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Abstract: This paper investigates the properties of the change in persistence detection for observations
with infinite variance. The innovations are assumed to be in the domain of attraction of a stable law
with index κ ∈ (0, 2]. We provide a new test statistic and show that its asymptotic distribution under
the null hypothesis of non-stationary I(1) series is a functional of a stable process. When the change
point in persistence is not known, the consistency is always given under the alternative, either from
stationary I(0) to non-stationary I(1) or vice versa. The proposed tests can be used to identify the
direction of change and do not over-reject against constant I(0) series, even in relatively small samples.
Furthermore, we also consider the change point estimator which is consistent and the asymptotic
behavior of the test statistic in the case of near-integrated time series. A block bootstrap method is
suggested to determine critical values because the null asymptotic distribution contains the unknown
tail index, which results in critical values depending on it. The simulation study demonstrates that the
block bootstrap-based test is robust against change in persistence for heavy-tailed series with infinite
variance. Finally, we apply our methods to the two series of the US inflation rate and USD/CNY
exchange rate, and find significant evidence for persistence changes, respectively, from I(0) to I(1)
and from I(1) to I(0).

Keywords: persistence change; infinite variance; near-integrated time series; change point estimator;
block bootstrap

MSC: 62F03; 62F05

1. Introduction

There is growing evidence to show that the parameters of autoregressive models
fitted to many economic, financial and hydrology time series are not fixed across time; see,
Busetti [1], Chen [2] and Belaire [3]. Being able to correctly characterize a time series into its
separate stationary I(0) and non-stationary I(1) components has important implications
for effective model building and accurate forecasting in economics and finance, especially
concerning government budget deficits and inflation rates (e.g., Sibbertsen [4]). A number
of testing procedures were proposed depending on whether the initial regime is I(1)
or I(0). Kim [5] proposed regression-based ratio tests of the constant I(0) null against
the alternative of a single change in persistence, either from I(0) to I(1) or vice versa.
Leybourne [6] discussed testing for the null hypothesis that the series is I(1) throughout
the sample versus the alternative that it switches from I(1) to I(0) and vice versa. When
the direction of change is unknown, Leybourne [7] considered standardized cumulative
sums of squared subsample residuals that are used to identify the direction of change and
do not spuriously reject when the series is a constant I(0) process. Since then, there have
been further studies on the persistence change. For example, Cerqueti [8] presented panel
stationary tests against changes in persistence, and Kejriwal [9] provided a bootstrap test
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for multiple persistence changes in a heteroskedastic time series. For more research on
persistence change, we refer to Jin [10], Jin [11], Wingert [12], and Grote [13].

The above tests are designed to detect a change in persistence with finite variance and
do not consider heavy-tailed series with infinite variance. However, Mittnik [14] argued
that many types of data on economics and finance have a heavy tail character. It is of
greater practical significance to test for the change point with heavy-tailed observations.
Therefore, many scholars have paid more attention to the detection of change in persistence
under heavy-tailed time series models. In the case of the I(0) process null hypothesis,
Han [15] used the ratio test statistic to consider the change-point detection with heavy-
tailed innovations and proved its consistency as there is a persistence change presence.
For the problem of the null hypothesis of the I(1) process and the alternative hypothesis
involving a change in persistence switching from I(1) to I(0), Qin [16] applied a Dickey–
Fuller-type ratio test statistic to study for infinite variance observations. Related to online
monitoring issues, Chen [17] adopted a kernel-weighted quasi-variance test to monitor
the persistence change in heavy-tailed series. For more persistence change estimation and
detection in heavy-tailed sequences with infinite variance, see Yang [18], Jin [19], Jin [20],
and Wang [21].

However, the existing test methods on heavy-tailed sequences consider the tail index
just belonging to κ ∈ (1, 2], without κ ∈ (0, 1], and suppose beforehand that the direction
of persistence change is known. In this paper, we propose a new test statistic to test the
null hypothesis I(1) against the alternative of a change in persistence, either I(0) → I(1)
or I(1) → I(0). The innovations are assumed to be stationary time series with heavy-tailed
univariate marginal distributions, which are in the domain of attraction of κ-stable law with
κ ∈ (0, 2]. We take into account two types of time series models, a pure AR(1) model and a
AR(1) model with a constant or a constant plus linear time trend. Recently, the asymptotic
inference for a least squares (LS) estimate when the autoregressive parameter is close to 1
(i.e., the series is nearly non-stationary) has been receiving considerable attention in the
statistics and econometric literature, such as Chan [22] and Cheng [23]. Therefore, we are
also interested in deriving the asymptotic behavior of the proposed test in the context of the
near-unit root. Since the critical values of asymptotic distribution depend on the unknown
tail index κ. To solve this problem, a block bootstrap approximation method suggested
by Paparoditis [24] is used to determine the critical values, and then its validity is proved.
The performance of the bootstrap-based test in small samples is evaluated via an extensive
Monte Carlo study. Finally, the feasibility of our proposed test procedures is illustrated
through empirical analysis.

Although the main results of this paper bear some formal analogy with Leybourne [7],
it offers a number of important new implications. First, it extends the work of persistence
change detection with heavy-tailed sequences to the case wherein the innovation process is
in the domain of attraction of a stable law with index κ ∈ (0, 2]. Thus, we can perform the
examination of structural change in persistence even if the mean of real data does not exist.
Second, under the circumstances of infinite variance, both for non-stationary and nearly
non-stationary series, the order of (ρ̂T − ρT ) is T. This is somewhat intriguing as this order
was originally motivated by the consideration of the magnitude of the observed Fisher’s
information number in the finite variance case, as can be seen in Chan [25]. Third, as we
all know, Kim [5] proved the ratio type test statistic diverges at the rate of Op(T2), but it
only can apply to the alternative hypothesis involving a persistence change, I(0) → I(1).
The Dickey–Fuller type ratio test proposed by Leybourne [26] correctly rejects the null of
no persistence change, and the tail in which the rejection occurs can also be used to identify
the direction of change. The deficiency cannot be ignored since the divergence rate is less
than Op(T). However, it is satisfying that the divergence rate of our proposed test statistic
can reach Op(T2). In addition, we do not need to assume that the direction of any possible
change is known and the test almost never rejects in the left (right) tail when there is a
change from I(1) to I(0) [I(0)–I(1)].
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This paper is organized as follows. Section 2 introduces the model, some necessary
assumptions, and the test statistic. Section 3 details the large sample properties of the tests
under both the constant persistence model of the non-stationary I(1) and the persistence
change models. Moreover, the asymptotic distributions under I(0) and the near-unit
root are given and a consistent change-point proportion estimators under an alternative
hypothesis are also established. The algorithm of the block bootstrap is presented in
Section 4. Monte Carlo simulations are presented in Section 5 to assess the validity of
our proposed test procedures in finite samples. Section 6 applies our procedures to two
time-series data. We conclude the paper in Section 7. All proofs of the theoretical results
are gathered in Appendix A.

2. Materials and Methods

As a model for a change in persistence, we adopt the following data-generating process
(DGP):

yt = ρtyt−1 + ηt, t = 1, 2, · · · , T,

ηt = λ1ηt−1 + λ2ηt−2 + · · ·+ λpηt−p + ξt.
(Model 1)

where λi, i = 1, 2, · · · , p are unknown parameters and p is an integer greater than zero.
{ηt} is a p-order autoregressive sequence, and innovation {ξt} lies in the domain of
attraction of a stable law that is taken to satisfy the following, quite general, dependent
process assumption.

Assumption 1. (i) {ξt} is an independent and identically distributed (i.i.d.) sequence. (ii) Assume
that all the characteristic roots of 1 − λ1z − · · · − λpzp = 0 lie outside the unit circle. (iii) {ξt} is
in the domain of attraction of a stable law of order κ ∈ (0, 2) and we have E(ξt) = 0 if κ > 1 and
{ξt} has a distribution symmetric of approximately 0 if κ ≤ 1. The normal distribution corresponds
to κ = 2.

Remark 1. Under Assumption 1, Phillips [27] have already proved that the scaled partial sums
admit a functional central limit theorem, viz.,

(
a−1

T ∑
[Tτ]
t=1 ξt, a−2

T ∑
[Tτ]
t=1 ξ2

t

)
→
(

Lκ(τ),
∫ τ

0 (dLκ)
2
)

,

where aT = inf
{

x : P(|ηt| > x) ≤ T−1} and the random variable Lκ(·) is a Lévy process. Simi-

larly, from the studies by Ibragimov [28] and Resnick [29], it can be concluded that (a−1
T ∑

[Tτ]
t=1 ηt,

a−2
T ∑

[Tτ]
t=1 η2

t ) →
(

Uκ(τ),
∫ τ

0 (dUκ)
2
)

, where the random variable Uκ(·) is a κ-stable process.
The exact definition of a κ-stable process appearing in the following is not necessarily known, but the
quantities aT can be represented as aT = T1/κ L(T) for some slowly varying function L(·).

Within Model 1, the sequence yt is a I(0) process if |ρt| < 1, while it is a I(1) process if
ρt = 1. We consider four possible scenarios. The first of these is that yt is I(1) throughout
the sample period; that is, ρt = 1, t = 1, 2, · · · , T. We denote this H1. The second, denoted
by H01, is that yt displays a change in persistence from I(0) to I(1) behavior at time [τ∗T],
where [·] denotes the integer part of its argument; that is, ρt = ρ, |ρ| < 1 for t ≤ [τ∗T] and
ρt = 1 for t > [τ∗T] in the context of Model 1 or Model 2. The third, denoted H10, is that yt
is I(1) changing to I(0) at time [τ∗T]. In contrast to the second case, it is ρt = 1 for t ≤ [τ∗T]
and ρt = ρ, |ρ| < 1 for t > [τ∗T]. The final possibility is that yt is I(0) throughout; that
is, ρt = ρ, |ρ| < 1, t = 1, 2, · · · , T. We denote this H0. Here, the change-point proportion
τ∗ is assumed to be in Λ = [ΛL, ΛU ], an interval in (0, 1), which is symmetric around 0.5.
Without loss of generality, we can make ΛL = 0.2 and ΛU = 0.8.

In practice, because both the location and direction of the change-point proportion
τ∗ are unknown in advance, we follow the approach of Leybourne [26] that consider the
(two-tailed) test which rejects the large or small values of the statistic formed from the
minimized Dickey–Fuller ratio statistic. In order to improve the performance of testing the
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null hypothesis H1 against the alternative hypothesis H01 or H10, the modified ratio test
statistic is defined by

Ξ =
supτ∈Λ(T − [τT])(ρ̂2 − 1)2

supτ∈Λ[τT](ρ̂1 − 1)2 =
supτ∈ΛN
supτ∈ΛD

(1)

where ρ̂1, ρ̂2 are LS estimates based on y1, . . . , yk and x1, . . . , xT−k, respectively, and xt =
yT−t+1. For convenience, let ρt = ρ1 for t ≤ [τT], ρt = ρ2 for t > [τT].

In the next section, we provide representations for the asymptotic distribution of the
Ξ statistic under the constant I(1) null H1 and prove that a test that rejects the large (small)
values of Ξ is consistent under H10 (H01). As a by-product of this, a consistent estimator of
τ∗ is provided. Furthermore, it is shown that the asymptotic distribution of Ξ under H0 or
the near-integrated time series degenerates and this renders the test conservative against
the constant I(0) process or near-integrated time series.

3. Results

We will establish the asymptotic null distribution of the proposed test. Throughout,
we use ‘→’ to denote the weak convergence of the associated probability measures, and use
Uκ(·) to denote a stable process with the tail index κ.

Theorem 1. Suppose that {yt} is generated by Model 1 under H1 and let Assumption 1 hold.
Then, provided that T → ∞, we have

Ξ → supτ∈ΛL(τ, 1)
supτ∈ΛL(0, τ)

, (2)

where

L(a, b) = (b − a)

(∫ b
a U−

κ (r)dUκ(r)∫ b
a U2

κ (r)dr

)2

.

Furthermore, if we are interested in the model with a constant or a constant plus linear
time trend, the following data-generating process is suggested as:

yt = dt + εt,

εt = ρtεt−1 + ηt.
(Model 2)

In Model 2, the deterministic kernel dt is either a constant (dt = µ) or a constant plus
linear time trend (dt = µ + βt), where µ ̸= 0 and β ̸= 0. {ηt} is a p-order autoregressive
process as defined in Model 1. Similarly, ξt satisfies Assumption 1, while there is an
additional restriction on the tail index κ ∈ (1, 2). This is because the LS estimates of µ and
β are expressed as (µ̂ − µ) = Op(aTT−1) and (β̂ − β) = Op(aTT−2), whose consistency is
destroyed if κ ∈ (0, 1], resulting in the loss of validity of the subsequent block bootstrap
method. Through some algebraic calculation, we can derive the following results under
Model 2.

Lemma 1. Suppose that {yt} is generated by Model 2 under H1 and let Assumption 1 hold. Let the
superscript ζ = 0, 1 denote the de-meaned dt = µ, and the de-meaned and de-trended dt = µ + βt
cases, respectively. Then, provided that T → ∞,

Ξ →
supτ∈ΛLζ

1(τ, 1)

supτ∈ΛLζ
2(0, τ)

(3)

where Lζ
1(τ, 1) and Lζ

2(0, τ) are defined in Appendix A.



Mathematics 2024, 12, 258 5 of 25

Remark 2. Theorem 1 and Lemma 1 indicate that, under H1, although the asymptotic distributions
are the functional of the κ-stable process, they have a different story in each model. Moreover,
as shown in (2) and (3), the explicit form of asymptotic distribution is complicated and not standard,
and depends on the unknown tail index κ. Therefore, the block bootstrap method is used to determine
the critical values, which will be introduced in Section 4 below.

In Theorem 2, we detail the large sample behavior of test Ξ under the persistence
change alternative hypotheses H10 and H01 and give consistent estimators of τ∗. The results
stated hold for both the Model 1 and Model 2 cases.

Theorem 2. Let {yt} be generated by Model 1 or Model 2 and Assumption 1 hold. Then,

(i) Under H10, we have Ξ = Op
(
T2) and τ̂ = arg supτ∈Λ(T

−1N)
p→ τ∗;

(ii) Under H01, we have Ξ = Op
(
T−2) and τ̃ = arg supτ∈Λ(T

−1D)
p→ τ∗,

where
p→ signifies convergence in probability.

Remark 3. The results in Theorem 2 imply that a consistent test of H1 against H10 (H01) is
obtained from the upper-tail (lower-tail) distribution of test Ξ. A rejection in the upper (lower) tail
is indicative of a change from I(1) to I(0) (from I(0) to I(1)) because Ξ is consistent at the rate of
Op(T2) under H10 and tends towards 0 with the Op(T−2) rate under H01. This means that the
tail that the test rejects will also correctly identify the true direction of change. Therefore, even if the
direction of change is unknown, as will typically be the case in practice, it is clear from Theorem 2
that Ξ can also be employed as a two-tailed persistence change test. In addition, the modified
numerator (denominator) of test Ξ yields a consistent estimator of the change-point fraction τ∗.

In Theorem 3, we now establish the behavior of test Ξ under the constant I(0) process
H0; again, this result applies to both Model 1 and Model 2 cases.

Theorem 3. Let {yt} be generated by Model 1 or Model 2 and Assumption 1 hold. Then, under
H0, we obtain Ξ

p→ 1.

Remark 4. The straightforward result is that the test Ξ will be conservative when run at con-
ventional significance levels (say, the 5% level or smaller) and will never reject under H0 in large
samples. That is because, under H0, the relevant critical values are lower (in the left-hand tail) and
higher (in the right-hand tail) than the value 1.

In this paper, we need to consider the case that ρt = 1− γ/T, where γ is a real number,
that is, the sequence is the near-unit root process. For a Gaussian nearly non-stationary
AR(1) model, it is shown that the asymptotic distribution of the LS estimate of ρt obtained
by Chan [30] can be expressed as a functional of the Ornstein–Uhlenbeck process. Based on
the above research, the following Theorem 4 gives the asymptotic distribution of Ξ under
the heavy-tailed near unit root.

Theorem 4. Let {yt} be generated by Model 1 and Assumption 1 hold. Then, under ρt = 1− γ/T,
there is

Ξ → supτ∈ΛG(τ, 1)
supτ∈ΛG(0, τ)

, (4)

where

G(a, b) = (b − a)

(∫ b
a X−

κ (r)dUκ(r)∫ b
a X2

κ(r)dr
− γ

)2

.
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and Xκ(r) satisfies dXκ(r) = −γXκ(r)dr + dUκ(r), Xκ(0) = 0.

Similarly, the asymptotic distribution under Model 2 with ρt = 1 − γ/T can also be
directly obtained.

Lemma 2. Suppose {yt} be generated by Model 2 under ρt = 1 − γ/T and let Assumption 1
hold; we only look at the case with dt = µ and have

Ξ → supτ∈ΛG1(τ, 1)
supτ∈ΛG2(0, τ)

(5)

where G1(τ, 1) and G2(0, τ) are defined in Appendix A.

Remark 5. Note that, when γ = 0, Theorem 4 is the result of Theorem 1; thus, Theorem 4 provides
an asymptotic result for the infinite variance near-integrated AR(1) model. It can be seen that the
asymptotic distribution is not only related to the κ-stable process, but also to parameter γ. Likewise,
the conclusion of Lemma 2 is equal to that of Lemma 1 when γ = 0. It should be noted that Lemma 2
only gives the asymptotic distribution for the case of dt = µ. For dt = µ + βt, it is similar to
Lemma 1, and does not be described in detail here. In Section 5, we will give the rejection rates of the
proposed test statistic under different γ to verify that our statistic is conservative in the case of the
near-unit root and will not accept the assumption of persistence change.

4. Block Bootstrap Approximation

The key implication of Theorem 1 and Lemma 1 is that, under a heavy-tailed sequence,
the asymptotic null distributions of the persistence change tests depend on the tail index
κ. In practice, the stable index κ is often unknown and a complicated computation pro-
cedure is usually involved in estimating it. A cursory way to estimate κ is proposed by
Mandelbrot [31], but the accuracy is not enough. To avoid the nuisance parameter κ, we
propose the following block bootstrap test.

First calculate the centered residuals

η̂t = (yt − ρ̂yt−1)−
1

T − 1

T

∑
i=2

(yi − ρ̂yi−1)

for t = 2, 3, · · · , T, where ρ̂ is the LS estimate of ρ based on the observed date y1, y2, · · · , yT .
Choose a positive integer b(< T) and let {i0, i1, · · · , iK−1} be drawn i.i.d. with the

distribution uniform on the set {1, 2, · · · , T − b}; here, we take K = [(T − 1)/b], where [·]
denotes the integer part, although different choices for K are also possible. The procedure
constructs a bootstrap pseudo-series

{
y∗1 , y∗2 , · · · , y∗l

}
, where l = Kb + 1, as follows:

y∗t =

{
y1, t = 1
y∗t−1 + η̂im+s, t = 2, 3, · · · , l

where m = [(t − 2)/b], s = t − mb − 1.
Compute the statistic Ξ∗ and

Ξ∗ =
supτ∈Λ(l − [τl])(ρ̂∗2 − 1)2

supτ∈Λ[τl]
(
ρ̂∗1 − 1

)2 =
supτ∈ΛN∗

supτ∈ΛD∗ ,

where ρ̂∗1 , ρ̂∗2 are LS estimates based on y∗1 , . . . , y∗k and x∗1 , . . . , x∗l−k, respectively, and x∗t =
y∗l−t+1.

Repeating step 2 and step 3 a great number of times (e.g., P times), we obtain the
collection of pseudo-statistics Ξ∗

1 , Ξ∗
2 , · · · , Ξ∗

P.
Compute the bootstrap αth(1 − αth) quantile of the empirical distribution of{

Ξ∗
1 , Ξ∗

2 , · · · , Ξ∗
P
}

being greater than T, denoted by Ξ∗(α)(Ξ∗(1 − α)). We reject the null



Mathematics 2024, 12, 258 7 of 25

hypothesis if Ξ > Ξ∗(α)(Ξ < Ξ∗(1 − α)), because the empirical distribution of Ξ∗ is an
approximation to the sampling distribution of Ξ under null hypothesis and we can say that
H10(H01) is true.

Remark 6. The block bootstrap is a central part in the residual-based block bootstrap procedure;
note, however, that the block bootstrap is not directly applied to the {yt} data, neither its first
differences; rather, the pseudo-series y∗1 , y∗2 , · · · , y∗l is obtained by randomly integrating the selected
blocks of centered residuals η̂t. Compared with other sampling methods, the block bootstrap method
has more advantages for dependent sequences. The reason is that each block retains the dependence of
the sequence, but the blocks are independent of each other. So, this resample procedure can accurately
reproduce the sampling distribution of the test statistic under the null hypothesis. As in Arcones [32],
we present Assumption 2 to ensure the convergence in the probability of bootstrap distribution.

Assumption 2. As T → ∞, b → ∞ and b/
√

T → 0.

Theorem 5. If Assumption 1, Assumption 2, and H1 hold, then under the Model 1, we can derive

Ξ∗ → supτ∈ΛL(τ, 1)
supτ∈ΛL(0, τ)

(6)

where L(·, ·) is the same as in Theorem 1, which will not be shown in detail here.

Remark 7. Theorem 5 just gives the convergence of Ξ∗ under the infinite variance case and
guarantees that the block bootstrap method has the same asymptotic distribution under the null
hypothesis so that an accurate critical value can be obtained. We omit the block bootstrap method
under Model 2, which is similar to Model 1. In the next section, we will demonstrate the feasibility
of the block bootstrap in small samples through numerical simulation.

5. Numerical Results

In this section, we use Monte Carlo simulation methods to investigate the finite
sample size and power properties of the tests based on the block bootstrap developed
in Sections 3 and 4. Our simulation study is based on samples of sizes 300 and 500, with
3000 replications at the nominal 5% level. Since the optimal block bootstrap size, b, is
difficult to select, we take b = CT1/3 based on the experience, as can be seen in Paparoditis
[24], which satisfies Assumption 2 and C is a constant. Here, we set C = 3 and the choice
of the best length is not the focus of this article, but its effectiveness has been explained in
the aforementioned literature.

We consider the data generated by the following autoregressive integrated moving
average process

yt = ρtyt−1 + ηt − θηt−1, t = 1, 2, · · · , T (7)

where y0 = 0 and {ηt} is independent and identically distributed (i.i.d.) in the domain of
the attraction of a stable law of order κ ∈ (0, 2]. The design parameter θ ∈ {−0.6, 0, 0.6}.

First of all, Table 1 reports the partial size and power when the innovation process is i.i.d.
with ρt = 1, t ≤ [τ∗T] and ρt = ρ2, t > [τ∗T], and T = 300. Here, Ξ represents the proposed
test statistic in this paper, and Q represents the statistic used by Qin [16]. The empirical size
and power, calculated as the rejection frequency of the tests under H1 and H10, are provided
for the stable index κ ∈ {2.0, 1.6, 1.2, 0.8, 0.4}. It can be seen from Table 1 that all empirical
sizes of Ξ and Q tend towards the significance level of 5%. However, the power values of
the Ξ are better than that of Q. Especially when the tail index is small, such as when κ = 0.4,
the power values of Q are less than 0.02, which is not enough to reject the null hypothesis,
but the power value of the Ξ can reach 0.5. This is enough to show the advantages of the
proposed test statistic. Their power values decrease with the decrease in κ because the smaller
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κ indicates the more outliers. Similarly, their power values decrease with the increase in ρ2,
but it can be seen that Q is more sensitive to the change in ρ2. Therefore, it can be concluded
that the proposed statistic in this paper has a more robust test performance for the persistence
change under the heavy tail. Next, we present our numerical simulation results in detail.

Table 1. Empirical rejection frequencies of Ξ and Q.

κ = 2.0 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

Ξ Q Ξ Q Ξ Q Ξ Q Ξ Q

(a) Empirical Size 0.0543 0.0480 0.0433 0.0503 0.0527 0.0487 0.0513 0.0443 0.0527 0.0437

(b) Power Values
τ∗ ρ2

0.3 0.3 0.9517 0.7413 0.8653 0.5717 0.7507 0.4043 0.5907 0.2933 0.3923 0.0010
0.5 0.9170 0.6690 0.8133 0.5147 0.6943 0.3633 0.5307 0.2280 0.3637 0.0003
0.7 0.8247 0.5273 0.7170 0.3927 0.6003 0.2660 0.4480 0.1757 0.3060 0.0003

0.5 0.3 0.9977 0.9170 0.9750 0.7977 0.9167 0.6570 0.7843 0.4387 0.4957 0.0023
0.5 0.9910 0.8730 0.9567 0.7420 0.8727 0.5667 0.7177 0.3923 0.4270 0.0017
0.7 0.9400 0.7410 0.8860 0.5900 0.7777 0.4397 0.6160 0.3083 0.3763 0.0010

0.7 0.3 0.9973 0.9273 0.9860 0.8250 0.9597 0.6723 0.8603 0.4833 0.5407 0.0153
0.5 0.9860 0.8557 0.9707 0.7413 0.9127 0.5777 0.7793 0.4103 0.4667 0.0090
0.7 0.9280 0.6757 0.8793 0.5823 0.8027 0.4430 0.6443 0.2957 0.4057 0.0023

5.1. Properties of the Tests under the H1, H0, and Near-Unit Root

In this section, we investigate the finite sample size properties of the tests when data
are generated by (7) with the constant parameter. Tables 2 and 3 report the empirical
rejection frequencies of the Ξ(U) and Ξ(L), for T = 300 and T = 500, respectively. Where
Ξ(U) is the right test and Ξ(L) is the left test, these are based on the upper tail 5% and
lower tail 5%, respectively.

Table 2. Properties of the tests under the H1, H0, and near-unit root.

κ = 2.0 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

θ ρt Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L)

0 0 0 0 0 0 0.0043 0 0.0140 0 0.0310 0.0003
0.5 0 0 0 0 0 0 0.0010 0.0013 0.0013 0.0047
0.9 0.0050 0 0.0047 0 0.0063 0.0037 0.0093 0.0050 0.0057 0.0167
1.0 0.0543 0.0473 0.0433 0.0530 0.0527 0.0443 0.0513 0.0480 0.0527 0.0473

0.6 0 0 0 0 0 0.0017 0 0.0080 0.0007 0.0593 0
0.5 0 0 0.0040 0 0.0603 0 0.2043 0.0010 0.5140 0.0007
0.9 0 0 0 0 0 0 0.0023 0.0020 0.0100 0.0083
1.0 0.0507 0.0263 0.0443 0.0180 0.0423 0.0227 0.0503 0.0467 0.0527 0.0403

−0.6 0 0 0 0 0 0.0053 0 0.0237 0.0003 0.0493 0.0017
0.5 0 0 0.0043 0 0.0287 0 0.0467 0 0.0040 0.0030
0.9 0.0170 0 0.0147 0 0.0163 0.0003 0.0150 0.0020 0.0177 0.0083
1.0 0.0540 0.0517 0.0550 0.0537 0.0527 0.0240 0.0570 0.0277 0.0450 0.0440

θ γ ρt = 1 − γ/T

0 1 0.0787 0.0367 0.0647 0.0343 0.0710 0.0430 0.0550 0.0487 0.0387 0.0463
3 0.0967 0.0153 0.0777 0.0160 0.0697 0.0297 0.0553 0.0303 0.0273 0.0320
5 0.0983 0.0077 0.0727 0.0067 0.0592 0.0190 0.0380 0.0213 0.0237 0.0327

0.6 1 0.0607 0.0053 0.0467 0.0050 0.0510 0.0133 0.0547 0.0157 0.0637 0.0287
3 0.0803 0.0003 0.0503 0.0007 0.0457 0.0033 0.0487 0.0097 0.0540 0.0203
5 0.0480 0 0.0280 0 0.0313 0.0013 0.0373 0.0067 0.0417 0.0240

−0.6 1 0.0747 0.0293 0.0943 0.0330 0.0853 0.0163 0.0710 0.0233 0.0537 0.0353
3 0.1193 0.0137 0.1263 0.0210 0.0900 0.0077 0.0853 0.0167 0.0567 0.0250
5 0.1203 0.0093 0.1127 0.0113 0.0907 0.0040 0.0870 0.0107 0.0433 0.0223
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Table 3. Empirical rejection frequencies for T = 500.

κ = 2.0 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

θ ρt Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L)

0 0 0 0 0 0 0.0030 0 0.0107 0.0003 0.0273 0.0007
0.5 0 0 0 0 0 0 0 0.0003 0.0003 0.0037
0.9 0 0 0.0013 0 0.0043 0.0007 0.0073 0.0033 0.0033 0.0110
1.0 0.0557 0.0470 0.0463 0.0587 0.0407 0.0583 0.0497 0.0453 0.0457 0.0507

0.6 0 0 0 0 0 0.0017 0 0.0080 0 0.0480 0.0003
0.5 0 0 0.0063 0 0.0760 0 0.2173 0 0.5233 0.0003
0.9 0 0 0 0 0 0 0.0007 0.0003 0.0050 0.0070
1.0 0.0537 0.0370 0.0473 0.0277 0.0413 0.0323 0.0560 0.0470 0.0517 0.0490

−0.6 0 0 0 0 0 0.0040 0 0.0113 0.0007 0.0307 0.0010
0.5 0 0 0.0060 0 0.0243 0 0.0580 0 0.0030 0.0020
0.9 0.0010 0 0.0047 0 0.0083 0.0003 0.0113 0.0017 0.0077 0.0090
1.0 0.0553 0.0517 0.0563 0.0433 0.0537 0.0453 0.0560 0.0270 0.0447 0.0473

θ γ ρt = 1 − γ/T

0 1 0.0820 0.0323 0.0647 0.0353 0.0593 0.0507 0.0527 0.0380 0.0347 0.0493
3 0.0987 0.0143 0.0823 0.0157 0.0690 0.0267 0.0507 0.0310 0.0350 0.0470
5 0.1053 0.0077 0.0763 0.0057 0.0720 0.0157 0.0413 0.0220 0.0190 0.0340

0.6 1 0.0733 0.0180 0.0550 0.0077 0.0503 0.0117 0.0597 0.0193 0.0570 0.0313
3 0.0837 0.0013 0.0550 0 0.0517 0.0030 0.0523 0.0097 0.0593 0.0223
5 0.0670 0 0.0370 0 0.0363 0.0007 0.0490 0.0060 0.0550 0.0183

−0.6 1 0.0850 0.0370 0.0830 0.0430 0.0737 0.0373 0.0690 0.0200 0.0490 0.0337
3 0.1187 0.0147 0.1200 0.0227 0.1010 0.0147 0.0943 0.0147 0.0487 0.0290
5 0.1207 0.0070 0.1153 0.0160 0.0890 0.0043 0.0857 0.0117 0.0400 0.0227

We can see the following regularities from the results in Tables 2 and 3. Firstly, when
ρt = 1 (null hypothesis, H1), the empirical size tends towards the significance level of 5%.
As the tail index decreases, the experience size does not fluctuate greatly, for example,
when κ = 0.4, the empirical size of the Ξ(L) is 0.0473, 0.0403, and 0.044 for θ = 0.0, 0.6,−0.6,
which still tends towards a nominal level. Notice that the empirical size under θ = 0 is
better than that under θ = 0.6 or θ = −0.6, which indicates that the dependency of the
innovation process has some influence on the test. Secondly, for the vast majority of the
entries in Tables 2 and 3 pertaining to H0 (cases where |ρt| < 1, H0), the empirical rejection
frequencies of both the upper and lower tails Ξ-test are seen to lie well below the nominal
level, as predicted by the asymptotic unbiasedness result of Theorem 3. The empirical
rejection frequencies increase gradually with the decrease in the tail index, and the empirical
rejection frequencies of Ξ(U) are generally higher than that of Ξ(L), but still lower than
the nominal level. It is worth noting that even when ρt = 0.9, the empirical rejection
frequencies are much smaller than the nominal level, which indicates that the proposed test
statistic is conservative under the I(0) process. However, when θ = 0.6, ρt = 0.5 and κ < 1,
empirical rejection frequencies are severely distorted, such as when κ = 0.4 and T = 300
empirical rejection frequency of Ξ(U) is 0.514. What is interesting is that this phenomenon
only occurs in the case of θ = 0.6, and there is no distortion for θ = −0.6. Finally, in the
case of near-integrated time series, the empirical rejection frequencies are not high enough
to reject the null hypothesis. Especially when γ = 1, the empirical rejection frequencies
tend to the significance level, which confirms the conclusion of this paper, that is, when γ
is smaller, the sequence is closer to the I(1) process (null hypothesis). Similarly, with the
increase in γ, the empirical rejection frequencies of the Ξ(U) gradually increase, while that
of the Ξ(L) gradually decreases. In summary, the straightforward result is that a test based
on Ξ will be conservative when run at conventional significance levels and will never be
rejected under a near-integrated time series in large samples, regardless of whether this is
in i.i.d or a dependent innovation process.
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5.2. Properties of the Tests under the H10 and H01

In this section, we report the empirical rejection frequencies of the test when the data
are generated according to the I(1) − I(0) switch DGP (7) with ρt = 1, t ≤ [τ∗T] and
ρt = ρ2, t > [τ∗T]. We consider the following values of the autoregressive and breakpoint
parameters: ρ2 ∈ {0.3, 0.5, 0.7} and τ∗ ∈ {0.3, 0.5, 0.7}, respectively. We only present the
results of I(1)− I(0) and I(0)− I(1) is similar.

Tables 4 and 5 report resulting empirical rejection frequencies for the upper-tail and
lower-tail Ξ-tests (all tests were run at the nominal 5% level) for samples of size T = 300
and T = 500, respectively. Tables 6 and 7 report the Monte Carlo sample mean and sample
standard deviation of the corresponding persistence change-point estimators, τ̂ and τ̃,
respectively. Where τ̂ and τ̃ are estimators of the true breakpoint under H10 and H01,
respectively.

Table 4. Empirical rejection frequencies under H10 for T = 300.

κ = 2 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

θ τ∗ ρ2 Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L)

0 0.3 0.3 0.9517 0 0.8653 0 0.7507 0 0.6010 0 0.3923 0.0027
0.5 0.9170 0 0.8133 0 0.6943 0 0.5307 0.0007 0.3637 0.0030
0.7 0.8247 0 0.7170 0 0.6003 0 0.4480 0.0013 0.3193 0.0073

0.5 0.3 0.9977 0 0.9750 0 0.9167 0 0.7843 0 0.4957 0.0047
0.5 0.9910 0 0.9567 0 0.8727 0 0.7177 0.0007 0.4390 0.0067
0.7 0.9400 0 0.8860 0 0.7827 0 0.6160 0.0017 0.3817 0.0087

0.7 0.3 0.9973 0 0.9907 0 0.9597 0 0.8603 0 0.5557 0.0080
0.5 0.9860 0 0.9707 0 0.9127 0 0.7793 0.0007 0.4820 0.0083
0.7 0.9280 0 0.8793 0 0.8060 0.0003 0.6443 0.0030 0.4097 0.0107

0.6 0.3 0.3 0.5710 0 0.4923 0 0.4953 0 0.5487 0 0.6380 0.0023
0.5 0.5637 0 0.4947 0 0.5323 0 0.6337 0.0007 0.7150 0.0013
0.7 0.5437 0 0.4483 0 0.4503 0 0.5470 0.0003 0.6643 0.0020

0.5 0.3 0.8507 0 0.7693 0 0.7457 0 0.7347 0.0003 0.6463 0.0047
0.5 0.8287 0 0.7290 0 0.7353 0 0.7497 0.0007 0.7000 0.0063
0.7 0.7520 0 0.6437 0 0.6317 0 0.6423 0.0020 0.6340 0.0063

0.7 0.3 0.8663 0 0.8067 0 0.7600 0 0.7430 0.0003 0.6177 0.0067
0.5 0.8227 0 0.7207 0 0.6887 0 0.6617 0.0017 0.5940 0.0067
0.7 0.7303 0 0.6343 0 0.5740 0 0.5537 0.0020 0.5067 0.0137

−0.6 0.3 0.3 0.9867 0 0.9420 0 0.8710 0 0.7827 0 0.6127 0.0023
0.5 0.9593 0 0.9067 0 0.8173 0 0.6867 0 0.4093 0.0017
0.7 0.8883 0 0.8100 0 0.6680 0 0.5193 0 0.3640 0.0043

0.5 0.3 0.9993 0 0.9903 0 0.9557 0 0.8803 0 0.6103 0.0040
0.5 0.9963 0 0.9793 0 0.9043 0 0.7607 0 0.4693 0.0033
0.7 0.9677 0 0.9170 0 0.7907 0 0.6303 0.0007 0.3990 0.0047

0.7 0.3 0.9993 0 0.9940 0 0.9633 0 0.8703 0 0.5747 0.0033
0.5 0.9957 0 0.9813 0 0.8983 0 0.7483 0 0.4750 0.0050
0.7 0.9573 0 0.9247 0 0.7837 0 0.6143 0.0007 0.3913 0.0080
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Table 5. Empirical rejection frequencies under H10 for T = 500.

κ = 2 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

θ τ∗ ρ2 Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L) Ξ(U) Ξ(L)

0 0.3 0.3 0.9920 0 0.9217 0 0.8327 0 0.6577 0 0.4313 0.0017
0.5 0.9803 0 0.9073 0 0.7797 0 0.6040 0 0.3983 0.0030
0.7 0.9357 0 0.8263 0 0.7060 0 0.5520 0.0007 0.3457 0.0047

0.5 0.3 1 0 0.9870 0 0.9563 0 0.8573 0 0.5637 0.0030
0.5 0.9990 0 0.9823 0 0.9237 0 0.7860 0.0007 0.4890 0.0067
0.7 0.9907 0 0.9570 0 0.8720 0 0.6993 0.0010 0.4280 0.0063

0.7 0.3 1 0 0.9990 0 0.9797 0 0.9230 0 0.6180 0.0023
0.5 1 0 0.9927 0 0.9537 0 0.8567 0 0.5393 0.0060
0.7 0.9877 0 0.9633 0 0.8980 0.0007 0.7550 0.0007 0.4627 0.0107

0.6 0.3 0.3 0.7213 0 0.6367 0 0.5947 0 0.6173 0 0.6917 0.0020
0.5 0.7253 0 0.6310 0 0.6350 0 0.7010 0 0.7487 0.0017
0.7 0.6963 0 0.5963 0 0.5887 0 0.6267 0 0.7187 0.0030

0.5 0.3 0.9427 0 0.8863 0 0.8350 0 0.8013 0 0.6810 0.0053
0.5 0.9397 0 0.8593 0 0.8223 0 0.8137 0 0.7363 0.0053
0.7 0.8967 0 0.7960 0 0.7743 0 0.7053 0 0.6927 0.0043

0.7 0.3 0.9693 0 0.9170 0 0.8490 0 0.8177 0 0.6667 0.0053
0.5 0.9393 0 0.8720 0 0.8013 0 0.7557 0 0.6413 0.0060
0.7 0.8887 0 0.7880 0 0.7027 0 0.6490 0.0003 0.5513 0.0097

−0.6 0.3 0.3 0.9993 0 0.9820 0 0.9190 0 0.8440 0 0.6530 0
0.5 0.9950 0 0.9597 0 0.8873 0 0.7367 0 0.4600 0.0020
0.7 0.9583 0 0.9067 0 0.7660 0 0.6250 0 0.3983 0.0037

0.5 0.3 1 0 0.9987 0 0.9793 0 0.9023 0 0.6710 0.0007
0.5 1 0 0.9957 0 0.9397 0 0.8127 0 0.5087 0.0037
0.7 0.9953 0 0.9747 0 0.8743 0 0.7107 0 0.4563 0.0057

0.7 0.3 1 0 0.9987 0 0.9807 0 0.9143 0 0.6290 0.0017
0.5 1 0 0.9953 0 0.9337 0 0.8033 0 0.5123 0.0037
0.7 0.9967 0 0.9720 0 0.8637 0 0.7013 0 0.4497 0.0050

Table 6. Monte Carlo mean and standard error of τ̂, T = 100.

κ = 2 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

τ∗ ρ2 ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂)

0.3 0.3 0.3352 0.0869 0.3357 0.1005 0.3539 0.1363 0.3910 0.1909 0.4335 0.2344
0.5 0.3698 0.1386 0.3639 0.1390 0.3648 0.1501 0.3904 0.1869 0.4276 0.2272
0.7 0.4097 0.1895 0.3996 0.1817 0.3849 0.1731 0.3697 0.1661 0.3608 0.1719

0.5 0.3 0.5335 0.0841 0.5277 0.0891 0.5263 0.1087 0.5279 0.1350 0.5217 0.1578
0.5 0.5538 0.1093 0.5393 0.1094 0.5378 0.1206 0.5246 0.1377 0.5200 0.1589
0.7 0.5708 0.1436 0.5564 0.1441 0.5359 0.1487 0.5115 0.1577 0.4737 0.1765

0.7 0.3 0.7185 0.0557 0.7103 0.0618 0.6941 0.0973 0.6831 0.1194 0.6498 0.1749
0.5 0.7201 0.0732 0.7102 0.0867 0.6963 0.1071 0.6815 0.1317 0.6533 0.1748
0.7 0.7188 0.1059 0.7062 0.1215 0.6937 0.1397 0.6642 0.1736 0.6294 0.2082

From Tables 4 and 5, the following conclusions can be obtained on power properties.
As expected, the smaller the κ, the smaller the power values of Ξ(U), but even κ < 1,
the power values of Ξ(U) are also enough to reject the null hypothesis, for example, when
κ = 0.4, θ = 0, τ∗ = 0.7 and T = 300, the power values of Ξ(U) are 0.5557, 0.482,
and 0.4097 for ρ2 = 0.3, 0.5, 0.7. However, although the empirical rejection frequencies
of Ξ(L) increase with the increase in ‘outliers’, they are also all less than 0.02, that is,
the lower-tail Ξ-test will not reject the null hypothesis under H10. This suggests that the Ξ
tests may be reliable for identifying the direction of persistence change, even if under the
small sample or κ < 1. The empirical power of Ξ(U) drops significantly as the changing
size (1 − ρ2) decreases, which is a common conclusion like what other change point test
procedures can obtain. It is also worth noting that the power is always higher with a
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larger τ∗, which occurs because of a larger τ∗, which means that a greater proportion of
the sample contains the I(1) component. It is clear from the different values of θ that the
sensitivity of rejection frequencies to whether the innovation process is independent does
not vary considerably. This shows that the proposed test statistic is robust for different
θ-values under the alternative hypothesis. As the sample size of T increases, power values
become higher and higher in each case of the tests, which proves consistent with the
results of Theorem 2. The above conclusions also confirm the effectiveness of the block
bootstrap method.

Table 7. Monte Carlo mean and standard error of τ̃, T = 100.

κ = 2 κ = 1.6 κ = 1.2 κ = 0.8 κ = 0.4

τ∗ ρ2 ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂) ¯̂τ se(τ̂)

0.3 0.3 0.3332 0.0794 0.3528 0.1086 0.3868 0.1539 0.4450 0.2166 0.5106 0.2814
0.5 0.3462 0.1042 0.3674 0.1345 0.3971 0.1700 0.4511 0.2273 0.5089 0.2844
0.7 0.3702 0.1493 0.3882 0.1678 0.4101 0.1901 0.4525 0.2300 0.5051 0.2831

0.5 0.3 0.5177 0.0898 0.5312 0.1153 0.5605 0.1430 0.5886 0.1805 0.6184 0.2152
0.5 0.5134 0.1134 0.5219 0.1297 0.5473 0.1540 0.5766 0.1843 0.5975 0.2131
0.7 0.5055 0.1457 0.5193 0.1534 0.5366 0.1655 0.5643 0.1874 0.5747 0.2126

0.7 0.3 0.7028 0.0894 0.7088 0.1068 0.7036 0.1358 0.7081 0.1548 0.6871 0.1900
0.5 0.6797 0.1273 0.6876 0.1365 0.6812 0.1595 0.6798 0.1774 0.6594 0.2073
0.7 0.6415 0.1773 0.6408 0.1858 0.6407 0.1980 0.6392 0.2078 0.6276 0.2226

Turning to the results for the breakpoint estimators τ̂ and τ̃ in Tables 6 and 7, re-
spectively, a number of comments seem appropriate. First of all, it is clear that τ̂ and τ̃
appear to converge on the true breakpoint, τ∗, as would be expected in Theorem 2. Sec-
ondly, the smaller the tail index, the larger the standard deviation. It is not surprising
that a smaller tail index implies more ‘outliers’. Moreover, τ̂(τ̃) performs best for ρ2 = 0.3
(ρ1 = 0.3). This is also unsurprising as this case provides the sharpest distinction in the
cases considered between the I(1) and I(0) phases of the process. Finally, an interesting
finding is that τ̂ performs significantly better than τ̃ for τ∗ = 0.7, slightly better than τ̃ for
τ∗ = 0.5, and slightly worse than τ̃ for τ∗ = 0.3.

Although not reported, we also consider the power properties under the corresponding
I(0) − I(1) switch DGP. These experiments yield qualitatively similar results to those
observed in Tables 4 and 5 for Ξ-tests on switching the upper and lower tail and switching
τ∗ for (1 − τ∗). This is because this model can also be viewed as a process with a switch
from I(1) to I(0) at (1 − τ∗) when the data are taken in reverse order.

To summarize, the conclusions to be drawn from the results in this section seem
clear. The test procedures introduced in Sections 3 and 4 provide a functional method
to effectively detect I(1) to I(0) or I(0) to I(1) persistence change for infinite variance
sequences. In addition, although the proposed test statistic is based on the I(1) null
hypothesis, the empirical size is still controlled well when a series is I(0) or a near-integrated
time series throughout, and empirical power has good performance compared to Q’s.
From the above research, we can also conclude that, for the block bootstrap method,
b = 3T1/3 is a reasonable choice in most cases to effectively control the empirical size and
obtain a satisfactory empirical power.

6. Empirical Applications

Especially in many financial time series, the persistence change appears frequently.
In this section, we illustrate the proposed test statistic by two examples of time series
data, namely data on the US inflation rate and USD/CNY exchange rate which come from
multpl.com, and the website of the Federal Reserve Bank of St. Louis, respectively. At the
5% nominal level, we find clear evidence of change from stationary to non-stationary or
non-stationary to stationary in these two series.
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The first group contains 224 US inflation rate monthly data from September 1958 to
April 1977. Figure 1 reports the observations in this set. Chen [33] considered this dataset
using a bootstrap test of change in persistence, and concluded that the data contain a
change from I(0) to I(1). Moreover, they also derived that the estimated change period
from I(0) to I(1) is May 1965. In this paper, we apply our proposed block bootstrap-based
method to verify this conclusion. First, we perform a first-order difference on the data
shown in Figure 1 to obtain Figure 2. The differential data were fitted using software
provided by John [34] to obtain a tail index of κ̂ = 1.8454 and its corresponding upper- and
lower-tail critical values are 8.5203 and 0.0265, respectively. As suspected, the existence
of a change in persistence is confirmed to be Ξ = 0.0244 < 0.0264. This indicates that the
data undergo a change from I(0) to I(1). The estimated change period from I(0) to I(1) is
k∗ = 79 (May 1965) (see the vertical line in Figure 1). This coincides well with the result
obtained by Chen [2]’s.
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Figure 1. US inflation rate data yt, t = 1, · · · , 224.
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Figure 2. First−order difference in inflation rate data.
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The second group contains a 580 USD/CNY exchange rate from 13 May 2009 to 31
August 2011 (see Figure 3). We again fit its first-order difference data in the same way
with a tail index of κ̂ = 1.0515. This also reflects that the data contain a lot of outliers.
Its corresponding upper- and lower-tail critical values are 5.8298 and 0.1202, respectively.
The presence of a persistence change is confirmed as Ξ = 5.8441 > 5.8298, which also
indicates that the data have undergone a change from I(1) to I(0). In this example, on the
basis of the estimated break fraction k∗ = 306 (15 June 2010), it is reasonable to split the
whole sample into two regions, where [1306] is I(1) and [307, 580] is I(0). To make our
conclusion more reliable, we also applied the test proposed by Kim [5], and we found
that, on 16 June 2010, the data change from I(1) to I(0), which further demonstrate the
effectiveness of the method we proposed.
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Figure 3. USD/CNY exchange rate data, yt, t = 1, · · · , 580.

Evidently, one may question whether this reject signal was caused by persistence
change or those outliers. To test this doubt and make our conclusion more reliable, we also
applied our procedure to test the first-order difference data in Figures 2 and 4. The proposed
procedure in this paper that used the same parameter choices does not reject the null
hypothesis. This result again suggests that the original data undergo a persistence change
and the first-order difference data are a stationary sequence. In addition, we divide the two
sets of data into two segments according to the estimated break fraction k∗ and test them
separately, before finding that neither of them rejected the null hypothesis. This indicates
that there is only one persistence change in both sets of data.

Actually, in the text of the analysis of real-world data, besides for change point models,
several ways of analyzing financial time series are possible, such as Cherstvy [35], Yu [36],
Kantz [37], who introduced three strategies for the analysis of financial time series based
on time-averaged observables, which contained the time-averaged mean-squared displace-
ment as well as the aging and delay time methods for the varying fractions of the financial
time series. They found that the observed features of the financial time series dynamics
agree well with our analytical results for the time-averaged measurables for geometric
Brownian motion, underlying the famed Black–Scholes–Merton model. It was useful for
financial data analysis and disclosing new universal features of stock market dynamics.
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Figure 4. First-order difference in the exchange rate data.

7. Conclusions

In this paper, we propose a new statistic to test the persistence change with heavy-
tailed innovations, and neither the direction of change nor the location of the change can
be assumed to be known. We derive the asymptotic distribution of the test statistic under
the H1 that is a complicated functional of the κ-stable process. We also demonstrate that
this test is consistent against changes in persistence, either from I(1) to I(0) or from I(0) to
I(1), and prove the consistency of breakpoint estimators. In particular, to determine the
critical values for the null distribution of the test statistic containing unknown tail index κ,
we adopt an approach based on the block bootstrap which is a variation on the sampling
methodology. The robustness of the block bootstrap method is verified by numerical
simulation, and the test obtained displays no tendency of rejecting against constant I(0) or
nearly integrated time series. Empirical applications suggest that our procedures work well
in practice. In conclusion, the proposed test statistic based on block bootstrap constitutes a
functional tool for detecting changes in persistence with heavy-tailed innovations.
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Appendix A

Proof of Theorem 1. For the present, assume τ is fixed. We start with the following statistic

Ξ̃ =
(T − [τT])(ρ̂2 − 1)2

[τT](ρ̂1 − 1)2 =
N
D

(A1)

where ρ̂1, ρ̂2 are the LS estimates based on y1, y2, · · · , yk and x1, x2, · · · , xT−k, respectively.
Firstly, for the numerator of Ξ̃

N = (T − [τT])(ρ̂2 − 1)2
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where ρ̂2 =
(

∑T−k+1
t=2 xtxt−1

)(
∑T−k+1

t=2 x2
t

)−1
. It is easily shown that

(ρ̂2 − 1) =
∑T−k+1

t=2 yT−t+1yT−t+2 − ∑T−k+1
t=2 y2

T−t+1

∑T−k+1
t=2 y2

T−t+1

=
E
F

.

By using the conclusion about stochastic integral from Knight [38], we can derive

a−2
T · E = a−2

T ·
(

∑T−k+1
t=2 yT−t+1yT−t+2 − ∑T−k+1

t=2 y2
T−t+1

)
(A2)

= a−2
T ∑T−k+1

t=2 ηT−t+2yT−t+1 →
∫ 1

τ U−
κ (r)dUκ(r)

and

T−1a−2
T · F = T−1a−2

T ·
T−k+1

∑
t=2

y2
T−t+1 →

∫ 1

τ
U2

κ (r)dr.

Thus, it leads to

T(ρ̂2 − 1) →
∫ 1

τ U−
κ (r)dUκ(r)∫ 1

τ U2
κ (r)dr

,

and

T · N = (1 − τ)(T(ρ̂2 − 1))2 → (1 − τ)

(∫ 1
τ U−

κ (r)dUκ(r)∫ 1
τ U2

κ (r)dr

)2

. (A3)

For the denominator of Ξ̃, we have

D = [τT](ρ̂1 − 1)2

where

(ρ̂1 − 1) =
∑k

t=2 ytyt−1 − ∑k
t=2 y2

t−1

∑k
t=2 y2

t−1

=
A
B

.

Similarly, we obtain

a−2
T · A = a−2

T ·
(

k

∑
t=2

ytyt−1 −
k

∑
t=2

y2
t−1

)
= a−2

T

k

∑
t=2

ηtyt−1 →
∫ τ

0
U−

κ (r)dUκ(r)

and

T−1a−2
T · B = T−1a−2

T ·
k

∑
t=2

y2
t−1 →

∫ τ

0
U2

κ (r)dr.

Thus, it follows

T · D = τ(T(ρ̂1 − 1))2 → τ

(∫ τ
0 U−

κ (r)dUκ(r)∫ τ
0 U2

κ (r)dr

)2

. (A4)

Therefore, by (A3) and (A4)

Ξ̃ → L(τ, 1)
L(0, τ)

.
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Using the continuous mapping theorem, the desired result is available

Ξ → supτ∈ΛL(τ, 1)
supτ∈ΛL(0, τ)

. (A5)

Proof of Lemma 1. Before presenting the proof, we should define the following random
processes, where for ζ = 0,

L0
1(a, b) = (b − a)

(
L0

11
L0

12

)2

, L0
2(a, b) = (b − a)

(
L0

21
L0

22

)2

,

L0
11 =

∫ 1

τ
U−

κ (r)dUκ(r)− (1 − τ)−1(Uκ(1)− Uκ(τ))
∫ 1

τ
Uκ(r)dr,

L0
12 =

∫ 1

τ
U2

κ (τ)dr − (1 − τ)−1
(∫ 1

τ
Uκ(r)dr

)2

,

L0
21 =

∫ τ

0
U−

κ (r)dUκ(r)− τ−1Uκ(τ)
∫ τ

0
Uκ(r)dr,

L0
22 =

∫ τ

0
U2

κ (r)dr − τ−1
(∫ τ

0
Uκ(r)dr

)2
,

and for ζ = 1,

L1
1(a, b) = (b − a)

(
L1

11
L1

12

)2

, L1
2(a, b) = (b − a)

(
L1

21
L1

22

)2

,

L1
11 =

∫ 1

τ
U−

κ (r)dUκ(r)− (Uκ(1)− (Uκ(τ))W3 − (1 − τ)−1
(∫ 1

τ
rdUκ(r)

)
W4

− (1 − τ)−1
(∫ 1

τ
Uκ(r)dr

)
W4 + W3W4 +

1 + τ

2(1 − τ)
W2

4 ,

L1
12 =

∫ 1

τ
U2

κ (r)dr − 2
(∫ 1

τ
Uκ(r)dr

)
W3 − 2(1 − τ)−1

(∫ 1

τ
(r)Uκ(r)dr

)
W4 + (1 + τ)W3W4

+ (1 − τ)W2
3 ,+(1 − τ)−2 (1 − τ3)

3
W2

4 ,

L1
21 =

∫ τ

0
U−

κ (r)dUκ(r)− Uκ(r)W1 − τ−1Uκ(τ)W2 + W1W2 +
1
2

W2
2 ,

L1
22 =

∫ τ

0
U2

κ (r)dr − 2
(∫ τ

0
Uκ(r)dr

)
W1 − 2

(
τ−1

∫ τ

0
rUκ(r)dr

)
W2 + τW2

1 +
τ

3
W2

2 + τW1W2,

with

W1 = 4τ−1
∫ τ

0
Uκ(r)dr − 6τ−2

∫ τ

0
rUκ(r)dr,

W2 = −6τ−1
∫ τ

0
Uκ(r)dr + 12τ−2

∫ τ

0
rUκ(r)dr,

W3 = 4(1 − τ)−1
∫ 1

τ
Uκ(r)dr − 6(1 − τ)−2

∫ 1

τ
rUκ(r)dr,

W4 = −6(1 − τ)−1
∫ 1

τ
Uκ(r)dr + 12(1 − τ)−2

∫ 1

τ
rUκ(r)dr.

First consider the proof for the case of de-meaned data. Under Model 2, we obtain

(ρ̂2 − 1) =
∑T−k+1

t=2 ε̂T−t+1 ε̂T−t+2 − ∑T−k+1
t=2 ε̂2

T−t+1

∑T−k+1
t=2 ε̂2

T−t+1

, ε̂T−t+1 = εT−t+1 + (µ − µ̂2),
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for the numerator of the statistic and

(ρ̂1 − 1) =
∑k

t=2 ε̂t ε̂t−1 − ∑k
t=2 ε̂2

t−1

∑k
t=2 ε̂2

t−1

, ε̂t = εt + (µ − µ̂1),

for the denominator of statistic, where µ̂1 and µ̂2 are the LS estimates based on y1, y2, · · · , yk
and x1, x2, · · · , xT−k, respectively. It is shown that

a−1
T (µ̂2 − µ) → (1 − τ)−1

∫ 1

τ
Uκ(r)dr and a−1

T (µ̂1 − µ) → τ−1
∫ τ

0
Uκ(r)dr.

For the numerator of statistic, we can obtain

T · N → (1 − τ)

∫ 1
τ U−

κ (r)dUκ(r)− (1 − τ)−1(Uκ(1)− Uκ(τ))
∫ 1

τ Uκ(r)dr∫ 1
τ U2

κ (τ)dr − (1 − τ)−1
(∫ 1

τ Uκ(r)dr
)2


2

. (A6)

This is because

a−2
T

(
T−k+1

∑
t=2

ε̂T−t+1 ε̂T−t+2 −
T−k+1

∑
t=2

ε̂2
T−t+1

)
= a−2

T

(
T−k+1

∑
t=2

εT−t+1ηT−t+2 + (µ − µ̂2)
T−k+1

∑
t=2

ηT−t+1

)

→
∫ 1

τ
U−

κ (r)dUκ(r)− (1 − τ)−1(Uκ(1)− Uκ(τ))
∫ 1

τ
Uκ(r)dr,

and

T−1a−2
T

(
T−k+1

∑
t=2

ε̂2
T−t+1

)
= T−1a−2

T

(
T−k+1

∑
t=2

ε2
T−t+1 + 2(µ − µ̂2)

T−k+1

∑
t=2

εT−t+1 + (T − k)(µ − µ̂2)
2

)

→
∫ 1

τ
U2

κ (τ)dr − (1 − τ)−1
(∫ 1

τ
Uκ(r)dr

)2

.

Similarly, we have

Ξ →
supτ∈ΛL0

1(τ, 1)
supτ∈ΛL0

2(0, τ)
. (A7)

Next, let us think about the proof for the de-meaned and de-trended case. Note that,
unlike de-meaned case, under the null, ε̂T−t+1 = εT−t+1 + (µ − µ̂2) + (T − t + 1)

(
β − β̂2

)
for the numerator of statistic and ε̂t = εt + (µ − µ̂1) + t

(
β − β̂1

)
for the denominator of

the statistic. Here, µ̂1, β̂1, and µ̂2, β̂2 are the LS estimates based on y1, y2, · · · , yk and
x1, x2, · · · , xT−k, respectively.

With the same algebraic calculation, it is shown that

a−1
T (µ̂2 − µ) → 4(1 − τ)−1

∫ 1

τ
Uκ(r)dr − 6(1 − τ)−2

∫ 1

τ
rUκ(r)dr = W3,

a−1
T (T − k)(β̂2 − β) → −6(1 − τ)−1

∫ 1

τ
Uκ(r)dr + 12(1 − τ)−2

∫ 1

τ
rUκ(r)dr = W4,

a−1
T (µ̂1 − µ) → 4τ−1

∫ τ

0
Uκ(r)dr − 6τ−2

∫ τ

0
rUκ(r)dr = W1,

a−1
T k(β̂1 − β) → −6τ−1

∫ τ

0
Uκ(r)dr + 12τ−2

∫ τ

0
rUκ(r)dr = W2.

The rest of the proof technique is similar to the de-meaned case, and we can obtain

Ξ →
supτ∈ΛL1

1(τ, 1)
supτ∈ΛL1

2(0, τ)
. (A8)
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For the remainder of the Appendix A, we omit the corresponding proofs under
Model 2; which are straightforward but tedious and follow the same logical method as
those presented under Model 1.

Proof of Theorem 2. We first consider part (i) of the Theorem 2 for the result under H10.
Firstly, we consider the numerator of the statistic. When τ ≤ τ∗, x1, x2, · · · , xT−k is

made up of I(0) and I(1), and we have

yT−t+2 =

{
ρyT−t+1 + ηT−t+2, 1 < t ≤ T − k∗ + 1;
yT−t+1 + ηT−t+2, T − k∗ + 1 < t ≤ T − k;

and |ρ| < 1.

Furthermore, we can derive

a−2
T · E = a−2

T ·
(

T−k+1

∑
t=2

yT−t+1yT−t+2 −
T−k+1

∑
t=2

y2
T−t+1

)

= a−2
T ·

(
(ρ − 1)

T−k∗+1

∑
t=2

y2
T−t+1 +

T−k∗+1

∑
t=2

ηT−t+2yT−t+1 +
T−k+1

∑
t=T−k∗+2

ηT−t+2yT−t+1

)
= Op(1)

and

T−1a−2
T · F = T−1a−2

T ·
T−k+1

∑
t=2

y2
T−t+1 = T−1a−2

T ·
(

T−k∗+1

∑
t=2

y2
T−t+1 +

T−k+1

∑
t=T−k∗+2

y2
T−t+1

)
= Op(1).

That is because
(

a−1
T ∑k

t=1 yt, a−2
T ∑k

t=1 y2
t

)
=
(
Op(1), Op(1)

)
and a−2

T ∑k
t=1 yt−1ηt =

Op(1) under the I(0) process. The first term was proved by Phillips [27]. For the second
term, since yt−1 = ∑∞

j=0 ρjηt−j−1, we have ∑k
t=1 yt−1ηt = ∑∞

j=0 ρj∑k
t=1ηtηt−j−1. And, be-

cause a−2
T ∑k

t=1ηtηt−j−1 = Op(1) from Phillips [27] and |ρ| < 1, it follows a−2
T ∑k

t=1 yt−1ηt =
Op(1).

So, we can obtain

T(ρ̂2 − 1) = Op(1).

Then, for the numerator of Ξ̃, we can receive

T · N = (1 − τ)(T(ρ̂2 − 1))2 = Op(1). (A9)

When τ > τ∗, x1, x2, · · · , xT−k is I(0). Similarly, we can obtain

a−2
T · E = a−2

T

(
T−k+1

∑
t=2

yT−t+1yT−t+2 −
T−k+1

∑
t=2

y2
T−t+1

)
(A10)

= a−2
T

(
(ρ − 1)

T−k+1

∑
t=2

y2
T−t+1 +

T−k+1

∑
t=2

ηT−t+2yT−t+1

)
= Op(1)

and

a−2
T · F = a−2

T ·
T−k+1

∑
t=2

y2
T−t+1 = Op(1).

Therefore, it is easily shown that

T−1 · N = (1 − τ)((ρ̂2 − 1))2 = Op(1). (A11)

Combining (A9) and (A11), we have N = Op(T−1) for τ ≤ τ∗ and N = Op(T) for
τ > τ∗. Therefore, supτ∈ΛN = Op(T).
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Then, consider the denominator of the statistic. When τ ≤ τ∗, y1, . . . , yk is I(1). Hence,
we have

T · D = τ(T(ρ̂1 − 1))2 → τ

(∫ τ
0 U−

κ (r)dUκ(r)∫ τ
0 U2

κ (r)dr

)2

. (A12)

When τ > τ∗, y1, . . . , yk is made up of the I(1) and I(0) process, we have

a−2
T · A = a−2

T ·
(

k

∑
t=2

ytyt−1 −
k

∑
t=2

y2
t−1

)
(A13)

= a−2
T ·

(
(ρ − 1)

k

∑
t=k∗+1

y2
t−1 +

k∗

∑
t=2

ηtyt−1 +
k

∑
t=k∗+1

ηtyt−1

)
= Op(1)

and

T−1a−2
T · B = T−1a−2

T ·
k

∑
t=2

y2
t−1 = T−1a−2

T ·
(

k∗

∑
t=2

y2
t−1 +

k

∑
t=k∗+1

y2
t−1

)
= Op(1).

So, we can obtain

T(ρ̂1 − 1) = Op(1).

Then, for the numerator of Ξ̃, we can receive

T · D = τ(T(ρ̂1 − 1))2 = Op(1). (A14)

(A12) and (A14) imply that supτ∈ΛD = Op(T−1). Therefore, we obtain Ξ = Op(T2).
Let QT(τ) = T−1 · N, then we have the following result:

QT(τ) → Q(τ) = (1 − τ)C2 I{τ≥τ∗}. (A15)

where C is a constant because, at τ ≥ τ∗, we have

(ρ̂2 − 1) = (ρ − 1) +
∑T−k+1

t=2 ηT−t+2yT−t+1

∑T−k+1
t=2 y2

T−t+1

= (ρ − 1) +
∑∞

j=0 ρja−2
T ∑T

t=k+1 ηtηt−j−1

∑∞
j=0 ∑∞

i=0 ρjρia−2
T ∑T

t=k+1 ηt−j−1ηt−i−1

→ (ρ − 1) +
∑∞

j=0 ρj f j+1(1)
∫ 1

τ (dUκ)
2

∑∞
j=0 ∑∞

i=0 ρjρi fi−j(1)
∫ 1

τ (dUκ)
2
= (ρ − 1) +

c1
c2

= C = Op(1). (A16)

And, (A16) holds because Phillips [27] have shown that a−2
T ∑T

t=1 ηtηt+h → fh(1)
∫ 1

0 (dUκ)
2,

and when |ρ| < 1 there is ∑∞
j=0 ρj < ∞.

Since

τ̂ = arg supτ∈ΛQT(τ) and τ∗ = arg supτ∈ΛQ(τ)

one can apply an argument similar to Lemma 3 of Amemiya [39]. Let G = (a, b) be an open
interval in Λ containing τ∗. We denote by Ḡ the complement of G in Λ. Then, Ḡ∩Λ is compact
and supτ∈Ḡ∩ΛQ(τ) exists. In fact, supτ∈Ḡ∩ΛQ(τ) = Q(a). Let δ = supτ∈Ḡ∩ΛQ(τ)− Q(τ∗)
and ET be the event |QT(τ)− Q(τ)| < δ/2 for all τ’. Then, it can be shown that the
event ET implies that Q(τ̂) − Q(τ∗) < δ which in turn implies that τ̂ ∈ G. Therefore,
Pr(ET) ≤ Pr(τ̂ ∈ G). Since Pr(ET) → 1 by the uniform convergence in (A15), we have

Pr(τ̂ ∈ G) → 1, which implies that τ̂
p→ τ∗. The stated result for Ξ under H10 then

follows immediately.
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Next, consider the results in part (ii) relating to H01. Under this alternative, it is easily
seen that supτ∈ΛN = Op(T−1). For τ ≤ τ∗, y1, · · · , yk is the I(0) process. Hence, we have

T−1 · D = τ(ρ̂1 − 1)2 = Op(1). (A17)

When τ > τ∗, y1, · · · , yk is made up of I(0) and I(1). It is easy to show that

a−2
T · A = a−2

T ·
(

k

∑
t=2

ytyt−1 −
k

∑
t=2

y2
t−1

)
(A18)

= a−2
T ·

(
(ρ − 1)

k∗

∑
t=2

y2
t−1 +

k∗

∑
t=2

ηtyt−1 +
k

∑
t=k∗+1

ηtyt−1

)
= Op(1)

and

T−1a−2
T · B = T−1a−2

T ·
k

∑
t=2

y2
t−1 = T−1a−2

T ·
(

k∗

∑
t=2

y2
t−1 +

k

∑
t=k∗+1

y2
t−1

)
= Op(1).

So, we obtain

T(ρ̂1 − 1) = Op(1).

Then, we have the following result:

T · D = τ(T(ρ̂1 − 1))2 = Op(1). (A19)

From (A17) and (A19), we obtain supτ∈ΛD = Op(T). The proof of τ̃
p→ τ∗ is entirely

analogous to the proof of τ̂
p→ τ∗ and is therefore omitted. Hence, part (ii) of Theorem 2

holds.

Proof of Theorem 3. For the numerator and denominator of the statistic, we have

T−1 · N = (1 − τ)((ρ̂2 − 1))2 → (1 − τ)C2
1 , (A20)

T−1 · D = τ((ρ̂1 − 1))2 → τC2
2 , (A21)

where C1 = C was defined in (A16). Similarly, for C2, we have

(ρ̂1 − 1) = (ρ − 1) + ∑k
t=2 ηtyt−1

∑k
t=2 y2

t−1

= (ρ − 1) +
∑∞

j=0 ρja−2
T ∑k

t=2 ηtηt−j−1

∑∞
j=0 ∑∞

i=0 ρjρia−2
T ∑k

t=2 ηt−jηt−i

→ (ρ − 1) +
∑∞

j=0 ρj f j+1(1)
∫ τ

0 (dUκ)
2

∑∞
j=0 ∑∞

i=0 ρjρi fi−j(1)
∫ τ

0 (dUκ)
2 = (ρ − 1) +

c1

c2
= C = Op(1) (A22)

we have

C1 = C2 = C. (A23)

So, with (A20), (A21), and (A23), we derive that

Ξ →
supτ∈Λ(1 − τ)C2

supτ∈ΛτC2 = 1. (A24)
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Proof of Theorem 4. Under Model 1, we have

T(ρ̂1 − ρ1) →
∫ τ

0 X−
κ (r)dUκ(r)∫ τ

0 X2
κ(r)dr

and T(ρ̂2 − ρ2) →
∫ 1

τ X−
κ (r)dUκ(r)∫ 1

τ X2
κ(r)dr

which were proved by Chan [30].
Due to ρ1 = ρ2 = 1 − (γ/T), we can derive

T(ρ̂1 − 1) →
∫ τ

0 X−
κ (r)dUκ(r)∫ τ

0 X2
κ(r)dr

− γ and T(ρ̂2 − 1) →
∫ 1

τ X−
κ (r)dUκ(r)∫ 1

τ X2
κ(r)dr

− γ.

Then, Theorem 4 can be obtained immediately. Furthermore, for the results about
dt = µ + βt in Lemma 2, the proofs are similar and therefore omitted here. But, we should
give the following definitions

G1(a, b) = (b − a)
(

G11

G12
− γ

)2
, G2(a, b) = (b − a)

(
G21

G22
− γ

)2
,

G11 =
∫ 1

τ
X−

κ (r)dUκ(r)− (1 − τ)−1(Uκ(1)− Uκ(τ))
∫ 1

τ
Xκ(r)dr,

G12 =
∫ 1

τ
X2

κ(τ)dr − (1 − τ)−1
(∫ 1

τ
Xκ(r)dr

)2

,

G21 =
∫ τ

0
X−

κ (r)dUκ(r)− τ−1Uκ(τ)
∫ τ

0
Xκ(r)dr,

G22 =
∫ τ

0
X2

κ(r)dr − τ−1
(∫ τ

0
Xκ(r)dr

)2
.

Before giving the proof of Theorem 5, we need to introduce the following two Lemmas.

Lemma A1. Let

R1(r) = a−1
l

[lr]

∑
t=1

η∗
t ,

where η∗
t = y∗t − y∗t−1 for t = 2, · · · , [lr]. If Assumption 1 and Assumption 2 hold, then

R1(r) = a−1
l

[lr]

∑
t=1

η∗
t → Uκ(r).

Proof. Without loss of generality, we assume that y0 = 0 and for 0 ≤ r ≤ 1, by construction
of the block bootstrap method, we have

a−1
l

[lr]

∑
t=1

η∗
t = a−1

l y1 + a−1
l

Mr

∑
m=0

V

∑
s=1

η̂im+s

where Mr = [([lr]− 2)/b] and V = min{b, [lr]− mb − 1}. The fact that

R1(r) = a−1
l

Mr

∑
m=0

b

∑
s=1

η̂im+s − a−1
l

b

∑
s=B+1

η̂iMr+s + Op(a−1
l ), (A25)



Mathematics 2024, 12, 258 23 of 25

and sup0≤r≤1

∣∣∣a−1
l ∑b

s=B+1η̂iMr+s

∣∣∣ = op(1). We only consider the first term on the right-hand
side of (A25) in the following. We first show uniformly that, in r,∣∣∣∣∣a−1

l

Mr

∑
m=0

b

∑
s=1

η̂im+s − a−1
l

Mr

∑
m=0

b

∑
s=1

ηim+s

∣∣∣∣∣→ 0 (A26)

in probability. To establish (A26), use the definitions of η̂t to verify that

a−1
l

Mr

∑
m=0

b

∑
s=1

η̂im+s = a−1
l

Mr

∑
m=0

b

∑
s=1

(
ηim+s −

1
T − 1

T

∑
j=2

ηj

)

+ a−1
l (1 − ρ̂)

Mr

∑
m=0

b

∑
s=1

(
yim+s−1 −

1
T − 1

T

∑
j=2

yj−1

)
.

(A27)

We then have

E∗
[

b

∑
s=1

(
yim+s−1 −

1
T − 1

T

∑
j=2

yj−1

)]
=

b

∑
s=1

(
1

T − b

T−b

∑
t=1

yt+s−1 −
1

T − 1

T

∑
j=2

yj−1

)

=
−1

(T − b)(T − 1)

[
b

∑
s=1

(T − 1)

(
s−1

∑
t=1

yt +
T−1

∑
t=T−b+s

yt

)
+ b(b − 1)

T

∑
j=2

yj−1

]
= Op

(
b2al(T − b)−1

)
.

Similarly,

E∗

 b

∑
s=1

yim+s−1 −
1

T − 1

T

∑
j=2

yj−1

2

=
1

T − b

T−b

∑
t=1

 b

∑
s=1

yt+s−1 −
1

T − 1

T

∑
j=2

yj−1

2

= Op

(
b2a2

l

)
.

Let

T∗
n = a−1

l

Mr

∑
m=0

b

∑
s=1

(
yim+s−1 −

1
T − 1

T

∑
j=2

yj−1

)
.

Then, we have E∗(T∗
n )

2 = Op(bT). Since we have (1 − ρ̂) = Op(T−1) when ρ = 1, so

a−1
l (1 − ρ̂)

Mr

∑
m=0

b

∑
s=1

(
yim+s−1 −

1
T − 1

T

∑
j=2

yj−1

)
= Op

(
b1/2T−1/2

)
. (A28)

From (A27) and (A28), it uniformly follows that, in r,∣∣∣∣∣a−1
l

Mr

∑
m=0

b

∑
s=1

η̂im+s − a−1
l

Mr

∑
m=0

b

∑
s=1

(
ηim+s −

1
T − 1

T

∑
j=2

ηj

)∣∣∣∣∣→ 0 (A29)

in probability. Due to E(ηt) = 0, if κ > 1 and the ηts are symmetric at 0, and if κ ≤ 1, then
we obtain (A26). Then, by the stationarity of ηt, we uniformly obtain that, in r,

a−1
l

Mr

∑
m=0

b

∑
s=1

ηim+s → Uκ(r). (A30)

By (A26) and (A30), the assertion of Lemma A1 is implied.
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Lemma A2. Let

R2(r) = a−2
l

[lr]

∑
t=1

(η∗
t )

2,

where η∗
t = y∗t − y∗t−1 for t = 2, · · · , [lr]. If Assumption 1 and Assumption 2 hold, then

R2(r) = a−2
l

[lr]

∑
t=1

(η∗
t )

2 →
∫ r

0
(dUκ)

2.

The proof is similar to Lemma A1.

Proof of Theorem 5. For the numerator, note that

(ρ̂∗2 − 1) =
∑l−k+1

t=2 y∗l−t+1y∗l−t+2 − ∑l−k+1
t=2 (y∗l−t+1)

2

∑l−k+1
t=2 (y∗l−t+1)

2
.

By Lemmas A1 and A2, we can easily obtain the formulas

a−2
l

(
l−k+1

∑
t=2

y∗l−t+1y∗l−t+2 −
l−k+1

∑
t=2

(y∗l−t+1)
2

)
= a−2

l

l−k+1

∑
t=2

η∗
l−t+2y∗l−t+1 →

∫ 1

τ
U−

κ (r)dUκ(r),

and

l−1a−2
l

(
l−k+1

∑
t=2

(y∗l−t+1)
2

)
→
∫ 1

τ
U2

κ (r)dr.

So, it is straightforward to show that

l · N∗ = l · (l − [lτ])(ρ̂∗2 − 1)2 → (1 − τ)

(∫ 1
τ U−

κ (r)dUκ(r)∫ 1
τ U2

κ (r)dr

)2

.

By an application of the continuous mapping theorem and the denominator is dealt
with analogously, we can obtain

Ξ∗ →
supτ∈ΛL(τ, 1)
supτ∈ΛL(0, τ)

.
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