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Abstract: Applying deep learning to medical research with limited data is challenging. This study
focuses on addressing this difficulty through a case study, predicting acute respiratory failure (ARF)
in patients with acute pesticide poisoning. Commonly, out-of-distribution (OOD) data are overlooked
during model training in the medical field. Our approach integrates OOD data and transfer learning
(TL) to enhance model performance with limited data. We fine-tuned a pre-trained multi-layer
perceptron model using OOD data, outperforming baseline models. Shapley additive explanation
(SHAP) values were employed for model interpretation, revealing the key factors associated with
ARF. Our study is pioneering in applying OOD and TL techniques to electronic health records
(I) to achieve better model performance in scenarios with limited data. Our research highlights
the potential benefits of using OOD data for initializing weights and demonstrates that TL can
significantly improve model performance, even in medical data with limited samples. Our findings
emphasize the significance of utilizing context-specific information in TL to achieve better results.
Our work has practical implications for addressing challenges in rare diseases and other scenarios
with limited data, thereby contributing to the development of machine-learning techniques within
the medical field, especially regarding health inequities.

Keywords: transfer learning; out-of-distribution data; machine learning; limited medical data; acute
respiratory failure; acute pesticide poisoning

MSC: 60E99; 62B86; 68T99; 92C50

1. Introduction

Machine learning has emerged as a prominent field in the current medical research
landscape. However, constructing effective machine-learning models, particularly with
deep-learning (DL) techniques, often requires large amounts of data [1]. Acquiring the
necessary volume of datasets can be time consuming and resource intensive, involving
significant resource costs, including financial expenses. This challenge is especially pro-
nounced in specialized medical fields, where data acquisition may be hindered by low-
prevalence diseases, regional inequalities or standardization challenges [2]. When the ratio
of training samples to the Vapnik–Chervonenkis (VC) dimensions of a learning machine is
less than 20, it is considered a small sample size [3–6]. VC dimensions measure the capacity
of a classifier, representing the cardinality of the greatest collection of points, which the
procedure can break [4]. However, these theories do not apply to real-world scenarios
with limited datasets for machine-learning models, as they primarily focus on generic
machine learning with a high number of training samples [7]. Using limited datasets
risks inadequate model training, potentially reducing the likelihood of achieving global
minima [8]. Additionally, random weight initialization in machine-learning models may
introduce further uncertainty, thereby highlighting the necessity for meticulous weight

Mathematics 2024, 12, 237. https://doi.org/10.3390/math12020237 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020237
https://doi.org/10.3390/math12020237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0001-3234-0101
https://orcid.org/0000-0003-2550-2739
https://orcid.org/0000-0002-6482-3511
https://doi.org/10.3390/math12020237
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020237?type=check_update&version=1


Mathematics 2024, 12, 237 2 of 26

initialization in scenarios with limited data [9–12]. Moreover, small datasets pose various
challenges, including overfitting problems, the significant impact of noise components,
missing values, outliers and sharp fluctuations in variables within the dataset, resulting in
low generalization ability [13].

Despite these challenges, small datasets possess intrinsic value, and ongoing research
endeavors are addressing the mentioned issues [14,15]. Traditionally, augmentation meth-
ods, such as changing direction or adjusting angles, have been prevalent in the image
domain [16]. Additionally, oversampling strategies are commonly employed in tabular
data to increase the number of patient data, especially for minority groups [17]. Recent
approaches utilizing generative adversarial networks or diffusion models for data synthesis
aim to overcome these issues [18–20]. However, these strategies have yet to resolve trust
issues related to generated data and require substantial resources. They are also predomi-
nantly limited to the field of images [21,22]. Other various algorithms, such as ensemble
learning and input-doubling method [13,23–26], have also been actively researched. How-
ever, they mostly face similar challenges, and there is no clear consensus on technically
feasible solutions, necessitating further research [13,27,28].

Furthermore, prior knowledge has improved predictive accuracy over random weight
initialization in data-deficient contexts. As a result, the medical field has been actively
exploring transfer learning (TL) to achieve this [29]. TL involves refining a pre-trained
model on extensive datasets by adapting insights from one related task to another. TL can
produce robust models capable of operating with sparse data, shortening training durations
and improving model generalization [30]. However, its primary medical sector use is
limited to imaging tasks, while electronic health record (EHR) data are often structured
in tabular form, making it challenging to acquire compatible large-scale datasets for TL
applications [29–32].

Meanwhile, the medical field frequently encounters diverse instances of out-of-distri-
bution (OOD) data [33]. OOD data are generated from a distribution, which deviates from
the one on which the model was initially trained [34]. In medical practice, OOD data are
common in various scenarios, e.g., when data from different hospitals are used for external
validation, when training and evaluation data are segregated, or when integrating data
reflective of varying patient conditions or environments, even within the same medical
condition [35]. OOD data often follow a distinct statistical distribution compared to in-
distribution data and may exhibit contextual disparities [34]. The utilization of OOD data
has enhanced machine models’ overall performance and robustness when employed in the
right context [9,10,36].

This study presents an innovative method, which uses OOD data and TL to overcome
data scarcity in machine-learning model development. We propose a machine-learning
model for predicting acute respiratory failure (ARF) in patients with acute pesticide poison-
ing, incorporating a unique model development approach. Acute pesticide poisoning is a
public health concern worldwide, and it is often accompanied by fatal outcomes [37]. ARF
is a major cause of mortality in patients with acute pesticide poisoning, and it is known
that the clinical course differs based on the category of pesticide, ingestion amount and
underlying disease [38]. Since acute pesticide poisoning is rare, a lack of clinical experience
can prevent predicting the prognosis of patients. Therefore, an ARF prediction model is
essential for the timely treatment of patients with acute pesticide poisoning [39,40]. Acute
pesticide poisoning is more prevalent in rural areas than in urban areas, leading to varia-
tions in data based on the location of medical institutions. Collecting data is exceptionally
challenging due to the infrequency of cases, making our novel approach well suited for
this problem [30].

The main contributions of this paper can be summarized as follows:

1. Introducing a highly intuitive and simple idea and assessing the potential utility of
OOD data in creating pre-trained models for TL.

2. Experimentally validating the effectiveness of OOD and TL in small medical datasets
while minimizing artificial data manipulations, such as data generation.
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3. Developing a predictive model for ARF in patients with acute pesticide poisoning
using the proposed method, showcasing low bias and high performance.

The remainder of the paper is organized as follows. Section 2 encompasses the
study population, labeling, feature selection, handling of outliers and missing values, and
modeling. Section 3 presents the study participants’ characteristics, model performance
and model interpretation. Section 4 engages in a thorough analysis of the outcomes,
addressing limitations and future research. Lastly, Section 5 provides a summary of the
study’s contributions and implications for the field. Additionally, in Appendix A, we
present abbreviation descriptions (Table A1) along with tables and figures, which may aid
in the understanding of the paper. In Appendix B, we offer additional experiments, which
support and reinforce the experiments conducted in the manuscripts.

2. Materials and Methods
2.1. Study Population

The study was conducted on 129,953 patients aged 19 years and older admitted to the
general ward at Korea University Anam Hospital between January 2015 and December
2021. To distinguish patients who experienced ARF from those who did not, we excluded
1508 patients who experienced ARF but had unclear onset times. These patients had not
ingested pesticides and were considered as OOD data collected from different regions
or hospitals.

A retrospective observational cohort study was conducted on 1081 patients with acute
pesticide poisoning who were admitted to Soonchunhyang University Cheonan Hospital
between January 2015 and December 2020. To ensure reliable results, exclusion criteria
were established based on previous studies [37,41]. First, patients under the age of 19 were
excluded, as were those who had been poisoned by paraquat-based pesticides, which are
known to cause ARF within a short time. Considering the pattern of ARF occurrence and
the study design, patients who were diagnosed with ARF within 1 h of admission or 72 h
after admission were also excluded, as were patients with a “Do Not Resuscitate” status
due to mechanical ventilator refusal (Figure 1). The final study cohort included 803 patients
with acute pesticide poisoning.

The Institutional Review Boards (IRB) of Korea University Anam Hospital (IRB num-
ber: 2023AN0145) and Soonchunhyang University Cheonan Hospital (IRB number: 2020-02-
016) reviewed and approved this study. The study was conducted following the principles
outlined in the Helsinki Declaration.
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2.2. Labeling

We considered the time of receiving mechanical ventilation as the onset of acute ARF.
The study utilized data from two hospitals, each exhibiting distinct characteristics. As a re-
sult, specific research designs were implemented tailored to each dataset. Korea University
Hospital data showed a notable scarcity of ARF cases, leading to a data imbalance issue.

The specific approach adopted to address this issue is illustrated in Figure 2. Patients
who experienced ARF were labeled “1”, with a prediction time of 1–72 h before the onset of
the condition. Patients who did not experience ARF were labeled “0”, with a prediction
timeframe of 143–72 h before discharge to mitigate the uncertainty associated with the
potential later onset after discharge. Data points outside the defined prediction timeframe
were excluded, effectively rectifying the data imbalance issue.

Conversely, Soonchunhyang University Cheonan Hospital patients exhibited a differ-
ent pattern, with ARF cases being more prevalent within 72 h of admission. This resulted
in a less severe data imbalance. To maintain rigorous evaluation criteria and account for
this pattern, a prediction timeframe of 1–72 h after admission was applied. Patients who
experienced ARF were labeled “1”, while those who did not experience this condition were
labeled “0”.
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when the rate of missing values is low [42]. Following this, robust scaling was applied. 
Notably, MICE and robust scaling computations were exclusively performed on the train-
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Figure 2. Study design for each hospital. “MV” refers to mechanical ventilation. Cases 1 and 2
pertain to patients receiving mechanical ventilation, with Case 2 subsequently excluded based on
exclusion criteria. Case 3 corresponds to patients not on mechanical ventilation. (A,B) represent
Korea University Anam Hospital and Soonchunhyang University Cheonan Hospital, respectively.
The red and blue dashed lines indicate the prediction time points labeled as “1” and “0”, respectively.
The red star-shaped symbols signify the occurrence of mechanical ventilation.

2.3. Feature Selection

The feature selection process was informed by prior studies [15,19]. We additionally
consulted with experts to determine relevant features. We then excluded features, which
were not commonly applicable to TL. For example, the Glasgow Coma Scale (GCS), consid-
ered a critical feature in past research, was excluded from our study due to its high rate
of missing data in the Korea University Anam Hospital dataset. Considering the limited
sample size and the need for rapid data assessment, we prioritized features, which are
typically measured in the majority of patients within an hour, ensuring minimal missing
data. As a result, we only selected variables missing from <5% of the Soonchunhyang
University Cheonan Hospital data. The selected features included age, sex, systolic blood
pressure (SBP), diastolic blood pressure (DBP), respiratory rate, body temperature, serum
creatinine, hemoglobin, total carbon dioxide (Total CO2), pH, pCO2, pO2, base excess (BE),
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lactate, category of pesticide and amount of ingestion. In this context, “sex” refers to the
sex assigned at birth.

2.4. Handling of Outliers and Missing Values

To tackle potential outliers, values falling below the 2.5th percentile or exceeding the
97.5th percentile for each attribute were considered outliers and treated as missing values
to eliminate their potential influence on the whole dataset. Subsequently, the multiple
imputation by chained equations (MICE) algorithm was used to impute the missing data.
MICE is widely used to generate imputations, which closely resemble true distributions
when the rate of missing values is low [42]. Following this, robust scaling was applied.
Notably, MICE and robust scaling computations were exclusively performed on the training
data throughout all phases of the learning process.

Before performing the above pre-processing, the data obtained from Korea Univer-
sity Anam Hospital contained numerous missing values, necessitating additional pre-
processing. First, we organized the features daily. Systolic blood pressure (SBP), diastolic
blood pressure (DBP), respiratory rate and body temperature were arranged daily using
the highest recorded values. The remaining attributes were assigned the last recorded
values. Despite these efforts, any remaining missing data were then imputed by referencing
the most recent observations. Furthermore, the pesticide category and ingestion amount
were not available in the Korea University Anam Hospital dataset and were uniformly set
to zero.

2.5. Modeling and Performance Evaluation

Predicting ARF in patients with acute pesticide poisoning is a challenging task due to
the limited availability of such cases. This study used a large-scale OOD dataset of patients
without acute pesticide poisoning to overcome this challenge to enhance ARF prediction.
The study employs various machine-learning models, including logistic regression (LR),
random forest (RF), extreme gradient boosting (XGB), light gradient-boosting machine
(LGBM) and a multi-layer perceptron (MLP). The regression analysis, ensemble method
and neural network models considered in our study are among the most commonly utilized
models in the development of clinical prediction models [43,44]. Furthermore, since the
data we are working with are not in the form of time series or images, we did not consider
models such as recurrent neural networks or convolutional neural networks. Our novel
approach to TL using OOD data is illustrated in Figure 3.
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Figure 3. Transfer learning process. We used a model pre-trained on OOD data to initialize the
initial weights and adjust the number of trainable layers. Red represents the data from Hospital A
and the corresponding training results of the model using that data. Blue signifies the data from
Hospital B and the model’s training outcomes based on it. During the learning process, layers frozen
during training by Hospital B maintain their red color, indicating that training by Hospital B did not
influence them. In contrast, layers that underwent training exhibit a mix of red and blue, resulting in
a purple hue.

The first step of the approach is to develop an MLP model, which can predict ARF in
patients without acute pesticide poisoning. This MLP model is a pre-trained model, serving
as a foundation for fine-tuning using data from patients with acute pesticide poisoning.
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During the fine-tuning process, the number of trainable layers is adjusted, and each model
variant is evaluated systematically. The initial MLP model consists of five dense layers,
including the output layer. The number of trainable dense layers is varied systematically to
create models ranging from TL1 to TL5. The specific model architecture can be examined
in Figure A3.

To ensure the reliability of the models, cross-validation is carried out due to the limited
number of patients in the cohort. The dataset is divided into five groups, with the ratio of
patients with ARF to patients without ARF maintained in each group. Group 5 underwent
early stopping in DL, while the remaining groups (Groups 1–4) were used for four-fold
cross-validation, as shown in Figure A4.

We considered key performance metrics during model evaluation, such as the area
under the receiver operating characteristic (AUROC) and the F1 score. For the final evalua-
tion, a comprehensive range of performance metrics is considered for the best performing
model, which includes accuracy, precision, recall, F1 score, negative predictive value (NPV),
Matthews correlation coefficient (MCC), AUROC and the area under the precision–recall
curve (AUPRC). In addition to these quantitative metrics, a visual assessment is conducted
to comprehensively understand the model’s performance. This visual inspection involves
the examination of confusion matrices, AUROC curves and AUPRC curves. It provides
valuable insights into the model’s performance, behavior and strengths.

2.6. Statistical Analysis and Model Interpretation

The basic statistics of the datasets from both hospitals were thoroughly examined. A
t-test was conducted at a significance level of 0.05 to determine potential between-hospital
differences. Each hospital’s cases were designated as “1” (indicating ARF) and “0” (indicat-
ing non-ARF) and examined separately. Subsequent t-tests were performed at a significance
level of 0.05 on data subsets to determine the significance of the observed differences.

To better understand how the model works and which features are most important,
we identified the features, which received high evaluations from the model. We also
used Shapley additive explanation (SHAP) values to confirm the clinical significance of
the model’s learning process. These SHAP values help us understand how each feature
contributes to the model’s predictions, making it easier to interpret model-guided decisions.
This step is important in determining the practical relevance of the model’s findings in a
clinical setting.

3. Results
3.1. Study Participants’ Characteristics

After addressing the outliers, we provide in Table A2 the missing values for each
feature and their corresponding proportions. Our study approach comprised selecting
features with clinically significant relevance while ensuring that the proportion of missing
values did not exceed 5%. Soonchunhyang University Cheonan Hospital initially selected
features with less than 5% missing data. However, additional missing values were in-
troduced after handling the outliers, causing some features to exceed the 5% threshold.
Table A2 includes the GCS—which was otherwise excluded from feature selection—for
comparative purposes.

Table 1 includes each feature’s mean and standard deviation. A statistical analysis was
conducted using p-values obtained from the t-tests to verify between-hospital differences.
The t-test results indicated significant differences for all features, suggesting the two
datasets were OOD. For the sex feature, the table presents the number and percentage of
males. A chi-squared test confirmed the differences detailed in the table. This table offers a
comprehensive overview of the statistical differences between the datasets, emphasizing
the OOD relationship and the specific comparison for the sex feature.
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Table 1. Mean and standard deviation according to the feature. “*” means statistically significant
under a significance level of 0.05.

Feature
Korea University Anam Hospital

(n = 12,059)
Soonchunhyang University Cheonan

Hospital (n = 803) p-Value
Mean SD Mean SD

Age, year 68.48 16.13 61.54 15.70 <0.0001 *

Sex (%) 1 6762 56.07 500 62.27 0.0007 *

Systolic BP, mmHg 2 123.38 16.26 133.90 23.86 <0.0001 *

Diastolic BP, mmHg 73.28 10.80 78.18 12.97 <0.0001 *

Respiratory rate, bpm 19.36 2.72 19.36 1.83 <0.0001 *

Heart rate, bpm 36.92 0.45 36.42 0.56 <0.0001 *

Serum Cr, mg/dL 3 1.12 0.83 0.86 0.27 <0.0001 *

Hemoglobin, g/dL 10.79 1.97 14.04 1.65 <0.0001 *

Total CO2, mmol/L 23.45 3.97 22.26 3.39 <0.0001 *

Arterial pH 7.43 0.04 7.38 0.06 <0.0001 *

pCO2, mmHg 32.07 5.80 37.11 5.72 <0.0001 *

pO2, mmHg 93.02 27.65 85.66 18.11 <0.0001 *

BE, mmol/L 4 −1.51 3.28 −2.33 4.08 <0.0001 *

Lactate, mmol/L 1.98 1.18 2.88 1.90 <0.0001 *
1 Sex, male; 2 BP, blood pressure; 3 Cr, creatinine; 4 BE, base excess.

Tables 2 and 3 present key statistics, such as means, standard deviations and statis-
tical significance, highlighting the differences between patients with ARF and patients
without ARF in both hospital datasets. For the Korea University Anam Hospital dataset,
data pre-processing intentionally introduced distinctions between patients with ARF and
patients without ARF, resulting in significant disparities in all features. However, in the
Soonchunhyang University Cheonan Hospital dataset, some features were not significantly
different between the patients with ARF and patients without ARF.

Table 2. Differences between patients with ARF and patients without ARF at Korea University Anam
Hospital. “*” means statistically significant under a significance level of 0.05.

Feature
Patients without ARF (n = 645) Patients with ARF (n = 158)

p-Value
Mean/N SD/% Mean/N SD/%

Age, year 68.66 16.42 67.59 14.53 <0.0001 *

Sex (%) 1 54.05 54.61 1357 62.80 <0.0001 *

Systolic BP, mmHg 2 123.51 15.89 122.67 18.14 <0.0001 *

Diastolic BP, mmHg 73.48 10.61 72.21 11.69 <0.0001 *

Respiratory rate, bpm 19.15 2.40 20.51 3.86 <0.0001 *

Heart rate, bpm 36.92 0.44 36.94 0.53 <0.0001 *

Serum Cr, mg/dL 3 1.07 0.77 1.41 1.03 <0.0001 *

Hemoglobin, g/dL 10.87 1.95 10.37 2.03 <0.0001 *

Total CO2, mmol/L 23.58 3.90 22.75 4.26 <0.0001 *

Arterial pH 7.43 0.04 7.43 0.05 <0.0001 *

pCO2, mmHg 32.03 5.69 32.31 6.40 <0.0001 *

pO2, mmHg 92.92 27.09 93.54 30.41 <0.0001 *

BE, mmol/L 4 −1.46 3.20 −1.75 3.70 <0.0001 *

Lactate, mmol/L 1.92 1.12 2.26 1.42 <0.0001 *
1 Sex, male; 2 BP, blood pressure; 3 Cr, creatinine; 4 BE, base excess.
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Table 3. Differences between patients with ARF and patients without ARF at Soonchunhyang
University Cheonan Hospital. “*” means statistically significant under a significance level of 0.05.

Feature
Patients without ARF (n = 645) Patients with ARF (n = 158)

p-Value
Mean/N SD/% Mean/N SD/%

Age, year 59.91 15.81 68.18 13.35 <0.0001 *

Sex (%) 1 408 63.26 92 58.23 0.2815

Systolic BP, mmHg 2 133.63 23.25 135.00 26.32 <0.5583

Diastolic BP, mmHg 78.55 12.67 76.63 14.06 <0.1257

Respiratory rate, bpm 19.36 1.75 19.34 2.19 0.9141

Heart rate, bpm 36.45 0.52 36.28 0.67 <0.0047 *

Serum Cr, mg/dL 3 0.83 0.27 0.97 0.27 <0.0001 *

Hemoglobin, g/dL 14.09 1.63 13.83 1.70 0.0988

Total CO2, mmol/L 22.69 3.19 20.51 3.61 <0.0001 *

Arterial pH 7.39 0.06 7.36 0.08 <0.0001 *

pCO2, mmHg 37.20 5.71 36.68 5.76 0.3319

pO2, mmHg 85.37 16.97 87.01 22.65 0.4274

BE, mmol/L 4 −1.85 3.88 −4.38 4.28 <0.0001 *

Lactate, mmol/L 2.84 1.82 3.03 2.24 0.3526
1 Sex, male; 2 BP, blood pressure; 3 Cr, creatinine; 4 BE, base excess.

Table A3 provides an insightful overview of the distribution of pesticide-related
features in the Soonchunhyang University Cheonan Hospital dataset, offering a better
understanding of the features’ characteristics. These tables comprehensively illustrate the
differences between patients with ARF and patients without ARF and provide insights into
the distribution of pesticide-related features in the dataset.

3.2. Model Performance

Each model’s major performance metrics, including their AUROC and F1 scores,
are included in Table 4. The models have generally high AUROC values, but the wide
range of confidence intervals raises concerns about the reliability of their performance.
This variability in performance can be attributed to differences between the training and
test sets, especially in limited datasets. The RF model has the highest AUC among the
traditional models, while the LR model has the narrowest confidence interval. The MLP
model has the lowest mean and the widest confidence interval.

Table 4. Model performance. In transfer learning, the term “numbers” refers to the number of
trainable dense layers.

Model
AUROC F1

Mean 95% CI Mean 95% CI

LR 0.8665 0.8384–0.8946 0.4936 0.3565–0.6308

RF 0.8767 0.8189–0.9346 0.4173 0.2567–0.5780

XGB 0.8620 0.8238–0.9003 0.5179 0.4039–0.6319

LGBM 0.8627 0.8101–0.9153 0.5511 0.4420–0.6602

MLP 0.8361 0.7282–0.9439 0.4411 0.1924–0.6898
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Table 4. Cont.

Model
AUROC F1

Mean 95% CI Mean 95% CI

TL

5 0.9023 0.8760–0.9286 0.5539 0.4413–0.6665

4 0.8884 0.8513–0.9255 0.5672 0.4127–0.7216

3 0.8679 0.8344–0.9014 0.5435 0.4477–0.6392

2 0.8654 0.8107–0.9201 0.5513 0.5152–0.5873

1 0.8562 0.8008–0.9115 0.5228 0.4362–0.6094

Notably, the TL model, which has the same structures as the MLP model, significantly
outperforms the existing models. The TL approach remarkably narrows the confidence
interval, substantially enhancing overall model performance. Figure 4 visually illustrates
the comparative performance of each model. Table A4 illustrates the performance when
GCS is included as a feature. Incorporating GCS as a feature significantly enhances the
performance across all models. This confirms the crucial importance of GCS as a feature in
patients with acute pesticide poisoning.
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Table 5 provides detailed performance metrics for the MLP model, which has the same
structure as the high-performing TL5 model and uses Group 4 evaluation data. These
metrics offer a more detailed view of the model’s performance and effectiveness in the
specific evaluation context. The table includes a comprehensive set of performance metrics,
such as accuracy, precision, recall, F1 score, NPV, MCC, AUROC and AUPRC. Figure A1
visually compares the models’ performance, highlighting the confusion matrix, AUROC
curve and AUPRC curves. Notably, there is a significant improvement in precision and
recall for the TL5 model, highlighting substantial enhancements in its overall performance.

Table 5. Model performance for Group 4.

Model Accuracy Precision Recall F1 NPV MCC AUROC AUPRC

MLP 0.83 0.83 0.16 0.26 0.83 0.31 0.77 0.57

TL5 0.87 0.87 0.41 0.55 0.87 0.54 0.91 0.79
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3.3. Model Interpretation

Figure A2 displays cases where there is a probability difference of 0.1 or more between
the MLP and TL5 models. The red area represents patients with ARF, while the blue
area represents patients without ARF. Therefore, if the model’s performance is high, the
probability should be higher in the red area and lower in the blue area. The observed
trend suggests that, except for some cases, the probability increases for patients with
ARF and decreases for patients without ARF. Ultimately, the model predicts with greater
confidence that patients who experience ARF are more likely to do so, and patients who
do not experience ARF are more likely to remain free from it. This indicates an increased
discriminative ability of the model.

Figure 5 displays the model’s SHAP values, highlighting the significant factors con-
tributing to the development of ARF. The analysis provides the following insights:

1. High Cr, low TCO2 and low DBP significantly contributed to the development of ARF.
2. Older age, low BE, high pCO2 and high SBP may contribute to the development

of ARF.
3. Glufosinate and organophosphates were more likely to contribute to the development

of ARF than other pesticides.
4. Ingesting less than 100 cc carried a lower likelihood of developing ARF, while those

who ingested 100–200 cc showed higher likelihood.
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4. Discussion

Our study is a pioneering effort by the authors to apply OOD and TL techniques, com-
monly used in the image domain, to EHR, aiming to improve the performance of models
with small sample sizes. Specifically, the authors developed a model for predicting ARF
in patients with acute pesticide poisoning with minimized bias [37,41]. In cases of acute
pesticide poisoning, MLP models face limitations due to insufficient data, resulting in low
performance and wide confidence intervals [45]. In contrast, the newly proposed approach
outperforms the MLP model and exhibits narrower confidence intervals. Additionally, the
highest performance was achieved when the number of trainable layers was maximized.
Maximizing the utilization of information tailored to the intended purpose is more advan-
tageous than simply using information from a pre-trained model. The study also confirms
the potential benefits of initializing weights using OOD data, particularly in cases of limited
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data, instead of commonly used initialization [9–12]. Moreover, transfer learning showed
its ability to enhance performance, even when data are scarce, as illustrated in Figure A1.

Simply examining retrospective data does not allow for a discussion on the mecha-
nisms of ARF between patients with acute pesticide poisoning and those without. However,
leveraging OOD data, the model may have learned more generalized and rough patterns
regarding the deteriorating respiratory condition of patients. The weights configured in this
manner are expected to be effective in facilitating TL effectively. To assess the importance
of features, SHAP values were employed. Most of the results were consistent with the
trends of feature importance identified in previous research. By combining the importance
of individual features as indicated by SHAP values with factors such as pesticide category
and ingestion amounts, future research can contribute to a better understanding of the
mechanisms underlying ARF resulting from acute pesticide poisoning.

However, this study has some limitations. First, it is retrospective and based on data
from a single institution. Future studies should address these limitations and expand
the scope of data collection. Second, further study is needed to examine the best ways
to use OOD data, investigate various TL application methods and develop strategies for
handling differing features in different application contexts. For instance, there is a need
for discussion on how to address challenges when important features, such as GCS in this
study, are mostly missing, making them difficult to leverage in pre-training. Despite its
limitations, this study contributes valuable new methodologies for managing limited data
in studying rare diseases and comparable conditions, highlighting the significant promise
of machine-learning techniques in advancing medical research.

5. Conclusions

This study pioneers the application of OOD and TL techniques in the EHR, particu-
larly in scenarios characterized by limited data. We conducted this research with a focus
on predicting acute respiratory failure in patients with acute pesticide poisoning. Our
proposed approach surpasses conventional predictive models by leveraging OOD data in
conjunction with pre-trained models, highlighting the substantial benefits of OOD data for
weight initialization in settings where data are scarce. The outcomes of our experimentation
suggest that our method holds promise as a viable alternative for effectively training mod-
els with limited data. When an appropriate OOD dataset is adeptly utilized, it introduces a
compelling methodology for addressing data limitations in rare diseases and analogous
scenarios. Future research should be expanded beyond these preliminary findings to refine
transfer learning applications and formulate strategies for handling diverse data attributes
across various medical scenarios. A key emphasis should be placed on addressing the
challenge of managing crucial yet dissimilar features in prediction. In conclusion, our
study makes a significant contribution by presenting innovative methodologies to navigate
challenges posed by limited data in the study of rare diseases and similar conditions. We
will conduct additional research to overcome the limitations discussed in this paper.
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Appendix A

We compiled the figures and tables from our research results, which were not utilized
in the main text, in Appendix A.
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Table A1. Abbreviation descriptions.

Category Abbreviation Full Form

Model

LGBM Light Gradient-Boosting Machine

LR Logistic Regression

MLP Multi-Layer Perceptron

RF Random Forest

XGB Extreme Gradient Boosting

Metrics

AUROC Area Under the Receiver Operating Characteristic

AUPRC Area Under the Precision–Recall Curve

MCC Matthews Correlation Coefficient

SHAP ShaHley Additive exPlanations

Features

BE Base Excess

DBP Diastolic Blood Pressure

GCS Glasgow Coma Scale

SBP Systolic Blood Pressure

Total CO2 Total Carbon Dioxide

ETC

ARF Acute Respiratory Failure

DL Deep Learning

EHR Electronic Health Records

IRB Institutional Review Boards

MICE Multiple Imputation by Chained Equations

MV Mechanical Ventilation

OOD Out-of-Distribution

TL Transfer Learning

Table A2. Number and proportion of missing values by feature.

Feature

Korea University
Anam Hospital

(n = 12,059)

Soonchunhyang University
Cheonan Hospital

(n = 803)

N % N %

Age 0 0.00 0 0.00

Sex 1 0 0.00 0 0.00

Systolic BP 2 53,138 19.61 22 2.74

Diastolic BP 52,928 19.53 29 3.61

Respiratory 14,632 5.40 27 3.36

Heart rate 13,648 5.04 38 4.73

Serum Cr 3 14,047 5.18 28 3.49

Hemoglobin 13,172 4.86 41 5.11

Total CO2 11,695 4.32 65 8.09

Arterial pH 13,024 4.81 43 5.35

pCO2 13,307 4.91 39 4.86

pO2 13,531 4.99 43 5.35

BE 4 13,421 4.95 43 5.35

Lactate 10,295 3.80 50 6.23

GCS 5 251,420 92.78 24 2.99
1 Sex, male; 2 BP, blood pressure; 3 Cr, creatinine; 4 BE, base excess; 5 GCS; Glasgow Coma Scale.
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Table A3. Characteristics of pesticide exposure at Soonchunhyang University Cheonan Hospital.

Feature N %

Pesticide category

Not otherwise specified 227 28.27

Glyphosate 213 26.53

Glufosinate 186 23.16

Organophosphate 90 11.21

Pyrethroid 78 9.71

Carbamate 9 1.12

Amount of ingestion

≤50 cc 168 20.92

>50 cc, ≤100 cc 160 19.93

>100 cc, ≤200 cc 157 19.55

>200 cc, ≤300 cc 131 16.31

>300 cc 97 12.08

Unknown 90 11.21

Table A4. Model performance with Glasgow Coma Scale.

Model
AUROC F1

Mean 95% CI Mean 95% CI

LR 0.9076 0.8872–0.9279 0.6800 0.5946–0.7655

RF 0.9115 0.8687–0.9544 0.5783 0.5106–0.6460

XGB 0.9039 0.8695–0.9383 0.6316 0.5459–0.7174

LGBM 0.9056 0.8966–0.9146 0.6339 0.5401–0.7277

MLP 0.8842 0.8460–0.9225 0.6321 0.4985–0.7658

Appendix B

This appendix presents the results of additional experiments conducted to indirectly
validate the utility of out-of-distribution (OOD) data in transfer learning (TL) using diverse
datasets from the UCI Machine Learning Repository (https://archive.ics.uci.edu/datasets,
accessed on 1 January 2024). Acknowledging potential limitations in the experimental
design, we emphasize that the identification of appropriate OOD datasets is crucial. The
outcomes of TL are explored across various datasets, recognizing that performance im-
provements may vary based on context. The utilized datasets are detailed below, and
further information can be found in the UCI Machine Learning Repository:

1. Pima Indian: Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S.
(1988). https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
(accessed on 1 January 2024).

2. Cirrhosis Patient Survival Prediction: Dickson, E., Grambsch, P., Fleming, T., Fisher,
L., and Langworthy, A. (2023). Cirrhosis Patient Survival Prediction. UCI Machine
Learning Repository. https://doi.org/10.24432/C5R02G.

3. NHANES: National Health and Nutrition Health Survey 2013–2014 (NHANES) (2023)
Age Prediction Subset. UCI Machine Learning Repository. https://doi.org/10.24432
/C5BS66.

4. Wisconsin Breast Cancer: Wolberg, William, Mangasarian, Olvi, Street, Nick, and
Street, W. (1995). Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning
Repository. https://doi.org/10.24432/C5DW2B.

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://doi.org/10.24432/C5R02G
https://doi.org/10.24432/C5BS66
https://doi.org/10.24432/C5BS66
https://doi.org/10.24432/C5DW2B
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5. Parkinsons Telemonitoring: Tsanas, Athanasios and Little, Max. (2009). Parkinsons
Telemonitoring. UCI Machine Learning Repository. https://doi.org/10.24432/C5ZS3N.

6. CDC Diabetes Health Indicators: This dataset was released by the CDC. https://doi.
org/10.24432/C53919.

We conducted multiple repetitions of the same experimental procedure across vari-
ous datasets to validate the effectiveness of the proposed method. Initially, minimal data
pre-processing, including handling missing values, was performed for each dataset. Sub-
sequently, the datasets were divided into two groups to establish an OOD relationship
between the majority and minority classes. One group was utilized for pre-training, while
the other was employed to evaluate the proposed method. All models, including the
pre-trained model, shared identical structures. Each model comprised two dense layers,
with each layer incorporating batch normalization and a dropout layer with a dropout rate
of 0.3. The output layer was adjusted with an appropriate activation function for regression
and classification tasks. Considering data imbalance, weights were assigned to the minor-
ity class during training. For evaluation metrics, the area under the receiver operating
characteristic curve (AUROC) and area under the precision–recall curve (AUPRC) were
used for classification tasks, while the mean squared error (MSE) and R-squared (R2) were
employed for regression. Additionally, to account for potential variations in performance
based on the method of splitting minority class data into training and test sets, we varied
the random seed and repeated the process of dividing the training and test sets 300 times
(7:3). The results were then averaged, and 95% confidence intervals were examined.

In the Pima Indian dataset, we stratified participants into two groups based on body
mass index (BMI). The overweight group, defined as BMI 25 or above, comprised 259 indi-
viduals (40%) with diabetes, while the group with BMI below 25 included 9 individuals
(7%) with diabetes (Table A5). We hypothesized a scenario where diabetes identification
is targeted in the non-overweight group. We leveraged the overweight group as a pre-
training model and conducted transfer learning. A comparison of the means is presented
in Figure A5, and the mean values along with 95% confidence intervals for all datasets are
provided in Table A12.

Table A5. Statistics of the Pima Indian dataset. “*” means statistically significant under a significance
level of 0.05.

Feature BMI ≥ 25
(N = 651)

BMI < 25
(N = 117) p-Value

Glucose 123.36 ± 32.29 107.20 ± 26.31 <0.0001 *

Blood pressure 70.49 ± 18.02 61.39 ± 24.21 0.0002 *

Skin thickness 22.48 ± 16.06 9.71 ± 9.90 <0.0001 *

Insulin 86.90 ± 120.25 40.28 ± 70.27 <0.0001 *

DPF 0.48 ± 0.33 0.41 ± 0.31 0.0220 *

Age 33.56 ± 11.44 31.49 ± 13.34 0.1170

Pregnancies 3.0 (1.0, 6.0) 2.0 (1.0, 5.0) 0.0401 *

In the Cirrhosis Patient Survival Prediction dataset, we considered three scenarios.
First, we observed a significantly higher proportion of females in the dataset. Therefore, we
predicted the severity of cirrhosis in male patients. Among male patients, 127 individuals
(35%) were labeled as 4, while among female patients, 7 individuals (39%) were labeled as 4.
Second, we predicted the severity of cirrhosis in elderly patients aged 60 and above. Among
patients under 60, 97 individuals (30%) were labeled as 4, while among patients aged 60 and
above, 41 individuals (47%) were labeled as 4. Third, we predicted the severity of cirrhosis
in patients who took D-penicillamine. Among patients who did not take D-penicillamine
and were labeled as 4, 89 individuals (35%) were identified, while among those who took
it, 55 individuals (35%) were labeled as 4. For detailed information, please refer to Table A6.

https://doi.org/10.24432/C5ZS3N
https://doi.org/10.24432/C53919
https://doi.org/10.24432/C53919


Mathematics 2024, 12, 237 17 of 26

Comparisons of the means are illustrated in Figure A6. Mean values, accompanied by 95%
confidence intervals for all datasets, are also detailed in Table A12.
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Table A6. Statistics of the Cirrhosis Patient Survival Prediction dataset. “*” means statistically
significant under a significance level of 0.05.

Feature
Dataset for Pre-Training Dataset for Fine-Tuning

p-Value
Female (N = 368) Male (N = 44)

D-penicillamine 137 (37.23) 21 (47.73) 0.2342

Ascites 21 (5.71) 3 (6.82) 1.0000

Hepatomegaly 139 (37.77) 21 (47.73) 0.2640

Spiders 86 (23.37) 4 (9.09) 0.0485 *

Edema 56 (15.22) 8 (18.18) 0.7696

Age 50.07 ± 10.25 55.75 ± 11.00 0.0020 *

Bilirubin 3.27 ± 4.62 2.87 ± 2.32 0.3426

Cholesterol 370.50 ± 238.73 362.46 ± 178.99 0.8129

Albumin 3.50 ± 0.42 3.53 ± 0.46 0.5906

Copper 90.21 ± 80.74 154.28 ± 100.67 0.0007 *

Alk_Phos 1957.83 ± 2105.05 2172.95 ± 2418.45 0.6133

SGOT 122.63 ± 57.92 121.99 ± 47.01 0.9408

Tryglicerides 123.47 ± 66.78 133.43 ± 52.17 0.3135

Platelets 259.10 ± 96.61 231.14 ± 85.23 0.0501

Prothrombin 10.71 ± 1.04 10.94 ± 0.93 0.1280

Age < 60 (N = 324) Age ≥ 60 (N = 88)

D-penicillamine 120 (37.04) 38 (43.18) 0.3536

Male 27 (8.33) 17 (19.32) 0.0057 *

Ascites 13 (4.01) 11 (12.50) 0.0058 *

Hepatomegaly 126 (38.89) 34 (38.64) 1.0000

Spiders 77 (23.77) 13 (14.77) 0.0959

Edema 39 (12.04) 25 (28.41) 0.0003 *

Bilirubin 3.33 ± 4.65 2.86 ± 3.51 0.3086

Cholesterol 379.49 ± 248.56 327.96 ± 137.49 0.0392 *

Albumin 3.52 ± 0.42 3.41 ± 0.43 0.0349*

Copper 96.84 ± 86.91 101.07 ± 80.47 0.7218

Alk_Phos 2008.02 ± 2174.57 1876.12 ± 2004.30 0.6534

SGOT 124.48 ± 57.91 114.48 ± 50.97 0.1868

Tryglicerides 123.84 ± 64.71 128.27 ± 67.43 0.6603

Platelets 260.10 ± 97.20 241.24 ± 89.15 0.0916

Prothrombin 10.68 ± 0.99 10.92 ± 1.15 0.0748

Placebo (N = 254) D-penicillamine (N = 158)

Male 23 (9.06) 21 (13.29) 0.2342

Ascites 10 (3.94) 14 (8.86) 0.0631

Hepatomegaly 87 (34.25) 73 (46.20) 0.0206 *

Spiders 45 (17.72) 45 (28.48) 0.0143 *

Edema 38 (14.96) 26 (16.46) 0.7891

Age 50.18 ± 10.10 51.47 ± 11.01 0.2324

Bilirubin 3.45 ± 4.86 2.87 ± 3.63 0.1717

Cholesterol 373.88 ± 252.48 365.01 ± 209.54 0.7474

Albumin 3.49 ± 0.41 3.52 ± 0.44 0.5485

Copper 97.65 ± 80.49 97.64 ± 90.59 0.9992

Alk_Phos 1943.01 ± 2101.69 2021.30 ± 2183.44 0.7471

SGOT 124.97 ± 58.93 120.21 ± 54.52 0.4602

Tryglicerides 125.25 ± 58.52 124.14 ± 71.54 0.8864

Platelets 254.42 ± 92.89 258.75 ± 100.32 0.6646

Prothrombin 10.78 ± 1.12 10.65 ± 0.85 0.1829
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In the NHANES dataset, elderly and non-elderly individuals are labeled as 1 and
0, respectively. In this analysis, we further categorized patients into two groups: those
without diabetes and those with diabetes or deemed to be in a pre-diabetic state. Among
the former, 338 individuals (15%) were elderly, while among the latter, 26 individuals (33%)
were elderly (Table A7). We employed the same methodology as before to predict the
elderly group within the latter category. The results can be observed in Figure A7, and the
95% confidence intervals are detailed in Table A12.

Table A7. Statistics of the NHANES dataset. “*” means statistically significant under a significance
level of 0.05.

Feature No Diabetes
(N = 2198)

Suspected Diabetes
(N = 79) p-Value

Female 1127 (51.27) 38 (48.10) 0.6631

Regular moderate-to-
high-intensity exercise 1808 (82.26) 60 (75.95) 0.1986

BMI 27.83 ± 7.17 31.43 ± 8.56 0.0004 *

Glucose 98.63 ± 14.25 125.34 ± 54.05 <0.0001 *

2-h OGTT glucose 112.61 ± 42.54 180.85 ± 95.45 <0.0001 *

Insulin 11.66 ± 9.46 16.57 ± 14.53 0.0039 *
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Figure A7. Comparison with and without transfer learning in the NHANES dataset.

In the Wisconsin Breast Cancer dataset, excluding the target variable, we applied the
KMeans algorithm to divide the data into two groups. In Cluster 1, there were 90 indi-
viduals (20%) diagnosed with malignant tumors. In contrast, Cluster 0 contained only
two individuals (0.4%), resulting in a dataset with severe class imbalance (Table A8). We
undertook the task of identifying malignant tumor patients in Cluster 0. The results can be
observed in Figure A8. Additionally, a comprehensive performance comparison is available
in Table A12.
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Table A8. Statistics of the Wisconsin Breast Cancer dataset. “*” means statistically significant under a
significance level of 0.05.

Feature Cluster 1
(N = 445)

Cluster 0
(N = 124) p-Value

Radius 12.60 ± 1.92 19.62 ± 2.27 <0.0001 *

Texture 18.58 ± 4.10 21.84 ± 4.03 <0.0001 *

Perimeter 81.45 ± 13.18 129.71 ± 16.23 <0.0001 *

Area 499.67 ± 149.85 1211.94 ± 301.41 <0.0001 *

Smoothness 0.0953 ± 0.0144 0.1003 ± 0.0122 0.0001 *

Compactness 0.0928 ± 0.0460 0.1459 ± 0.0549 <0.0001 *

Concavity 0.0645 ± 0.0603 0.1760 ± 0.0802 <0.0001 *

Concave points 0.0346 ± 0.0251 0.1003 ± 0.0356 <0.0001 *

Symmetry 0.1787 ± 0.0264 0.1901 ± 0.0292 0.0001 *

Fractal dimension 0.0636 ± 0.0070 0.0599 ± 0.0064 <0.0001 *
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Figure A8. Comparison with and without transfer learning in the Wisconsin Breast Cancer dataset.

In the Parkinson’s Telemonitoring dataset, there are two Unified Parkinson’s Disease
Rating Scale (UPDRS) metrics. The first is the motor UPDRS, which is also utilized as a
feature, and the second is the total UPDRS. The total UPDRS is determined by considering
various indicators along with the motor UPDRS. The dataset encompasses diverse data, in-
cluding voice recordings, collected over six months from 44 Parkinson’s patients. Drawing
inspiration from the degenerative nature of Parkinson’s disease, we assumed a scenario
of predicting the total UPDRS in patients under the age of 60 (Table A9). To prevent the
mixing of data from the same patients between the training and testing sets, we divided
the data based on patients. The regression results are presented using MSE and R2. The
results are depicted in Table A10.
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Table A9. Statistics of the Parkinson’s Telemonitoring dataset. “*” means statistically significant
under a significance level of 0.05.

Feature Age > 60
(N = 27)

Age ≤ 60
(N = 15) p-Value

Female 8 (29.63) 6 (40.00) 0.7327

Motor UPDRS 22.93 ± 8.07 18.21 ± 7.31 <0.0001 *

Jitter (%) 0.006568 ± 0.005735 0.005370 ± 0.005323 <0.0001 *

Jitter (Abs) 0.000047 ± 0.000037 0.000039 ± 0.000033 <0.0001 *

Jitter: RAP 0.003184 ± 0.003134 0.002615 ± 0.003072 <0.0001 *

Jitter: PPQ5 0.003554 ± 0.004008 0.002752 ± 0.003078 <0.0001 *

Jitter: DDP 0.009552 ± 0.009401 0.007846 ± 0.009215 <0.0001 *

Shimmer 0.038 ± 0.028 0.027 ± 0.019 <0.0001 *

Shimmer (dB) 0.344 ± 0.252 0.249 ± 0.166 <0.0001 *

Shimmer: APQ3 0.019 ± 0.014 0.014 ± 0.010 <0.0001 *

Shimmer: APQ5 0.022 ± 0.018 0.016 ± 0.012 <0.0001 *

Shimmer: APQ11 0.030 ± 0.021 0.022 ± 0.016 <0.0001 *

Shimmered 0.057 ± 0.043 0.042 ± 0.030 <0.0001 *

NHR 0.037 ± 0.070 0.023 ± 0.030 <0.0001 *

HNR 21.21 ± 4.29 22.56 ± 4.16 <0.0001 *

RPDE 0.55 ± 0.09 0.52 ± 0.11 <0.0001 *

DFA 0.64 ± 0.07 0.67 ± 0.07 <0.0001 *

PPE 0.23 ± 0.09 0.20 ± 0.08 <0.0001 *

Table A10. Comparison with and without transfer learning in the Parkinson’s Telemonitoring dataset.

Metrics
Without TL With TL

Mean 95% CI Mean 95% CI

MSE 34.08 31.54–35.61 33.40 30.55–36.25

R2 0.36 0.28–0.45 0.42 0.35–0.49

Finally, the CDC Diabetes Health Indicators dataset includes variables with various
operational definitions, and specific information can be found on the respective website.
The overarching goal task is predicting diabetes status. We assumed three scenarios. The
first scenario involved the prediction of diabetes in individuals who have experienced a
stroke. For those without a stroke, 32,078 individuals (13%) had diabetes or pre-diabetes,
while for those who had a stroke, 3268 individuals (32%) had diabetes or pre-diabetes. The
second scenario involved the prediction of diabetes in individuals with coronary artery
disease or heart disease. For those without the disease, 27,468 individuals (12%) had
diabetes or pre-diabetes, while for those with the disease, 7878 individuals (33%) had
diabetes or pre-diabetes. The third scenario involved predicting diabetes in binge drinkers.
In this dataset, adult males are defined as binge drinkers if they consume 14 or more drinks
per week, and adult females are defined as binge drinkers if they consume 7 or more drinks
per week. For non-binge drinkers, 34,514 individuals (14%) had diabetes or pre-diabetes,
while among binge drinkers, 832 individuals (6%) had diabetes or pre-diabetes. For detailed
information, please refer to Table A11. Each result can be verified in Figure A9, and the
comprehensive results, including 95% confidence intervals, are available in Table A12.
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Figure A9. Comparison with and without transfer learning in the CDC Diabetes Health Indicators
dataset: (A) Stroke, (B) CHD, (C) Binge drinker.

Table A11. Statistics of the CDC Diabetes Health Indicators dataset. “*” means statistically significant
under a significance level of 0.05.

Feature
Dataset for Pre-Training Dataset for Fine-Tuning

p-Value
No Stroke (N = 243,388) Stroke (N = 10,292)

HighBP 101,204 (41.58) 7625 (74.09) <0.0001 *

HighChol 100,935 (41.47) 6656 (64.67) <0.0001 *

Smoke 106,341 (43.69) 6082 (59.09) <0.0001 *

CHD 19,956 (8.20) 3937 (38.25) <0.0001 *

PhysActivity 185,619 (76.26) 6301 (61.22) <0.0001 *

Fruits 154,693 (63.56) 6205 (60.29) <0.0001 *

Veggies 198,295 (81.47) 7546 (73.32) <0.0001 *

Binge drinker 13,873 (5.70) 383 (3.72) <0.0001 *

GenHlth <0.0001 *

Excellent 44,854 (18.43) 445 (4.32)

Very good 87,420 (35.92) 1664 (16.17)

Good 72,473 (29.78) 3173 (30.83)

Fair 28,591 (11.75) 2979 (28.94)

Poor 10,050 (4.13) 2031 (19.73)
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Table A11. Cont.

Feature
Dataset for Pre-Training Dataset for Fine-Tuning

p-Value
No Stroke (N = 243,388) Stroke (N = 10,292)

DiffWalk 37,638 (15.46) 5037 (48.94) <0.0001 *

Male 107,100 (44.00) 4606 (44.75) 0.1362

Age ≥ 60 114,696 (47.12) 7618 (74.02) <0.0001 *

BMI 28.35 ± 6.59 29.03 ± 6.94 <0.0001 *

No CHD (N = 229,787) CHD (N = 23,893)

HighBP 90,901 (39.56) 17,928 (75.03) <0.0001 *

HighChol 90,838 (39.53) 16,753 (70.12) <0.0001 *

Smoke 97,622 (42.48) 14,801 (61.95) <0.0001 *

Stroke 6355 (2.77) 3937 (16.48) <0.0001 *

PhysActivity 176,620 (76.86) 15,300 (64.04) <0.0001 *

Fruits 146,450 (63.73) 14,448 (60.47) <0.0001 *

Veggies 187,589 (81.64) 18,252 (76.39) <0.0001 *

Binge drinker 13,408 (5.83) 848 (3.55) <0.0001 *

GenHlth <0.0001 *

Excellent 44,283 (19.27) 1016 (4.25)

Very good 84,956 (36.97) 4128 (17.28)

Good 67,732 (29.48) 7914 (33.12)

Fair 24,842 (10.81) 6728 (28.16)

Poor 7974 (3.47) 4107 (17.19)

DiffWalk 32,760 (14.26) 9915 (41.5) <0.0001 *

Male 98,018 (42.66) 13,688 (57.29) <0.0001 *

Age ≥ 60 103,564 (45.07) 18,750 (78.47) <0.0001 *

BMI 28.27 ± 6.58 29.47 ± 6.74 <0.0001 *

Non-binge drinker
(N = 239,424) Binge drinker (N = 14,256)

HighBP 102,828 (42.95) 6001 (42.09) 0.0464 *

HighChol 101,878 (42.55) 5713 (40.07) <0.0001 *

Smoke 103,156 (43.09) 9267 (65.0) <0.0001 *

Stroke 9909 (4.14) 383 (2.69) <0.0001 *

CHD 23,045 (9.63) 848 (5.95) <0.0001 *

PhysActivity 180,824 (75.52) 11,096 (77.83) <0.0001 *

Fruits 152,849 (63.84) 8049 (56.46) <0.0001 *

Veggies 193,792 (80.94) 12,049 (84.52) <0.0001 *

GenHlth <0.0001 *

Excellent 42,346 (17.69) 2953 (20.71)

Very good 83,618 (34.92) 5466 (38.34)

Good 71,515 (29.87) 4131 (28.98)

Fair 30,272 (12.64) 1298 (9.10)

Poor 11,673 (4.88) 408 (2.86)

DiffWalk 41,100 (17.17) 1575 (11.05) <0.0001 *

Male 105,262 (43.96) 6444 (45.20) 0.0039 *

Age ≥ 60 116,324 (48.58) 5990 (42.02) <0.0001 *

BMI 28.46 ± 6.65 27.06 ± 5.79 <0.0001 *
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Table A12. Comparison with and without transfer learning in all datasets.

Dataset Metrics
Without TL With TL

Mean 95% CI Mean 95% CI

Pima Indian
AUROC 0.72 0.69–0.74 0.86 0.85–0.87

AUPRC 0.42 0.40–0.45 0.58 0.55–0.60

Cirrhosis Patient
Survival
Prediction

Male
AUROC 0.65 0.63–0.66 0.70 0.69–0.72

AUPRC 0.59 0.57–0.61 0.64 0.63–0.66

Elderly
AUROC 0.60 0.59–0.61 0.70 0.69–0.71

AUPRC 0.67 0.66–0.68 0.74 0.73–0.75

D-penicillamine
AUROC 0.76 0.75–0.78 0.83 0.82–0.84

AUPRC 0.67 0.66–0.69 0.74 0.73–0.75

NHANES
AUROC 0.68 0.67–0.69 0.71 0.70–0.72

AUPRC 0.54 0.52–0.55 0.57 0.56–0.59

Wisconsin Breast Cancer
AUROC 0.65 0.61–0.69 0.96 0.95–0.97

AUPRC 0.28 0.25–0.32 0.69 0.65–0.73

CDC Diabetes
Health Indicators

Stroke
AUROC 0.72 0.72–0.72 0.73 0.73–0.73

AUPRC 0.53 0.53–0.54 0.54 0.54–0.55

CHD
AUROC 0.71 0.71–0.71 0.71 0.71–0.71

AUPRC 0.53 0.53–0.53 0.53 0.53–0.53

Binge drinker
AUROC 0.80 0.80–0.80 0.80 0.80–0.80

AUPRC 0.20 0.19–0.20 0.20 0.19–0.20

When applying a consistent experimental methodology to all datasets, performance
improvements were observed across almost all cases. Additionally, there was a tendency
for a narrowing of the confidence interval range with the application of OOD-based TL.
However, it is essential to acknowledge that we do not anticipate our proposed method to
demonstrate optimal performance in every scenario, particularly in situations where either
an ample amount of data is already available or where similar patterns among the data
are not discernible. Nevertheless, our approach remains robust and merits consideration,
especially in scenarios with limited medical data.
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