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1. Introduction

The greater power is the less knowledge you need to act. This consideration became
obvious to specialists in cybernetics less than 10 years after the birth of this [1] science.
After enriching the field of application of control theory with the tasks of biology and
economics, it became clear that there is a huge number of problems wherein the assumption
of knowledge of the parameters of the model is absurd. Thus, the active work of the world
community of scientists began to create methods that laid the foundation for the theory of
identification and adaptive control.

Since then, science has advanced far, and in particular, the necessary and sufficient
conditions for the identifiability of parameters of linear systems have been found [2],
as well as algorithms for identification. Similar criteria have been obtained for nonlinear
models, but unlike the linear case, they are often difficult to verify, and therefore the
problem of identifying the parameters of a nonlinear system is still substantial. A special
place among nonlinear dynamical systems is held by oscillatory systems. Such models
are common in robotics, electrical engineering, vibration mechanics, and many other
areas [3]. Moreover, control synthesis for such systems and the study of their properties are
interesting mathematical problems separate from direct application.

Here is a simple and illustrative example of a system from mathematical ecology,
whose parameters cannot be measured in advance for natural reasons: the Lotka-Volterra
model. The classical version of this model describes the change in population size during
the two species interaction, also called the “predator-prey” model

ẋ = (b1 + a12y)x

ẏ = (b2 + a21x)y

The variables x and y are the sizes of populations (e.g., pike population and redfish
population), the coefficients b show the natural dynamics of growth or extinction of one
species in the absence of the other, and the coefficients a12, a21 correspond to the change in
the population size of one species when interacting with members of another species [4].
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This system is obviously nonlinear; moreover, assuming that none of the species dies (math-
ematically, this corresponds to the existence of an equilibrium with positive coordinates [5]),
this system is oscillatory.

It is unclear what a12 = 0.6 means and how such a coefficient value differs from
a12 = 0.4 in terms of interpretation. Without a special mathematical method, it is im-
possible in this case to select the values of the model coefficients adequate to the real
ecological system.

Even Vito Volterra during the 1920s, after studying the case of two species, considered
the multispecies model and investigated some of its properties [6]. It is clear that increasing
the number of species decreases the chances, guided by heuristic considerations, to select
the correct coefficients corresponding to the behavior of the real ecological system. Later it
turned out that the generalized Lotka-Volterra model is used not only in works on ecology.
It also appears in solving problems in physics, economics, engineering, and many other [7]
fields. Moreover, a large amount of quasi-polynomial systems can be reduced to such a
representation [8].

This paper also presents results for general systems (Theorems 1 and 2), but the
main problem around which this study was developed was the problem of identifying
the parameters of the generalized Lotka-Volterra model. The relevance of this problem is
evident from the preceding paragraph. However, to the best of the authors’ knowledge,
there are almost no results on this subject. In the monograph [9], a parameter estimation
method based on computing state space variables time averages was proposed for a two
species system. It has not been developed since then. In the book [10], the offline methods
of determining the parameters of the Lotka-Volterra model were presented. The method
for parameter estimation via ARMA representation for the first, second, and third order
systems was described there, as well as a method for parameter estimation via transfer
function evaluation. The conditions under which the estimation can be correctly performed
are not considered in detail. Classical statistical approaches were also applied in [11],
and parameter estimation by machine learning methods (differential neural networks)
was proposed in [12]. Some results on numerical parameters estimation for the cases
n = 2, 3, 4, 5 were presented in [13]. The general case of online parameters identification
was not studied before. Moreover, the implied applications of the theoretical results force
us to consider a problem with an additional complication: obtaining information in the
form of a sample.

This paper is organized as follows: Section 2 contains a rigorous formulation of
the problem and proposes an algorithm by which this problem can be solved. Section 3
introduces the necessary definitions for the main results formulation. Section 4 contains
theorems on nonhyperplanar recurrent trajectories and the theorem on the identification of
the parameters of the Lotka-Volterra model (the main result of the paper). Section 5 gives
numerical simulation results, followed by a final commentary in Section 6.

Preliminarily, the main results were announced in a conference paper [14].

2. Problem Statement

Consider the n-species Lotka-Volterra system in positive orthant:

ẋi = xi

(
bi +

n

∑
j=1

aijxj

)
, i = 1, . . . n (1)

where

• matrix A (with elements aij) is nonsingular.
• aij = −aji, that is, A is a skew-symmetric matrix.
• bi is such that η = −A−1b has positive coordinates.

Whenever the authors refer to the Lotka-Volterra model and Formula (1) in the text,
the list of requirements above will be implied.
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The matrix A is assumed to be skew-symmetric without loss of generality (for brevity
and clarity of the text). The results presented below are also valid for the case when the ma-
trix can be transformed to a skew-symmetric form by multiplication by a diagonal matrix.

Let the coefficients aij and bi be constant and unknown, so we need to estimate them.
It is assumed that xi, ẋi are measured at discrete moments of time tk, k = 1, 2, . . . .

Let us consider the expression we need further to formulate the problem of identifica-
tion (learning, parameter estimation)

ω̂i = xi

(
b̂i +

n

∑
j=1

âijxj

)
(2)

where the hat ˆ over the variable denotes the estimation. Hereafter, in the text we will refer
to it as an implicit adaptive model.

Let us introduce the notations

ẋ(k)i = ẋi(tk), ω̂
(k)
i = ω̂i(tk),

x(k)i = xi(tk), x̂(k)i = x̂i(tk),
â(k)ij = âij(tk), b̂(k)i = b̂i(tk)

z(k)i = col
[

x(k)i , x(k)i x(k)1 , x(k)i x(k)2 , . . . x(k)i x(k)n

]
θ̂
(k)
i = col

[
b̂(k)i , â(k)i1 , . . . â(k)in

]
, θi = col[bi, ai1, ai2, . . . , ai,n]

(3)

Set the learning objective, called parametric identification, in the form of the inequalities
(4) and (5):

|ẋ(k)i − ω̂
(k)
i | < ∆, i = 1, . . . , n, k = K + 1, K + 2, . . . (4)

|θ(k)i − θ̂
(k)
i | < ∆θ , i = 1, . . . , n, k = K, K + 1, . . . , (5)

where K—some enough big natural number.
The meaning of the above conditions is that the implicit adaptive system behaves

similarly to the reference system as a result of parameter identification according to in-
equalities (4). The condition (5) means that the parameters to be estimated are close to the
reference parameters.

Subtracting (2) from (1) and substituting it into (4), we obtain

|(θ̂i − θi)
Tz(k)i | < ∆, i = 1, . . . , n (6)

Then we convert it to the form below and obtain additional target inequalities with
respect to vectors θi. ∣∣∣ẋ(k)i − θ̂T

i z(k)i

∣∣∣ < ∆, i = 1, . . . n (7)

To solve n infinite-dimensional systems of inequalities, we will use a variation of the
projective gradient algorithm “Stripe”. This algorithm was proposed by V.A. Yakubovich
in 1966 [15].

θ̂k+1
i =


θ̂
(k)
i , if |ẋ(k)i − θ̂

(k)⊤
i z(k)i | < ∆

θ̂
(k)
i − γ

ẋ(k)i −θ̂
(k)⊤
i z(k)i

µ+||z(k)i ||2
· z(k)i , else

. (8)

Here 1/2 ≤ γ ≤ 1 is the “projection step” size, and µ > 0 is a a small parameter
necessary to prevent the denominator from going to zero when calculating on a digital
device. This algorithm has a simple geometric interpretation. It consistently projects the
estimations vector inside the stripe given by the inequalities (4). This algorithm is well
researched and many of its properties are known. In addition, the choice of this algorithm is
explained by the fact that it has all the advantages of discrete algorithms, and in particular
the simplicity of implementation on computing devices.
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3. Necessary Definitions

In order to present further results, it is necessary to introduce some definitions. One of
the definitions is known, the other is introduced by the authors of this paper.

Consider a dynamic system of the general form

ẋ = f (x) (9)

Definition 1 ([16]). A trajectory is called recurrent if for any ε > 0 there exists Tε > 0 such that
every point of the trajectory is at a distance not greater than ε to the segment [x(t), x(t + Tε)],
for any t > 0.

Geometrically, the main property of a recurrent trajectory is that it always returns to
any of its points in some bounded finite time.

Let us also introduce a new definition. Let us divide the trajectories of the system into
hyperplanar and nonhyperplanar.

Definition 2. Hyperplanar trajectories are trajectories belonging to a certain hyperplane, while
nonhyperplanar trajectories are all other trajectories.

Nonhyperplanar trajectories, “walk” throughout the space Rn.

4. Main Results

We begin the presentation of the main results of the paper with two theorems connect-
ing nonhyperplanar recurrent trajectories and the persistent excitation condition. These
theorems are valid for systems of general form (not only for the Lotka-Volterra model!),
and deserve attention by themselves. Then, on the basis of these theorems, the main
result of the paper will be proved: a theorem on the identification of parameters of the
Lotka-Volterra model. At the end of the section, we will give some important summarizing
remarks justifying the formulation of the results in terms of trajectories.

4.1. Two Theorems on Nonhyperplanar Recurrent Trajectories

The first theorem states a useful property of nonhyperplanar recurrent trajectories.

Theorem 1. For any nonhyperplanar recurrent trajectory π = x(t, x(0)) of the dynamical system
ẋ = f (x), there exist T > 0, α > 0, such that on any interval [t, t + T] for any hyperplane G, there
is a trajectory point whose distance to G is at least α.

Proof. Without loss of generality, we will consider hyperplanes passing through the origin
(this is the case to which any problem is reduced by parallel transfer). Since the trajectory π

is nonhyperplanar, there exist such ti, i = 1 . . . n that x(i) = x(ti) form a basis in the space
Rn. In particular, this means that no hyperplane passes through all n chosen points and the
origin. We will show that the following statement follows.

Lemma 1. There exists a radius r = α + ε > 0 such that no hyperplane passes through all n balls
circumscribed around the points x(i) and the origin simultaneously.

To prove this lemma, let us write x(i) as the rows of the matrix M of size n × n.

M =


x(1)1 x(1)2 . . . x(1)n

x(2)1 x(2)2 . . . x(2)n
...

...
...

x(n)1 x(n)2 . . . x(n)n

 (10)
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The determinant det(M) ̸= 0 because x(i) are linearly independent. By continuity of
the determinant as a function of the matrix elements, there exists a number r > 0 such that
|det(M + Q)| > γ > 0, for all matrices Q whose elements in |qij| ≤ r. Hence, the statement
of the lemma follows.

To continue the proof of Theorem 1, we choose ε, such that 0 < ε < r. Then, it follows
from the definition of recurrent trajectory that for T = Tε on any interval [t, t + T] there
are n points of the form y(i)(t, t + T) = x(i) + c(i) belonging to the trajectory π, where c(i)
are n-dimensional vectors with coordinates not exceeding modulo ε/

√
n. In other words,

on this interval there are points lying inside a cube with radius ε/
√

n (hence a ball with
radius ε) with centers at the points x(i), respectively. It is clear that the statement of the
theorem holds for α = r − ε.

By the theorem from Section 3.4 of [3], the statement above can be reformulated
as follows

Corollary 1. For any nonhyperplanar recurrent trajectory π = x(t, x(0)) of the dynamical system
ẋ = f (x), the persistent excitation condition is satisfied.

The second theorem is a generalization of the first one to the case of sampled data. This
generalization will further allow us to apply a discrete-time algorithm (8) to the problem
of identifying the parameters of the system (1). For simplicity of formulation, sampling
will be assumed to be uniform in time, although it is clear that this requirement can be
seriously weakened.

Theorem 2. For any nonhyperplanar recurrent trajectory π of the dynamical system ẋ,= f (x),
there exists a sufficiently small sampling interval d > 0 and constants T > 0, αd > 0, such that on
any interval [t, t + T] for any hyperplane G, there is a point of the trajectory from the sample, the
distance from which to G is not less than αd.

Proof. Let tk ∈ Td be the moments of time from the sample; we assume the sample to be
uniform, i.e., tk+1 = tk + d. Due to the boundedness of the derivative ẋ(t), it is obvious
that on any interval [t, t + T] for any β > 0 there exists such a (small enough) d that
ζ(i) = x(tki

), tki
∈ Td ∩ [t, t + T], i = 1 . . . n satisfying |y(i)(t, t + T)− ζ(i)| < β.

Carrying out reasoning similar to the proof of Theorem 1, representing r = αd + β + ε
we obtain the statement of the theorem.

4.2. Parameters Identification of Lotka-Volterra Model

For identification of system parameters by the algorithm (8), we are interested in the
analog of persistent excitation condition not for system coordinates, but for vectors

z(k)i = col
[

x(k)i , x(k)i x(k)1 , x(k)i x(k)2 , . . . x(k)i x(k)n

]
from (3).

Further, what we want to prove will be formulated more precisely, now let us give an
auxiliary result.

Bondarko Condition

According to the work of V. A. Bondarko [17], the following is true:
Let us define the matrices

Φ1(k1, k2, . . . , kn+1) =
[

z(k1)
i z(k2)

i . . . z(kn+1)
i

]
,

Φ2(k1, . . . , kn+1) = Φ∗
1(k1, . . . , kn)Φ1(k1, . . . , kn+1),

where n + 1 is the dimension of vectors θ. Let us denote by T∞ = T∞(∆) the set of all
solutions of inequalities (4) with sufficiently large numbers k, and by D∞ = D∞(∆) the
diameter of the set T∞, i.e., the maximum value of the distance between its two points. We
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will say that the sequence
{

z(k)i

}
is nonsingular if it is bounded and any of the following

conditions is satisfied

lim
K→∞

sup
ki>K

det Φi(k1, k2, . . . , kn+1) ⩾ δ > 0, i = 1, 2. (11)

Hereafter we will call this condition Bondarko’s condition. For nonsingular sequences, it
is obvious that D∞(∆) is of the same order of magnitude as ∆. The distance from θ̂ to θ is
bounded from above by D∞(∆).

4.3. Identification Theorem

Now we can formulate and prove the main result of this paper. The formulation of the
parameter identification theorem is as follows:

Theorem 3. If the sampling interval is sufficiently small, then for a system (1) the algorithm
(8) achieves parametric identification in the sense of the inequalities (5) for any nonhyperplanar
recurrent trajectory π.

Proof. According to what we have written above, it is sufficient to show that any of the
Bondarko conditions (11) is satisfied. Let us take the sampling interval d > 0 as small
enough to fulfill Theorem 2. We will prove that starting from some sufficiently large natural
number, for any K, there exist ki > K, i = 1 . . . n (not necessarily ordered in increasing order)
and correspondingly tki

> tK ∈ Td, i = 1 . . . n such that det Φ1(k1, k2, . . . , kn) ⩾ δ > 0.
The proof will be based on the proof of the previous theorem, and in particular

will use notation from there. Let us choose k1 . . . kn (without kn+1 for now) such that
x(ki) = ζ(i), i = 1 . . . n from Theorem 2. As shown in the proof |det(Mn+1)| > γ > 0, where
M is a matrix composed of vectors x(ki) = ζ(i).

Next, let us consider the expression

det Φ1(k1, k2, . . . , kn+1) = det
[

z(k1)
i z(k2)

i . . . z(kn+1)
i

]
= (12)

=det



x(k1)
i x(k2)

i . . . x(kn+1)
i

x(k1)
i , x(k1)

1 x(k2)
i x(k2)

1 . . . x(kn+1)
i x(kn+1)

1

x(k1)
i , x(k1)

2 x(k2)
i x(k2)

2 . . . x(kn+1)
i x(kn+1)

2
...

...
...

x(k1)
i x(k1)

n x(k2)
i x(k2)

n . . . x(kn+1)
i x(kn+1)

n


= (13)

=det


1 x(k1)

1 x(k1)
2 . . . x(k1)

n

1 x(k2)
1 x(k2)

2 . . . x(k2)
n

...
...

...

1 x(kn+1)
1 x(kn+1)

2 . . .
...x(kn+1)

n


T

· x(k1)
i x(k2)

i . . . x(kn+1)
i (14)

Our goal is to prove that this expression is positive and separable from zero. Note first
that the product x(k1)

i x(k2)
i . . . x(kn+1)

i is always positive and separated from zero since each
multiplier can be bounded from below. Accordingly, we need to prove that

det


1 x(k1)

1 x(k1)
2 . . . x(k1)

n

1 x(k2)
1 x(k2)

2 . . . x(k2)
n

...
...

...

1 x(kn+1)
1 x(kn+1)

2 . . .
...x(kn+1)

n

 > γ0 > 0 (15)
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Note now that the upper right minor of order n of the matrix above is exactly the
same as the determinant of the matrix M. Let us now further define x(kn+1). Given that
the trajectory π is non-hyperplanar, it does not belong, in particular, to the hyperplane
constructed by the n points x(k1) . . . x(kn). Moreover, by Theorem 2, on any interval of
length T, there is a trajectory point from the sample at a distance to this plane at least as
large as αd. This in turn means [18] that if ∑n

1 cjx
(kj) = x(kn+1), where cj are coefficients,

then ∑n
1 cj ̸= 1, and furthermore |∑n

1 cj − 1| > γα > 0. Thus, we obtain

det


1 x(k1)

1 x(k1)
2 . . . x(k1)

n

1 x(k2)
1 x(k2)

2 . . . x(k2)
n

...
...

...
...

1 x(kn+1)
1 x(kn+1)

2 . . . x(kn+1)
n

 = (16)

det


1 x(k1)

1 x(k1)
2 . . . x(k1)

n

1 x(k2)
1 x(k2)

2 . . . x(k2)
n

...
...

...

1 ∑n
1 cjx

(kj)

1 ∑n
1 cjx

(kj)

2 . . . ∑n
1 cjx

(kj)
n

 = (17)

det


1 x(k1)

1 x(k1)
2 . . . x(k1)

n

1 x(k2)
1 x(k2)

2 . . . x(k2)
n

...
...

...
1 − ∑n

1 cj 0 0 . . . 0

 = (1 −
n

∑
1

cj)det(M) (18)

As shown earlier, |(1 − ∑n
1 cj)det(Mn+1)| > γαγ > 0. The first Bondarko condition is

satisfied. From this follows the statement of the theorem.

The theorem gives sufficient conditions (recurrence and nonhyperplanarity of trajec-
tories) under which the algorithm is guaranteed to solve the identification problem. It is
natural to ask how often these conditions are met. It turns out that these conditions are
met almost always. The proof of this statement is beyond the scope of this article and will
be published in subsequent papers (for now it is postulated in a conference paper [14]).
However, an important consequence can be formulated on its basis.

Corollary 2. For all sets of parameters and initial data, except maybe sets of Lebesgue measure
zero in the corresponding spaces, the identification of the conservative Lotka-Volterra model (1)
parameters by the Stripe algorithm (8) is guaranteed.

In other words, the probability that an algorithm can fail to solve the problem is zero.

5. Modeling

This section of the paper presents numerical experiments illustrating the obtained
theoretical results, as well as outlining possible further development of the theory. For the
numerical solution of systems of ordinary differential equations, the MATLAB R2018a
application program package and the ode23 method were used. For the simplicity of the
graphs in all subsections, systems of the 4th order are considered.

5.1. Modeling of the Identification Algorithm

Let us start with the case corresponding without additions to the theoretical framework
presented above. Let us simulate the system (1) and simultaneously run the adaptive
algorithm (8).

The initial data are as follows (it is chosen similar to [19,20]):
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x(0) = [0.87, 0.3, 0.27, 0.57]T , b = [0,−2,−4.5, 6.5]T , A =


0 2.2 −3.3 1.1
−2 0 0.5 3.5
3 −0.5 0 2
−1 −3.5 −2 0


Note that, as mentioned at the beginning of this paper, the matrix A does not have

to be skew-symmetric, for it is enough that it can be transformed to such a form (in this
case we can multiply the rows of the matrix by the coefficients). The skew-symmetricity
requirement was introduced to shorten the notation and to make it easy to read.

With such initial data, the system satisfies all the requirements from the list (1), and the
dynamics of the state variables show an oscillatory behavior. The difference between the
real output and its estimate at time tk is “forced into a stripe” (Figure 1) of width 2∆ given
by the inequalities (4) using the algorithm (8).

Figure 1. Difference ẋi − ω̂i “forced into a stripe”.

Parametric identification is performed and the adjusted coefficients are close to the
reference values. Below is a comparison of all the estimates of the parameters defining the
system with their real values (Table 1), as well as plots of how the estimates change over
time (Figure 2) for three of them (taken arbitrarily as an example): b̂1, â32, â41.

Table 1. Comparison between θ and θ̂.

b b̂ A Â
0 −0.0048 0 2.2 −3.3 1.1 0.0025 2.1979 −3.3010 1.1010
−2 −2.0050 −2 0 0.5 3.5 −1.9990 0.023 0.4981 3.5011
−4.5 −4.4980 3 −0.5 0 2 3.0024 −0.4985 −0.0021 1.9981
6.5 6.4961 −1 −3.5 −2 0 −1.0013 −3.4994 −2.0017 0.0031

Too large a number of measurements of the system state is not required for this
approach. For identification of the system of the 4th order, 1000 measurements were
enough. It may be possible to achieve this result with a smaller number of measurements.
One of the ways in which this can be achieved will be described below.

If we know that matrix A of the model (1) is skew-symmetric, we can achieve higher
speed and accuracy of the algorithm using this knowledge. It is quite reasonable to look
for parameter estimates in the same form. The condition âij = −âji can be satisfied

by successively projecting the vector
[
θT

1,k, θT
2,k, . . . θT

n,k

]
∈ Rn×n onto the corresponding
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hyperplanes. A simple and fast algorithm is proposed for this purpose in the paper [21].
The composition of the algorithm from [21] and the algorithm (8) will still solve the system
of inequalities (4) due to the fact that these algorithms satisfy the same Lyapunov function.
The result of the modified algorithm is represented by the table (Table 2) below.

Figure 2. Evolution of b̂1(t)—blue, â32(t)—yellow, â41(t)—red.

Table 2. Comparison between θ and θ̂.

b b̂ A Â
0 0.0335 0 2 −3 1 0 1.9414 −2.9158 0.9862
−2 −1.9702 −2 0 0.5 3.5 −1.9414 0 0.5267 3.4335
−4.5 −4.4023 3 −0.5 0 2 2.9158 −0.5267 0 1.9706
6.5 6.3927 −1 −3.5 −2 0 −0.9862 −3.4335 −1.9706 0

Such modification of the algorithm according to the simulation results makes it possi-
ble to accelerate the convergence of the algorithm approximately by a factor of 1.2 for a 4th
order system. For models of larger dimensions, it is natural to assume that the benefit of
the modification will not be any less.

5.2. Parameter Identification under Noise in Dynamics and Measurements

One of the reasons why the Stripe algorithm is famous is its robustness to noise [15].
In the presentation of the theoretical results of this paper, neither interference in the
measurement nor noise in the right-hand side of ordinary differential equations have
been considered. This is a matter for future research. However, we will demonstrate
by simulation that the research is reasonable, i.e., that the introduction of noise does not
interfere with the algorithm (8).

The initial data coincide with the case considered earlier

x(0) = [0.87, 0.3, 0.27, 0.57]T , b = [0,−2,−4.5, 6.5]T , A =


0 2.2 −3.3 1.1
−2 0 0.5 3.5
3 −0.5 0 2
−1 −3.5 −2 0

.

However, now the dynamics of the system has the form

ẋi = xi

(
bi +

n

∑
j=1

aijxj

)
+ si, i = 1, . . . n,
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where s = s(t) is white noise with the bound |s| < 0.15. In addition, instead of ẋi, a noisy
signal is also fed to the input of the identification algorithm (Figure 3).

Figure 3. Evolution of b̂1(t)—blue, â32(t)—yellow, â41(t)—red. Bounded |s| < 0.15 noise in measure-
ments and dynamics case.

The graphs show that the introduction of various kinds of disturbances does not break
the work of the identification algorithm.

It is easy to show using the results from [15] that the identification error grows in
proportion to the amplitude of the measurement error (amplitude of the measurement
noise). Modeling shows that the proportionality coefficient is small; for the given system it
turns out to be approximately equal to 1/2.

6. Conclusions

In this paper, we obtain the conditions under which the parameters of the generalized
conservative Lotka-Volterra model (of any dimensionality) can be identified by the Stripe
algorithm based on sampled data. Also in this paper, we obtain results for systems of
general form. It is proved that if the recurrent trajectories are nonhyperplanar ones, it
is sufficient to fulfill the persistent excitation condition. The validity of this statement
holds when the data is given in a sampled form with a sufficiently small sampling interval.
Persistent excitation condition arises in problems of identification theory very often, so
these observations may be useful in future studies.

The presented theoretical results are illustrated by computer modeling. The modeling
shows that results similar to those of the paper can be obtained for the case with noise in
system dynamics and disturbances in state variables measurements. Also significant is
the question of the convergence rate of the algorithm for identifying the parameters of the
Lotka-Volterra model. The authors hope that research will continue in directions related to
the results of this article.

Author Contributions: Conceptualization, A.F.; Software, A.S.; Validation, A.F.; Formal analysis, A.S.;
Writing—original draft, A.S.; Writing—review & editing, A.F.; Supervision, A.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the Russian Science Foundation, RSF 23-41-00060.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2024, 12, 248 11 of 11

References
1. Stromer, P.R. Adaptive or self-optimizing control systems—A bibliography. IRE Trans. Autom. Control 1959, AC-4, 65–68.

[CrossRef]
2. Efimov, D.V. Robust and Adaptive Control of Nonlinear Oscillations; Nauka: St. Petersburg, Russia, 2005.
3. Fradkov, A.L.; Miroshnik, I.V.; Nikiforov, V.O. Nonlinear and Adaptive Control of Complex Systems; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2013; Volume 491.
4. Svirezhev, Y.M.; Logofet, D. Stability of Biological Associations; Nauka: Moscow, Russia, 1978.
5. Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press: Cambridge, UK, 1998.
6. Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 1928,

3, 3–51. [CrossRef]
7. Plank, M. Hamiltonian structures for the n-dimensional Lotka–Volterra equations. J. Math. Phys. 1995, 36, 3520–3534. [CrossRef]
8. Brenig, L. Complete factorisation and analytic solutions of generalized Lotka-Volterra equations. Phys. Lett. A 1988, 133, 378–382.

[CrossRef]
9. Goel, N.S.; Maitra, S.C.; Montroll, E.W. On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys.

1971, 43, 231. [CrossRef]
10. Doyle, F.J., III; Pearson, R.; Ogunnaike, B. Identification and Control Using Volterra Models; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2001.
11. Lee, B.H. Determination of the Parameters in Lotka-Volterra Equations from Population Measurements—Algorithms and

Numerical Experiments. Available online: https://www.siam.org/Portals/0/Publications/SIURO/Vol14/S138316PDF.pdf?ver=
2021-08-19-061113-003 (accessed on 3 January 2024).

12. Gradilla-Hernández, S.; Herrera-López, E.J.; Gschaedler, A.; González-Avila, M.; Fuentes-Aguilar, R.; Garcia-Gonzalez, A.
Differential neural network identifier for parameter determination of a mixed microbial culture model. IFAC-PapersOnLine 2018,
51, 479–484. [CrossRef]

13. Remien, C.H.; Eckwright, M.J.; Ridenhour, B.J. Structural identifiability of the generalized Lotka–Volterra model for microbiome
studies. R. Soc. Open Sci. 2021, 8, 201378. [CrossRef] [PubMed]

14. Semenov, A.; Fradkov, A. Parameters identification of the multispecies Lotka-Volterra model using discrete algorithm. In
Proceedings of the 2023 7th Scientific School Dynamics of Complex Networks and Their Applications (DCNA), Kaliningrad,
Russia, 18–20 September 2023; pp. 237–240.

15. Yakubovich, V. Finitely convergent recursive algorithms for the solution of systems of inequalities. Dokl. Akad. Nauk SSSR 1966,
166, 1308–1311.

16. Bhatia, N.P. Stability theory of dynamical systems. Grund. Math. Wiss 1970, 161 , 164.
17. Bondarko, V.A. Adaptive vector control of an induction motor on the basis of the method of recurrent objective inequalities.

Autom. Remote Control 2010, 71, 1849–1863. [CrossRef]
18. Gallier, J. Geometric Methods and Applications: For Computer Science and Engineering; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2011; Volume 38.
19. Pchelkina, I.; Fradkov, A.L. Control of oscillatory behavior of multispecies populations. Ecol. Model. 2012, 227, 1–6. [CrossRef]
20. Olivença, D.V.; Davis, J.D.; Voit, E.O. Comparison between Lotka-Volterra and multivariate autoregressive models of ecological

interaction systems. bioRxiv 2021. [CrossRef]
21. Ouyang, H. Projecting onto intersections of halfspaces and hyperplanes. arXiv 2020, arXiv:2006.06995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TAC.1959.6429404
http://dx.doi.org/10.1093/icesjms/3.1.3
http://dx.doi.org/10.1063/1.530978
http://dx.doi.org/10.1016/0375-9601(88)90920-6
http://dx.doi.org/10.1103/RevModPhys.43.231
https://www.siam.org/Portals/0/Publications/SIURO/Vol14/S138316PDF.pdf?ver=2021-08-19-061113-003
https://www.siam.org/Portals/0/Publications/SIURO/Vol14/S138316PDF.pdf?ver=2021-08-19-061113-003
http://dx.doi.org/10.1016/j.ifacol.2018.07.323
http://dx.doi.org/10.1098/rsos.201378
http://www.ncbi.nlm.nih.gov/pubmed/34295510
http://dx.doi.org/10.1134/S0005117910090080
http://dx.doi.org/10.1016/j.ecolmodel.2011.10.022
http://dx.doi.org/10.1101/2021.10.07.463461

	Introduction
	Problem Statement
	Necessary Definitions
	Main Results
	Two Theorems on Nonhyperplanar Recurrent Trajectories
	Parameters Identification of Lotka-Volterra Model
	Identification Theorem

	Modeling
	Modeling of the Identification Algorithm
	Parameter Identification under Noise in Dynamics and Measurements

	Conclusions
	References

