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Abstract: This paper deals with the identifiability of VARMA models with VAR order greater than 

or equal to the MA order, in the context of mixed-frequency data (MFD) using extended Yule–

Walker equations. The main contribution is that necessary and sufficient conditions for identifiabil-

ity in the single-frequency data case are expressed in an original way and yield new results in the 

MFD case. We also provide two counterexamples that answer an open question in this topic about 

whether certain sufficient conditions are necessary for identifiability. Therefore, this paper expands 

the set of models that can be identified with MFD using extended Yule–Walker equations. The main 

idea is that with MFD, some autocovariance blocks are not available from observed variables and, 

in some cases, the new conditions in this paper can be used to reconstruct all the non-available co-

variance blocks from available covariance blocks. 
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1. Introduction 

In time series models, developing statistically efficient and computationally quick 

methods for identifying and estimating VAR or VARMA models with single-frequency 

data (SFD) or mixed-frequency data (MFD) is an important task. In this paper, “SFD 

means that all the variables of a model are observed at the same discrete-time frequency 

at which the model operates, and MFD means that some of the variables are observed at 

the same discrete-time frequency at which the model operates, and others are observed at 

one or more lower frequencies” [1]. 

Linear algebra tools are extensively used to study transfer functions, Yule–Walker 

equations and Hankel matrices associated with identifying and estimating VAR or 

VARMA models (see, for instance, [1–13]). In particular, the extended Yule–Walker 

method (XYW) was proposed by [5], and it is considered in several later papers, in partic-

ular in [2,3,8] for estimating VAR models from available covariance matrices of MFD. Two 

of the principal and parallel strands of this literature which extend the method to the case 

of VARMA models are [1,2]. The first considers both exact and generic identification and 

the second considers only exact identification. They make both common and differing as-

sumptions involving the parameters of a VARMA model and prove that their assump-

tions are, as a whole, sufficient to identify all of the parameters of a VARMA model with 

MFD. In particular, [1] questions whether its “conditions as a whole are necessary for 

identification”. This question has motivated our work, and our aim is to expand the meth-

odology to more identifiable models. 
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This paper is focused on identification. In econometrics and statistics, identification 

means the coefficients (parameters) of a model are determined uniquely from data covar-

iances (and higher moments, depending on the data distribution) under assumed condi-

tions for the coefficients of a model.  

Our aim is to provide conditions for the identifiability of VARMA models that cannot 

be identified by following the procedure in [1] and, in this regard, to complement it. We 

use a subset of conditions in [1] and some more, and we prove with two counterexamples 

that the whole set of conditions in [1] is not necessary. The main results are obtained from 

subsystems of extended Yule–Walker equations. Therefore, we expand the set of models 

identified with extended Yule–Walker methods. 

Because with MFD some autocovariance blocks are not available from observed var-

iables, the main idea of our work is to provide conditions that, in addition to ensuring that 

the model with SFD is identifiable, allow rebuilding the unknown blocks from available 

covariance blocks. This thus yields all the complete autocovariances. As is well known, 

there is a bijection between the covariance and the corresponding spectral density of the 

process (see, for instance, [6]), meaning we can ensure the identifiability of the model.  

Section 2 summarizes and comments on the sufficient conditions used in [1] to iden-

tify VARMA models with SFD and MFD. In Section 3, we prove our main theoretical re-

sults. With a suitable change, our paper expands the applicability of XYW methods to 

more identifiable models. Section 4 tests and illustrates our main insight with two coun-

terexamples. We close this paper with Conclusions, References and an Appendix with a 

MATLAB subroutine used in a counterexample. 

2. The Six Sufficient Conditions for Identification in [1] 

Zadrozny, in [1], considers the VARMA(r, q) model 

yt = A1yt−1 + … + Aryt−r + 𝐵0𝜀𝑡 + B1𝜀𝑡−1 + … + Bq𝜀𝑡−𝑞  (1) 

where yt denotes an n × 1 vector of observed variables; p = max{r, q + 1}; Ai for i = 1, …, p and Bj 

for j = 0, 1, …, p − 1 are n × n matrices, Ar ≠ 0, Bq ≠ 0, Ai = 0 if i = r + 1, …, p; Bi = 0 if i = q + 1, …,  

p − 1; and 𝜀𝑡 denotes an n × 1 white noise vector. 

In order to express the conditions in [1], and others in this paper, we need the follow-

ing notation:  

a(z) = I − A1z −…− Apzp, b(z) = B0 + B1z + … + Bqzq, where z ∈ ℂ,  

F = (

𝐴1 𝐼𝑛
⋮ 0

⋯ 0
⋱ ⋮

⋮ ⋮
𝐴𝑝 0

⋱ 𝐼𝑛
⋯ 0

) is np × np, G = (
𝐵0
⋮

𝐵𝑝−1
) is np  n, H = (In, 0n×n, …, 0n×n) is n × np,  

CL(F, G) = [G FG F2G … FL−1G] is np  nL and  

OL(F, H) = [Ht (HF)t (HF2)t … (HFL−1)t]t is nLnp, for L = 1, 2, …  

Assuming that the VARMA(r, q) model is stationary and that ∑ = E(𝜀𝑡𝑡
𝑡) is positive 

definite:  

K(z) = a−1(z)b(z) = ∑ 𝐾𝑖𝑧
𝑖∞

𝑖 = 0  is the transfer function,  

Ci = E(𝑦𝑡𝑦𝑡−𝑖
𝑇 ) = ∑ 𝐾𝑖 + 𝑗

∞
𝑗 = 0 ∑𝐾𝑗

𝑡 for i ∈ ℤ, is the i-th population covariance matrix. 

To study mixed-frequency data cases (with stock variables), we consider n = n1 + n2 

variables; the first n1 variables are high-frequency variables observed in every period and, 

given N ∈ ℕ, the last n2 variables are low-frequency variables observed only for t∈{0, N, 

2N, 3N, …}. Furthermore, we consider the following partition: 

𝑪𝒊  =  (
𝑪𝒊
𝒇𝒇

𝑪𝒊
𝒇𝒔

𝑪𝒊
𝒔𝒇

𝑪𝒊
𝒔𝒔
),  
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where 𝐶𝑖
𝑓𝑓

, 𝐶𝑖
𝑓𝑠
, 𝐶𝑖
𝑠𝑓
 𝑎𝑛𝑑 𝐶𝑖

𝑠𝑠 are n1 × n1, n1 × n2, n2 × n1 and n2 × n2 blocks, respectively.  

Note that all the covariance blocks are available from variables observed with MFD, 

except 𝐶𝑖
𝑠𝑠 if I ≠ kN, for any integer k. However, the XYW method in [1] only considers 

the first n1 columns in each Ci. Therefore, let us denote: 

�̃�𝒊 as the first n1 columns of Ci, for i ∈ ℤ;  

H1 as the matrix with the first n1 rows of H;  

H2 as the matrix with the last n2 rows of H. 

Zadrozny, in [1], proves that under the following six sufficient conditions, a VARMA 

model (1) is identified by the population covariance of its variables observed with MFD. 

Condition I: VARMA model (1) is stationary, i.e., det a(z) ≠ 0 if |z| ≤ 1.  

Condition II: VARMA model (1) is regular with B0 lower triangular and non-singular 

and ∑ = In. 

Condition III: VARMA model (1) is miniphase, i.e., det b(z) ≠ 0 if |z| < 1. 

Condition IV: rank Cnp(F, G) = np. 

Condition V: rank CL(F, V𝐻1
𝑡) = np and rank OL(F, H1) = np, for sufficiently large L, 

where V = ∑ 𝐹𝑘𝐺∑𝐺𝑡(𝐹𝑡)𝑘∞
𝑘 = 0   = [Cnp(F, G)…] [Cnp(F, G)…]t which exists because the 

model is stationary. 

Note on Condition V: Condition V in [1] (p. 441) reads: “VARMA model (2.1) is ob-

servable for sufficiently large L, for the MFD being considered”. Condition V written 

above can be read in [1] (p. 445): “Sections 3 and 4 proved that parameters of VARMA 

model (2.1) are identified (…) for MFD if CL(F, V𝐻1
𝑡) and OL(F, H1) have full rank, (…) for 

sufficiently large L”, because to identify VAR parameters with the specific procedure in 

[1] (pp. 441–442), rank D1 = np is necessary, and therefore the full rank of CL(F, V𝐻1
𝑡). (We 

have taken into account that matrices D1 and E1 in [1] (p. 442) must be written without a 

subscript in the second �̃�). Moreover, to identify VMA parameters with the specific pro-

cedure in [1] (pp. 442–444), the full rank of OL(F, H1) is necessary. 

Condition VI: The nq × nq matrix (

−𝐵1𝐵0
−1 𝐼𝑛

⋮ 0
0

⋱
⁝

−𝐵𝑞𝐵0
−1 0

𝐼𝑛
⋯ 0

) is diagonalizable, i.e., it 

has a linearly independent set of eigenvectors. 

Remark 1. Zadrozny, in [1], proves that Conditions I, II, III and IV are sufficient for identifiability 

with SFD. However, if Conditions I, II and III hold, Condition IV is sufficient but not necessary in 

the SFD case (see Counterexamples 1 and 2).  

Deistler et al. in [6] prove that if q > r, a VARMA(r, q) model with MFD is not identifiable. 

Next, we will show that rank OL (F, H1) = np in Condition V excludes not only the case q > r, but 

also the case q = r. 

Lemma 1. If q ≥ r, then rank OL(F, H1) < np. 

Proof. Considering that if q ≥ r then p = q + 1 and Ar+1 = … = Ap = 0. 

On the one hand, the first n(p − r) columns in the n(p − r) × np matrix 

(𝐻𝑡 (𝐻 𝐹)𝑡 (𝐻 𝐹2)𝑡⋯ (𝐻 𝐹𝑝−𝑟−1)𝑡)𝑡  

form a lower triangular matrix with ones on the diagonal. 

Therefore, its rank is exactly n(p − r). As a result 

rank(𝐻1
𝑡(𝐻1𝐹)

𝑡 (𝐻1𝐹
2)𝑡⋯ (𝐻1𝐹

𝑝−𝑟−1)𝑡)𝑡 = n1(p − r). (2) 

On the other hand, considering the nr × np matrix((𝐻 𝐹𝑝−𝑟)𝑡⋯ (𝐻 𝐹𝑝−1)𝑡)𝑡, it is 

easy to see that the submatrix formed by its last nr columns is lower triangular with ones 

on the diagonal, and therefore,  
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rank((𝐻 𝐹𝑝−𝑟)𝑡⋯ (𝐻 𝐹𝑝−1)𝑡)𝑡 = nr.  (3) 

Moreover, if i ≥ p, HFi = A1HFi−1 + … + ArHFi−r and, from (3), rank ((𝐻 𝐹𝑝−𝑟)𝑡⋯ 

(𝐻 𝐹𝐿−1)𝑡)𝑡 = nr. 

As a consequence: 

rank((𝐻1𝐹
𝑝−𝑟)𝑡⋯ (𝐻1𝐹

𝐿−1)𝑡)𝑡 ≤ nr if L > p (4) 

From (2) and (4), rank OL(F, H1) ≤ n1(p − r) + nr = n1p − n1r + (n1 + n2)r = n1p + n2r < np 

and Lemma 1 has been proven. □ 

Note that if we do not have the hypothesis from Lemma 1, i.e., if q < r, then p = r and 

we do not have (2). Therefore, rank OL(F, H1) could be equal to np. 

3. Reconstructing Missing Blocks in Autocovariance Matrices 

Our goal in this work is to extend the set of models that can be identified with Yule–

Walker methods in the MFD case. We provide new conditions to identify the VARMA 

model in the MFD case from an original form of rewriting necessary and sufficient condi-

tions in the SFD case. These conditions are expressed based on the parameters of the 

model. We will demonstrate with two counterexamples that the sufficient conditions in 

[1] are not necessary to identify MFD models. Thus, we consider one of the questions 

opened in [1] to be resolved. 

In our proposal, we treat the cases r > q and r = q separately, giving new conditions to 

replace the corresponding ones in [1]. In addition, the fourth and fifth conditions are dif-

ferent in each of the two cases. 

3.1. Case I: r > q 

In this case, our main result will be Theorem 1. We previously introduced the neces-

sary notation, the new conditions and some previous results (Hanzon’s Theorem and 

Lemma 2).  

Let us denote the following matrices: 

G* = 

(

 
 
 

0
⋮
0
𝐵0
⋮
𝐵𝑞)

 
 
 

 and 𝑿 =  

(

 

𝐶𝑞
𝐶𝑞−1
⋮

𝐶𝑞−𝑟 + 1)

 are nr × n, F* = 

(

 
 

𝐴1 𝐴2
𝐼𝑛 0

⋯ 𝐴𝑟
⋯ 0

0 ⋱ ⋱
⋮

⋱ ⋮
0 0

0 ⋯ 0 𝐼𝑛 0 )

 
 

 is nr × nr,   

𝜽 = 

(

 
 
 
 
 

𝐻1𝐹
∗

⋮
𝐻1(𝐹

∗)𝑛𝑟

𝐻2(𝐹
∗)𝑘𝑁−𝑞

𝐻2(𝐹
∗)𝑘𝑁−𝑞(𝐹∗)𝑁

⋮
𝐻2(𝐹

∗)𝑘𝑁−𝑞(𝐹∗)(𝑛𝑟−1)𝑁)

 
 
 
 
 

 is n2r × nr, J = 

(

 
 
 
 
 
 

𝐶𝑞 + 1
𝑓𝑓

𝐶𝑞 + 1
𝑓𝑠

⋮

𝐶𝑞 + 𝑛𝑟
𝑓𝑓

𝐶𝑞 + 𝑛𝑟
𝑓𝑠

𝐶𝑘𝑁
𝑠𝑓

𝐶𝑘𝑁
𝑠𝑠

𝐶(𝑘 + 1)𝑁
𝑠𝑓

𝐶(𝑘 + 1)𝑁
𝑠𝑠

⋮

𝐶(𝑘 + 𝑛𝑟−1)𝑁
𝑠𝑓

𝐶(𝑘 + 𝑛𝑟−1)𝑁
𝑠𝑠

)

 
 
 
 
 
 

 is n2r × n,   

where k is an integer such that kN > q. 

θb is the submatrix formed with columns of θ, such that the ith column of θ is in θb, 

if I ≠ 1, …, n1, n + 1, …, n + n1, 2n + 1, …, 2n + n1, …, (r − 1)n + 1, …, (r − 1)n + n1 and also the 

ith row of X = 

(

 

𝐶𝑞
𝐶𝑞−1
⋮

𝐶𝑞−𝑟 + 1)

  is not a row of Cj or C−j with j∈{0, N, 2N, 3N…}.  
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θa is the submatrix of θ with the columns that are not in θb. 

Below we set out the new conditions. Note that although [1] refers to a state space 

model associated with the VARMA model, we only need to note the algebraic properties 

that hold in certain matrices constructed from the parameters of the VARMA model. 

Condition ii: The VARMA model is regular with B0 = I and ∑ positive definite. 

Condition iv.1: rankCnr(F, G*) = nr. 

Condition v.1: rank Cnr(F, 𝑉∗(𝐹𝑡)𝑟−𝑞−1𝐻1
𝑡) = nr where 

V* = ∑ 𝐹𝑘𝐺∗∑(𝐺∗)𝑡(𝐹𝑡)𝑘∞
𝑘 = 0   = [Cnp(F, G*∑ 1/2)…] [Cnp(F, G*∑ 1/2)…]t, which exists be-

cause the model is stationary. 

Condition vi: θb is full column rank. 

We will also make use of [11] (Theorem 3.1.3.2–1 (iii), Theorem 3.1.2.3–29 (iii) and 

Corollary 2.4.3–25), which we summarize in the following theorem that we call Hanzon’s 

Theorem. 

Hanzon’s Theorem: Considering K−i = 0 if i > 0, for i, j, h ∈ ℕ, we denote 

Mi,j,h = (

𝐾𝑖 𝐾𝑖 + 1 
𝐾𝑖 + 1 𝐾𝑖 + 2

⋯ 𝐾𝑖 + ℎ−1
⋱ 𝐾𝑖 + ℎ

⋮ ⋮
𝐾𝑖 + 𝑗−1

⋱ ⁝

⋯  𝐾𝑖 + 𝑗 + ℎ−2

) and 

 𝑸𝒊,𝒋,𝒉  =  (

𝐶𝑖 𝐶𝑖 + 1 
𝐶𝑖 + 1 𝐶𝑖 + 2

⋯ 𝐶𝑖 + ℎ−1
⋱ 𝐶𝑖 + ℎ

⋮ ⋮
𝐶𝑖 + 𝑗−1

⋱  ⋮ 
⋯  𝐶𝑗 + 𝑗 + ℎ−2

) 

 

If model (1) is stationary, regular and miniphase, the following conditions are satis-

fied for any orders r and q: 

1. rank Mq−r+1,∞,∞ = rank Mq−r+1,r,nr 

2. rank Qq−r+1,r,∞ = rank Qq−r+1,r,nr 

3. rank Mq−r+1,r,nr = rank Qq−r+1,r,nr 

As a consequence, we can deduce the following Lemma. 

Lemma 2. Suppose r > q and Conditions I, II or ii, and III hold. Therefore, Condition IV implies 

Condition iv.1. 

Proof. We can easily see that 

Ki = HFiG for i ≥ 0  

and M0,r,nr = Or(F, H) Cnr(F, G). Taking into account that Or(F, H) is full column rank nr and, 

from Condition IV, Cnr(F, G) is full row rank nr, then rank M0,r,nr = nr. 

By Hanzon’s Theorem, rank M0,r,nr = rank M0,r,∞ = nr, rank Mq−r+1,r,nr = rank Mq−r+1,r,∞. 

Since all the columns of M0,r,∞ are columns of the matrix Mq−r+1,r,∞, rank Mq−r+1,r,∞ ≥ rank M0,r,∞. 

Since the matrix has nr rows, rank Mq−r+1,r,∞ = nr. By Hanzon’s Theorem, rank Mq−r+1,r,nr = 

rank Mq−r+1,r,∞ = nr. 

We can easily see that 

Kj = HFr−q−1+jG* for j ≥ q − r + 1, (note that q − r + 1 ≤ 0)  

and Mq−r+1,r,nr = Or(F, H) Cnr(F, G*). Considering that Mq−r+1,r,nr is full rank and Or(F, H) is full 

column rank nr, then Cnr(F, G*) is full row rank nr, i.e., Condition iv.1 holds. □ 

In light of the above, we can now state the following Theorem. 

Theorem 1. If r > q and Conditions I, II or ii, and III hold: 

(a) Condition iv.1 is necessary and sufficient for identifiability of the VARMA(r, q) model (1) in 

the SFD case. 
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(b) Conditions iv.1, v.1 and vi are sufficient for identifiability of the VARMA(r, q) model (1) in 

the MFD case. 

Proof. For j ≥ 0, Cq−r+1+j = ∑ 𝐾𝑖 + 𝑞−𝑟 + 1 + 𝑗
∞
𝑖 = 0 ∑𝐾𝑖

𝑡  =  ∑ 𝐻𝐹𝑖 + 𝑗𝐺∞
𝑖 = 0

∗
∑𝐺∗𝑡(𝐹𝑖−𝑞 + 𝑟−1)𝑡𝐻𝑡  = 

HFj(∑ 𝐹𝑖𝐺∗∞
𝑖 = 0 ∑𝐺∗𝑡(𝐹𝑖)𝑡)(𝐹−𝑞 + 𝑟−1)𝑡𝐻𝑡. 

Therefore, denoting V* = ∑ 𝐹𝑖𝐺∞
𝑖 = 0

∗
∑𝐺∗𝑡(𝐹𝑖)𝑡,  

Cq−r+1+j = HFj𝑉∗(𝐹−𝑞 + 𝑟−1)𝑡𝐻𝑡 for j ≥ 0.  

Taking into account that Mq−r+1,r,nr = Or(F, H) Cnr(F, G*), Or(F, H) is full column rank nr and, 

from Condition iv.1, we have that Cnr(F, G*) is full row rank nr, then rank Mq−r+1,r,nr = nr. 

From Hanzon’s Theorem, rank Mq−r+1,r,nr = rank Qq−r+1,r,nr = nr, and therefore, under Con-

ditions I, II or ii, III and iv.1, a VARMA model is identified with population covariance of 

its variables observed with SFD. Note that (A1, A2, …, Ar) can be uniquely identified from 

the autocovariance matrices of the process, solving the following system: 

(𝐴𝑟 … 𝐴1)𝑄𝑞−𝑟 + 1,𝑟,𝑛𝑟  =  (𝐶𝑞 + 1𝐶𝑞 + 2…𝐶𝑞 + 𝑛𝑟).  

Taking into account that Qq−r+1,r,nr = Or(F, H) Cnr(F, V*(Ft)r−q+1Ht), rank Qq−r+1,r,nr = nr and 

Or(F, H) is full column rank nr then 

Cnr(F, V*(Ft)r−q+1Ht) is full row rank nr.  

If we substitute H for H1 in the autocovariances 

�̃�𝑗 + 𝑞−𝑟 + 1 = HFj𝑉∗(𝐹−𝑞 + 𝑟−1)𝑡𝐻1
𝑡 for j ≥ 0.  

Denoting 

�̃�𝑞−𝑟 + 1,𝑟,𝐿  =  

(

 
 

�̃�𝑞−𝑟 + 1 �̃�𝑞−𝑟 + 2

�̃�𝑞−𝑟 + 2 �̃�𝑞−𝑟 + 3

⋯ �̃�𝑞−𝑟 + 𝐿

⋱ �̃�𝑞−𝑟 + 𝐿 + 1
⋮ ⋮
�̃�𝑞 �̃�𝑞 + 1

⋱ ⋮
⋯ �̃�𝑞 + 𝐿−1 )

 
 

  

we have 

�̃�𝑞−𝑟 + 1,𝑟,𝐿 = Or(F, H) CL(F, V*(Ft)r−q+1𝐻1
𝑡).  

Keeping Hamilton–Cayley in mind, rank CL(F, V*(Ft)r−q+1𝐻1
𝑡) does not change when L > nr. 

Condition v.1 implies rank �̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟  =  𝑛𝑟 , and therefore (A1, A2, …, Ar) can be 

uniquely identified from available autocovariance matrices of the process in the MFD case, 

solving the system (𝐴𝑟 … 𝐴1)�̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟  =  (�̃�𝑞 + 1�̃�𝑞 + 2… �̃�𝑞 + 𝑛𝑟) as follows: 

(𝐴𝑟 … 𝐴1)  =  (�̃�𝑞 + 1�̃�𝑞 + 2… �̃�𝑞 + 𝑛𝑟)�̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟
𝑇 [�̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟�̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟

𝑇 ]
−1

 (5) 

The last part of the proof of this theorem aims to show that, once (A1, A2, ..., Ar) are 

calculated, if Condition vi holds, we can uniquely reconstruct the unknown blocks of the 

autocovariance matrices. 

Note that H(F*)iX = Cq+i for i > 0, i.e., H1(F*)iX = (𝐶𝑞 + 𝑖
𝑓𝑓

𝐶𝑞 + 𝑖
𝑓𝑠
)  and H2(F*)iX = 

(𝐶𝑞 + 𝑖
𝑠𝑓

𝐶𝑞 + 𝑖
𝑠𝑠 ). Therefore, J = θX and, in particular, J2 = θX2, where J2 and X2 are the sub-

matrices formed by the last n2 columns of J and X, respectively. 

Note that, keeping Hamilton–Cayley in mind, θ has been defined such that its rank 

does not change when some rows of H(F*)i are added to θ, for some i > nr. Moreover, J has 

been defined only with available autocovariance blocks. If we rearrange the rows of X2 

such that θX2 = (θa θb) (
𝑋2𝑎
𝑋2𝑏
), we make it such that X2b is the submatrix containing the 

unknown blocks. To calculate X2b, we solve the following system of linear equations: 

J2-θaX2a = θbX2b,  (6) 
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for Condition vi, (6) has as a unique solution 

X2b = (𝜃𝑏
𝑡𝜃𝑏)

−1𝜃𝑏
𝑡(J2-θaX2a).  

As a consequence, we have 𝐶𝑖
𝑠𝑠 for i = q − r + 1, …, q and we can calculate 𝐶𝑖

𝑠𝑠for i > 

q, considering that Ci = A1Ci−1 + … + ArCi−r for i > q.  

Therefore, Theorem 1 has been proven. □ 

The following Corollary 1 is a consequence of section (a) of the previous Theorem 

and of the Theorem in [9]. 

Corollary 1. Suppose r > q and that Conditions I, ii and III hold. In this case: rank(Ar⁝Bq) = n and 

(a(z), b(z)) is left coprime iff rankCnr(F, G*) = nr. 

Note that, unlike [1], we can consider rank Ar < n or rank Bq < n. 

3.2. Case 2: r = q 

In this section, our main result will be Theorem 2. 

For this case, neither G nor G* allow us to state sufficient conditions similar to those 

in Theorem 1. Therefore, we consider the following nr × n matrix: 

G** = (
𝐴1  +  𝐵1

⋮
𝐴𝑟  +  𝐵𝑟

),  

and, considering p = r, we state the following conditions, which change with respect to 

Case 1. 

Condition iv.2: rank Cnr(F, G**) = nr. 

Condition v.2: rank Cnr(F, (𝐺∗∗∑𝐵0
�̃�  +  FV∗∗𝐻1

𝑡)) = nr where 𝐵0
�̃� denotes the first n1 col-

umns of 𝐵0
𝑡 and V** = ∑ 𝐹𝑖𝐺∞

𝑖 = 0
∗∗
∑𝐺∗∗𝑡(𝐹𝑖)𝑡, which exists because the model is stationary. 

We are in a position to state the following theorem. 

Theorem 2. If r = q and Conditions I, II or ii, and III hold: 

(a) Condition iv.2 is necessary and sufficient for identifiability of the VARMA(r, r) model (1) in 

the SFD case. 

(b) Conditions iv.2, v.2 and vi are sufficient for identifiability of the VARMA(r, r) model (1) in 

the MFD case. 

Proof. The proof of Theorem 2 is similar to that of Theorem 1, except for some specific 

details, because with G**, we have that 

Kj+1 = HFjG** if j ≥ 0,   

Cj = HFj−1G**∑𝐵0
𝑡 + HFj∑ 𝐹𝑖𝐺∞

𝑖 = 0
∗∗
∑𝐺∗∗𝑡(𝐹𝑖)𝑡 𝐻𝑡 = HFj−1(G**∑𝐵0

𝑡 + FV**Ht) 

for j ≥ 1 with V** = ∑ 𝐹𝑖𝐺∞
𝑖 = 0

∗∗
∑𝐺∗∗𝑡(𝐹𝑖)𝑡. 

 

Taking into account that  

M1,r,nr = Or(F, H) Cnr(F, G**) and Q1,r,nr = Or(F, H) Cnr(F, (G**∑𝐵0
𝑡 + FV**Ht)),   

Conditions I, II or ii, III and iv.2 imply the full rank nr of the matrices M1,r,nr, Q1,r,nr and 

Cnr(F, (G**∑𝐵0
𝑡 + FV**Ht)). 

If in the autocovariances we substitute H for H1 and 𝐵0
𝑡 for 𝐵0

�̃�: 

�̃�𝑗 + 𝑞−𝑟 + 1 = HFj−1(G**∑𝐵0
�̃� + FV**𝐻1

𝑡) for j ≥ 1 
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�̃�1,𝑟,𝑛𝑟  =  

(

 

�̃�1 �̃�2
�̃�2 �̃�3

⋯ �̃�𝑛𝑟
⋱ �̃�𝑛𝑟 + 1

⋮ ⋮
�̃�𝑟 �̃�𝑟 + 1

⋱ ⋮
⋯ �̃�𝑛𝑟 + 𝑟−1)

  and then  

�̃�1,𝑟,𝑛𝑟 = Or(F, H) Cnr(F, (G**∑𝐵0
�̃� + FV**𝐻1

𝑡)  

Condition v.2 implies rank�̃�1,𝑟,𝑛𝑟  =  𝑛𝑟, and therefore (A1, A2, …, Ar) can be uniquely 

identified from the autocovariance matrices of the process, solving (5). 

The last part of the proof of this theorem is identical to that of Theorem 1. Therefore, 

Theorem 2 has been proven. □ 

As a consequence of section (a) of the previous Theorem and of the Theorem in [9], 

we give the following Corollary 2. 

Corollary 2. Suppose r = q and that Conditions I, ii and III hold. In this case, rank(Ar⁝Br) = n and 

(a(z), b(z)) is left coprime iff rank Cnr(F, G**) = nr. 

Note that the results in this section consider certain blocks available in the autocovar-

iance matrices that [1] ignores. In particular, if r > q + 1, we use 𝐶𝑖
𝑓𝑓
and 𝐶𝑖

𝑠𝑓
 for i = q – r + 

1, …, 1, in �̃�𝑞−𝑟 + 1,𝑟,𝐿 solving (5) and 𝐶𝑖
𝑓𝑠

 for i = q + 1, …, q + nr and i = {kN, (k + 1)N, … (k 

+ nr−1)N} in X2a solving (6). 

4. Counterexamples 

In Counterexample 1, the conditions in Theorem 1 hold, and thus the VARMA model 

is identified with MFD. However, Condition IV in [1] does not hold. Therefore, it is not nec-

essary for identifiability in the SFD case. We remark that rank Ar < n, but rank(Ar⁝Bq) = n. 

Counterexample 1. Consider the VARMA(3, 1) model with A0 = B0 = I,  

𝐴1  =  (
0 −1/2

−1/2 0
) , 𝐴2  =  (

−1/4 0
0 −1/4

) , 𝐴3  =  (
−1/2 −1/4
−1/4 −1/8

) , 𝐵1  

=  (
1/2 1/2
1/2 0

) 
 

and E(𝜀𝑡𝑡
𝑡) = In. 

We have q = 1, r = 3, nr = 6 and we consider n1 = 1.  

The model is identifiable in the SFD case because 

rank(

𝐾𝑞−𝑟 + 1 𝐾𝑞−𝑟 + 2 ⋯

⋮ ⋮
𝐾𝑞 𝐾𝑞 + 1 ⋯

𝐾𝑞 + (𝑛−1)𝑟
⋮

𝐾𝑞 + 𝑛𝑟−1

) = rank(
𝐾−1 𝐾0 ⋯
𝐾0 𝐾1 …
𝐾1 𝐾2 ⋯

𝐾4
𝐾5
𝐾6

) = 6.  

Note that Conditions I, ii, III, iv.1 hold.  

However, Condition IV is not satisfied because rank [G … FnpG] = 5 ≠ 6 and, as a 

consequence, rank CL(F, V𝐻1
𝑡) < np and Condition V do not hold. Therefore, A1, A2 and A3 

could not be uniquely calculated using the procedure in [1].  

We prove that Condition v.1 holds (with MATLAB, see Appendix A) as follows: 

(i) First, we computed Ci (i = 0, 1, 2, 3) by solving the Yule–Walker equations: 

C0 − A1C−1 − A2C−2 − A3C−3 = I + B1𝐾1
𝑇  

C1 − A1C0 − A2C−1 − A3C−2 = B1  

C2 − A1C1 − A2C0 − A3C−1 = 0  
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C3 − A1C2 − A2C1 − A3C0 = 0  

where K1 = B1 + A1. We then computed Ci = A1Ci−1 + A2Ci−2 + A3Ci−3. for i > 4. 

(ii) Second, we obtained that rank �̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟 = 6. 

(iii) Taking into account that �̃�𝑞−𝑟 + 1,𝑟,𝐿 = Or(F, H) CL(F, V*(Ft)r−q+1𝐻1
𝑡), Or(F, H) is full col-

umn rank nr, CL(F, V*(Ft)r−q+1𝐻1
𝑡) has nr rows and rank�̃�𝑞−𝑟 + 1,𝑟,𝑛𝑟 = 6 = nr, and we can 

affirm that rank CL(F, V*(Ft)r−q+1𝐻1
𝑡) = nr = 6; i.e., Condition v.1 holds. 

Therefore, A1, A2 and A3 can be uniquely determined by solving (5). 

Regarding Condition vi, in this example, θ has 6 columns, where θb is the submatrix 

with the 2nd and 6th columns of θ and rank θb = 2, i.e., Condition vi holds. 

Taking into account that X = (
𝐶1
𝐶0
𝐶−1

), from (6), we can identify 𝐶1
22and 𝐶−1

22. As a con-

sequence, C0 and C1 are complete. Finally, the unknown 𝐶𝑖
22 for i > 1 can be identified 

considering that Ci = A1Ci−1 + A2Ci−2 + A3Ci−3 for i > 1. Therefore, this model is identified in 

the MFD case. 

In the following example, Condition V does not hold because r = q (Lemma 1). However, 

the conditions in Theorem 2 hold and therefore the VARMA model is identified with MFD. 

Counterexample 2. Consider the VARMA(1, 1) model where A0 = B0 = I, A1 = (
−1/2 −1/4
1 1/2

), 

B1 = (
1 4

−1/4 1
) and E(𝜀𝑡𝑡

𝑡) = In.  

We have r = q = 1, nr = 2 and we consider n1 = 1. The autocovariance matrices are 

C0 = (
4753/256 −1025/128
−1025/128 949/64

), C1 = (
−201/32 275/64
229/16 −51/32

), C2 = (
−7/16 −7/4
7/8 7/2

), 

Ci = 0  
 

for i > 2.  

Note that Conditions I, ii, III and iv.2 hold. 

Regarding Condition v.2, note that 

�̃�1,𝑟,𝑛𝑟 = Or(F, H))Cnr(F, (G**∑𝐵0
�̃� + FV**𝐻1

𝑡) = (�̃�1 �̃�2) = (
−201/32 −7/16
229/16 7/8

). Due to 

the fact that rank (�̃�1 �̃�2)  = nr = 2, Or(F, H) has nr columns and Cnr(F, (G**∑𝐵0
�̃� + FV**𝐻1

𝑡)) 

has nr rows, then rank Cnr(F, (G**∑𝐵0
�̃� + FV**𝐻1

𝑡)) = nr = 2; i.e., Condition v.2 holds. 

Therefore, A1 is uniquely determined by solving (5). 

Regarding Condition vi, taking into account that HF* = A1 is a submatrix of θ and θb 

is the second column of θ, then rank θb = 1 and Condition vi holds. Taking into account 

that X = C1, from (6), we can identify 𝐶1
22. Since C0 and C1 are complete, the unknown 𝐶𝑖

22 

for i > 1 can be identified considering that Ci = A1Ci−1 for i > 1. Therefore, this model is 

identified in the MFD case. 

5. Conclusions 

In this work, we have helped to expand the set of VARMA models identified by ex-

tended Yule–Walker methods. It provides new necessary and sufficient conditions in the 

simple-frequency data case, and sufficient conditions in the mixed-frequency data case. 

The main results are embodied in two theorems, two corollaries and two counterexam-

ples. The two counterexamples allow us to affirm that models are identifiable for which 

the sufficient conditions for identifiability in [1] do not hold. 
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Appendix A 

% Numerical evidence: Condition v.1 holds in Counterexample 1 

% Software: MATLAB R2022b. Free version in https://es.mathworks.com/prod-

ucts/matlab.html (accessed on 5 December 2023) 

% We write the following linear system, AX = B, to calculate C0, C1, C2 and C3 

A = [1 0 0 0 0 0.50 0 0 0.25 0 0 0 0.50 0.25 0 0 

0 1 0 0 0 0 0 0.50 0 0 0.25 0 0 0 0.50 0.25 

0 0 1 0 0.50 0 0 0 0 0.25 0 0 0.25 0.1250 0 0 

0 0 0 1 0 0 0.50 0 0 0 0 0.25 0 0 0.25 0.125 

0 0 0.50 0 1.25 0 0 0 0.50 0.25 0 0 0 0 0 0 

0 0 0 0.50 0 1 0.25 0 0 0 0.50 0.25 0 0 0 0 

0.50 0 0 0 0 0.25 1 0 0.25 0.125 0 0 0 0 0 0 

0 0.50 0 0 0 0 0 1.25 0 0 0.25 0.125 0 0 0 0 

0.25 0 0 0 0.50 0.25 0.50 0 1 0 0 0 0 0 0 0 

0 0.25 0 0 0 0 0.50 0.75 0 1 0 0 0 0 0 0 

0 0 0.25 0 0.75 0.125 0 0 0 0 1 0 0 0 0 0 

0 0 0 0.25 0 0.50 0.25 0.125 0 0 0 1 0 0 0 0 

0.50 0 0.25 0 0.25 0 0 0 0.50 0 1 0 0 0 

0 0.50 0 0.25 0 0.25 0 0 0 0 0 0.50 0 1 0 0 

0.25 0 0.1250 0 0 0 0.25 0 0.50 0 0 0 1 0 

0 0.25 0 0.125 0 0 0 0.25 0 0.50 0 0 0 0 0 1] 

B = [1.25 0 0.25 1 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0] 

X = inv(A)*B′ 

C0 = [X(1) X(2);X(3) X(4)] 

C1 = [X(5) X(6);X(7) X(8)] 

C2 = [X(9) X(10);X(11) X(12)] 

C3 = [X(13) X(14);X(15) X(16)] 

% Calculations to obtain the autocovariance C4, C5 and C6 
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A3 = [1/2 1/4 

1/4 1/8] 

A2 = [1/4 0  

0 1/4] 

A1 = [0 1/2 

1/2 0] 

C4 = −A3*C1−A2*C2−A1*C3 

C5 = −A3*C2−A2*C3−A1*C4 

C6 = −A3*C3−A2*C4−A1*C5 

% Rank of Qs 

Qs = [C1′ C0 C1 C2 C3 C4  

C0 C1 C2 C3 C4 C5  

C1 C2 C3 C4 C5 C6 ] 

RangoQs = rank(Qs) 

singularvaluesQs = svd(Qs) 

% Considering only the odd columns in Qs 

QsOdd = [Qs(:, 1) Qs(:, 3) Qs(:, 5) Qs(:, 7) Qs(:, 9) Qs(:, 11)] 

RangoQsOdd = rank(QsOdd) 

singularvaluesQsOdd = svd(QsOdd) 

% Considering only the even columns in Qs 

QsEven = [Qs(:, 2) Qs(:, 4) Qs(:, 6) Qs(:, 8) Qs(:, 10) Qs(:, 12)] 

RangoQsEven = rank(QsEven) 

singularvaluesQsEven = svd(QsEven) 

%%%%%% 

A =  

1.0000 0 0 0 0 0.5000 0 0 0.2500 0 0 0 0.5000 0.2500 0 0 

0 1.0000 0 0 0 0 0 0.5000 0 0 0.2500 0 0 0 0.5000 0.2500 

0 0 1.0000 0 0.5000 0 0 0 0 0.2500 0 0.2500 0.1250 0 0 0 

0 0 0 1.0000 0 0 0.5000 0 0 0 0 0.2500 0 0 0.2500 0.1250 

0 0 0.5000 0 1.2500 0 0 0 0.5000 0.2500 0 0 0 0 0 0 

0 0 0 0.5000 0 1.0000 0.2500 0 0 0 0.5000 0.2500 0 0 0 0 

0.5000 0 0 0 0 0.2500 1.0000 0 0.2500 0.1250 0 0 0 0 0 0 

0 0.5000 0 0 0 0 0 1.2500 0 0 0.2500 0.1250 0 0 0 0 

0.2500 0 0 0 0.5000 0.2500 0.5000 0 1.0000 0 0 0 0 0 0 0 

0 0.2500 0 0 0 0 0.5000 0.7500 0 1.0000 0 0 0 0 0 0 

0 0 0.2500 0 0.7500 0.1250 0 0 0 0 1.0000 0 0 0 0 0 
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0 0 0 0.2500 0 0.5000 0.2500 0.1250 0 0 0 1.0000 0 0 0 0 

0.5000 0 0.2500 0 0.2500 0 0 0 0 0 0.5000 0 1.0000 0 0 0 

0 0.5000 0 0.2500 0 0.2500 0 0 0 0 0 0.5000 0 1.0000 0 0 

0.2500 0 0.1250 0 0 0 0.2500 0 0.5000 0 0 0 0 0 1.0000 0 

0 0.2500 0 0.1250 0 0 0 0.2500 0 0.5000 0 0 0 0 0 1.0000 

B =  

1.2500 0 0.2500 1.0000 0.5000 0.5000 0.5000 0 0 0 0 0 0 0 0 0 

X =  

1.7457 

0.1876 

0.1876 

1.2901 

0.5771 

0.2847 

−0.2865 

0.0682 

−0.6529 

0.0452 

−0.5153 

−0.4018 

−0.8064 

−0.2866 

−0.0618 

−0.2478 

C0 =  

1.7457 0.1876 

0.1876 1.2901 

C1 =  

0.5771 0.2847 

−0.2865 0.0682 

C2 =  

−0.6529 0.0452 

−0.5153 −0.4018 

C3 =  

−0.8064 −0.2866 

−0.0618 −0.2478 
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A3 =  

0.5000 0.2500 

0.2500 0.1250 

A2 =  

0.2500 0 

0 0.2500 

A1 =  

0 0.5000 

0.5000 0 

C4 =  

−0.0228 −0.0468 

0.4236 0.1640 

C5 =  

0.4451 0.0675 

0.2545 0.1243 

C6 =  

0.2971 0.1548 

−0.1191 0.0279 

Qs =  

0.5771 −0.2865 1.7457 0.1876 0.5771 0.2847 −0.6529 0.0452 −0.8064 −0.2866 −0.0228 −0.0468 

0.2847 0.0682 0.1876 1.2901 −0.2865 0.0682 −0.5153 −0.4018 −0.0618 −0.2478 0.4236 0.1640 

1.7457 0.1876 0.5771 0.2847 −0.6529 0.0452 −0.8064 −0.2866 −0.0228 −0.0468 0.4451 0.0675 

0.1876 1.2901 −0.2865 0.0682 −0.5153 −0.4018 −0.0618 −0.2478 0.4236 0.1640 0.2545 0.1243 

0.5771 0.2847 −0.6529 0.0452 −0.8064 −0.2866 −0.0228 −0.0468 0.4451 0.0675 0.2971 0.1548 

−0.2865 0.0682 −0.5153 −0.4018 −0.0618 −0.2478 0.4236 0.1640 0.2545 0.1243 −0.1191 0.0279 

RangoQs =  

6 

singularvaluesQs =  

2.9541 

2.5268 

1.2708 

1.0259 

0.2446 

0.0917 

QsOdd =  

0.5771 1.7457 0.5771 −0.6529 −0.8064 −0.0228 



Mathematics 2024, 12, 244 14 of 15 
 

 

0.2847 0.1876 −0.2865 −0.5153 −0.0618 0.4236 

1.7457 0.5771 −0.6529 −0.8064 −0.0228 0.4451 

0.1876 −0.2865 −0.5153 −0.0618 0.4236 0.2545 

0.5771 −0.6529 −0.8064 −0.0228 0.4451 0.2971 

−0.2865 −0.5153 −0.0618 0.4236 0.2545 −0.1191 

RangoQsOdd =  

6 

singularvaluesQsOdd =  

2.7937 

2.2169 

0.5019 

0.2229 

0.0897 

0.0383 

QsEven =  

−0.2865 0.1876 0.2847 0.0452 −0.2866 −0.0468 

0.0682 1.2901 0.0682 −0.4018 −0.2478 0.1640 

0.1876 0.2847 0.0452 −0.2866 −0.0468 0.0675 

1.2901 0.0682 −0.4018 −0.2478 0.1640 0.1243 

0.2847 0.0452 −0.2866 −0.0468 0.0675 0.1548 

0.0682 −0.4018 −0.2478 0.1640 0.1243 0.0279 

RangoQsEven =  

6 

singularvaluesQsEven =  

1.5738 

1.4737 

0.3418 

0.1908 

0.1172 

0.0195 
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