
Citation: Casado-Vara, R.; Severt, M.;

Díaz-Longueira, A.; Rey, Á.M.d.;

Calvo-Rolle, J.L. Dynamic Malware

Mitigation Strategies for IoT

Networks: A Mathematical

Epidemiology Approach. Mathematics

2024, 12, 250. https://doi.org/

10.3390/math12020250

Academic Editor: Antanas Cenys

Received: 21 November 2023

Revised: 4 January 2024

Accepted: 9 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamic Malware Mitigation Strategies for IoT Networks:
A Mathematical Epidemiology Approach
Roberto Casado-Vara 1,* , Marcos Severt 2 , Antonio Díaz-Longueira 3 , Ángel Martín del Rey 4

and Jose Luis Calvo-Rolle 3

1 Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Matemáticas y Computación,
Escuela Politécnica Superior, Universidad de Burgos, Av. Cantabria s/n, 09006 Burgos, Spain

2 Department of Computer Sciences, Universidad de Salamanca, 37007 Salamanca, Spain; marcos_ss@usal.es
3 Department of Industrial Engineering, CTC, CITIC, University of A Coruña, Rúa Mendizábal, s/n,

15403 Ferrol, Spain; a.diazl@udc.es (A.D.-L.); jose.rolle@udc.es (J.L.C.-R.)
4 Department of Applied Mathematics, Universidad de Salamanca, 37007 Salamanca, Spain; delrey@usal.es
* Correspondence: rccasado@ubu.es

Abstract: With the progress and evolution of the IoT, which has resulted in a rise in both the
number of devices and their applications, there is a growing number of malware attacks with higher
complexity. Countering the spread of malware in IoT networks is a vital aspect of cybersecurity,
where mathematical modeling has proven to be a potent tool. In this study, we suggest an approach
to enhance IoT security by installing security updates on IoT nodes. The proposed method employs
a physically informed neural network to estimate parameters related to malware propagation. A
numerical case study is conducted to evaluate the effectiveness of the mitigation strategy, and novel
metrics are presented to test its efficacy. The findings suggest that the mitigation tactic involving the
selection of nodes based on network characteristics is more effective than random node selection.

Keywords: malware propagation; individual-based SIR model; PINN; Inverse problem; malware
mitigation; IoT networks

MSC: 92D30

1. Introduction

The Internet of Things (IoT) represents a paradigm shift that enables the integra-
tion of billions of endpoint devices with embedded intelligence and communication
capabilities [1,2]. Its applications include healthcare, home automation, transportation,
smart grids, and environmental monitoring, among others. Nonetheless, the IoT faces
substantial security risks from malware, which refers to malicious code, such as sensor
worms, ransomware, and botnets [3]. IoT devices are at high risk of malware attacks
because of inadequate regulations and neglected manufacturing security [4]. Additionally,
conventional security measures cannot be easily applied to the hardware of lightweight
IoT devices, like wireless sensor nodes, due to their limited processing power, memory,
and energy capacity [5]. The mass deployment and restricted conditions of IoT devices
exacerbate the risk of malware propagation [6]. Malicious actors can capitalize on vulnera-
bilities in IoT devices to proliferate malware across heterogeneous IoT networks, comprised
of diverse devices with varying communication technologies and capabilities. Malware
can propagate between devices, forming a botnet that is capable of executing malicious
actions, such as DDoS attacks and spam email delivery [7]. A notable illustration of such
an attack on Internet of Things networks is the Mirai botnet [8]. In 2016–2017, Mirai ex-
ploited vulnerabilities in IoT devices like smart cameras and routers, infecting them and
launching several DDoS attacks. The Mirai botnet resulted in considerable harm to internet
infrastructure and disrupted businesses and services worldwide [9].

Mathematics 2024, 12, 250. https://doi.org/10.3390/math12020250 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020250
https://doi.org/10.3390/math12020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0198-696X
https://orcid.org/0000-0002-2731-649X
https://orcid.org/0009-0003-6771-5211
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0002-2333-8405
https://doi.org/10.3390/math12020250
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020250?type=check_update&version=1


Mathematics 2024, 12, 250 2 of 24

Software that is intentionally designed to harm or damage users or computer systems
is known as malware or malicious software [10]. According to Pachhala et al., there are
eight main types of malware [11]: (1) A virus is a type of malicious software that attaches
itself to legitimate files and replicates when those files are executed. Its purpose is to
damage or alter files and programs (e.g., ILOVEYOU [12]). (2) Unlike viruses, worms can
spread autonomously across networks and systems. They do not require host files. They
replicate and spread without user intervention (e.g., Conficker [13]). (3) A Trojan horse
is a seemingly harmless program that, once installed, allows an attacker to gain remote
access to the system without the user’s knowledge (e.g., Zeus [14]). (4) Spyware is a type
of malware that collects information about a user’s activities without their knowledge. It
can log keystrokes, capture personal data, or monitor online behavior (e.g., SpyEye [15]).
(5) Adware is software that displays unwanted advertisements to users, often in the form of
pop-ups, banners, or advertisements. Its primary purpose is to generate revenue through
unwanted advertising (e.g., Superfish [16]). (6) Ransomware is a type of malware that
encrypts user files and demands a ransom for access. If not handled properly, this form
of digital extortion can cause significant problems (e.g., WannaCry [17]). (7) A Rootkit
is a collection of tools that enables unauthorized access to a system by concealing its
presence. It can provide attackers with complete control over the system (e.g., Sony BMG
Rootkit [18]). (8) A botnet is a network of compromised systems that can be remotely
controlled to carry out malicious activities, such as distributed denial of service (DDoS)
attacks (e.g., Mirai [8]). Malware detection and mitigation encounter new challenges due
to the heterogeneity of IoT networks. Traditional methods for malware detection and
mitigation are frequently developed for homogeneous networks where all devices have
identical capabilities and utilize the same communication protocols [19]. Nonetheless,
such techniques prove less effective in heterogeneous IoT networks where devices possess
distinct capabilities and employ different communication protocols. The rising prevalence
and diversity of IoT networks could result in more widespread malware outbreaks, leading
to increased complexity and difficulty in managing and defending against security threats.
Despite this, there is a lack of systematic research on the process of malware propagation
defense in heterogeneous IoT networks, particularly concerning predicting the critical
threshold for malware propagation [3]. This critical threshold determines whether malware
can propagate through the network. Malware propagation is only possible when the value
of the parameter exceeds this threshold. Comprehending this critical threshold is crucial
to determining the daily patching rate. Furthermore, in a heterogeneous IoT network
infiltrated by malware, it is essential to consider the distribution of patching probabilities
among different IoT devices (known as the patching strategy), as it will affect the regular
operation of the devices and the overall cost. Therefore, it is crucial to choose an economic
strategy that will effectively prevent malware outbreaks.

Researchers have proposed various techniques for identifying and preventing mal-
ware in multifarious IoT networks. Certain methodologies concentrate on creating novel
algorithms to detect malware in amalgamated networks, whereas others emphasize innova-
tive methods for mitigating malware proliferation in the same. A promising approach for
identifying malware in hybrid IoT networks is the application of machine learning (ML).
ML algorithms can train on extensive datasets of recognized malware and non-malicious
traffic patterns to distinguish between hostile and normal traffic. Malware poses a signifi-
cant danger to hybrid IoT networks, which merge conventional information technologies
services networks with IoT devices. Such devices are often at risk of attack due to their
frequent lack of security features and patch updates. A viable means of malware detection
in these networks is through the use of ML algorithms. These algorithms can be trained to
recognize malevolent patterns in the network traffic. After training, network traffic can be
continuously monitored in real-time to identify potential malware infections. An alterna-
tive method for detecting malware in hybrid IoT networks is through anomaly detection
techniques which observe unusual or unexpected network activity. Monitoring metrics
such as traffic volume, packet sizes, and packet types help detect unusual activity that



Mathematics 2024, 12, 250 3 of 24

may indicate a possible malware infection. In addition to developing detection methods,
researchers have created a range of strategies to combat malware in hybrid IoT networks.
One common approach is network segmentation in which the network is divided into
smaller, isolated networks. This method helps to control potential malware infections and
prevent them from spreading to other network areas. Intrusion prevention systems (IPSs)
are a widely used approach for addressing malware in hybrid IoT networks. IPSs observe
network activity and prevent malignant data from reaching their intended destination.
These systems can intercept various strains of malware, such as worms and botnets. Fur-
thermore, experts are devising new tactics to combat malware in hybrid IoT networks;
automatic patching techniques are one such approach that can be used for IoT devices.
Updating software through patching is crucial for addressing potential security issues. Au-
tomatic patching methods can facilitate the upkeep of IoT devices with up-to-date security
patches. Nevertheless, hybrid IoT networks pose a challenge for automatic patching since
certain devices may be positioned in remote or inaccessible locations. Moreover, patching
all devices may result in significant software costs. Consequently, it is crucial to develop
optimal strategies to maintain IoT device security standards.

Mathematical modeling is an invaluable tool for uncovering the mechanisms behind
malware propagation and exploring ways to implement effective patching strategies across
multiple IoT networks. The use of classical epidemic models is a common approach to
studying malware propagation within networks. These models divide nodes into distinct
compartments based on their propagation states, such as susceptible (S), infected (I), and re-
covered (R). The classical model most commonly used is the susceptible-infected-recovered
(SIR) model. The rise in quantity and variety of IoT networks has led to an increased
range of malware incidents, rendering security management and defense more complex
and demanding. Mathematical modeling provides a means of obtaining valuable insights
into the mechanism of malware propagation and facilitates the development of effective
mitigation measures. In this study, we analyze the propagation of malware through the
implementation of various patching strategies. We have created a mathematical model to
capture the dynamics of malware spread in diverse IoT networks while taking into account
the influence of various patching methods. Through simulation experiments, our model
is validated, and the outcomes indicate that distinct patching strategies can significantly
affect the proliferation of malware in IoT networks. For instance, the findings demonstrate
that a random patching approach could efficiently reduce malware propagation, although
it might demand a high patching frequency to achieve an adequate level of security. Con-
versely, a targeted patching plan could prove more effective, but it necessitates precise
awareness of vulnerability distribution in the network. Our research indicates that math-
ematical modeling is a viable tool for devising and assessing efficient patching tactics to
mitigate malware in diverse IoT networks. The main contributions of our work are:

• We propose a strategy to mitigate the spread of malware through the installation
of security updates on IoT nodes. Node selection is based on two criteria: random
selection for updates, and selection based on the degree of IoT nodes.

• Since the propagation parameters of malware are unknown in real-world scenarios,
we propose to estimate these parameters by solving the inverse problem with a
physics-informed neural network.

• We conducted a numerical study to evaluate our proposal. Moreover, we developed
new metrics to assess the effectiveness of the mitigation strategy based on node
selection criteria. This assessment suggests that the IoT network-based mitigation
approach is more effective.

The rest of the paper is organized as follows. Section 2 presents the literature review. Next,
we present the methods in Section 3. Section 4 presents the setup of our simulations and
the results. Finally, Section 5 concludes the conducted research and proposes future lines
of work.



Mathematics 2024, 12, 250 4 of 24

2. Mitigation Strategies

Malware propagation is a multifaceted and fluid process, which both control and se-
curity experts have examined in depth. Dynamical models based on epidemic models, for
example, the Kermack–McKendrick model [20], have been developed for malware propaga-
tion. Furthermore, these models have expanded to include diverse containment methods,
such as susceptible-infected-susceptible (SIS) and susceptible-infected-recovered models,
as well as the proliferation of numerous malware [21,22]. Control-theoretic methods have
been utilized to create effective mitigation strategies and to illustrate the propagation
structures of destructive malware [23,24]. Optimal control, for instance, has been deployed
to decrease patching efforts whilst also eradicating all infections caused by a singular virus.
Furthermore, a quarantine-oriented mitigation plan has been researched for time-varying
graphs [25], whereby the layout of a graph is employed to represent the necessary measures
to overcome a resource allocation dilemma [26]. Control theory and game theory are two
main approaches to containing malware in networks [27]. Solutions based on control theory
are often based on heuristics and simplifications, which can lead to sub-optimal results [28].
Game theory-based solutions are gaining popularity due to their ability to minimize the
damage caused by attackers at minimal cost and their relative simplicity for large net-
works [29]. However, current game theory solutions are focused on malware propagation
minimization and do not take into account network performance constraints [30]. Mitiga-
tion strategies for unknown propagation parameters have been developed by assuming
that the defender has prior knowledge of the possible range of propagation parameters.
To guarantee a minimum level of performance under uncertain propagation conditions,
previous research suggests the existence of predetermined patching methods [31]. How-
ever, the implementation of these strategies requires an understanding of the propagation
model parameters [32]. Recovering from malware infections typically involves patching or
removing the malicious code. Although this may seem like the only viable solution, it is
limited by the fact that not all nodes can be patched [33–35]. Table 1 presents a review of
the benefits and difficulties associated with the malware mitigation methods analyzed in
the literature review.

Table 1. Summary of the literature review on the mitigation strategies.

Mitigation Strategy Reference Advantages Challenges

Optimal control

[36]
• Costs can be appropriately selected.
• The analyses do not consider how de-

vices react to the policies.

• The devices are homogeneous.
• The population consists of a single

group of devices.

[37] • The devices are heterogeneous.
• Global or local coverage.

• Network heterogeneity reduces the
efficacy of local awareness mecha-
nisms.

• The simulations reveal aspects not
captured by the heterogeneous
control theory.

[38]

• Devices decide whether to adopt pro-
tective measures (game theory).

• Very effective on best response
scenarios (Nash equilibrium) for
different parameters.

• The devices are homogeneous.
• Protection is costly and partially effec-

tive.



Mathematics 2024, 12, 250 5 of 24

Table 1. Cont.

Mitigation Strategy Reference Advantages Challenges

[39]

• Decision-making by devices to pro-
tect themselves.

• Apply evolutionary learning strate-
gies.

• The presence of asymptomatic in-
fectious agents necessitates adding
additional compartments to the SIR
model.

• Parameters of the epidemic dynam-
ics are known to the agents.

Quarantine

[40]

• Minimize the spread while maximiz-
ing the network performance.

• Maintains the network performance
with a minimal cost.

• The devices are homogeneous.
• The model does not ensure a mini-

mum level of network performance
by restricting malware.

[41]

• Minimum malware impact in the
network.

• Effective against several types of
malware.

• The model has not proven its effi-
ciency in large IoT networks.

• Need simplifications that do not
lead to optimal solutions.

[40]

• Minimize the spread while maximiz-
ing the network performance.

• Evaluate their model in several mal-
ware mathematical models.

• The devices are homogeneous.
• High computational complexity if

the network is too large.

[42]

• Guide effectively designing
a honeynet.

• The honeynet potency can be explic-
itly enhanced by listed actions.

• The shape of the network is a key
factor for determining the model po-
tency.

• Works better locally than globally (net-
work topology dependent).

Patching

[43]

• Have a mathematical model focused
on wireless IoT networks.

• Optimal patching rates
are obtained using
approximate analysis.

• A network defender is assumed to
patch the devices to avert the forma-
tion of a botnet.

• Optimal policies for both the at-
tacker and defender have been stud-
ied based on the knowledge of the
attacker’s behavior.

[44]

• Bind epidemiology and topology of
the network.

• Support for convex
network boundaries.

• High complexity.
• Dependency in the number of sus-

ceptible neighbors.

[3]

• Heterogeneous IoT networks.
• Defense effectiveness provides a di-

rect and efficient method for com-
paring the costs of various degree-
related patching strategies.

• Malware infection is hard to avoid
under the way of centralized trans-
mission and network size.

• Random immunization has a larger
infection size than the case of tar-
geted immunization.

[45]

• Physical unclonable functions-based
virtual patching protocol to contain
and limit malware spread.

• Faster than the existing techniques
in the selected literature.

• Low scalability
• High time cost.



Mathematics 2024, 12, 250 6 of 24

In this study, we propose the use of automatic patching as a mitigation strategy for
IoT network elements. This mitigation strategy is presented that does not require any prior
knowledge of the parameters of the propagation model. Furthermore, depending on the
infection observed during the detection process and the chosen strategy, the patch rate
is updated. This approach is more flexible and adaptable than fixed patching strategies
because it can account for changes in propagation dynamics over time. In addition, our
proposal is capable of functioning in heterogeneous networks and is scalable. The selection
of nodes to patch only requires knowledge of their degree. To evaluate this strategy,
modifications to the parameters of the SIR propagation model are necessary. One of these
parameters is the propagation rate, also known as the β parameter. This parameter is
the likelihood of an IoT node becoming infected by malware. Reducing the value of β
decreases the likelihood of malware infecting a vulnerable device. When a patch is installed,
susceptible devices have a low likelihood of risk of infection (since β ̸= 0). To implement an
automated patching strategy and mitigate the spreading of malware, two methods will be
adopted to select the IoT nodes for updating the software. The initial approach is a random
node election strategy, which is based on the comprehensive knowledge of all the nodes
in the IoT network. This technique arbitrarily updates the software of a percentage of the
nodes within the network. To achieve our aim, we suggest decreasing the propagation
rate of each node. This makes it more challenging for malware to spread through updated
nodes. The next technique involves selecting nodes with the highest degree for software
updates, based on network characteristics. To achieve this, we select the average degree ⟨k⟩
as a threshold (the average degree is defined in Section 3.2). This ensures that nodes with a
degree ≥ ⟨k⟩ receive software updates that reduce their beta value, which simulates the
malware having a harder time spreading through these IoT network nodes.

3. Methods

In this section, we outline the method used to simulate the spread of malware in an IoT
network and assess the efficacy of mitigation techniques. We utilize an individual-based
(IB) SIR model to depict malware propagation and a physics-informed neural network
(PINN) to approximate the IB SIR model’s parameters. We also analyze the impact of
security updates with varied strategies as a possible workaround. The PINN is an artificial
intelligence model that approximates functions dependent on continuous variables. In this
instance, the PINNs are utilized to estimate the parameters of the SIR model, depicting the
infection and recovery rates (since we assume that in a real-life scenario, the parameters
of the malware are unknown we should estimate them). To assess the efficacy of the
mitigation measures, we simulate malware propagation in an IoT network under both
circumstances (with and without mitigation measures). The number of devices infected in
every simulation is compared to analyze the effectiveness of the mitigation measures.

3.1. Propagation Model for Malware Based on the SIR Classic Model
3.1.1. The Kermack and McKendrick SIR Model

The Kermack and McKendrick model, initially introduced in 1927 [20], elucidates
the transmission of communicable illnesses. It is generally known as the SIR model as it
comprises three categories: susceptible, infectious, and recovered. The amount of members
in each group is represented by a time-based function [46]. S(t) denotes individuals
who are susceptible to the disease, I(t) signifies those who are infectious and capable
of spreading the disease, whereas R(t) indicates the number of individuals who have
either recovered or passed away due to the disease. The removed individuals have either
recovered, gained immunity, or have been isolated until recovered. According to the SIR
model, removed individuals are no longer susceptible to or infectious with the disease.
In the conventional model, it is assumed that the overall population N remains constant,
resulting in N = S(t) + I(t) + R(t). Murray et al. offer a comprehensive description of
the SIR model, which includes the classical version that assumes constant rates [47]. The
differential equation governing the change in S(t) is −βS(t)I(t), where β > 0. Infectious



Mathematics 2024, 12, 250 7 of 24

persons exit I(t) at a rate γ and directly transition into the R(t) category. At the moment,
cases of reinfection in the spread of malware within IoT networks are few and far between
and their rate cannot be estimated. As a result, the SIR model does not consider this
possibility. However, in the case of a botnet, rates can fluctuate depending on several
factors, including the use of firewalls, IoT network connectivity restrictions implemented
by administrators, and preventative measures such as updates [48]. The SIR model can be
represented by the following system of differential equations:

dS
dt

= −βSI (1)

dI
dt

= βSI − γI (2)

dR
dt

= γI (3)

S(0) = S0, I(0) = I0, R(0) = 1− S0 − I0 (4)

3.1.2. Individual-Based Stochastic SIR Model

Malware propagation through an IoT network can be modeled using a cellular au-
tomaton (CA) on a graph G = (V, E), where V is the set of nodes (vertices) and E is the set
of edges connecting the nodes. Each node vi in V represents an entity, such as a computer
or an IoT device, and the edges eij in E represent the relationships between entities. The set
S represents the allowed states for a node, such as susceptible (S), infected (I), or recovered
(R). The state of each node vi evolves according to a transition function f : S|N(vi)| −→ S
that depends on the states of the neighboring nodes N(vi). This iterative process is applied
to all nodes at each time step. Formally, for a given node vi at time t + 1 the transition rule
is as follows:

si(t + 1) = f (sj1(t), sj2(t), . . . , sjk (t)) (5)

where j1, j2, . . . , jk denotes the neighbor of vi. This process is repeated across all nodes at
each time step.

To simulate the spread of malware, the transition function f can include parameters
that define infection probabilities, recovery rates, and other relevant factors. This allows the
cellular automaton implemented on the graph to simulate the spread of malware accurately.
Martin del Rey et al. presented transition rules in their paper, which we have implemented
to simulate the propagation of malware [49]. Several assumptions need to be considered
before outlining the transmission functions:

• A susceptible device can become infected depending on the infection rate, βi, of each
IoT node, where 0 ≤ βi ≤ 1.

• An infected device can be recovered, depending on the recovery rate, γi, of each IoT
node, where 0 ≤ γi ≤ 1.

• This model considers permanent immunity, preventing the malware from infecting
recovered devices.

Consequently:
If st

i = (S):

st+1
i =


I, with probability βi

S, with probability 1− βi

(6)

If st
i = (I):

st+1
i =


R, with probability γi

I, with probability 1− γi

(7)



Mathematics 2024, 12, 250 8 of 24

If st
i = R, then st+1

i = R
Algorithm 1 contains the pseudo-code for the transmission functions.

Algorithm 1 IB malware spread transition rules pseudocode

1: for each node in infected_nodes do
2: neighbors← list(graph.neighbors(node))
3: for each neighbor in neighbors do
4: if neighbor not in infected_nodes and neighbor not in recovered_nodes then
5: if random.random() < node_transmission_rates[neighbor] then
6: if len(new_infected) < max_new_infected then
7: new_infected.append(neighbor)
8: end if
9: end if

10: end if
11: end for
12: if random.random() < recovery_rates[node] and node not in new_infected then
13: new_recovered.append(node)
14: end if
15: end for

3.2. A Complex Network Approach to IoT Network

This section outlines how we create complex networks for simulating IoT networks,
specifically random networks. We also demonstrate the connectivity of these random
networks. In addition, we will force the random networks that are created to be connected.
A random network is a network where each node’s degree is a random variable, denoted
as ki ∈ [0, N]. The analysis of random networks began systematically in 1959 when
mathematicians Erdős and Rényi started studying the properties of graphs as they are
affected by the addition of connections at random, using probabilistic methods [50]. A
significant breakthrough was achieved in the conventional mathematical theory of graphs
that transformed the modeling of problems. The new approach utilized random graphs
to depict complex network topology, forming the basis of random network theory. In the
second half of the twentieth century, the Erdős and Rényi model prevailed as the primary
logical and rigorous approach influencing scientists’ thinking about complex networks,
even though it is clear that many complex networks in the real world are not entirely
regular or random. The term “random graph” refers to the random positioning of edges
between different nodes in the ER graph. According to their first paper [50], Erdős and
Rényi introduced a mechanism for producing random graphs having N nodes and L edges.
We shall henceforth refer to it as the Erdős–Rényi random network (ER). To construct
the graph, we begin by creating N unconnected nodes. Afterward, we select pairs of
nodes at random and connect them through edges, making sure to avoid any possibility
of multiple edges between nodes. We continue connecting nodes in this way until we
have L edges in total. By using this method, we can generate one of many possible graphs
containing N nodes and L edges. This forms part of the statistical set of all combinations of
L edges that can exist. For a comprehensive explanation of the ER model, we require the
complete statistical set of all conceivable realizations in the matrix representation of the
set of adjacency matrices. To conclude this section, we shall clarify the terms node degree,
average degree, and clustering coefficient.

• Degree of a node: In an undirected network, a node’s degree is defined as the total
number of members connected to it and denoted by ki. In a simple undirected graph
ki ∈ [0, N − 1].

• The average degree is defined by the following equation ⟨k⟩ = 1
N ∑i ki.

NetworkX is a Python package used for exploring and analyzing networks and net-
work algorithms. The core package provides data structures for representing various types
of networks, including simple graphs, directed graphs, and graphs with parallel edges



Mathematics 2024, 12, 250 9 of 24

and self-loops. The nodes in NetworkX graphs can be any hashable Python object, and
edges can contain arbitrary data. This flexibility makes NetworkX suitable for representing
networks found in various scientific fields. NetworkX implements various graph algo-
rithms for calculating network properties and structure measures, including shortest paths,
betweenness centrality, clustering, and degree distribution. It can read and write various
graph formats for easy data exchange and provides generators for many classic and popular
graph models, such as the Erdős–Rényi, Small World, and Barabási–Albert models. The
Python programming language’s ease of use and flexibility, combined with its connection
to the SciPy tools, make NetworkX a powerful tool for scientific computations [51]. Net-
workX is a versatile tool for modeling various types of networks, such as social networks,
communication networks, transport networks, biological networks, and IoT networks. In
this research, NetworkX was used to model the spread of malware in an IoT network by
creating graphs using library functions for simulations (see Figure 1).

Figure 1. Examples of IoT networks generated with the NetworkX powerlaw_cluster_graph function
with a different number of nodes.

3.3. Evaluation Metrics

In this section, we present the criteria for objectively evaluating the effectiveness of
the mitigation strategies proposed and determining the optimal approach. Our initial
evaluation measure is the global infection rate. As nodes in IoT networks are typically
heterogeneous and, thus, show distinct characteristics, we randomize the β parameter of
each node in each simulation to simulate the heterogeneity. Considering this, we define the
global infection rate as the average of the β parameters of all the nodes in the IoT network.
To determine the global infection rate, we solve the inverse problem detailed in the next
section, employing PINNs at every time step. This approach will provide us with the time
evolution of this metric in all simulations. We also employ a metric that determines the
percentage of IoT devices that have remained susceptible to malware, the percentage of final
susceptibles (PFS). This metric evaluates the initial state of such devices and determines if
they have ever been infected or remained untouched due to the malware’s inability to infect
them. The significance of this metric lies in identifying the number of devices that have
never encountered malware or, if they have, have remained inactive. Finally, we suggest
using the average recovery speed and average infected speed as measures. These measures
calculate the average speed at which devices recover from infection over a specific period



Mathematics 2024, 12, 250 10 of 24

and the average speed at which devices are infected over a specific period. The proposed
evaluation metrics in this work are described below:

• Global infection rate: This rate represents the average infection rate from a susceptible
device to an infected device. The global infection rate is calculated as the sum of the
betas of all devices divided by the total number of devices.

Global infection rate =
1
N

N

∑
i=1

βi (8)

where βi is the infection rate of the device i and N is the number of devices in the IoT
network. In this case, we are solving an inverse problem with one PINN for the whole
network as the βi of each device is not fully known at time t.

• Percentage of final susceptibles: The final susceptibles percentage is a metric used to
evaluate the proportion of devices that remain uninfected at the end of a simulation.
It is calculated by dividing the number of uninfected devices by the total number
of devices. A high PFS indicates that mitigation was effective in preventing device
infection, while a low PFS indicates that mitigation was less effective or that the
malware was highly contagious.

Percentage of final susceptibles =
Susceptible devices

N
(9)

• Average infected speed: The ’Average infected Speed’ metric quantifies the rate at
which malware infects devices within the IoT network. It represents the average
number of infected devices per time step. It is calculated as follows:

Average infected speed =
n-th discrete difference (Infected devices array)

time step
(10)

The ’Average infected Speed’ metric is a valuable tool for evaluating the performance
of a mathematical model that predicts the spread of malware in an IoT network. A
high average infection rate indicates that the model predicts rapid malware spread
throughout the network.

• Average recovery speed: The metric ’Average recovery speed’ measures the rate
at which infected devices recover from malware and are no longer infectious. It is
calculated as follows:

Average recovery speed =
n-th discrete difference (Recovery devices array)

time step
(11)

3.4. The Inverse Problem for the Parameter Estimation

The estimation of SIR model parameters from observation data in IoT networks is a
significant parameter estimation problem in mathematical modeling. The inverse problem
involves estimating the model parameters from data that result from these parameters in
the context of malware propagation. When dealing with the propagation of malware in
IoT networks, it is possible to use the infection and recovery rate of IoT network devices as
data. This section will introduce PINNs for parameter estimation in the SIR model, along
with an explanation of their theoretical basis [52–55].

Solving the Inverse Problem for a SIR Model

Let t ∈ R+ be the input of the PINN, and set f (t; θ) ∈ Rm+1
+ the output of the PINN,

where m is the number of hidden layers. Based on the compartmental SIR Kermack and



Mathematics 2024, 12, 250 11 of 24

McKendrick model [20], the PINN model has the basic three-compartment SIR model with
their parameters. Consequently, the PINN output is given by:

f (t; θ) =

[
f1(t; θ)
f2(t; θ)

]
(12)

where f1(t; θ), and f2(t; θ) approximate the number of susceptible devices, S(t), and the
number of infectious devices, I(t), respectively. Notice that the total amount of recovered de-
vices, R(t), is completely determined by the others since it is supposed that the population
remains constant: R(t) = N− S(t)− I(t). As a consequence, the computational complexity
can be reduced by considering only two variables, for example, S(t) and I(t) [55]:

dS
dt

= − β

N
SI, (13)

dI
dt

=
β

N
SI − γI, (14)

where β is the infection rate and γ is the recovery rate. Assuming that no data are available
for compartments of susceptibles S, and recovered R, and that {uk}K

k=0 is a discrete-time
series of observations in compartment I at time tk, the MSE data loss is defined as follows:

MSEdata =
1

K + 1

K

∑
k=0

(uk − f2(tk; θ))2 (15)

where MSEdata is the loss function.
The inverse problem can be described as follows: Given an incomplete dataset, PINN

aims to learn a mapping from time (t) to each of the state variables in the existing model.
Thus, using the incomplete dataset, we can extrapolate the unknown time series of the S
and R compartments, and learn the transmission dynamics represented by the values of the
SIR parameters β and γ. The PINN must access information from the pre-existing model
during training (i.e., the SIR model). As a consequence, the subsystem can be written as

G
(

y,
dy
dt

; λ

)
=

dy
dt

+ N[y] = 0, (16)

where N[·] is, in general, a differential operator (however, in the case of ordinary differential
equations, it is also possible for N[·] to represent a nonlinear function of the variable y), and

y(t) :=
[

S(t)
I(t)

]
,

dy
dt

=

[
dS(t)

dt
dI(t)

dt

]
, N[y] =

[
β
N SI

− β
N SI + γI

]
. (17)

If N[y; λ] depends on λ = (β, γ)⊺ ∈ R2 with λ unknown a priori, then it is as follows:

G(y, yt; λ) = yt + N[y; λ], t ∈ [0, T]. (18)

Therefore, in order to train the PINN effectively, we need to minimize the targets of the
following form:

min
θ,λ

(MSEdata(θ) + MSEG(θ, λ)), (19)

enabling the PINN to learn model parameters from data [55,56].
Note that, if the system has initial conditions, the function to be minimized is

min
θ,λ

(MSEdata(θ) + MSEG(θ, λ)) + MSEIC(θ) (20)



Mathematics 2024, 12, 250 12 of 24

Moreover, note that we have constrained the parameters to be time-independent. If they
were time-dependent, it would be necessary to create a sliding window with an amplitude
of α∆t with α ∈ R to be passed as input to the PINN small frames as follows (t, t + α∆t).

4. Results

This section outlines the simulation setup and tests to assess the effectiveness of the
mitigation measure using randomized and network-based node election strategies. Several
simulations were conducted to compare three scenarios: (1) the spread of malware through
the IoT network, (2) the spread of malware through the IoT network with a random node
selection mitigation strategy, and (3) the spread of malware through the IoT network with
the mitigation strategy based on the degree of each node.

4.1. Simulation Setup

The simulations were conducted in Python with the deepxde library to code the
PINNs [57] and NetworkX to code the complex networks [51] on a desktop (CPU: Intel (R)
Core (TM) i7-8700 CPU @ 3.20 GHz, Memory 16 GB, Os: Microsoft Windows 10 with 64 bits).
The following parameters were common to all of our simulations. The IoT network was
simulated with a network of 70 nodes, and in the creation of the network, 2 new connections
were added with a probability of 0.5 of reconnection between the existing nodes in the
network. On the other hand, the SIR model to be propagated through the IoT network had
a fixed reconnection rate for all nodes in the network of 0.2, while the reconnection rate for
each of the IoT nodes in the network is randomly initialized in the range of 0.1–0.8. The
IoT network was modeled as a random graph using the powerlaw_cluster_graph function
of NetworkX. This model enables the creation of networks with a heavy-tailed degree
distribution, which is typical of real networks like IoT networks. This means that some
nodes have a large number of connections, while others have very few. This type of degree
distribution is common in real networks, such as social and communication networks. The
reconnection probability of 0.5 indicates that, on average, 50% of new connections will be
established between existing nodes in the network, while the other 50% will be established
between new nodes. The fixed reconnection rate of 0.2 indicates that, on average, 20% of
the existing nodes in the network will reconnect with a new node at each time step. To
ensure consistency in each simulation, the graph.copy() function from NetworkX was used
to maintain the same graph. This allows for a fair comparison of malware spread across
the network. On the other hand, the proposed neural network architecture, PINN, consists
of an input layer with a single neuron, followed by two hidden layers, each containing
40 neurons, and an output layer with three neurons. The internal parameters of each layer
are initialized using the Glorot uniform function, the optimizer employed is Adam with a
learning rate (LR) of 0.001 and the activation function in all the neurons is Tanh. The PINN
receives a tuple (time, S(t), I(t), R(t)) at the input layer, which contains actual or simulated
data on the spread of malware in the IoT network. When solving an inverse problem in
PINN, the parameters to be estimated (γ-recovery rate and β-infection rate, in this case) are
the target of the PINN (see Equation (18)). The output layer of the PINN will return these
two estimated parameters. Finally, the PINN was trained for 20,000 epochs. An overview
of the PINN architecture is shown in Table 2. The decision has been made to use the same
PINN configuration for all simulations without optimizing the PINN hyperparameters
for each simulation. This is because it is a theoretical approach to proposing mitigation
measures to stop the spread of malware, and we did not want parameter estimation to
have a significant impact on the results.

To test which of the node selection strategies for automatic network patching has the
best performance, the following simulations were defined:

• In Simulation 1, we aim to examine how the number of nodes selected using the
random election strategy for patching impacts the spread of malware. The potential
choices constitute 25%, 50%, and 75% of the entire nodes. Additionally, we assume
early detection of malware and implementation of mitigation measures after a brief



Mathematics 2024, 12, 250 13 of 24

delay, specifically in time step 4. Finally, we assume the installed security patch to be
highly effective, with beta_patched_node = βi

3 .
• In Simulation 2, we aim to observe the impact of early detection and subsequent

security patching on malware propagation dynamics. By evaluating various early
time steps = {1, 3, 5}, we can assess the mitigation measures’ performance with the
two-node election strategies. Additionally, for this simulation, we will choose 25% of
the nodes using the random strategy. Finally, it is assumed that the installed security
patch is highly effective, with beta_patched_node = βi

3 .

Table 2. Hyperparameter of the PINN in all the simulations.

Hyperparameter Value

Input neuron number 1

PINN input (time, S(t), I(t), R(t)))

Output neuron number 2

PINN output (global-β,global-γ)

Hidden layers 3

Optimizer & LR Adam with lr = 0.001

Activation function Tanh

Epochs 20,000

4.2. Simulation Results

This section details the outcomes of the initial two simulations. Furthermore, three
supplementary simulations were conducted for each of the primary simulations, yielding
diverse options for validating the effectiveness of the proposed mitigation measures. The
six simulations utilized to demonstrate the findings were carefully monitored for statistical
anomalies, ensuring that none of the mitigation strategies were favored and that the
comparison was valid. Each simulation was run at least thirty times to guarantee accuracy.

4.2.1. Simulation 1.1 with 25% Nodes, Patching = β
3 , Early Patching Time Step = 4

In this simulation, it can be observed that the number of infected IoT nodes throughout
the malware propagation was less in the scenario where mitigation with node selection
strategy based on the nodes’ degree was applied. In Figure 2, it can be observed that
the curve associated with malware propagation with mitigation and the node selection
strategy based on degree is lower than in the other two cases starting from time step 4. This
difference is between 10 and 15 nodes compared to the other curves of infected individuals.
However, at time step 20, the three curves of infected individuals have similar values. This
is due to nodes in IoT transitioning to a recovered state in the three evaluated options in
this simulation, causing a sharp increase in the maximum number of nodes. This indicates
that the spread of the pandemic has been halted. This means that the pandemic has been
halted. As shown in Figure 3, the propagation of malware, to which the automatic patching
technique has been applied but with a node selection strategy based on degree, has a lower
number of infected IoT nodes from time steps 4 to 18. At this point, the nodes start changing
from the infected to the recovered state.



Mathematics 2024, 12, 250 14 of 24

Figure 2. The figure illustrates the spread of malware in an IoT network using yellow, green, and
blue curves to represent infected, recovered, and susceptible devices. The simulation includes 25% of
the nodes with an infection rate of β

3 , and it was patched in the fourth time step.

Figure 3. The evolution of malware in an IoT network is demonstrated over time. Stacked bars in
red, blue, and green show the numbers of infected, susceptible, and recovered, respectively. This
simulation includes 25% of the nodes with a new infection rate of β

3 , which are patched at the fourth
time step.

Based on the established metrics for assessing the efficiency of the proposed mitigation
measures utilizing both strategies, Table 3 shows that the global infection rate was 0.46 at
the initial time across the three simulations. At time step 4, upon patching nodes from both
strategies, the rates of infection decreased to 0.37 and 0.31 for the random and degree-based
node selection strategies, respectively. In both instances, the mitigation measure ensures
that 7.14% of network nodes are protected from malware infection. Furthermore, the
implementation of a node election strategy which is based on degree, ultimately reduces
the average infection rate to 1.8 nodes per time step. This rate is lower than the infection
rate of 2.3 nodes per time step in the random node election scenario and 2.7 nodes per time
step when there is no mitigation measure in place. Note that the variance for node selection
based on degree is 3.03, while in other situations, it is considerably higher, even doubling
for random node selection. With regard to the average recovery speed, it is worth noting
that it equals 1.8 nodes per time step, which is equal to the average infection speed. Based
on this simulation, it appears that once the widespread propagation throughout the IoT
network is halted, the same nodes are reinfected on average each time step, considering
the constraint that a recovered node cannot be infected again. This indicates that the most
efficient strategy for node selection, given the recovery rates and patching application, is



Mathematics 2024, 12, 250 15 of 24

based on degree. Note that these findings rely on a simulation conducted with a graph
generated at random according to the parameters described in this section. The results
found in both malware propagation and simulation with mitigation measures and node
selection strategy based on degree should be similar. Only minimal variations can be
expected in the mitigation strategy with random node selection due to the increase of
patched nodes.

Table 3. Summary of the metrics of simulations 1.1, 1.2, and 1.3.

Simulation # Metric Malware without
Mitigation

Malware with
Mitigation and
Random Node

Selection

Malware with
Mitigation and
Degree Node

Selection

Simulation 1.1

Global infection rate patching strategy 0.46 0.37 0.31

Percentage of final susceptibles 4.29 7.14 7.14

Average infection speed 2.7 2.3 1.8

Std infection speed 2.33 2.62 1.74

Var infection speed susceptibles 5.41 6.88 3.03

Average recovery speed 2.1 1.9 1.8

Std recovery speed 1.6 1.72 1.6

Var recovery speed 2.56 2.96 2.56

Simulation 1.2

Global infection rate patching strategy 0.44 0.28 0.23

Percentage of final susceptibles 0.0 8.57 10.0

Average infection speed 2.67 2.27 2.17

Std infection speed 3.06 2.88 2.74

Var infection speed susceptibles 9.36 8.27 7.52

Average recovery speed 1.9 1.87 1.87

Std recovery speed 2.13 1.78 2.22

Var recovery speed 4.56 3.18 4.92

Simulation 1.3

Global infection rate patching strategy 0.46 0.23 0.2

Percentage of final susceptibles 0.0 11.43 15.43

Average infection speed 2.77 2.17 2.12

Std infection speed 3.4 2.46 1.79

Var infection speed susceptibles 11.58 6.07 5.21

Average recovery speed 2.0 1.73 1.67

Std recovery speed 1.95 1.53 1.48

Var recovery speed 3.8 2.33 2.18

4.2.2. Simulation 1.2 with 50% Nodes, Patching = β
3 , Early Patching Time Step = 4

During the second simulation, 50% of the nodes in the IoT network underwent a
security update to tackle the detected malware. The results show that the spread of
malware decreases when the mitigation strategy involves randomly selecting nodes for
the update, especially from time step 4, where the patch is installed (see Figures 4 and 5).
However, the curve of infected devices from time step 7 onward remains comparable to the
spread of malware when no mitigation measures are taken. The mitigation strategy with
degree-based node selection exhibits the same pattern, but only after time step 10. On the
other hand, the growth of infected nodes during the early stages of the malware outbreak
is significantly mitigated with the latter strategy.



Mathematics 2024, 12, 250 16 of 24

Figure 4. Malware evolution over time in an IoT network. Stacked bars in red, blue, and green
represent infected, susceptible, and recovered nodes respectively. The simulation includes 50% of the
nodes with a new infection rate of β

3 , which are patched at the fourth time step.

Figure 5. The evolution of malware propagation within an IoT network is depicted through yellow,
green, and blue curves, representing infected, recovered, and susceptible devices. The simulation
includes 50% of the nodes with an infection rate of β

3 , and it was patched in the fourth time step.

The analysis of chosen metrics for assessing the efficacy of mitigation measures in
Table 3 reveals negligible variance between the two node selection techniques and the
extent of malware propagation. Therefore, it is apparent that different node selection
strategies yield comparable results in mitigating the malware.

4.2.3. Simulation 1.3 with 75% Nodes, Patching = β
3 , Early Patching Time Step = 4

For this simulation, the mitigation strategy using random node selection patches 75%
of the nodes, whereas the mitigating strategy using a degree-based node selection strategy
patches the same number. Figures 6 and 7 illustrate that both strategies perform similarly.

Regarding the statistical indicators presented in Table 3, it is evident that simula-
tions applying various node selection strategies with mitigation techniques achieved
similar performances.



Mathematics 2024, 12, 250 17 of 24

Figure 6. This figure shows how malware is evolving in an IoT network over time. The number
of infected, susceptible and recovered nodes are shown as stacked bars in red, blue and green
respectively. This simulation includes 75% of the nodes with a new infection rate of β

3 , which are
patched at the fourth time step.

Figure 7. The figure shows the propagation of malware in an IoT network, with the yellow, green, and
blue curves representing infected, recovered, and susceptible devices, respectively. The simulation
includes 75% of the nodes with an infection rate of β

3 , and it was patched in the fourth time step.

4.2.4. Simulation 2.1 with 25% Nodes, Patching = β
3 , Early Patching Time Step = 1

In this simulation, the malware is detected at an early stage, and the automatic
patching starts from time step 1. The mitigation strategies, including random node election
and degree-based node election, exhibit similar performance and notably reduce malware
propagation from time step 2. Although the degree-based node election criterion reduces
the performance of the mitigation strategy in the first stage of the simulation until time step
10, it leads to a 20% reduction in the number of infected nodes on average compared to the
mitigation strategy with random node election. Additionally, this strategy results in a 50%
reduction of infected nodes on average compared to the spread of malware without any
mitigation measures (see Figures 8 and 9).



Mathematics 2024, 12, 250 18 of 24

Figure 8. This picture describes the evolution of malware in an IoT network over time. Infected, sus-
ceptible, and recovered nodes are represented by the stacked bars in red, blue, and green respectively.
The simulation involves 25% of the nodes with a new infection rate of β

3 , which are patched at the
first time step.

Figure 9. The evolution of malware propagation within an IoT network is depicted through yellow,
green, and blue curves, representing infected, recovered, and susceptible devices. The simulation
includes 25% of the nodes with an infection rate of β

3 , and it was patched in the first time step.

The statistical analysis of this simulation has proven that—using the defined metrics—
the mitigation strategy with degree-based node election is the most efficient. It should be
noted that the strategy based on degree-based node election ensures that 13% of nodes
remain in a susceptible state at the end of the simulation, while other simulations demon-
strate at best 4.29% (see Table 4). The average infection speed for the mitigation strategy
with degree-based node election is 1.73 nodes per time step, while for the random node
election strategy, it is 2.07 nodes per time step. In the absence of the mitigation strategy,
the malware propagation speed is 2.57 nodes per time step. These results show that the
mitigation strategy successfully slows down malware propagation.



Mathematics 2024, 12, 250 19 of 24

Table 4. Summary of the metrics of simulations 2.1, 2.2, and 2.3.

Simulation # Metric Malware without
Mitigation

Malware with
Mitigation and
Random Node

Selection

Malware with
Mitigation and
Degree Node

Selection

Simulation 2.1

Global infection rate patching strategy 0.43 0.35 0.3

Percentage of final susceptibles 0.0 4.29 12.86

Average infection speed 2.57 2.07 1.73

Std infection speed 3.06 2.16 1.24

Var infection speed susceptibles 9.38 4.66 1.53

Average recovery speed 1.8 1.8 1.8

Std recovery speed 1.87 1.49 1.17

Var recovery speed 3.49 2.23 1.36

Simulation 2.2

Global infection rate patching strategy 0.48 0.4 0.34

Percentage of final susceptibles 4.29 4.29 4.29

Average infection speed 2.07 2.03 1.83

Std infection speed 2.28 2.69 2.28

Var infection speed susceptibles 5.2 7.23 5.21

Average recovery speed 1.87 1.83 1.77

Std recovery speed 1.61 1.53 1.61

Var recovery speed 2.58 2.34 2.58

Simulation 2.3

Global infection rate patching strategy 0.45 0.37 0.32

Percentage of final susceptibles 5.71 2.86 2.79

Average infection speed 2.5 2.43 2.53

Std infection speed 3.11 2.67 2.81

Var infection speed susceptibles 9.65 7.11 7.92

Average recovery speed 1.87 2.07 1.93

Std recovery speed 1.91 1.71 1.59

Var recovery speed 3.65 2.93 2.53

4.2.5. Simulation 2.2 with 25% Nodes, Patching = β
3 , Early Patching Time Step = 3

In this simulation, the malware was detected early. However, the automatic patching
system experiences a two-time step delay, resulting in the security update being imple-
mented at time step 3. In this scenario, it is apparent from Figure 10 that the mitigation
strategy involving random node selection and the spread of malware without any imple-
mentation of mitigation measures displays a similar behavior. However, the strategy based
on node selection according to the degree outperforms it, ensuring that the number of
infected nodes remains below 40% of the total network. Figure 11 reveals that in none of
the three cases could a high number of IoT nodes maintain the susceptible state, indicating
that the malware did not infect them. Furthermore, node recovery behavior was similar
across all three cases.

The statistical analysis of this simulation reveals in Table 4 that the mitigation strategy
based on node selection by their degree has performed the best in the chosen metrics. It can
be observed in Table 4 that the average infection speed is 1.83 nodes per time step, whereas
the average recovery speed is 1.77 nodes per time step. On average, two nodes are infected
and two nodes are recovered at each time step, indicating a balanced system. Due to this
fact, it can be explained that the spread did not infect more than 40% of the network nodes



Mathematics 2024, 12, 250 20 of 24

at any point during the simulation. Although in terms of the number of infected nodes,
the mitigation strategy based on random node selection performs worse than the strategy
based on node selection based on degree, from a statistical point of view, it can be seen that
the average infection speed is 2.03 nodes/time step while the average recovery speed is
1.83 nodes/time step, having a behavior, on average, similar to the other strategy.

Figure 10. The evolution of malware in an IoT network over time is illustrated in this figure. The
number of infected, susceptible and recovered nodes is represented by the stacked bars in red, blue,
and green, respectively. The simulation includes 25% of the nodes with a new infection rate of β

3 ,
which are patched at the third time step.

Figure 11. The figure shows the propagation of malware in an IoT network, with the yellow,
green, and blue curves representing infected, recovered, and susceptible devices, respectively. The
simulation includes 25% of the nodes with an infection rate of β

3 , and it was patched in the third
time step.

4.2.6. Simulation 2.3 with 25% Nodes, Patching = β
3 , Early Patching Time Step = 5

In this simulation, the malware was detected early. However, due to the delay in
security updates, it begins to install on selected nodes in time step 5. This results in
suboptimal mitigation techniques, as both perform similarly to the malware spreading
without mitigation techniques (see Figure 12). With regard to the number of infected and
recovered individuals throughout the simulation, it is discernible from Figure 13 that it is
comparable in all three instances.

Regarding the statistical analysis of the chosen metrics, no significant differences have
been found (refer to Table 4), confirming the observations made in the propagation graphs.



Mathematics 2024, 12, 250 21 of 24

Figure 12. The figure illustrates the spread of malware in an IoT network, with the yellow, green,
and blue lines representing the infected devices, the recovered devices, and the susceptible devices,
respectively. The simulation included 25% of the nodes with an infection rate of β

3 , and it was patched
in the third time step.

Figure 13. This diagram illustrates the progression of malware within an IoT network over time.
The stacked bars in red, blue, and green represent the infected nodes, the susceptible nodes, and the
recovered nodes, respectively. The simulation involves 25% of the nodes with a new infection rate of
β
3 , which are patched at the fifth time step.

5. Conclusions

In this paper, we examined the effects of the proposed mitigation measure on malware
propagation in an IoT network. We propose updating the infection rate of individual nodes
by simulating a security update with customizable effectiveness against malware. This
mitigation measure imposes two criteria for node selection: one randomly and the other
based on node degree in the IoT network. To examine the effectiveness of the proposed mit-
igation measures, we conducted two numerical simulations. The first simulation indicated
that the mitigation strategy based on randomly selecting nodes necessitates updating at
least 75% of nodes to attain a performance level comparable to that of the strategy based on
node degree. The second simulation demonstrated that implementing a mitigation strategy
that considers both criteria for node selection produces superior results in the event of
early malware detection and minimal delay in the installation on IoT nodes. The metrics
created to assess the effectiveness of the mitigation strategy using both node selection
criteria demonstrate that opting for nodes based on node degree is efficient. Furthermore, it
diminishes the economic cost since the mitigation strategy involving random node selection



Mathematics 2024, 12, 250 22 of 24

demands the installation of updates on a large number of nodes (>75% of total nodes).
For feature work, we will examine the same mitigation strategy, yet with complex criteria
for selecting nodes that are founded on the features of the IoT network. Moreover, let us
investigate other strategies for reducing harm, like segregating the malware, and hybrid
methods that amalgamate several approaches for mitigating security threats. Finally, we
will broaden the investigation to various specific models of malware dissemination.

Author Contributions: Conceptualization, R.C.-V., J.L.C.-R. and Á.M.d.R.; methodology, M.S. and
R.C.-V.; software, M.S. and A.D.-L.; validation, R.C.-V., Á.M.d.R. and J.L.C.-R.; investigation, R.C.-
V., M.S. and A.D.-L.; data curation, M.S. and A.D.-L.; writing—original draft preparation, R.C.-V.,
M.S., A.D.-L., Á.M.d.R. and J.L.C.-R.; writing—review and editing, R.C.-V., Á.M.d.R. and J.L.C.-R.;
visualization, M.S. and A.D.-L.; supervision, R.C.-V., Á.M.d.R. and J.L.C.-R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A survey on the internet of things (IoT) forensics:

Challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [CrossRef]
2. Xie, H.; Qin, Z. A lite distributed semantic communication system for Internet of Things. IEEE J. Sel. Areas Commun. 2020,

39, 142–153. [CrossRef]
3. Wang, X.; Zhang, X.; Wang, S.; Xiao, J.; Tao, X. Modeling, Critical Threshold, and Lowest-Cost Patching Strategy of Malware

Propagation in Heterogeneous IoT Networks. IEEE Trans. Inf. Forensics Secur. 2023, 18 , 3531–3545. [CrossRef]
4. Swessi, D.; Idoudi, H. A survey on internet-of-things security: Threats and emerging countermeasures. Wirel. Pers. Commun.

2022, 124, 1557–1592. [CrossRef]
5. Xu, D.; Wang, X.; Hao, Y.; Zhang, Z.; Hao, Q.; Zhou, Z. A More Accurate and Robust Binary Ring-LWE Decryption Scheme and

Its Hardware Implementation for IoT Devices. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2022, 30, 1007–1019. [CrossRef]
6. Zografopoulos, I.; Hatziargyriou, N.D.; Konstantinou, C. Distributed energy resources cybersecurity outlook: Vulnerabilities,

attacks, impacts, and mitigations. IEEE Syst. J. 2023, 17 , 6695–6709. [CrossRef]
7. Ahmad, S.; Jha, S.; Alam, A.; Alharbi, M.; Nazeer, J. Analysis of intrusion detection approaches for network traffic anomalies with

comparative analysis on botnets (2008–2020). Secur. Commun. Netw. 2022, 2022, 9199703. [CrossRef]
8. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;

Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

9. Güven, E.Y. Mirai Botnet Attack Detection in Low-Scale Network Traffic. Intell. Autom. Soft Comput. 2023, 37, 419–437. [CrossRef]
10. James, A.V.; Sabitha, S. Malware attacks: A survey on mitigation measures. In Proceedings of the Second International Conference on

Networks and Advances in Computational Technologies: NetACT 19; Springer: Cham, Switzerland, 2021; pp. 1–11.
11. Pachhala, N.; Jothilakshmi, S.; Battula, B.P. A comprehensive survey on identification of malware types and malware classifi-

cation using machine learning techniques. In Proceedings of the 2021 2nd International Conference on Smart Electronics and
Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1207–1214.

12. Sprinkel, S.C. Global Internet Regulation: The Residual Effects of the ILoveYou Computer Virus and the Draft Convention on
Cyber-Crime. Suffolk Transnat’L Rev. 2001, 25, 491.

13. Zhang, C.; Zhou, S.; Chain, B.M. Hybrid epidemics—A case study on computer worm conficker. PloS ONE 2015, 10, e0127478.
[CrossRef]

14. Mohaisen, A.; Alrawi, O. Unveiling zeus: Automated classification of malware samples. In Proceedings of the 22nd International
Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 829–832.

15. Sood, A.K.; Enbody, R.J.; Bansal, R. Dissecting SpyEye–Understanding the design of third generation botnets. Comput. Netw.
2013, 57, 436–450. [CrossRef]

16. Thomas, K.; Bursztein, E.; Grier, C.; Ho, G.; Jagpal, N.; Kapravelos, A.; McCoy, D.; Nappa, A.; Paxson, V.; Pearce, P.; et al. Ad
injection at scale: Assessing deceptive advertisement modifications. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 151–167.

17. Mohurle, S.; Patil, M. A brief study of wannacry threat: Ransomware attack 2017. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1938–1940.
18. Mulligan, D.K.; Perzanowski, A.K. The magnificence of the disaster: Reconstructing the Sony BMG rootkit incident. Berkeley

Technol. Law J. 2007, 22, 1157.

http://doi.org/10.1109/COMST.2019.2962586
http://dx.doi.org/10.1109/JSAC.2020.3036968
http://dx.doi.org/10.1109/TIFS.2023.3284214
http://dx.doi.org/10.1007/s11277-021-09420-0
http://dx.doi.org/10.1109/TVLSI.2022.3174205
http://dx.doi.org/10.1109/JSYST.2023.3305757
http://dx.doi.org/10.1155/2022/9199703
http://dx.doi.org/10.32604/iasc.2023.038043
http://dx.doi.org/10.1371/journal.pone.0127478
http://dx.doi.org/10.1016/j.comnet.2012.06.021


Mathematics 2024, 12, 250 23 of 24

19. Mannix, K.; Gorey, A.; O’Shea, D.; Newe, T. Sensor Network Environments: A Review of the Attacks and Trust Management
Models for Securing Them. J. Sens. Actuator Netw. 2022, 11, 43. [CrossRef]

20. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. London. Ser. Contain.
Pap. Math. Phys. Character 1927, 115, 700–721.

21. Shi, X.; Zhang, T.; Zhou, D.; Zhou, X. Dynamical analysis and optimal control of a stochastic SIAR model for computer viruses.
Eur. Phys. J. Plus 2023, 138, 1–27. [CrossRef]

22. She, B.; Gracy, S.; Sundaram, S.; Sandberg, H.; Johansson, K.H.; Paré, P.E. Epidemics spread over networks: Influence of
infrastructure and opinions. In Cyber–Physical–Human Systems: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2023;
pp. 429–456.

23. Morris, D.H.; Rossine, F.W.; Plotkin, J.B.; Levin, S.A. Optimal, near-optimal, and robust epidemic control. Commun. Phys. 2021,
4, 78. [CrossRef]

24. Ojha, R.P.; Srivastava, P.K.; Sanyal, G.; Gupta, N. Improved model for the stability analysis of wireless sensor network against
malware attacks. Wirel. Pers. Commun. 2021, 116, 2525–2548. [CrossRef]

25. Gracy, S.; Wang, Y.; Pare, P.E.; Uribe, C.A. Multi-Competitive Virus Spread over a Time-Varying Networked SIS Model with an
Infrastructure Network. arXiv 2023, arXiv:2303.08859.

26. Chen, J.; Huang, Y.; Zhang, R.; Zhu, Q. Optimal curing strategy for competing epidemics spreading over complex networks.
IEEE Trans. Signal Inf. Process. Over Netw. 2021, 7, 294–308. [CrossRef]

27. Dinakarrao, S.M.P.; Guo, X.; Sayadi, H.; Nowzari, C.; Sasan, A.; Rafatirad, S.; Zhao, L.; Homayoun, H. Cognitive and scalable
technique for securing IoT networks against malware epidemics. IEEE Access 2020, 8, 138508–138528. [CrossRef]

28. Khouzani, M.; Altman, E.; Sarkar, S. Optimal quarantining of wireless malware through power control. In Proceedings of the
2009 Information Theory and Applications Workshop, La Jolla, CA, USA, 8–13 February 2009; pp. 301–310.

29. Shen, S.; Li, H.; Han, R.; Vasilakos, A.V.; Wang, Y.; Cao, Q. Differential game-based strategies for preventing malware propagation
in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1962–1973. [CrossRef]

30. Shen, S.; Ma, H.; Fan, E.; Hu, K.; Yu, S.; Liu, J.; Cao, Q. A non-cooperative non-zero-sum game-based dependability assessment of
heterogeneous WSNs with malware diffusion. J. Netw. Comput. Appl. 2017, 91, 26–35. [CrossRef]

31. Alamo, T.; Reina, D.G.; Gata, P.M.; Preciado, V.M.; Giordano, G. Data-driven methods for present and future pandemics:
Monitoring, modelling and managing. Annu. Rev. Control. 2021, 52, 448–464. [CrossRef] [PubMed]

32. Hong, Z.; Li, Y.; Gong, Y.; Chen, W. A data-driven spatially-specific vaccine allocation framework for COVID-19. Ann. Oper. Res.
2022, 1–24. [CrossRef]

33. Castaneda, F.; Sezer, E.C.; Xu, J. Worm vs. worm: Preliminary study of an active counter-attack mechanism. In Proceedings of the
2004 ACM Workshop on Rapid Malcode, Washington, DC, USA, 20 October 2004; pp. 83–93.

34. Musaddiq, A.; Zikria, Y.B.; Zulqarnain; Kim, S.W. Routing protocol for Low-Power and Lossy Networks for heterogeneous traffic
network. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–23. [CrossRef]

35. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2556–2563.

36. Roy, A.; Singh, C.; Narahari, Y. Recent advances in modeling and control of epidemics using a mean field approach. Sādhanā
2023, 48, 207. [CrossRef]

37. Silva, D.H.; Anteneodo, C.; Ferreira, S.C. Epidemic outbreaks with adaptive prevention on complex networks. Commun. Nonlinear
Sci. Numer. Simul. 2023, 116, 106877. [CrossRef]

38. Maitra, U.; Hota, A.R.; Srivastava, V. SIS Epidemic Propagation under Strategic Non-myopic Protection: A Dynamic Population
Game Approach. IEEE Control Syst. Lett. 2023, 7, 1578–1583. [CrossRef]

39. Hota, A.R.; Maitra, U.; Elokda, E.; Bolognani, S. Learning to Mitigate Epidemic Risks: A Dynamic Population Game Approach.
Dyn. Games Appl. 2023, 13, 1106–1129. [CrossRef]

40. Hassan, R.; Rafatirad, S.; Homayoun, H.; Dinakarrao, S.M.P. Performance-aware Malware Epidemic Confinement in Large-Scale
IoT Networks. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada,
14–23 June 2021; pp. 1–6.

41. Yang, L.X.; Li, P.; Yang, X.; Xiang, Y.; Jiang, F.; Zhou, W. Effective Quarantine and Recovery Scheme Against Advanced Persistent
Threat. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 5977–5991. [CrossRef]

42. Ren, J.; Zhang, C.; Hao, Q. A theoretical method to evaluate honeynet potency. Future Gener. Comput. Syst. 2021, 116, 76–85.
[CrossRef]

43. Farooq, M.J.; Zhu, Q. Modeling, analysis, and mitigation of dynamic botnet formation in wireless IoT networks. IEEE Trans. Inf.
Forensics Secur. 2019, 14, 2412–2426. [CrossRef]

44. Haghighi, M.S.; Wen, S.; Xiang, Y.; Quinn, B.; Zhou, W. On the race of worms and patches: Modeling the spread of information in
wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2854–2865. [CrossRef]

45. Aman, M.N.; Javaid, U.; Sikdar, B. IoT-Proctor: A Secure and Lightweight Device Patching Framework for Mitigating Malware
Spread in IoT Networks. IEEE Syst. J. 2022, 16, 3468–3479. [CrossRef]

46. Marinov, T.T.; Marinova, R.S. Inverse problem for adaptive SIR model: Application to COVID-19 in Latin America. Infect. Dis.
Model. 2022, 7, 134–148. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/jsan11030043
http://dx.doi.org/10.1140/epjp/s13360-023-04475-3
http://dx.doi.org/10.1038/s42005-021-00570-y
http://dx.doi.org/10.1007/s11277-020-07809-x
http://dx.doi.org/10.1109/TSIPN.2021.3075338
http://dx.doi.org/10.1109/ACCESS.2020.3011919
http://dx.doi.org/10.1109/TIFS.2014.2359333
http://dx.doi.org/10.1016/j.jnca.2017.05.003
http://dx.doi.org/10.1016/j.arcontrol.2021.05.003
http://www.ncbi.nlm.nih.gov/pubmed/34220287
http://dx.doi.org/10.1007/s10479-022-05037-z
http://dx.doi.org/10.1186/s13638-020-1645-4
http://dx.doi.org/10.1007/s12046-023-02268-z
http://dx.doi.org/10.1016/j.cnsns.2022.106877
http://dx.doi.org/10.1109/LCSYS.2023.3273504
http://dx.doi.org/10.1007/s13235-023-00529-4
http://dx.doi.org/10.1109/TSMC.2019.2956860
http://dx.doi.org/10.1016/j.future.2020.08.021
http://dx.doi.org/10.1109/TIFS.2019.2898817
http://dx.doi.org/10.1109/TIFS.2016.2594130
http://dx.doi.org/10.1109/JSYST.2021.3070404
http://dx.doi.org/10.1016/j.idm.2021.12.001
http://www.ncbi.nlm.nih.gov/pubmed/34934870


Mathematics 2024, 12, 250 24 of 24

47. Murray, J.D. Mathematical biology: I. an introduction 2002. In Mathematical Biology: II. Spatial Models and Biomedical Applications;
Springer: New York, NY, USA, 2003.

48. Shafiq, M.; Gu, Z.; Cheikhrouhou, O.; Alhakami, W.; Hamam, H. The rise of “Internet of Things”: Review and open research
issues related to detection and prevention of IoT-based security attacks. Wirel. Commun. Mob. Comput. 2022, 2022, 1–12. [CrossRef]

49. del Rey, A.M.; Vara, R.C.; González, S.R. A computational propagation model for malware based on the SIR classic model.
Neurocomputing 2022, 484, 161–171. [CrossRef]

50. Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. 1960, 5, 17–60.
51. Hagberg, A.; Swart, P.; Chult, D.S. Exploring Network Structure, Dynamics, and Function Using NetworkX; Technical Report; Los

Alamos National Lab.(LANL): Los Alamos, NM, USA, 2008.
52. Schiassi, E.; De Florio, M.; D’Ambrosio, A.; Mortari, D.; Furfaro, R. Physics-informed neural networks and functional interpolation

for data-driven parameters discovery of epidemiological compartmental models. Mathematics 2021, 9, 2069. [CrossRef]
53. Yuan, L.; Ni, Y.Q.; Deng, X.Y.; Hao, S. A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of

nonlinear integro-differential equations. J. Comput. Phys. 2022, 462, 111260. [CrossRef]
54. Gao, H.; Zahr, M.J.; Wang, J.X. Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed

forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2022, 390, 114502. [CrossRef]
55. Grimm, V.; Heinlein, A.; Klawonn, A.; Lanser, M.; Weber, J. Estimating the time-dependent contact rate of SIR and SEIR models

in mathematical epidemiology using physics-informed neural networks. Electron. Trans. Numer. Anal. 2022, 56, 1–27. [CrossRef]
56. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
57. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021,

63, 208–228. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2022/8669348
http://dx.doi.org/10.1016/j.neucom.2021.08.149
http://dx.doi.org/10.3390/math9172069
http://dx.doi.org/10.1016/j.jcp.2022.111260
http://dx.doi.org/10.1016/j.cma.2021.114502
http://dx.doi.org/10.1553/etna_vol56s1
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1137/19M1274067

	Introduction
	Mitigation Strategies
	Methods
	Propagation Model for Malware Based on the SIR Classic Model
	The Kermack and McKendrick SIR Model
	Individual-Based Stochastic SIR Model

	A Complex Network Approach to IoT Network
	Evaluation Metrics
	The Inverse Problem for the Parameter Estimation

	Results
	Simulation Setup
	Simulation Results
	Simulation 1.1 with 25% Nodes, Patching =3, Early Patching Time Step = 4
	Simulation 1.2 with 50% Nodes, Patching =3, Early Patching Time Step =4
	Simulation 1.3 with 75% Nodes, Patching =3, Early Patching Time Step =4
	Simulation 2.1 with 25% Nodes, Patching =3, Early Patching Time Step =1
	Simulation 2.2 with 25% Nodes, Patching =3, Early Patching Time Step =3
	Simulation 2.3 with 25% Nodes, Patching =3, Early Patching Time Step =5


	Conclusions
	References

