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Abstract: We present a non-traditional finite element method for the electromagnetic scattering of the
partly covered groove filled with multiple media. The non-local boundary condition is introduced to
make the unbounded scattering into a bounded domain problem. Non-body-fitted mesh is applied
to save the cost of discretizing groove domain greatly. In addition, the level set functions are utilized
to describe complex media interfaces and boundaries. Numerical tests demonstrate the effectiveness
and second-order convergence rate of the proposed method.
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1. Introduction

Studying the electromagnetic scattering of the groove provides important theoretical
values and practical guidance for many fields. For example, in materials science, it can help
to understand the surface texture and microstructure of materials, which is important for
designing and manufacturing materials with specific scattering properties and controlling
the performance of optical devices. In optical technology, designing a specific groove
structure achieves high absorption, high reflection or high transmittance in a specific
wavelength range. Based on the characteristics above, it can be applied to the aspects
of solar absorbers, sensors and display technology. In addition, radar detection and
stealth design in military engineering are closely associated with the investigation of
groove scattering.

A great deal of researchers have developed various numerical methods for solving
the Helmholtz equation of electromagnetic scattering by cavities. Bao and Sun [1] reduced
the scattering problem to a bounded domain problem and solved the electromagnetic
scattering of a rectangular cavity filled with vertically layered media by the fast finite
difference method. Wang [2] proposed a second-order Toeplitz-type approximation and a
fast second-order finite difference scheme for approximating the hypersingular integral
operator on the aperture and the Helmholtz equation. Zhao and Zhu [3,4] developed fast
fourth-order and sixth-order finite difference schemes to discretize the scattering equation.
Other finite difference methods for the scattering problem can also be found in [5–7].
Although the finite difference method has a high solution accuracy, it can only use regular
grid discretize governing equations and boundary conditions, leading to the limitation of
regular groove shape. The finite element method can handle the scattering by cavities with
arbitrarily shaped boundaries and interfaces. Jin [8,9] presented a finite element boundary
integral method for the open cavity scattering. Van and Wood [10] converted the wave
equation into a modified Helmholtz equation by using the Newmark time-stepping scheme
and solved it by the finite element method. Du [11] utilized the finite element method to
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solve the electromagnetic scattering problem of an overfilled multi-cavity. More works on
the finite element method in cavity scattering are seen in [12,13]. In addition to the usual
finite difference method and finite element method, there are many methods to solve the
groove scattering problem, including the boundary element method [14–17], the perfect
matching layer method [18–21] and so on.

In the literature mentioned above, the traditional finite element method discretizes the
computation domain by using body-fitted mesh, which divides the region into triangular
elements and aligns the edges of the elements with the interface. The way of dividing
the grid is easy to analyze and can obtain good convergence speed for regular-shape
cavity scattering. However, when the geometry is complex, the grid elements at irregular
boundaries may be distorted, which affects the accuracy and stability of the numerical
solution. There may also be a phenomenon of uneven mesh division, resulting in the
accuracy of the calculation results in local areas not being high. In the paper, we propose a
non-traditional finite element method for solving the electromagnetic scattering problem
of partly covered grooves filled with multiple media, which uses non-body-fitted mesh
to generate the uniform triangulation. Meanwhile, the level set functions are introduced
to describe the complex groove boundary and the interface. The basis functions of the
solution space are designed according to the interface jump conditions. Numerical results
show that the proposed non-traditional finite element method can efficiently deal with the
scattering of partly covered grooves with multiple media, which can reach the convergence
rate of the second order.

An outline of this paper is as follows. Section 2 introduces the mathematical model
of electromagnetic scattering with the partly covered groove. In Section 3, we deduce the
weak form of the Helmholtz equation generated by the scattering problem. The method
of generating non-body-fitted mesh and treating the interface and boundary truncation
elements is presented in detail in Section 4. Then, the convergence and effectiveness of the
non-traditional finite element method are verified by numerical tests in Section 5. Finally,
we draw some conclusions in Section 6.

2. The Mathematical Model of a Partly Covered Groove

We investigate the scattering of a partly covered groove injected by the indent wave
with an incident angle of θ, embedded in the half plane of a perfect electric conductor,
as shown in Figure 1. (Ei, Hi) is the incident electric field and the magnetic field. Er, Hr
and Es, Hs express the reflected field and the scattered field, respectively. The groove
domain is divided into two subdomains, Ω1 and Ω2. Let εr1 be the relative permittivity
of the medium filling in Ω1. Similarly, εr2 is the relative permittivity of another medium.
The permeability of non-magnetic media filling in the whole groove Ω and the half plane
R2
+ =

{
(x, y) ∈ R2 : y > 0

}
is set to the permeability u0 = 4π × 10−7H/m of the free space.

The interface between the two media is denoted as Γint. Let Γ be the aperture of the partly
covered groove, whose endpoints are xa and xb. ΓC = {y = 0}\Γ and the boundary S are
the surface of the perfect electric conductor.

Figure 1. The geometry of the partly covered groove.
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According to the differential form of time-harmonic Maxwell equations without source,
we have the following formulation for electric field

∇×∇× E − k2
0εrE = 0,

where

εr =


εr1 in Ω1,
εr2 in Ω2,
1 in R2

+,

and the total electric field E is a vector field in three dimensions. k0 is the wave number
of free space. For the simplicity of presentation, it is usually assumed that the groove
structure, media and electromagnetic field do not change with the z axis, resulting in
two polarization modes: transverse magnetic (TM) and transverse electric (TE). In this
paper, we focus on TM polarization, where the electric field has only a third component,
that is, the indent electric field Ei = (0, 0, ui). We assume ui = eik0(x cos θ−y sin θ), and then
ur = −eik0(x cos θ+y sin θ) denotes the z component of the reflected field. The Helmholtz
equation of the scattering problem is as follows

∆u + k2
0εru = 0 in Ω ∪R2

+,
u = 0 on ΓC ∪ S,

(1)

where u = ui + ur + us is the z component of the total field and us is the z component of
the scattered field.

By means of Green’s function in the upper half plane, we can obtain the non-local
boundary condition on the aperture of the partly covered groove. The unbounded scattering
is reduced into the internal problem of the groove. The scattered field of the upper half
plane satisfies the following governing equations

∆us + k2
0us = 0 in R2

+,
us = 0 on ΓC,
us = u on Γ.

(2)

Recall that Green’s function with Dirichlet boundary conditions in the upper half plane is
given by

∆x′Gd(x, x′) + k2
0Gd(x, x′) = −δx(x′) in R2

+,
Gd(x, x′) = 0 on y′ = 0,

(3)

where x = (x, y) is the fixed source point and x′ = (x′, y′) is the field point. The solution of
the above equations is

Gd(x, x′) =
i
4

[
H(1)

0 (k0|x′ − x|)− H(1)
0 (k0|x′ − x̄|)

]
, (4)

where x̄ = (x,−y) is the mirror image of the source point x and H(1)
0 (z) expresses the first

Hankel function of zero order.
Multiplying both sides of the first formula of (2) by Gd and integrating with respect to

x′ in the upper half plane R2
+, we have∫
R2
+

(
Gd · ∆us + k2

0Gd · us

)
dx′ = 0. (5)

Similarly, we multiply the two sides of the first formula of (3) by us and integrate with
respect to x′ in the upper half plane. Considering the properties of Dirac function, we obtain∫

R2
+

(
us · ∆Gd + k2

0us · Gd

)
dx′ = −us(x). (6)
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Subtracting (6) by (5), applying the second theorem of Green’s function and combining the
Sommerfeld radiation condition

lim
r→∞

√
r
(

∂us

∂r
− ik0us

)
= 0, lim

r→∞

√
r
(

∂Gd
∂r

− ik0Gd

)
= 0, (7)

we finally obtain the boundary integral expression of the scattered field

us(x) =
∫

Γ

∂Gd(x, x′)
∂y′

us(x′)dx′ in R2
+, (8)

where
∂Gd(x, x′)

∂y′

∣∣∣∣
y′=0

=
ik0y
2r

H(1)
1 (k0r). (9)

Here, r =
√
(x − x′)2 + y2 and H(1)

1 (z) is the first Hankel function of first order. Taking the
partial derivative of (8) with respect to y gives

∂us(x)
∂y

∣∣∣∣
y=0+

=
ik0

2

∫
Γ

1
|x − x′|H(1)

1
(
k0|x − x′|

)
us
(
x′, 0

)
dx′ on Γ. (10)

Substituting us = u − ui − ur into (10) gives rise to

∂u(x)
∂y

∣∣∣∣
y=0+

=
ik0

2

∫
Γ

1
|x − x′|H(1)

1
(
k0|x − x′|

)
u
(
x′, 0

)
dx′ − 2iβeiαx on Γ, (11)

where α = k0 cos θ and β = k0 sin θ. According to the electric field continuity condition

∂u
∂n

∣∣∣∣
y=0+

=
1
µr

∂u
∂n

∣∣∣∣
y=0−

, (12)

where n represents the unit normal vector at the aperture pointing to the upper half plane
and µr = 1 is the relative permeability, (11) can be rewritten as

∂u(x)
∂n

=
ik0

2

∫
Γ

1
|x − x′|H(1)

1
(
k0|x − x′|

)
u
(
x′, 0

)
dx′ − 2iβeiαx on Γ. (13)

This is called the non-local boundary condition on the aperture of the partly covered groove.
It follows that

∆u + k2
0εru = 0 in Ω,

u = 0 on ∂Ω\Γ,
∂u
∂n = I(u) + g(x) on Γ.

(14)

Here, g(x) = −2iβeiαx. I(u) = ik0
2

∫
Γ

1
|x−x′ | H

(1)
1 (k0|x − x′|)u(x′, 0)dx′, which includes the

approximation of the Hadamard integral, as shown in [22].

3. Weak Form of the Scattering Problem

In this section, we derive the weak form of (14) in detail. The function space of the
solutions satisfies the squared quadratic property of the solutions and their derivative.
The Sobolev space H1 is used,

H1(Ω) =
{

u ∈ L2(Ω) : ||u||2L2 + ||∇u||2L2 < ∞
}

,

with its norm

||u||H1(Ω) =

(∫
Ω
(u2 +∇u · ∇u)dxdy

) 1
2
.
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On account of the boundary operator on the aperture, we define the trace functional space

H
1
2 (Γ) =

{
u : u ∈ L2(Γ),

∫
Γ

(
1 + ξ2

) 1
2 |û|2dξ < ∞

}
,

with its norm

||u||
H

1
2 (Γ)

=

(∫
Γ

(
1 + ξ2

) 1
2 |û|2dξ

) 1
2

.

Here, û(ξ) =
∫

Γ u(x)eixξ dx is the Fourier transformation of u. Additionally, the test function
space is denoted as

H1
0(Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω\Γ

}
.

The variational formula of (14) can be obtained by multiplying the test function v on both
sides and applying the partial integral method,∫

Ω

(
∇u · ∇v − k2

0εruv
)

dxdy −
∫

Γ
I(u)vdx =

∫
Γ

gvdx. (15)

Find u ∈ H1(Ω), such that

a(u, v) = b(v), ∀v ∈ H1
0(Ω), (16)

where a(u, v) =
∫

Ω

(
∇u · ∇v − k2

0εruv
)
dxdy −

∫
Γ I(u)vdx, and b(v) =

∫
Γ gvdx.

4. Non-Traditional Finite Element Method

In this section, we present the non-traditional finite element method by means of
non-body-fitted uniform meshes and explain how to transfer the jump conditions of the
interface to the split elements.

4.1. Non-Body-Fitted Mesh Generation

First, we need to build a virtual rectangle with the top edge flush with the aperture
of the partly covered groove and slightly larger than the groove. The virtual rectan-
gle is divided into M parts transversely and N parts vertically, and the step sizes are
hx = xmax−xmin

M and hy = ymax−ymin
N , respectively. Then, the grid size is h = max

{
hx, hy

}
and the collection of Cartesian grid points is

{
(xi, yj) : xi = xmin + ihx, i = 0, 1, · · · , M;

yj = ymin + jhy, j = 0, 1, · · · , N
}

. Each regular rectangular element is divided along its
main diagonal into a lower triangle and an upper triangle, with the vertex coordinates of
the lower triangle being (xi−1, yj−1), (xi, yj−1), and (xi−1, yj), and the vertex coordinates
of the upper triangle being (xi, yj), (xi−1, yj), and (xi, yj−1), i = 1, 2, · · · , M, j = 1, 2, · · · , N.
Finally, all triangles are collected to form a uniform triangulation Th = ∑

T∈Th

T.

We consider the semicircular partly covered groove as an example for a detailed discus-
sion, as shown in Figure 2. The blue curve represents the groove boundary and the covered
aperture, and the green curve represents the interface between different media. The yellow
lines only appear when the media interface intersects with the uniform triangular element.
The red markers represent the global node number, i.e., the degrees of freedom for a linear
system generated by the scattering problem.
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1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24

M=10

N
=

5

Figure 2. Sample grid generation with M = 10, N = 5.

We can observe that there are two regions surrounded by dotted lines and solid lines.
This blue curve plays a crucial role, which can be described by the level set function Φb(x, y).
Φb is greater than zero in the domain outside the groove, which is not included in the
calculation. If Φb = 0 at a grid point, then this point is on the boundary. Φb < 0 means that
this point is inside the groove. In addition, the level set function of the interface is denoted
by Φint(x, y). When the grid point is in Ω1, the value Φint is greater than 0. When this
point falls in Ω2, Φint is less than 0. Φint is equal to 0 at the interface. It is easy to determine
the region where the grid nodes are located through the level set function. Then, we only
need to consider the computation in the groove, where the set of nodes is represented by P .
For the sake of follow-up, we still need to introduce two sets of grid functions

H1,h =
{

ωh = (ωi,j) : 0 ≤ i ≤ M, 0 ≤ j ≤ N
}

,

and
H1,h

0 =
{

ωh = (ωi,j) ∈ H1,h : if i = 0, M or j = 0, N
}

.

Two extension operators from coefficient vectors to finite element functions are constructed.
The first operator is Vh : H1,h → H1

0(Ω). For any ψh ∈ H1,h
0 , Vh(ψh) is a standard

continuous piecewise linear function and matches ψh on the grid, which serves as a basic
function of a finite dimensional subspace H1,h

0 (Ω) of the Sobolev space H1
0(Ω). Another

extension operator U h is a similar construction. It is a linear function in triangular elements
that are not truncated by the boundary and interface. In those truncated elements, it consists
of two pieces of linear functions, one on T1 ⊆ Ω1 and the other on T2 ⊆ Ω2. The position of
the discontinuity at the interface is the straight segment Γh

T . Here, we introduce two kinds
of interface conditions, the value jump condition

[u]
∣∣
Γint

≡ u(1) − u(2) = p,

and the flux jump condition[
c

∂u
∂n

]∣∣∣∣
Γint

≡ c(1)
∂u(1)

∂n
− c(2)

∂u(2)

∂n
= q,

where p, q are given functions and c(1), c(2) are the reciprocal of the relative permeability.
In the scattering problem of the partly covered groove, the electric field values and fluxes
at the interface are continuous, i.e., p = q = 0. Since the fillings are supposed to be
non-magnetic, c(1) = c(2) = 1.
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4.2. The Processing of Intersecting Elements with Interface

We consider the treatment of the triangle that intersects the media interface. Let us
take a triangle with node numbers 2, 3 and 8, as shown in Figure 3. First, the nodes are
renumbered. P4, P5 are the intersection points of P1P2, P1P3 and the interface, respectively.
P6 is the midpoint of P4P5. Let T1 belongs to Ω1 and T2, T3 belong to Ω2. We consider the
jumps at P4 and P5

u(1)
4 − u(2)

4 = p4, u(1)
5 − u(2)

5 = p5, (17)

and the flux jump at P6

c(1)
∂u(1)

6
∂n

− c(2)
∂u(2)

6
∂n

= q6, (18)

where the character superscript denotes the domain number and the subscript denotes the
node number.

Figure 3. Intersection element generalization.

We know that the basic function of the solution space consists of the linear function on
T1 and the linear function on T2 and T3. There are

U h(x, y) =
{

d1x + e1y + f1 on T1,
d2x + e2y + f2 on T2 ∪ T3.

(19)

Combined with (17), the system of linear equations on T1 can be expressed as

d1x1 + e1y1 + f1 = u1,
d1x4 + e1y4 + f1 = u(2)

4 + p4,
d1x5 + e1y5 + f1 = u(2)

5 + p5,
(20)

and the system of linear equations on T3 is

d2x2 + e2y2 + f1 = u2,
d2x3 + e2y3 + f1 = u3,
d2x4 + e2y4 + f1 = u(2)

4 .
(21)

The gradient [d1, e1]
Tsolved by (20) is represented by ∇(1), and the gradient [d2, e2]

T of (21)
is denoted by ∇(2). It follows from (18) that[

c(1)∇(1) · n − c(2)∇(2) · n
]∣∣∣∣

(x6,y6)

= q6. (22)

In addition, on T2

d2x5 + e2y5 + f2 = u(2)
5 . (23)

From (20) to (23), the number of equations is equal to that of unknowns, so u(1)
4 , u(2)

4 , u(1)
5

and u(2)
5 can be uniquely expressed linearly by u1, u2 and u3.
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In brief, the discrete idea of the non-traditional finite element method is as follows.
Finding a discrete function uh ∈ H1,h, such that for all ϕh ∈ H1,h

0 , we have

∑
T∈T h

[∫
T1 ∇U h(uh) · ∇V(ϕh)dxdy +

∫
T2 ∇U h(uh) · ∇V(ϕh)dxdy

+
∫

T1
k2

0εrU h(uh)V(ϕh)dxdy +
∫

T2
k2

0εrU h(uh)V(ϕh)dxdy
]

−
∫

Γh I
(
U h(uh)

)
V(ϕh)dx = ∑

T∈T h

∫
Γh

T
gV(ϕh)dx.

(24)

Then, we draw the flow chart of solving the scattering problem of the partly covered groove
by the non-traditional finite element method in Figure 4.

The wave number:
The relative permittivity:
The level set functions:
The scale of virtual rectangle:

The Numbers of mesh splits：

Input parameters

Begin

Draw the magnitude 
of aperture field and 

backscatter RCS

End

Compute the local linear 
system of each element 

according to Equation (24)

Assemble the large sparse coefficient 
matrix and the total right-end vector 
of the scattering problem, according 

to the node numbers

Obtain total electric field by 
numerical iterative algorithms

Meshing

Form a uniform triangulation:

Record those points       inside the 
grove to solve the Field values at 

these points

Figure 4. Flow chart of the non-traditional finite element method for solving the scattering problem
of the partly covered groove.

5. Numerical Examples

In this section, numerical tests are carried out to verify the accuracy and computational
efficiency of the non-traditional finite element method for the scattering problem from
the partly covered groove. We are concerned with the magnitude of the aperture field,
the distribution of the total field in the groove and the radar cross-section (RCS), which is
of great interest in the field of engineering electromagnetism. Backscatter RCS is defined
as follows

Backscatter RCS(θ) = 10 log10

(
4
k0
|P(θ)|

)
dB,

where θ is the observation angle and the incident angle. |P(θ)| is the far-field coefficient,

P(θ) =
k0

2
sin θ

∫
Γ

ueik0x cos θdx.
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5.1. Example 1

We consider a square groove with an uncovered aperture, filled with layered media,
that is, εr1 = 1, εr2 = 1 + 4i. We suppose that the exact solution is

u(x, y) =

{
3
2 sin(πx) sin(π(y+1)

2 ), (x, y) ∈ [0, 1]× [−0.5, 0](Ω1),
sin(πx) sin(π(y+1)

2 ), (x, y) ∈ [0, 1]× [−1,−0.5](Ω2).

Jump conditions on the interface can be calculated

[u]
∣∣
Γint

= 1
2 sin(πx) sin(π(y+1)

2 ),[
∂u
∂n

]∣∣∣∣
Γint

=
[

π
2 cos(πx) sin(π(y+1)

2 ), π
4 sin(πx) cos(π(y+1)

2 )
]T

,

and the source term can also be calculated

f (x, y) =

{
3
2 (k

2
0εr1 − 5

4 π2) sin(πx) sin(π(y+1)
2 ) in Ω1,

(k2
0εr2 − 5

4 π2) sin(πx) sin(π(y+1)
2 ) in Ω2.

The wave number is k0 = 2π, and the square groove is divided into 20 × 20. Figure 5
shows the exact solution, and Figure 6 shows the numerical solutions obtained by the
non-traditional and traditional finite element method. Obviously, the numerical solution
obtained by the non-traditional finite element method is closer to the exact solution. We
give the error and convergence rate at L2 norm after grid encryption in Table 1. It is easily
observed that our method can deal with the discontinuous interface well. The traditional
approach cannot solve such problems well, which means it cannot achieve a relatively good
convergence rate.

0

0

0.5

-0.2 1

1

M
a
g
n
it
u
d
e

-0.4 0.8

1.5

y

0.6

x

-0.6

2

0.4
-0.8 0.2

-1 0

Figure 5. Exact solution with εr1 = 1, εr2 = 1 + 4i and k0 = 2π.
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Figure 6. Numerical solutions by the non-traditional finite element method (left) and traditional
finite element method (right) with εr1 = 1, εr2 = 1 + 4i and k0 = 2π.

Table 1. Error and convergence rate with εr1 = 1, εr2 = 1 + 4i and k0 = 2π.

Method Meshes L2 Error Order

20 × 20 0.0536 –
Non-traditional 40 × 40 0.0136 1.9796
finite element 80 × 80 0.0034 1.9823

method 160 × 160 0.0009 1.9820

20 × 20 1.7569 –
Traditional finite 40 × 40 1.6787 0.0657
element method 80 × 80 1.6398 0.0339

160 × 160 1.6204 0.0172

5.2. Example 2

We next consider partly covered rectangular grooves with different kinds of apertures
in Figure 7, which both are 1 m wide and 0.25 m deep. In the left picture, the aperture is
covered by 0.125 m at both ends, while the aperture is covered by 0.25 m in the right picture.

0.125m0.125m 0.75m

0.
25m

0.25m 0.5m

0.
25m

Figure 7. Partly covered rectangular grooves with different kinds of apertures.

First of all, we assume that the groove in the left picture of Figure 7 is empty, i.e., εr = 1,
and the wave number is 8π. It is apparent from Figure 8 that the results calculated by our
method are in good agreement with Zhao’s in [3], which shows that the non-traditional
finite element method can efficiently solve the groove scattering problem. Additionally,
Table 2 shows that our method still has a second-order convergence rate at L∞ norm and
L2 norm when the wave number is relatively high, which is similar to the conclusion in
Example 1.
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Figure 8. The magnitude of the aperture field at the normal incidence of the groove in the left picture
with k0 = 8π, εr = 1.

Table 2. Error and convergence rate with k0 = 8π, εr = 1.

Meshes L∞ Error Order L2 Error Order

192 × 48 0.0359 – 0.1971 –
384 × 96 0.0094 1.9308 0.0543 1.8597

768 × 192 0.0022 2.1025 0.0144 1.9176

Then, we consider the electromagnetic scattering by the right groove in Figure 7. When
the wave number is 2π, Figures 9 and 10 plot the magnitude of the aperture field at vertical
incidence and the RCS corresponding to εr = 1 and 4 + 1i, respectively. Compared with
Du’s results in [6], numerical results produced by our method agree with his, which once
again confirms the accuracy of the non-traditional finite element method.
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Figure 9. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the groove in the
right picture filled with εr = 1 and with k0 = 2π.
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Figure 10. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the groove in the
right picture filled with εr = 4 + 1i and with k0 = 2π.

5.3. Example 3

We design a short backfire antenna model, a rectangle similar to the one in Example 2,
as shown in Figure 11, which is covered by 0.6 m at the center of the aperture.

0.2m 0.6m

0.25m

Figure 11. A short backfire antenna model.

Figures 12 and 13 give the magnitude of the aperture field at the normal incidence
and RCS of the antenna model filled with different homogeneous media, εr = 1 or 1 + 4i,
respectively, when the wave number is 16π. We see that our method can handle the
situation of covering the center of the aperture well. The magnitude and RCS are reduced
to a certain extent when the relative permittivity is complex.
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Figure 12. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the short antenna
model filled with εr = 1 and with k0 = 16π.
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Figure 13. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the short antenna
model filled with εr = 1 + 4i and with k0 = 16π.

5.4. Example 4

We further consider an asymmetric groove that is 1 m wide and 0.5 m deep, as shown
in Figure 14, where the function of the lower edge of the groove is y = −0.25 sin(2πx)− 0.5.

0.
5m

0.125m 0.125m0.75m

0.5m

0.
25m

Figure 14. An asymmetric groove.

Let the wave number be 4π, the magnitude of the aperture field at the normal
incidence and RCS of the asymmetric groove with εr = 1 and 4 + 1i are presented by
Figures 15 and 16. Combing Figure 14, we can conclude that the asymmetry of the mag-
nitude plot is justified due to the asymmetry of the groove. The backscatter RCS and the
magnitude of the aperture field from the groove filled with a medium with a complex
permittivity are both reduced greatly, similar to Example 3.
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Figure 15. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the asymmetric
groove filled with εr = 1 and with k0 = 4π.
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Figure 16. The magnitude of the aperture field (left) at θ = 0 and RCS (right) for the asymmetric
groove filled with εr = 4 + 1i and with k0 = 4π.

5.5. Example 5

A semicircular groove filled with two media is considered in Figure 17. The radius of
the semicircular groove is 0.5 m, and the two ends of its aperture are covered by 0.125 m.

The level set function of the interface is Φint(x, y) = 1 − x2

0.72 −
y2

0.352 .

0.75m0.125m 0.125m

0.
5m

Figure 17. A partly covered semicircular groove with a radius of 0.5 m.
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We consider that Ω2 is filled with different kinds of absorbing materials, setting
two sets of parameters, Type 1: εr1 = 4 + 1i, εr2 = 16.01 + 0.9i, k0 = 2π, 8π; Type 2:
εr1 = 1 + 0.2i, εr2 = 29.78 + 2.31i, k0 = 2π, 8π. We pay attention to the distribution of
the total field inside the groove when the incident angle is 0. Figures 18 and 19 show the
distribution of the total field with Type 1 and Type 2, respectively. The magnitude of the
total field in Ω2 is smaller than the one in Ω1, and the magnitude under the circumstance
of high-frequency incident waves is smaller than the one under the circumstance of low-
frequency incident waves . The absorbing materials have good absorption performance,
and the higher the frequency, the faster the energy decays.

Figure 18. The distribution of the magnitude of the total field with Type 1 (k0 = 2π (left),
k0 = 8π (right)).

Figure 19. The distribution of the magnitude of the total field with Type 2 (k0 = 2π (left),
k0 = 8π (right)).

6. Conclusions

This paper investigates the electromagnetic scattering problem of the partly covered
groove by using a new non-traditional finite element method, which can accurately solve
the scattering from the groove filled with multiple media, with an irregular boundary and
interface. In addition, no matter where the aperture is covered, our method can solve
it well. Whether the groove is symmetrical or not does not affect the solution of our
program. In the non-traditional finite element method, the generation technology of non-
body-fitted mesh is more popular with engineers than producing body-fitted mesh, thanks
to its simplicity and cost-saving. Additionally, this idea of uniform meshing, including
determining the intersection by level set functions and transferring the interface conditions
to the split elements, can also be extended to three-dimensional groove scattering or other
interface problems.
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