSdφ = 0 because

u,z|S = 0.
The last term on the l.h.s. of (161) takes the form

+ν
∫
Ω̄

∂ru2
,zdrdzdφ = ν

2π∫
0

a∫
−a

u2
,z

∣∣∣∣r=R

r=0
dzdφ = 0

because u.z|r=R = 0, and [13] implies that u,z|r=0 = 0.
Integrating by parts in the first term on the r.h.s. of (161) gives

−
∫
Ω̄

v,z · ∇(u · u,z)dx̄ +
∫
Ω̄

v,z · ∇u,zudx̄ ≡ I1 + I2,
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where

I1 = −
2π∫
0

∫
S

v,z · n̄uu,zdSdφ = 0

because u,z|S = 0. Applying the Hölder and Young inequalities to I2 yields

|I2| ≤ ε
∫
Ω̄

|∇u,z|2dx̄ + c(1/ε)|u|2∞,Ω

∫
Ω̄

v2
,zdx̄.

The second term on the r.h.s. of (161) takes the form

−1
2

∫
Ω̄

v · ∇u2
,zdx̄ = −1

2

∫
S̄

v · n̄u2
,zdS̄

which vanishes because v · n̄|S = 0.
Integrating by parts in the last term on the r.h.s. of (161) yields∫

Ω̄

f0,zu,zdx̄ =
∫
Ω̄

( f0u,z),zdx̄ −
∫
Ω̄

f0u,zzdx̄ ≡ J1 + J2,

where

J1 =

2π∫
0

R∫
0

f0u,z

∣∣∣∣
S2

rdrdφ = 0

because u,z|S2 = 0 and
|J2| ≤ ε|u,zz|22,Ω̄ + c(1/ε)| f0|22,Ω̄.

Using the above results in (161), assuming that ε is sufficiently small and performing
integration with respect to φ, we obtain

d
dt
|u,z|22,Ω + ν|∇u,z|22,Ω ≤ c|u|2∞,Ω|u,z|22,Ω + c| f0|22,Ω. (162)

Integrating (162) with respect to time gives

|u,z(t)|22,Ω + ν|∇u,z|22,Ωt ≤ c|u|2∞,Ωt |v,z|22,Ωt + |u,z(0)|22,Ω + c| f0|22,Ωt

≤ cD2
1D2

2 + |u,z(0)|22,Ω + c| f0|22,Ωt .
(163)

Using Lemmas 1 and 2, we have

|u,z(t)|22,Ω + ν|∇u,z|22,Ωt ≤ cD2
1D2

2

+ c| f0|22,Ωt + |u,z(0)|22,Ω.
(164)

The above inequality implies (159).
Differentiating (158) with respect to r gives

u,rt + v · ∇u,r + v,r · ∇u − ν(∆u),r +
2ν

r
u,rr −

2ν

r2 u,r = f0,r. (165)

Multiplying (165) by u,r and integrating over Ω yields

1
2

d
dt
|u,r|22,Ω +

∫
Ω

v,r · ∇uu,rdx +
∫
Ω

v · ∇u,ru,rdx − ν
∫
Ω

(∆u),ru,rdx

+ 2ν
∫
Ω

1
r

u,rru,rdx − 2ν
∫
Ω

u2
,r

r2 dx =
∫
Ω

f0,ru,rdx.
(166)
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Now, we examine the particular terms in (166). The second term equals∫
Ω

v,r · ∇uu,rrdrdz =
∫
Ω

(vr,r∂ru + vz,r∂zu)u,rrdrdz

=
∫
Ω

(rvr,ru,r + rvz,ru,z)u,rdrdz =
∫
Ω

(rvr,ru,ru,r + rvz,ru,ru,z)drdz

=
∫
Ω

(rvr,ru,ru),rdrdz +
∫
Ω

(rvz,ru,ru),zdrdz

−
∫
Ω

[(rvr,ru,r),r + (rvz,ru,r),z]udrdz ≡ J1 + J2

−
∫
Ω

[(rvr,ru,r),r + (rvz,ru,r),z]udrdz ≡ J1 + J2 + I,

where we used that

J1 =

a∫
−a

rvr,ru,ru
∣∣∣∣r=R

r=0
dz = 0

because u|S1 = 0 and

J2 =

R∫
0

rvz,ru,ru
∣∣∣∣z=a

z=−a
dr = 0

because vz,r|S2 = 0 (see [13]). Continuing, we write I in the form

I = −
∫
Ω

[(rvr,r),r + (rvz,r),z]u,rudrdz

−
∫
Ω

[rvr,ru,rr + rvz,ru,rz]udrdz ≡ I1 + I2.

To estimate I1, we calculate

I1
1 = (rvr,r),r + (rvz,r),z = rvr,rr + vr,r + rvz,rz.

Since v = vr ēr + vz ēz is divergence-free, we have

vr,r + vz,z +
vr

r
= 0. (167)

Since Equation (167) is satisfied identically in Ω, we can differentiate (167) with respect to r.
Then, we obtain

vr,rr + vz,zr +
vr,r

r
− vr

r2 = 0.

Hence
I1
1 =

vr

r
.

Then, I1 equals

I1 = −
∫
Ω

vr

r
u,rudrdz.

Therefore, ∣∣∣∣ t∫
0

I1dt′
∣∣∣∣ ≤ ∣∣∣∣vr

r

∣∣∣∣
2,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

|u|∞,Ωt . (168)
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Next,
|I2| ≤ ε(|u,rr|22,Ω + |u,rz|22,Ω) + c(1/ε)|u|2∞,Ω(|vr,r|22,Ω + |vz,r|22,Ω).

The third integral in (166) equals

J = −ν
∫
Ω

(∆u),ru,rdx = −ν
∫
Ω

(
u,rrr +

(
1
r

u,r

)
,r
+ u,rzz

)
u,rrdrdz

= −ν
∫
Ω

[(
u,rr +

1
r

u,r

)
u,rr

]
,r

drdz + ν
∫
Ω

u,rr(u,rr),rdrdz

+ ν
∫
Ω

1
r

u,r(u,rr),rdrdz +
∫
Ω

u2
,rzdx = −ν

a∫
−a

(
u,rr +

1
r

u,r

)
u,rr

∣∣∣∣r=R

r=0
dz

+ ν
∫
Ω

(u2
,rr + u2

,rz)dx + ν
∫
Ω

u2
,r

r2 dx + 2ν
∫
Ω

u,rru,rdrdz,

where the last term equals

ν
∫
Ω

(u2
,r),rdrdz = ν

a∫
−a

u2
,r

∣∣∣∣r=R

r=0
dz = ν

a∫
−a

u2
,r

∣∣∣∣
r=R

dz (169)

because u,r|r=0 = (vφ + vφ,rr)|r=0 = 0.
To examine the boundary term in J, we recall the expansion of vφ near the axis of

symmetry (see [13])
vφ = a1(z, t)r + a2(z, t)r3 + · · · ,

so
u = a1(z, t)r2 + a2(z, t)r4 + · · ·

Then,
(
u,rr +

1
r u,r

)
u,rr|r=0 = 0, and we have to emphasize that all calculations in this paper

are performed for sufficiently regular solutions.
Therefore, the boundary term in J equals

J1 = −ν

a∫
−a

(
u,rr +

1
r

u,r

)
u,rr

∣∣∣∣
r=R

dz.

Projecting (158)1 on S1 yields

−ν

(
u,rr +

1
r

u,r

)
+ 2ν

u,r

r
= f0 on S1.

Hence,

u,rr|S1 =

(
u,r

r
− 1

ν
f0

)∣∣∣∣
S1

.

Using the expression in J1 gives

J1 = −2ν

a∫
−a

u2
,r

∣∣∣∣
r=R

dz +
a∫

−a

f0u,rr
∣∣∣∣
r=R

dz.

The fourth term in (166) equals (169).
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Using the above estimates and expressions in (166) yields

1
2

d
dt
|u,r|22,Ω + ν

∫
Ω

(u2
,rr + u2

,rz)dx + ν
∫
Ω

u2
,r

r2 dx

− 2ν
∫
Ω

u2
,r

r2 dx ≤
∫
Ω

∣∣∣∣vr

r
u,ru

∣∣∣∣drdz

+ ε(|u,rr|22,Ω + |u,rz|22,Ω) + c(1/ε)|u|2∞,Ω(|vr,r|22,Ω + |vz,r|22,Ω)

+ c(1/ε)| f0|22,Ω +

∣∣∣∣ a∫
−a

f0u,rr
∣∣∣∣
r=R

dz.

(170)

Integrating (170) with respect to time and assuming that ε is sufficiently small, we obtain

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ ν

∣∣∣∣u,r

r

∣∣∣∣2
2,Ωt

+ c
∣∣∣∣vr

r

∣∣∣∣
2,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

|u|∞,Ωt + c|u|2∞,Ωt(|vr,r|22,Ωt + |vz,r|22,Ωt)

+ c| f0|22,Ωt + |u,r(0)|22,Ω + ν

t∫
0

a∫
−a

u2
,r

∣∣∣∣
r=R

dxdt′

+

∣∣∣∣ t∫
0

a∫
−a

f0u,rr
∣∣∣∣
r=R

dxdt′
∣∣∣∣.

(171)

Using ∫
Ωt

∣∣∣∣u,r

r

∣∣∣∣2dxdt′ ≤
∫

Ωt

(
|vφ,r|2 +

v2
φ

r2

)
dxdt′ ≤ cD2

1

and
t∫

0

a∫
−a

u2
,r

∣∣∣∣
r=R

dxdt′ ≤ ε|∇u,r|22,Ωt + c(1/ε)|u,r|22,Ωt ,

∣∣∣∣ t∫
0

a∫
−a

f0u,r

∣∣∣∣
r=R

dxdt′ ≤ ε1|u,r|24,2,St
1
+ c(1/ε1)| f0|24/3,2,St

1

≤ ε1(|u,rr|22,Ωt + |u,rz|22,Ωt) + c(1/ε1)| f0|24/3,2,St
1

and Lemmas 1 and 2 we have

|u,r(t)|22,Ω + ν(|u,rr|22,Ωt + |u,rz|22,Ωt) ≤ c(D2
1 + D2

1D2 + D2
1D2

2)

+ c| f0|22,Ωt + c| f0|24/3,2,St
1
+ |u,r(0)|22,Ω.

(172)

This inequality implies (160) and concludes the proof.

7. Estimates for ωr , ωz

Inequality (173) is the most important inequality in this paper. To prove it, we need
results from Sections 4 and 6 and from Lemma 2. By the energy method, we derive (174),
where the first term on the r.h.s., denoted by J, is nonlinear. The aim of the proof of
Lemma 16 is to show that

(∗) J ≤ c|u|∞,Ωt(D1 + ∥u∥L2(0,t;H2(Ω)))∥Γ∥L2(0,t;H1(Ω)) ≡ J1
1 .
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Using (46), (52), (160), and (161), we obtain

(∗∗) J1
1 ≤ ϕ(data)∥Γ∥L2(0,t;H1(Ω))

so it is linear with respect to the norm of Γ.
To show (∗), we replace ωr, ωz in J by derivatives of u described by (13) and express

components of velocity vr, vz by derivatives of ψ using (15). Performing appropriate
integration by parts in J, we are able to extract the norm |u|∞,Ωt .

Then, J becomes bilinear. Then, estimates (46), (159), and (160) imply (∗) by the Hölder
inequality.

Lemma 16. Assume that D5 = D2(D1 + D3 + D4), D6 = D1−ε0
2 D3, where D1, D2 are intro-

duced in (46) and (52) and D3, D4 are introduced in (159) (160), respectively. Let

D7 = |Fr|26/5,2,Ωt + |Fz|26/5,2,Ωt + |ωr(0)|22,Ω + |ωz(0)|22,Ω

+ | fφ|2,St
1
(D3 + D4) < ∞.

Let ε0 be an arbitrary small positive number, and let vφ ∈ L∞(Ωt).
Let Γ ∈ L2(0, t; H1(Ω)).
Then,

∥ωr∥2
V(Ωt) + ∥ωz∥2

V(Ωt) + |Φ|22,Ωt ≤ cD5|Γ,z|2,Ωt

+ cD6|vφ|ε0
∞,Ωt∥Γ∥1,2,Ωt + cD7.

(173)

Proof. Multiplying (9)1 by ωr, (9)3 by ωz, integrating over Ωt, and adding yield

1
2
(|ωr(t)|22,Ω + |ωz(t)|22,Ω) + ν(|∇ωr|22,Ωt + |∇ωz|22,Ωt)

+ ν

∣∣∣∣ωr

r

∣∣∣∣2
2,Ωt

− ν
∫
St

n̄ · ∇ωrωrdS1dt′ − ν
∫
St

n̄ · ∇ωzωzdS1dt′

=
∫

Ωt

[vr,rω2
r + vz,zω2

z + (vr,z + vz,r)ωrωz]dxdt′

+
∫

Ωt

(Frωr + Fzωz)dxdt′ +
1
2
(|ωr(0)|22,Ω + |ωz(0)|22,Ω)

≡ J +
∫

Ωt

(Frωr + Fzωz)dxdt′ +
1
2
(|ωr(0)|22,Ω + |ωz(0)|22,Ω).

(174)

Now, we examine the boundary terms from the l.h.s.
Since ωr = −vφ,z and vφ|r=R = 0, we obtain

−
∫
S1

n̄ · ∇ωrωrdS1 = 0

and
−

∫
S2

n̄ · ∇ωrωrdS2 = 0

because vφ,z|S2 = 0.
Using ωz = vφ,r +

vφ

r , we derive

−ν
∫
St

1

n̄ · ∇ωzωzdS1dt′ = −ν

t∫
0

a∫
−a

∂r

(
vφ,r +

vφ

r

)(
vφ,r +

vφ

r

)∣∣∣∣
r=R

Rdzdt′ ≡ I1.
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Since vφ|r=R = 0 I1 takes the form

I1 = −ν

t∫
0

a∫
−a

(
vφ,rr +

vφ,r

r

)
vφ,r

∣∣∣∣
r=R

Rdzdt′.

Projecting (7)2 on S1 yields

−ν

(
vφ,rr +

1
r

vφ,r

)
= fφ on S1.

Hence,

I1 = R
t∫

0

a∫
−a

fφvφ,r

∣∣∣∣
r=R

dzdt′ =
t∫

0

a∫
−a

fφ

(
u,r −

1
R

u
)∣∣∣∣

r=R
dzdt′

=

t∫
0

a∫
−a

fφu,r

∣∣∣∣
r=R

dxdt′.

(175)

Finally,

−ν
∫
St

2

n̄ · ∇ωzωzdS2dt′ = −ν
∫
St

2

1
r

u,zr
1
r

u,rdS2dt′ = 0

because vφ,z|S2 = 0.
Using (13) and (21) in J implies

J =
∫

Ωt

[
− 1

r2 u2
,z(ψ1,z + rψ1,rz) +

(
1
r

u,r

)2

(rψ1,zr + 2ψ1,z)

− 1
r2 u,ru,z(−rψ1,zz + 3ψ1,r + rψ1,rr)

]
dxdt′ ≡ J1 + J2 + J3.

We integrate by parts in J1 and use the boundary conditions on S2. Then, we have

J1 = −
∫

Ωt

[
u

u,z

r2 (ψ1,z + rψ1,rz)

]
,z

rdrdzdt′ +
∫

Ωt

1
r2 uu,zz(ψ1,z + rψ1,rz)dxdt′

+
∫

Ωt

1
r2 uu,z(ψ1,zz + rψ1,rzz)dxdt′.

Since u,z|S2 = 0 the boundary term vanishes.
Now, we estimate the particular terms in J1,

J11 =

∣∣∣∣ ∫
Ωt

uu,zz
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,zz|2,Ωt

∣∣∣∣1
r

ψ1,rz

∣∣∣∣
2,Ωt

,

J12 =

∣∣∣∣ ∫
Ωt

u
u,z

r
ψ1,rzzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

|ψ1,rzz|2,Ωt ,

J13 =

∣∣∣∣ ∫
Ωt

u
u,z

r
ψ1,zz

r
dxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

,

J14 =

∣∣∣∣ ∫
Ωt

1
r2 uu,zzψ1,zdxdt′

∣∣∣∣ = ∣∣∣∣ ∫
Ωt

uu,zz
ψ1,z

r2 dxdt′
∣∣∣∣

≤ |u|∞,Ωt |u,zz|2,Ωt

∣∣∣∣ψ1,z

r2

∣∣∣∣
2,Ωt

.



Mathematics 2024, 12, 263 39 of 50

Next, we consider J2,

J2 =
∫

Ωt

1
r2 u2

,r(rψ1,zr + 2ψ1,z)rdrdzdt′ =
∫

Ωt

1
r

u2
,r(rψ1,zr + 2ψ1,z)drdzdt′

=

t∫
0

a∫
−a

[
1
r

uu,r(rψ1,zr + 2ψ1,z)

]∣∣∣∣r=R

r=0
dzdt′

−
∫

Ωt

uu,rr

(
1
r

ψ1,zr +
2
r2 ψ1,z

)
dxdt′

−
∫

Ωt

uu,r

(
ψ1,zrr −

2
r2 ψ1,z +

2
r

ψ1,zr

)
drdzdt′,

where the boundary term for r = R vanishes because u|r=R = 0. To examine the boundary
term at r = 0, we recall from [13] the expressions near the axis of symmetry

u = a1(z, t)r2 + a2(z, t)r4 + · · · ,

so
u,r = 2a1(z, t)r + 4a2(z, t)r3 + · · ·

Then,
1
r

uu,r(rψ1,zr + 2ψ1,z) ∼ cr2(rψ1,zr + 2ψ1,z).

The above expression vanishes for r = 0 because ψ1,z is bounded near the axis of symmetry.
Now, we estimate the particular terms in J2,

J21 =

∣∣∣∣ ∫
Ωt

uu,rr
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,rr|2,Ωt

∣∣∣∣1
r

ψ1,zr

∣∣∣∣
2,Ωt

,

J22 =

∣∣∣∣ ∫
Ωt

uu,rr
1
r2 ψ1,zdxdt′

∣∣∣∣ ≤ |u|∞,Ωt |u,rr|2,Ωt

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

,

J23 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,zrrdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

|ψ1,zrr|2,Ωt ,

J24 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r2 ψ1,zdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

,

J25 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r

ψ1,zrdxdt′
∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣1
r

ψ1,zr

∣∣∣∣
2,Ωt

.

Finally, we examine J3. Integrating by parts with respect to z, we have

J3 = −
∫

Ωt

[
1
r2 u,r(−rψ1,zz + 3ψ1,r + rψ1,rr)u

]
,z

dxdt′

+
∫

Ωt

u
1
r2 u,rz(−rψ1,zz + 3ψ1,r + rψ1,rr)dxdt′

+
∫

Ωt

u
1
r2 u,r(−rψ1,zzz + 3ψ1,rz + rψ1,rrz)dxdt′,

where the boundary term vanishes because

ψ1,r|S2 = 0, ψ1,rr|S2 = 0 and ψ1,zz|S2 = −ω1|S2 = 0.
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Now, we estimate the particular terms in J3,

J31 =

∣∣∣∣ ∫
Ωt

uu,rz
1
r

ψ1,zzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt |u,rz|2,Ωt

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

,

J32 =

∣∣∣∣ ∫
Ωt

u
1
r2 u,rzψ1,rdxdt′

∣∣∣∣ = ∣∣∣∣ ∫
Ωt

u
rε0

u,rz
ψ1,r

r2−ε0
dxdt′

∣∣∣∣
≤ |u|1−ε0

∞,Ωt |vφ|ε0
∞,Ωt |u,rz|2,Ωt

∣∣∣∣ψ1,r

r2

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

,

where ε0 > 0 can be chosen to be as small as we want. Thus,

J33 =

∣∣∣∣ ∫
Ωt

u
rε0

u,rz
1

r1−ε0
ψ1,rrdxdt′

∣∣∣∣ ≤ |u|1−ε0
∞,Ωt |vφ|ε0

∞,Ωt |u,rz|2,Ωt

∣∣∣∣ ψ1,rr

r1−ε0

∣∣∣∣
2,Ωt

,

J34 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,zzzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

|ψ1,zzz|2,Ωt ,

J35 =

∣∣∣∣ ∫
Ωt

u
u,r

r
1
r

ψ1,rzdxdt′
∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ωt

,

J36 =

∣∣∣∣ ∫
Ωt

u
u,r

r
ψ1,rrzdxdt′

∣∣∣∣ ≤ |u|∞,Ωt

∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

|ψ1,rrz|2,Ωt .

Summarizing the above estimates, we obtain

|J| ≤ c|u|∞,Ωt

[
(|u,zz|2,Ωt + |u,zr|2,Ωt + |u,rr|2,Ωt)·

·
(∣∣∣∣1

r
ψ1,rz

∣∣∣∣
2,Ωt

+

∣∣∣∣1
r

ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)
+

(∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

+

∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

)(
|ψ1,rzz|2,Ωt + |ψ1,zrr|2,Ωt

+ |ψ1,zzz|2,Ωt +

∣∣∣∣1
r

ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣1
r

ψ1,zr

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)]
+ c|u|1−ε0

∞,Ωt |vφ|ε0
∞,Ωt |u,rz|2,Ωt

(∣∣∣∣ψ1,rr

r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ψ1,r

r2

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

)
.

Using (52), (159), (160), and the estimates from (46)∣∣∣∣u,r

r

∣∣∣∣
2,Ωt

≤
∣∣∣∣vφ

r

∣∣∣∣
2,Ωt

+ |vφ,r|2,Ωt ≤ cD1,∣∣∣∣u,z

r

∣∣∣∣
2,Ωt

≤ |vφ,z|2,Ωt ≤ cD1

we obtain the following estimate for J,

|J| ≤ c[D2(D3 + D4) + D1D2]

(
|ψ1,rrz|2,Ωt + |ψ1,rzz|2,Ωt

+ |ψ1,zzz|2,Ωt +

∣∣∣∣1
r

ψ1,rz

∣∣∣∣
2,Ωt

+

∣∣∣∣1
r

ψ1,zz

∣∣∣∣
2,Ωt

+

∣∣∣∣ 1
r2 ψ1,z

∣∣∣∣
2,Ωt

)
+ cD1−ε0

2 D3|vφ|ε0
∞,Ωt

(∣∣∣∣1
r

ψ1,rr

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ 1
r2 ψ1,r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

)
≡ J′.
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From (64), we have (recall that ω1 = Γ)

|ψ1,rrz|2,Ωt + |ψ1,rzz|2,Ωt + |ψ1,zzz|2,Ωt ≤ c|Γ,z|2,Ωt . (176)

Estimates (82) and (85) imply∣∣∣∣ψ1,rz

r

∣∣∣∣
2,Ωt

+

∣∣∣∣ψ1,zz

r

∣∣∣∣
2,Ωt

+

∣∣∣∣ψ1,z

r2

∣∣∣∣
2,Ωt

≤ c|Γ,z|2,Ωt . (177)

Finally, (93) yields∣∣∣∣1
r

ψ1,rr

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

+

∣∣∣∣ 1
r2 ψ1,r

∣∣∣∣
L2(0,t;L2,ε0 (Ω))

≤ cRε0∥Γ∥1,2,Ωt . (178)

Recall that (177) is valid for ψ1|r=0 = 0.
This restriction implies that vz|r=0 = 0, so it is a strong restriction on the solutions

proved in this paper.
Using (176)–(178) in J′ yields

J′ ≤ cD2(D1 + D3 + D4)|Γ,z|2,Ωt + cD1−ε0
2 D3|vφ|ε0

∞,Ωt∥Γ∥1,2,Ωt .

In view of Lemma 15, the term I1 introduced in (175) is bounded by

I1 ≤ c| fφ|2,St
1
∥u∥2,2,Ωt ≤ c| fφ|2,St

1
(D3 + D4).

Using the estimates in (174), we obtain

∥ωr∥2
V(Ωt) + ∥ωz∥2

V(Ωt) + |Φ|22,Ωt

≤ cD2(D1 + D3 + D4)|Γ,z|2,Ωt + cD1−ε0
2 D3|vφ|ε0

∞,Ωt∥Γ∥1,2,Ωt

+ c(|Fr|26/5,2,Ωt + |Fz|26/5,2,Ωt) + c(|ωr(0)|22,Ω

+ |ωz(0)|22,Ω) + c| fφ|2,St
1
(D3 + D4),

(179)

where we used ∣∣∣∣ ∫
Ω

(Frωr + Fzωz)dxdt′
∣∣∣∣ ≤ ε(|ωr|26,Ω + |ωz|26,Ω)

+ c(1/ε)(|Fr|26/5,Ω + |Fz|26/5,Ω).

Hence, (179) implies (173) and concludes the proof.

8. Estimates for the Stream Function in Weighted Sobolev Spaces

Recall that the stream function ψ1 is a solution to problem (22). To increase the
regularity of the weak solutions to (22), we need appropriate estimates for ψ1 assuming the
sufficient regularity of vorticity w1.

Remark 7. In Lemma 4, the existence of weak solutions to problem (22) satisfying estimate (56) is
proved. Inequality (62) implies that the weak solution belongs to H2(Ω) and the estimate holds

∥ψ1∥2,Ω ≤ c|w1|2,Ω. (180)

Assuming that w1,z ∈ L2(Ω) estimates (63) and (64) increase the regularity of ψ1 such that
ψ1,z ∈ H2(Ω) and the estimate holds

∥ψ1,z∥H2(Ω) ≤ c(|w1,z|2,Ω + |w1|2,Ω). (181)
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Estimate (181) is derived by the technique of the energy method. The method is not sufficiently
strong to derive an estimate for |ψ1,rrr|2,Ω.

Moreover, estimate (181) is not sufficient to prove estimate (24) of Theorem 1. To prove
Theorem 1, we need estimated (85) and (93). To prove the estimates, we need the theory of
weighted Sobolev spaces developed by Kondratiev [12] that are used to examine elliptic
boundary value problems in domains with cones.

Unfortunately, estimates (85) and (93) hold for such weak solutions that ψ1 vanishes
on the axis of symmetry. This implies that the vz coordinate of velocity must also vanish on
the axis of symmetry. Therefore, Theorem 1 holds for a smaller class than the class of weak
solutions. This means that the regularity problem for axially symmetric solutions to the
Navier–Stokes equations is solved only partially.

Now, we show the existence of solutions to problem (22) in weighted Sobolev spaces.

Lemma 17. Assume that ψ1 is a solution to (61). Assume that ω1,z, ω1 ∈ L2(Ω).
Then, ∫

Ω

(
ψ2

1,zrr +
1
r2 ψ2

1,zr +
1
r4 ψ2

1,z

)
dx +

∫
Ω

ψ2
1,zzzdx

≤ c
∫
Ω

(|ω1,z|2 + |ω1|2)dx.
(182)

Proof. To prove the lemma, we need weighted Sobolev spaces defined by Fourier transform
(58) and introduced in (59) and (60). Therefore, to examine problem (22) in weighted
Sobolev spaces we have to derive estimates with respect to r and z, separately. To derive an
estimate with respect to r, we have to examine solutions to (22) independently as well in a
neighborhood of the axis of symmetry as in a neighborhood located in a positive distance
from it. To perform such considerations, we treat z as a parameter and we introduce a
partition of unity {ζ(1)(r), ζ(2)(r)} such that

2

∑
i=1

ζ(i)(r) = 1

and

ζ(1)(r) =

{
1 for r ≤ r0

0 for r ≥ 2r0
, ζ2)(r) =

{
0 for r ≤ r0

1 for r ≥ 2r0,

where 0 < r0 is fixed in such a way that 2r0 < R.
Let ψ

(i)
1 = ψ1ζ(i), ω

(i)
1 = ω1ζ(i) and ζ̇(i) = d

dr ζ(i), ζ̈(i) = d2

dr2 ζ(i), i = 1, 2. Moreover,
functions ζ(1), ζ(2) are smooth.

Then, we obtain from (22) the following two problems:
−∆ψ

(1)
1 − 2

r
ψ
(1)
1,r = ω

(1)
1 − 2ψ1,r ζ̇(1)

− ψ1ζ̈(1) − 2
r

ψ1ζ̇(1) in Ω(1),

ψ
(1)
1 = 0 on S(1)

2 ,

(183)

where
Ω(1) = {(r, z) : r > 0, z ∈ (−a, a)},

S(1)
2 = {(r, z) : r > 0, z ∈ {−a, a}}
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and 

−∆ψ
(2)
1 − 2

r
ψ
(2)
1,r = ω

(2)
1 − 2ψ1,r ζ̇(2)

− ψ1ζ̈(2) − 2
r

ψ1ζ̇(2) in Ω(2),

ψ
(2)
1 = 0 on S1,

ψ
(2)
1 = 0 on S(2)

2 ,

(184)

where
Ω(2) = {(r, z) : r0 < r < R, z ∈ (−a, a)},

S(2)
2 = {(r, z) : r0 < r < R, z ∈ {−a, a}}.

We temporarily simplify the notation using

u = ψ
(1)
1 , w = ψ

(2)
1 ,

f = ω
(1)
1 − 2ψ1,r ζ̇(1) − ψ1ζ̈(1) − 2

r
ψ1ζ̇(1),

b = ω
(2)
1 − 2ψ1,r ζ̇(2) − ψ1ζ̈(2) − 2

r
ψ1ζ̇(2).

(185)

Then, (183) and (184) become

−∆u − 2
r

u,r = f in Ω(1),

u = 0 on S(1)
2

(186)

and
−∆w − 2

r
w,r = b in Ω(2),

w = 0 on S1,

w = 0 on S(2)
2 .

(187)

First, we consider problem (186). We rewrite it in the form

−u,rr −
3
r

u,r = f + u,zz in Ω(1),

u = 0 on S1
2.

(188)

For a fixed z ∈ (−a, a) and given r.h.s. of (188), we obtain the ordinary differential equation

−u,rr −
3
r

u,r = f + u,zz in R+. (189)

Properties of solutions to (189) depend on the behavior of u at r = 0.
Multiplying (189) by r2 yields

−r2u,rr − 3ru,r = r2( f + u,zz) ≡ g(r, z) (190)

or equivalently
−r∂r(r∂ru)− 2r∂ru = g(r, z). (191)

Introduce the new variable
τ = − ln r, r = e−τ . (192)

Since r∂r = −∂τ , we see that (191) takes the form

−∂2
τu + 2∂τu = g(e−τ , z) = g′(τ, z). (193)
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Utilizing the Fourier transform (58) to (193), we obtain

λ2û + 2iλû = ĝ′.

For λ ̸∈ {0,−2i}, we have

û =
1

λ(λ + 2i)
ĝ′ ≡ R(λ)ĝ′. (194)

Introduce the quantity
h(k, µ) = 1 + k − µ. (195)

Consider the case k = 0, µ = 0. Then, h(0, 0) = 1. Theorem 1.1 from Section 1 in [12] (see
also Lemma 3.1 from [15]) yields.

Let f + u,zz ∈ L2(R+), and R(λ) does not have poles on the line Im λ = 1.
Then, we have

+∞+ih(0,0)∫
−∞+ih(0,0)

2

∑
j=0

|λ|2(2−j)|û|2dλ ≤ c

+∞+ih(0,0)∫
−∞+ih(0,0)

|ĝ′|2dλ. (196)

Using (60) and that h(0, 0) = 1, we obtain

∫
R

2

∑
j=0

|∂j
τu|2e2τdτ ≤ c

∫
R

|g′|2e2τdτ.

Passing to variables r and using the definition of g in (190) yields

∫
R+

(
|u,rr|2 +

1
r2 |u,r|2 +

1
r4 |u|

2
)

rdr ≤ c
∫
R+

| f + u,zz|2rdr. (197)

Using notation (185) and the estimate for the weak solutions, we obtain from (197)
the inequality ∫

R+∩supp ζ(1)

|ψ(1)
1,rr|

2 +
1
r2 |ψ

(1)
1,r |

2 +
1
r4 |ψ

(1)
1 |2rdr

≤ c
∫

R+∩supp ζ(1)

|ω1|2rdr + c
∫

R+∩supp ζ(1)

(|ψ1,r|2 + |ψ1|2)rdr

+ c
∫

R+∩supp ζ(1)

|ψ1,zz|2rdr.

(198)

For solutions to (187), we have the estimate

∥w∥H2((0,R)∩supp ζ(2)) ≤ c∥b∥L2((0,R)∩supp ζ(2))

+ c∥w,r∥L2((0,R)∩supp ζ(2)).
(199)

In view of notation (185), we obtain∫
(0,R)∩supp ζ(2)

(|ψ(2)
1,rr|

2 + |ψ(2)
1,r |

2 + |ψ(2)
1 |2)rdr

≤ c
∫

(0,R)supp ζ(2)

(|ω1|2 + |ψ1,zz|2 + |ψ1,r|2 + |ψ1|2)rdr.
(200)
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Adding (198) and (200) and integrating the result with respect to z and using (56) yields

∫
Ω

(
ψ2

1,rr +
1
r2 ψ2

1,r +
1
r4 ψ2

1

)
dx

≤ c
∫
Ω

(|ω1|2 + |ψ1,zz|2)dx.
(201)

Replacing ψ1 by ψ1,z and ω1 by ω1,z we obtain, from (201) and (63), estimate (182). This
ends the proof.

Lemma 18. Assume that ψ1 is a solution to (61). Assume that µ ∈ (0, 1), ω1 ∈ H1(Ω), and
Ω = (0, R)× (−a, a).
Then, ∫

Ω

(
ψ2

1,rrr +
1
r2 ψ2

1,rr +
1
r4 ψ2

1,r +
1
r6 ψ2

1

)
r2µdx + ∥ψ1∥2

H2(Ω)

+
∫
Ω

(ψ2
1,zrr + ψ2

1,zzr + ψ2
1,zzz)dx ≤ c

(
1 +

1
µ2

)
∥ω1∥2

H1(Ω).
(202)

Proof. Recall the partition of unity introduced in the proof of Lemma 17. Recall also the
local problems (183), (184), and notation (185). Then, we can examine problems (186) and
(187). First, we examine problem (186).

Applying the Mellin transform any solution to (189) reads in the form (194).
In this case, we introduce the quantity

h(1, µ) = 2 − µ. (203)

Since operator R(λ) does not have poles on the line Im λ = h(1, µ) we have (see Theorem 1.1
from Section 1 in [12]) (see also Lemma 3.1 from [15])

+∞+ih(1,µ)∫
−∞+ih(1,µ)

3

∑
j=0

|λ|2(3−j)|û|2dλ ≤ c

+∞+ih(1,µ)∫
−∞+ih(1,µ)

1

∑
j=0

|λ|2(1−j)|ĝ′|2dλ. (204)

Using (60) for h(1, µ) = 2 − µ, we obtain

∫
R

3

∑
j=0

|∂j
τu|2e2(3−j)τdτ ≤ c

∫
R

1

∑
j=0

|∂j
τ g′|2e2(1−j)τdτ. (205)

In view of equivalence (59), inequality (205) takes the form

∫
R+

(
|urrr|2 +

1
r2 |urr|2 +

1
r4 |ur|2 +

1
r6 |u|

2
)

r2µrdr

≤ c
∫
R+

|( f + uzz),r|2r2µrdr + c
∫
R+

| f + uzz|2r2µ−2rdr,
(206)

where z ∈ (−a, a) and µ ∈ (0, 1).
Integrating (206) with respect to z and exploiting notation (185) yields
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a∫
−a

dz
∫

R+∩supp ζ(1)

(
|ψ(1)

1,rrr|
2 +

1
r2 |ψ

(1)
1,rr|

2 +
1
r4 |ψ

(1)
1,r |

2 +
1
r6 |ψ

(1)
1 |2

)
r2µrdr

≤ c
a∫

−a

dz
∫

R+∩supp ζ(1)

(|∂r(ω1 + ψ1,zz)|2 + |ω1 + ψ1,zz|r−2)r2µrdr.

(207)

For solutions to problem (187) and notation (185), we obtain

a∫
−a

dz∥ψ
(2)
1 ∥2

H3
µ(R+∩supp ζ(2))

≤ c
a∫

−a

dz(∥ω1∥2
H1(R+∩supp ζ(2))

+ ∥ψ1,zz∥2
H1(R+∩supp ζ(2))

).

(208)

From (207), (208), and the Hardy inequality (see [18] (Ch. 1, Sect. 2.16))∫
R+

|ω1 + ψ1,zz|2r2µ−2rdr ≤ 1
µ2

∫
R+

|(ω1 + ψ1,zz),r|2r2µrdr (209)

we obtain ∫
Ω

(
ψ2

1,rrr +
1
r2 ψ2

1,rr +
1
r4 ψ2

1,r +
1
r6 ψ2

1

)
r2µdx

≤ c
(

1 +
1

µ2

)[
∥ω1∥2

H1(Ω) +
∫
Ω

(ψ2
1,zzr + ψ2

1,zzz)dx
]

.
(210)

Using estimates (56), (62), and (63) in (210) implies (202) and ends the proof.

Remark 8. Since µ > 0, the Hardy inequality (209) does not require that ω1 + ψ1,zz|r=0 = 0.

9. Conclusions

The main result of this paper is the proof of (24). Since Γ = ωφ/r, we obtain from (24)
the estimate

∥ωφ∥L∞(0,t;L2(Ω)) ≤ ϕ(data), (211)

where we used that r < R and R is finite. This means that (211) does not hold for the
Cauchy problem.

Using problem (14) and relations (15), we obtain

∥v′∥L∞(0,t;L6(Ω)) ≤ c∥ψ∥L∞(0,t;H2(Ω))

≤ c∥ωφ∥L∞(0,t;L2(Ω)) ≤ ϕ(data),
(212)

where v′ = (vr, vz).
Consider the Stokes problem implied by (6)

vt − ν∆v +∇p = −v′ · ∇v + f in ΩT ,

div v = 0 in ΩT ,

v · n̄|S = 0, ωφ|S = 0, vφ|S1 = 0, vφ,z|S2 = 0 on ST ,

v|t=0 = v(0) in Ω.

(213)

Using (212) and the energy estimate (46), we have

∥v′ · ∇v∥L2(0,t;L3/2(Ω)) ≤ ϕ(data). (214)
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Assuming more regularity on data that was needed in the proof of Theorem 1 and using [19]
(see also [20]), we obtain the following estimate for solutions to problem (213):

∥v∥W2,1
3/2,2(Ω

t)
≤ ϕ(data). (215)

By the imbedding and (215), we have

|∇v|5/2,Ωt ≤ c∥v∥W2,1
3/2,2(Ω

t)
≤ ϕ(data). (216)

The above inequality and (212) imply

|v′ · ∇v|L5/2(0,t;L30/17(Ω)) ≤ ϕ(data). (217)

Applying [19] (see also [20]), we obtain

∥v∥W2,1
30/17,5/2(Ω

t)
+ |∇p| 30

17 , 5
2 ,Ωt ≤ ϕ(data), (218)

where an additional regularity on data is imposed.
This means that (24) implies any regularity of solutions to problem (6) assuming the

appropriate regularity of data.
The existence of solutions can be proved by appropriately choosing a fixed-point

theorem.
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Appendix A. Existence of Regular Local Solutions to (1)

Recall the quantities

u1 =
vφ

r
, ω1 =

ωφ

r
, ψ1 =

ψ

r
, f1 =

fφ

r
, F1 =

Fφ

r
. (A1)

In view of the fact that [16] system (6) is equivalent to the following one:

u1,t + v · ∇u1 − ν

(
∆u1 +

2
r

u1,r

)
= 2u1ψ1,z + f1,

ω1,t + v · ∇ω1 − ν

(
∆ω1 +

2
r

ω1,r

)
= 2u1u1,z + F1,

−∆ψ1 −
2
r

ψ1,r = ω1,

u1|S1 = 0, u1,z|S2 = 0, ψ1|S = 0, ω1|S = 0,

u1|t=0 = u1(0),

ω1|t=0 = ω1(0).

(A2)

Multiplying (A2)1 by u1|u1|2, integrating over Ω, and using boundary conditions yields

d
dt
|u1|44,Ω + ν|u1|44,Ω ≤ c|ω1|22,Ω|u1|44,Ω + c| f1|44,Ω. (A3)

Multiply (A2)2 by ω1, integrate over Ω, and exploit the boundary conditions. Then, we have

d
dt
|ω1|22,Ω + ν|ω1|22,Ω ≤ c|u1|44,Ω + c|F1|22,Ω. (A4)
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Introduce the quantity
X̄(t) = |u1(t)|44,Ω + |ω1(t)|22,Ω. (A5)

Then, (A3) and (A4) imply
d
dt

X̄ + νX̄ ≤ c0X̄2 + G, (A6)

where
G(t) = c(| f1(t)|44,Ω + |F1(t)|22,Ω). (A7)

Lemma A1. Assume that f1 ∈ L4(Ωt), F1 ∈ L2(Ωt), u1(0) ∈ L4(Ω), ω1 ∈ L2(Ω), and t ≤ T.
Let H(t) = | f1|44,Ωt + |F1|22,Ωt + |u1(0)|44,Ω + |ω1(0)|22,Ω. Assume that T is so small that

T <
1

4cc0H(T)
,

where c appears in (A3), (A4), and c0 in (A6).
Then, for t ≤ T a local solution to the problem (A2) exists such that u1 ∈ L∞(0, t; L4(Ω)),

ω1 ∈ L∞(0, t; L4(Ω)), t ≤ T, and

sup
t
(|u1(t)|44,Ω + |ω1(t)|22,Ω) ≤ 2cH ≡ ϕ1. (A8)

Proof. Integrating (A6) with respect to time and introducing the quantity

X(t) = sup
t′≤t

X̄(t′) (A9)

we obtain

X(t) + ν

t∫
0

X̄(t′)dt′ ≤ c0t2X2(t) + cH(t). (A10)

Dropping the second term on the l.h.s. yields

X(t) ≤ c0t2X2(t) + cH(t). (A11)

Let X′ be such that
X′ = c0t2(X′)2 + cH(t) (A12)

and X ≤ X′. To show the existence of solutions to (A12), we use the following method of
successive approximations:

X′
n+1 = c0t2X′2

n + cH

Assume that X′
n ≤ 2cH and t is so small that 4cc0t2H ≤ 1. Assuming that X′

0 = 0, we obtain

X′
n ≤ 2cH for all n ∈ N. (A13)

To show convergence, we introduce the differences Y′
n = X′

n − X′
n−1, which are solutions to

the problem
Y′

n+1 ≤ c0t(X′
n + X′

n−1)Y
′
n. (A14)

Assuming that t is so small that 4cc0tH < 1, we have the convergence of the sequence {X′
n}.

Hence, a solution to problem (A2) exists such that u1 ∈ L∞(0, t; L4(Ω)), ω1 ∈ L∞
(0, t; L2(Ω)) and (A8) holds. This ends the proof.
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Lemma A2. Let the assumptions of Lemma A1 hold. Let f ∈ W1,1/2
2 (Ωt), v(0) ∈ W2

2 (Ω).
Then, there exists a solution to problem (6) such that v ∈ W3,3/2

2 (Ωt), ∇p ∈ W1,1/2
2 (Ωt) and the

estimate holds

∥v∥W3,3/2
2 (Ωt)

+ ∥∇p∥W1,1/2
2 (Ωt)

≤ c(∥ f ∥W1,1/2
2 (Ωt)

+ ∥v(0)∥W2
2 (Ω) + ϕ(∥ f ∥W1,1/2

2 (Ωt)
, ∥v(0)∥W2

2 (Ω), H(t)),
(A15)

where t ≤ T, and where ϕ is an increasing positive function.

Proof. From (A8), we have

|v′|6,∞,Ωt ≤ c∥ψ1∥2,∞,Ωt ≤ c|ω1|2,∞,Ωt ≤ ϕ1, (A16)

where v′ = (vr, vz). From (46), we have

|∇v|2,Ωt ≤ D1. (A17)

Estimates (A16) and (A17) imply

|v′ · ∇v| 3
2 ,2,Ωt ≤ ϕ1D1. (A18)

Now, we consider the Stokes problem

v,t − ν∆v +∇p = −v′ · ∇v + f ,

div v = 0,

v · n̄|S = 0, (vr,z − vz,r)|S = 0,

vφ|S1 = 0, vφ,z|S2 = 0,

v|t=0 = v(0).

(A19)

Applying the theory of Sobolev spaces with mixed norm developed in [19], we have the
existence of solutions to (A19) and the estimate

∥v∥W2,1
3
2 ,2

(Ωt)
+ |∇p| 3

2 ,2,Ωt ≤ c(| f | 3
2 ,2,Ωt

+ ∥v(0)∥B1
3
2 ,2

(Ω) + ϕ1D1) ≡ D2.
(A20)

In view of the imbedding
|∇v| 5

2 ,Ωt ≤ c∥v∥W2,1
3
2 ,2

(Ωt)

we obtain
|v′ · ∇v| 30

17 , 5
2 ,Ωt ≤ ϕ1D2.

Since
L 5

2
(0, t; L 30

17
(Ω)) ⊂ L2(0, t; L 3

2
(Ω))

we have an increase in the regularity of solutions to (A19). Continuing the considerations,
we obtain (A15). This ends the proof.
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